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ABSTRACT

As the line width of ULSI (Ultra=Large-Semiconductor Integration) decreases,
the related RC delay problem becomes more serious. Aluminum will be replaced by
copper when the line width is smaller than 0.13um because copper possesses better
conductivity and lower electro-migration. However, Cu tends to diffuse into Si and
affects its device performance. Cu diffusing into Si transistors leads to deep-level
doping that will result in lower life timer of minor carrier and higher junction leakage
current. In order to prevent Cu diffusing into Si and avoid device damage, a barrier
layer between Si and Cu is required. In addition, Cu is more difficult to be etched by
plasma due to its lower volatility relative to Al. Since the Cu CMP process has been
developed, the copper damascene process has become feasible. However, CMP
process tends to create defects such as microscrat, dishing, erosion and thus

significantly reduces product yield.



Biochip technology combines biomolecular science, Gene information and
analytic chemistry using the substrate materials of silicones, glasses or polymers.
MEMS, automation and other fine fabrication technologies are adopted to
manufacture this high technology device. Similar to semiconductor possessing
capability of rapid and complex computation, biochips can also conduct fast, accurate
and low cost bio-analytic capability. Biochips have potential applications in the
fundamental research in life sciences, the development of new drugs, clinical disease
diagnosis, food security, chemical industry and other areas. However, it is rather
difficult to perform automatic sample-preparation due to the complexity of
biochemical samples.

In this thesis, we focus on areas of the nano scale Cu process technology and
the polymeric microfluidic:

(1) To obtain high efficient.Cu diffusion barriers, nanoscale TaNy diffusion
barrier thin films were prepared by RF reactive-sputtering with NH3s/Ar and No/Ar as
reactive gas mixtures. After rapid thermal’ annealing, the leakage currents of
Cu/TaNx/n"np* diodes were measured that allowed us to determine the thermal
stabilities of the TaNx diffusion barriers. The thermal stabilities of the TaNx films
predominantly depend on their crystal structures, and less on the gas source. Higher
N/Ta ratio results in improved thermal stability of the Cu/TaNx/n"np* diode structures
but higher resistivity if this ratio becomes too high. When the N/Ta ratio is ca. 1, the
films exhibits good thermal stability and moderate resistivity.

In order to choose appropriate Cu CMP (Chemical-Mechanical Polishing) slurry,
an in-situ IR thermal camera is employed to distinguish this slurry Preston or
non-Preston type. The adoption of the IR thermal camera is to choose suitable

non-Preston Cu CMP slurry in-situ and to optimize changing timing of step endpoint.



Combination of robust CMP machine, appropriate Cu film quality and pretreatment,
we can achieve excellent Cu CMP performance with total defect number less than 10*
order. Such an improved Cu CMP technology makes the Cu damascene process
workable and process of prepare Cu, 0.13 um and beyond 100 nm, becomes reliable

and practical.

(2) In this study, DNA extraction beads fixed on the sample-preparation chip
result in following improvements: acceleration of sample-preparation procedure,
minimization of required sample quantity, simplification of sample-preparation, and

complete automation of the process.

If the DNA extraction beads are not fixed on the sample-preparation chip
simply by mixing with biochemical-solution, these.macromolecules tend to hinder the
combination of DNA with funetional group.-of these beads, even with liquid flows
back-and-forth. When these: DNA--extraction: beads are fixed on the
sample-preparation chip, the contact rate-of both reactants increases and results in
higher extraction efficiency. A thin micro layer of polymer solution is able to fix the
DNA extraction beads on the substrate surface. In addition, plasma treatment of the
chip substrate can change and activate its surface. Thus, these DNA extraction beads
can be bonded covalently with the substrate surface and further improve its efficiency

of DNA extraction.

VI
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