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摘  要 

此篇論文的重點在，對品質特性為一個函數或一條曲線的製程，

我們提出一些新的控制圖來做監控；除了平滑的假設外，在此不限定

曲線的形式。 

我們提出了三個新的監控方法：(1)用無母數迴歸方法

“B-spline”對曲線做配適，再利用T2控制圖對製程做監控；(2)用典

型的控制圖EWMA、EWMSD或R控制圖對樣本曲線和參考曲線間的殘差做

監控；(3)用事先制定的測度(metrics)及其臨界值對品質特性曲線做

監控。 

經過多次的模擬，利用平均連串長度(ARL)來比較所有方法，結

果顯示在曲線型品質特性為指數函數時，我們所提出的新方法都表現

得相當良好。最後在面對製程的各種偏移情形，該使用何種控制圖做

監控，我們也提出了一些建議。 
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ABSTRACT 
 

In this paper, we propose and study some control chart methods for monitoring 

processes for which the quality is characterized by a profile or a function. No 

assumptions are made on the form of the function except that it represents a smooth 

curve. 

Three approaches of monitoring schemes are proposed: (1) Use the “B-spline” 

smoothing method to fit the profiles of processes and design a T2 chart to monitor the 

deviations of the sample profiles from the in-control reference profile. (2) Use typical 

control charts – the EWMA, or EWMSD, or R chart to monitor the residuals between 

the sample profiles and the in-control reference profile. (3) Use some metrics defined 

to measure the deviations of the sample profiles from the in-control reference profile 

to monitor the sample profiles. 

We construct a simulation study using an exponential profile as an example to 

investigate the effectiveness of the proposed schemes. The performances of these 

schemes are evaluated and compared in terms of the average run length. The results of 

the simulation study show that all approaches appear to perform well for exponential 

profiles. It is found that some control schemes are preferable to others for particular 

types of process changes.  
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1. Introduction 

Statistical process control (SPC) has been successfully applied in many domains, 

especially in industries. We often use control charts to monitor processes in most SPC 

applications. In the past, it was always assumed that the quality of a product or 

process can be measured by one or multiple quality characteristics. However, in many 

practical situations, the quality of a product or process is better characterized by a 

profile or a function. One example involved aspartame (an artificial sweetener), which 

is characterized by the amount that dissolves per liter of water at different levels of 

temperature (Kang and Albin, 2000). For illustration purpose, Figure 1 gives an 

example of 4 hypothetical sample profiles created based on the Figure 1 of Kang and 

Albin (2000). Another example is a semiconductor manufacturing application 

involving the calibration of a mass flow controller in which the performance of the 

process is characterized by a linear function (Mestek et al., 1994). Some profiles 

monitoring methods are proposed for this type of processes. Walker and Wright (2002) 

proposed additive models to assess the sources of variation of the density profile of 

particleboards. Jin and Shi (2001) used wavelets to monitor and diagnose process 

faults. Kang and Albin (2000) and Kim, Mahmoud, and Woodall (2003) proposed 

some methods for monitoring the process in which the performance is characterized 

by a linear profile. 

Kang and Albin (2000) presented two approaches to monitor linear profiles. The 

first approach uses a multivariate T2 control chart to monitor the profile parameters, 

slope and intercept, simultaneously. The second approach treats the residuals of the 

sample profile (from the reference profile) as a subgroup and uses a combined 

EWMA/R (exponentially weighted moving average/range) chart for profile 

monitoring. Kim et al. (2003) presented another approach. First, for each profile, code 
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the X-values so that the X  is zero and the estimators of the intercept and the slope 

of the regression line are independent. Then, construct two two-sided EWMA charts 

to monitor the intercept and the slope separately, and use a one-sided EWMA chart to 

monitor the process variation. This scheme is called EWMA3. We remark that these 

two papers only addressed liner profiles. 

The main objective of this paper is to propose and study profile monitoring 

schemes for profiles of more flexible shapes such that the schemes can be applied to 

more general and practical situations. To model a profile with no restriction on the 

functional form, it is natural to consider the nonparametric regression model in which 

the function is only assumed to be smooth. In this paper, for the profile modeling, we 

adopt the spline regression as the curve fitting/smoothing technique for the simplicity 

and readiness of a direct extension from the simple linear regression used by Kang 

and Albin (2000) and Kim et al. (2003) in constructing the T2 chart. The second 

approach we consider is a monitoring scheme based on the residuals of sample 

profiles from the reference profile, similar to the combined EWMA/R scheme given 

in Kang and Albin (2000) and the combined EWMA3 scheme by Kim et al. (2003). 

But instead of combining several control charts, we consider the EWMA chart for 

detecting the mean shift, the R chart for variation change, and the exponentially 

weighted moving standard deviation (EWMSD) chart for the variation increase 

separately. Since each of these control charts is designed for a particular type of 

process changes, their detecting powers usually are better than those more 

general-purposed charts. The 3rd approach is to use some metrics defined to measure 

the deviations between observed profiles and the reference profile to detect process 

changes. This method was firstly presented in Gardner et al. (1997), in which spatial 

signature metrics were used to diagnose the equipment faults. They reported that these 

metric-related charts are very powerful in detecting standard deviation shifts. Finally, 

 - 2 -



a simulation study is conducted to compare the performances of all the proposed 

methods in terms of the average run length (ARL).  

The remaining of this paper is organized as follows. Section 2 reviews the 

monitoring schemes proposed by Kang and Albin (2000) and Kim et al. (2003). 

Section 3 describes the three proposed approaches in details. Section 4 presents the 

results of a simulation study with some discussions and recommendations. Finally, 

Section 5 concludes the paper with a brief summary and discussion. 

2. Literature Review 

Let { ( , ), 1, 2,...,i ijx y i n= } be the observations of the jth profile, .  

Kang and Albin (2000) and Kim et al. (2003) assumed that, when the process is in 

statistical control, the underlying model is 

1, 2,...j =

0 1 , 1, 2,...,ij i ijy A A x i nε= + + = ,        (1)

where the 'ij sε  are independent and identically distributed (i.i.d.) normal random 

variables with mean zero and variance .  2 0σ >

In establishing a monitoring scheme, there are usually two phases: Phase I and 

Phase II. The interests in Phase I are on understanding the process variation and 

estimating the in-control process parameters from historical data in order to set up 

appropriate control limits. In Phase II, we then use the control limits established from 

Phase I to monitor the on-line process data successively. The multivariate T2 and the 

residual control charts designed for Phase II by the two sets of authors mentioned 

above are described below.  

Kang and Albin (2000) proposed two control strategies to monitor the process. 

The first strategy is to use the bivariate T2 chart to examine the regression coefficients. 

Assume that the in-control values of the parameters , , and0 1A A 2σ  in Equation (1) 
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are known. The least-squares estimators of  and  for the j0A 1A th sample profile are, 

respectively,  

0 1j j ja y a= − x  and ( )
1

xy j
j

xx

S
a

S
= , (2)

where 1
1

n
j iji

y n y−
=

= ∑ , 1
1

n
ii

x n x−
=

= ∑ , ( ) 1
(n

xy j ij ii
S y x

=
)x= −∑ , and 

2

1
(n

xx ii
S x

=
= −∑ )x

'

. The estimators  and  jointly follow the bivariate normal 

distribution with the mean vector 

0 ja 1 ja

0 1( , )A A=µ                                             (3)

and the variance-covariance matrix 

2
0 01

2
01 1

,
σ σ
σ σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Σ  (4)

where  
2

2 2
0

2 2
1

1( )

1 ,

xx

xx

x
n S

S

σ σ

σ σ

= +

=

,
 

and 

2
01 .

xx

x
S

σ σ= −  

It can be seen that  and a  are dependent. We express the sample slope and the 

sample intercept in Equation (2) as the vector '

0 ja 1 j

0 1( , )j j ja a=z

)

. Then, the T2 statistic 

for the jth sample is given by 

(5)2 1( ) ' (j j jT −= − −z µ Σ z µ , 

which follows the chi-square distribution with 2 degrees of freedom. Thus, the upper 

control limit is UCL = 2
2,αχ , where 2

2,αχ  is the 100(1 )α−  percentile of the chi-square 

distribution with 2 degrees of freedom. When there are shifts from the nominal values, 
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0A  and , Kang and Albin (2000) pointed out that 1A 2
jT  in Equation (5) follows the 

non-central chi-square distribution with the parameter of noncentrality 

(6)2 2( ) xxx n Sτ λ β β= + +  

when the intercept  shifts to 0A 0A λσ+  and the slope  shifts to 1A 1A βσ+ . 

One disadvantage of the T2 chart is that it cannot distinguish the sources of the 

process change --- mean or variance. Kang and Albin (2000) then proposed another 

approach to monitor the mean and variance separately with two charts. The second 

strategy is to use an EWMA chart to monitor the average of the regression residuals 

and simultaneously an R chart to monitor the range of the residuals. One reason for 

adding the R chart to the EWMA chart is that the EWMA chart is not sensitive to 

shifts in the process variation. Another reason is that the EWMA chart based on the 

residual average is not sensitive to some shifts in  and , for which the 

magnitudes of the residuals tend to be large, but the residual average tends to be very 

small. Details of these two charts are reviewed below.  

0A 1A

The regression residuals for the jth sample are  

(7)
0 1 , 1, 2,..., .ij ij ie y A A x i n= − − =  

The average of the residuals for sample j is  

1 .
n

iji
j

e
e

n
== ∑  

Then, the EWMA statistic for sample j is given by  

1(1 ) ,j j jz e zθ θ −= + −  

where θ  ( 0 1θ< ≤ ) is a smoothing constant and 0 0z = . The control limits for the 

EWMA chart are  
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(2 )
LCL L

n
θσ
θ

= −
−

 and 
(2 )

UCL L
n

θσ
θ

=
−

, (8)

where L is a constant selected for the control chart to achieve a prescribed in-control 

ARL. If  is smaller than LCL or greater than UCL, it is regarded as an 

out-of-control signal. For the R chart, the R statistic for the j

jz

th sample is given by 

max ( ) min ( ).j i ij i ijR e e= −  

The control limits are 

2( )RLCL d L d3σ= −  and UC 2 3( )RL d L dσ= + , (9)

where LR is also a positive constant chosen to achieve a specified false alarm rate,  

and  are constants relating the range and the standard deviation, which depend on 

the subgroup size n. Commonly used values of  and can be found in 

Montgomery (2001). The process is claimed out of control when any of the EWMA 

and the R statistics is out of control. 

2d

3d

2d 3d

Kang and Albin (2000) used simulations to demonstrate the effectiveness of 

these two approaches. They reported that the out-of-control ARL of the combined 

EWMA/R chart for the residuals is smaller than that of the T2 chart for shifts in the 

intercept and the slope. On the other hand, the multivariate T2 chart requires only one 

chart. 

Kim et al. (2003) first coded the X-values by centering so that the average of the 

coded X-values is zero. Then, the least-squares estimators of the slope and intercept 

are independent. See Myers (1990) and Ryan (1997). Accordingly, transform the 

model in Equation (1) into 

(10)*
0 1 , 1,2,..., ,ij i ijy B B x i nε= + + =  

where 0 0 1B A A x= + , 1 1B A= , and *
i ix x x= − . For the jth sample, the least-squares 
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estimator of 0B  is 0 jb y= j . The estimator of 1B  is the same as that of . 

Because  and  are independent, they are normally distributed with means

1A

0 jb 1 jb 0B , 

1B  and variances , , respectively. Consequently, the authors 

recommended three EWMA charts to monitor the slope, the intercept, and the error 

variance, respectively. The EWMA statistic for the intercept parameter 

2 / nσ 2 / xxSσ

0B  is  

(11)
0( ) (1 ) ( 1)I j IEWMA j b EWMA jθ θ= + − −  

with θ  ( 0 1θ< ≤ ) being a smoothing constant and 0(0)IEWMA B= . The control 

limits are 

0 (2 )ILCL B L
n

θσ
θ

= −
−

 and 0 (2 )IUCL B L
n

θσ
θ

= +
−

, (12)

where  is a constant chosen for achieving a prescribed in-control ARL. When 

 or , an out-of-control signal is alarmed. The 

EWMA statistic for the slope parameter

IL

( )IEWMA j LCL< ( )IEWMA j UCL>

1B  is  

(13)
1( ) (1 ) ( 1)S j SEWMA j b EWMA jθ θ= + − −  

with θ  ( 0 1θ< ≤ ) being a smoothing constant and 1(0)SEWMA B= . The lower and 

upper control limits are, respectively, 

1 (2 )S
xx

LCL B L
S

θσ
θ

= −
−

 and 1 (2 )S
xx

UCL B L
S

θσ
θ

= +
−

, (14)

where  is a constant chosen in order to obtain a specified in-control ARL. They 

also used a one-sided EWMA chart to detect only increases in process variability. The 

EWMA statistic for that is given by 

SL

2
0( ) max{ ln( ) (1 ) ( 1) , ln( )} ,E j EEWMA j MSE EWMA jθ θ= + − − σ  (15)

where θ  ( 0 1θ< ≤ ) again is a smoothing constant, 2
0(0) ln( )EEWMA σ= , and 
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1 *
0 11

( 2) ( )n
j ij ji

2
j iMSE n y b b x−

=
= − − −∑ . They used the following approximation that 

is very similar to the result derived by Crowder and Hamilton (1992) to construct the 

control limit: 

2 3

2 2 4 16[ln( )]
2 ( 2) 3( 2) 15( 2)jVar MSE

n n n n
≈ + + −

− − − − 5 . 

Then an upper control limit is given by 

[ln( )] ,
(2 )E jUCL L Var MSEθ

θ
=

−
 (16)

where  is again a constant selected to give a specified in-control ARL. The 

process is claimed out of control if any of the three statistics given in (11), (13), and 

(15), respectively is beyond the control limits.    

EL

Kim et al. (2003) showed by a simulation study that their methods are generally 

more effective and seem much more interpretable than the methods of Kang and Albin 

(2000) in Phase II for detecting sustained shifts in either the intercept or the slope or 

increases in the error variance.  

In practice, the in-control values of parameters are usually unknown. Common 

practice is to use some historical data to estimate these parameters and construct 

preliminary control charts during Phase I. Kang and Albin (2000) estimated the 

regression parameters of Equation (1) based on the historical data containing k sample 

profiles. For each profile, obtain estimates  and a  of  and , respectively. 

Then the reference line can be estimated by  and 

0 ja 1 j 0A 1A

0 1Ŷ a a X= + 2ˆ MSEσ = , where 

01
0

k
jj

a
a

k
==

∑
, 

11
1

k
jj

a
a

k
==

∑
, and 1

k
jj

MSE
MSE

k
==

∑
 

with 1
0 11

( 2) ( )n
j ij ji

2
j iMSE n y a a x−

=
= − − −∑ . The T2 statistic is modified by 
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2 1
0 ( ) ' (

1j j j
kT

k
−= − − ) ,

−
z z S z z  (17)

where '  and S is an unbiased estimate of  with components  0 1( , )a a=z Σ
2

11
1( )

xx

xS MSE
n S

= + , 22 ,
xx

MSES
S

=  and 12 ( ).
xx

xS MSE
S

= −  

Kang and Albin (2000) proved that the T2/2 statistic in Equation (17) has the F 

distribution. Thus, the upper control limit of the T2 chart in Phase I is 

2,( 2) ,2 n kUCL F α−= . For EWMA and R charts in Phase I, the control limits are modified 

by substituting σ  with MSE . There are other methods to examine the historical 

data in Phase I. Stover and Brill (1998) proposed a Hotelling’s T2 approach that is 

similar to the T2 method of Kang and Albin (2000). The distinction between the two is 

the estimate of the variance-covariance matrix. Another approach is to use a univariate 

chart based on the first principal component corresponding to the vectors containing 

the estimators of the intercept and slope. But Kim et al. (2003) advised against this 

principal component method since it is unable to detect the shifts in the direction 

perpendicular to the first principal component. 

3. Methodologies 

3.1 B-splines  

In order to extend linear profiles to any smooth functions, a smooth curve fitting 

technique is needed for profile smoothing from noisy data. A polynomial function is 

not very flexible for approximating curves with different degrees of smoothness at 

different locations. One way to overcome this drawback is to use locally a 

polynomial approximation of low degree. Another way is to allow the derivatives of 

the approximating function to have discontinuities at certain locations. This can be 

accomplished by fitting piecewise polynomials or splines. Frequently, a cubic spline, 

i.e., a piecewise polynomial with continuous first two derivatives, is used for such 
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approximation. Consider the nonparametric regression model  

( ) , 1,..., ,i i iy m x i nε= + =  (18)

where m(x) is a regression curve and iε  are i.i.d. normally distributed with zero 

mean and common variance . In this paper, we adopt the B-spline regression 

method for its popularity and simplicity. See de Boor (1978) for the definition of the 

B-spline basis. The points where the derivatives of the approximation function could 

have discontinuities are called knots. Let 

2 0σ >

1,..., b kt t +  be the knots, where b is the 

number of bases and each polynomial is of order k. Then each basis of order k is a k-2 

continuously differentiable function. Define ,l kB  as a B-spline basis that is nonzero 

only on the interval ( , ), 1, 2,..., .l l kt t l b+ =  A B-spline curve of order k can be 

constructed as 

,1
( ) ( ) [ , ], 1,..., ,b

i l l k i il
P x c B x x u v i n

=
= ∀ ∈ =∑  

where ’s are the unknown B-spline coefficients and n is the number of set points in 

the interval [u, v]. So we can modify Equation (18) to  

lc

,1
( ) , 1,..., .b

i l l k i il
y c B x iε

=
= + =∑ n  (19)

The B-spline basis ,l kB  of order k can be defined as 

1
,1

1

, , 1
1 1

1 ,
1 , ( )

0 ;

2 , ( ) ( ) ( ).

l l
l

l l

l l k
l k l k l k

l k l l k l

for t t t
if k B t

for t t and t t
t t t tif k B t B t B t

t t t t

+

+

+
− +

+ − + +

⎧ ≤ <⎧
= = ⎨⎪ < ≥⎪ ⎩⎨

− −⎪ ≥ = +⎪ − −⎩
1, 1−

 

The following S-PLUS function “spline.des” generates a matrix of B-spline bases 

evaluated at points provided by users.  

spline.des(knots, x, ord, derives), 

where “knots” is the vector of knots for the spline, “x” represents x-coordinates at 

which to evaluate the spline basis functions, “ord” is the order of the spline, and 
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“derives” is the order of the derivative to evaluate at each of the points. If this vector 

is given, it must have the same length as x. The default is a vector of zeros of the same 

length as x. We show an example of B-spline bases in Figure 2. 

After constructing B-spline bases, we use these normalized B-spline functions 

,l kB  as the regression basis function. For the given knots, the spline regression 

method finds the best spline approximation via the following least squares regression: 

2
,

1 1
{ (

n b

i l l k i
i l

min y c B x
= =

−∑ ∑c
)} , (20)

where . So the least-squares estimator of  is 1( ,..., ) 'bc c=c c

ˆ ( '= -1c B'B ) B y  

where ' , , and B is the design matrix with the ( i , l )1( ,..., )ny y=y 1ˆ ( ,..., ) 'bc c=c th 

element , ( ),l k iB x  , 1,...,l b= 1,...,i n= . Then c  has a multivariate normal 

distribution with the mean vector c  and the variance-covariance matrix 

 

ˆ

2 1( )σ −=Σ B'B .

    In phase II, it is assumed that the reference profile is known. Denote it by . 

We now establish a B-spline representation of the reference profile. First obtain n 

pairs of data, 

( )f x

{( , ( )), 1,..., }i ix f x i n= . Let  be the least squares solution of (20) with 

 replaced by

c

iy ( )if x . We then treat this vector c as the true in-control value. For the 

jth sample profile, compute the vector of sample estimators 1( ,..., ) 'j j b jc c=c , where 

1 ,...,j b jc c  are the estimated sample B-spline coefficients. Then the T2 statistic of the 

jth sample is given by . But the upper control limit in phase II 

needs to be modified as UC

2 1( ) ' (j jjT −= − −c c Σ c c)

L 2
,b αχ=

1

. And in Phase I, we also use historical data 

containing k sample profiles to construct the control chart. Then the reference curve 

can be estimated by  with ˆ =y Bc ( ,..., ) 'bc c=c  and 2ˆ MSEσ =  where 
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1
1 1

1 ,..., ,

k k

j b j
j j

b

c c
c c

k k
= == =
∑ ∑

and 1

k

j
j

MSE
MSE

k
==
∑

(21) 

with 
2

ˆ /( )j j jMSE n b= − −y Bc and ‧  denotes the Euclidean norm. The T2 

statistic for the jth sample profile is then modified by 

2 1
0 ( ) ' (

1
j jj

kT
k

−= − − ) ,
−

c c S c c  (22)

where  is an unbiased estimate of . Thus, the upper control limit of 

the T

2ˆ ( )σ −=S B'B 1 Σ

2 chart in Phase I is ,( ) ,b n b kUCL bF α−= . 

The choice of the number of bases, as in the role of the smoothing parameter in 

any nonparametric regression methods, is an important issue. The boundary effect is 

another issue. We will address these two issues in Section 4.  

3.2 Residual EWMA and R Charts 

The second approach we propose is to use the EWMA and the R chart to monitor 

the residual average and the range, respectively, instead of the combined EWMA/R 

chart proposed by Kang and Albin (2000). Kang and Albin (2000) found that the value 

L = 3.1151 yields an in-control ARL of approximately 802 for the EWMA chart and 

an in-control ARL of approximately 261 for the R-chart. Although ARL0 of their 

combined procedure is close to 200, the detecting power of the EWMA chart is 

unequal to that of the R chart. In order to increase the detecting powers of both the 

EWMA and the R charts, we decide to monitor the process by using the EWMA chart 

to detect mean shifts and the R chart to detect standard deviation shifts of the residuals. 

The regression residual vector for the jth sample is  

ˆ { '} .j j j= − = − -1e y y I B(B'B) B y j  

The details of the EWMA and the R charts are the same as that described in Section 2.  
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3.3 Metrics 

The third approach is to use some metrics to monitor the process. Gardner et al. 

(1997) presented a new methodology based on some “metrics” for the equipment fault 

detection. The equipment fault detection was not only in that it incorporates the use of 

integrated spatial information in a virtual wafer surface that was fitted by thin-plate 

splines, but also in that it can be used to detect and classify equipment faults at the 

same time. Their main focus was to use the differences between the observed and the 

expected virtual wafer surfaces to construct metrics which can be used to detect and 

diagnose various types of equipment faults. Thus, the following general and specific 

metrics were designed: 

21 ( )
R

M g T dR= −∫   (Squared metric) ; 

2
R

M g T dR= −∫   (Absolute-value metric) ; 

2
3 ( ) 1.5

0

o

R
M g T dR if g T A

otherwise

= − − >

=
∫  (Spec-limit metric); 

2
4 ( ) ( )

( )
R

R

M g T dR if g T

g T dR if g T

= − − >

= − − − ≤

∫
∫

0

0
  

(Square-above-absolute-value-below metric); 
2

5 ( ) ( )

( )
R

R

M g T dR if g T

g T dR if g T

0

0

= − −

= − − − >

∫
∫

≤
 

(Square-below-absolute-value-above metric); 

where g is a newly fitted thin-plate spline surface, T is the target surface, and R 

denotes the wafer surface region. Metrics 1-3 are general metrics used to detect the 

presence of an equipment fault, and Metrics 4-5 are specific metrics used to detect 

specific fault patterns. Gardner et al. (1997) proposed an alternate Bayesian 

(simulation) approach that can be taken to determine the null distribution of the 
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metrics. According to a procedure given in Green and Silverman (1994), assuming a 

Gaussian prior distribution, the posterior distribution of the thin-plate spline surface g 

has the following multivariate normal distribution: 

2 ˆˆ ˆ~ MVN [ , ( )]σ λg g A , 

where  is the vector of fitted values, ĝ 2σ̂  is calculated as the residual sums of 

squares about the fitted curve divided by an effective degrees of freedom, and ˆ( )λA  

is the projection matrix which maps the vector of observed values to their predicted 

values. Simulate M independent sets of n observations from the posterior multivariate 

normal distribution described above. A spline surface is fitted to each set of 

observations, and the metrics are calculated. As a result, M independent values are 

obtained from the null distribution of each metric. The (100 )α× th percentile of the M 

simulated metric values is the critical value for determining if the new curve is far 

from the target curve. For each newly observed curve, metrics are calculated and 

compared to their corresponding critical values in order to determine whether or not a 

fault is detected. In the experimental data, they used the average predicted surface of 

two wafers as the target surface. 5,000 observations were simulated using parametric 

bootstrapping from 2 ˆˆ ˆMVN[ , ( )]σ λg A  where  is the average of the predicted 

values using the thin-plate spline fitting for these two wafers, and 

ĝ

2 ˆˆ ( )σ λA  is the 

average of the covariance matrices from the thin-plate spline fitting for these two 

wafers. Then these simulated observations were used to obtain 5,000 metric values 

and the corresponding empirical 0.01α =  “critical value” for each metric. 

With the same idea, we select two different and popular metrics to monitor the 

process in all types of shifts. They are Squared metric and Absolute-value metric. Two 

metrics are defined in the following: 
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2

1
1 { ( ) ( )}

n

i i
i

M g x T x
=

= −∑   (Squared metric); 

1
2 | ( ) ( ) |

n

i
i

iM g x T x
=

= −∑   (Absolute-value metric); 

where g is a newly fitted B-spline curve and T is the reference profile. To construct 

the control charts, we need to find the critical value of the null distribution of each 

metric.  

Since the distributions of these metrics are difficult to obtain, we use historical 

data (k sample profiles) to compute the reference profile in Phase I. Fit a B-spline to 

each of the k sample profiles. Denote the average of k regression estimators for the lth 

B-spline coefficient by . So the estimated reference profile  and l̂c ,
1

ˆ ( )
b

l l k
l

c B x
=
∑

2ˆ MSEσ =  are available by Equation (21). Simulate M sets of n observations from 

the following model: 

,1
ˆ ( ) , 1,..., ,b

i l l k i il
y c B x iε

=
= + =∑ n

)

 (23)

where 
. . .

2ˆ~ (0,
i i d

i Nε σ . For each metric, compute the metric value for each of the 

simulated profiles. Let the (100 )α× th percentile of these M values of the metric be 

the critical value. The process is claimed out-of-control when the metric of the newly 

observed profile is greater than the critical value. 

3.4 EWMSD Chart 

The last approach is using exponentially weighted moving standard deviation 

(EWMSD) to monitor the process. It is very sensitive in detecting shifts in process 

variation, particularly when shifts are relatively small. Define the sample standard 

deviation of the residuals for the jth sample as 

2
ˆ

, 1,2,....j j
js j

n b
−

= =
−

y y
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The EWMSD statistic is given by  

1(1 )j jv s v jθ θ −= + − , 

where θ  ( 0 1θ< ≤ ) is a smoothing constant and 0v 0σ= . In Phase II, assume the 

in-control value of 2σ  is known. The control limits for the EWMSD chart are  

(2 )
LCL L

n
θσ σ
θ

= −
−

 and 
(2 )

UCL L
n

θσ σ
θ

= +
−

, 

where L is also a constant chosen to give a specified in-control ARL. When the 

EWMSD statistic is beyond the control limits, the process is claimed out-of-control. 

In Phase I, the control limits are modified by substituting σ  with MSE .  

4. Simulation Studies 

We assess the performances of these approaches in terms of ARL through 

simulation studies. For all approaches except the metric method, we assume the 

underlying reference profile is known. Denote the in-control ARL value by ARL0. All 

charts are designed to have the same ARL0 = 200, which corresponds to 0.005α = . 

For each metric under study, we simulate 50,000 in-control profiles to approximate 

the distribution of the metric. The critical value is set to be the 99.5th percentile of 

these simulated metric values such that the ARL0 = 200. The smoothing constant θ  

may affect the ARL performances of the EWMA and EWMSD charts. Details can be 

seen in Lucas and Saccucci (1990). In our study, the smoothing constant is set to 0.2. 

In Phase II process monitoring, for each control chart, run lengths are generated for 

the in-control and various out-of-control situations. The run length is the number of 

profiles generated when the first out-of-control signal occurs. Generate profiles from 

the underlying model until the first out-of-control signal is alarmed to obtain a run 

length. Repeat N times to obtain N run lengths and then estimate the ARL by 

averaging these N run lengths. Denote the estimator by . To obtain the standard ˆARL
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error of (the ARL estimator), one simple way is to compute the sample standard 

deviation of the N simulated run lengths and then divided it by 

ˆARL

N . Another 

estimator of the standard error is 

1/ 21ˆARL(1 )ˆARL
N

−
, 

since the run length has a geometric distribution with mean 1/ p and standard 

deviation (1 -p)1/2 / p with p = 1 / ARL. In our simulation, we generate a total of N = 

100,000 run lengths to estimate the ARL value. If we construct the control charts such 

that is about 200, then the standard error of this estimator is about 0
ˆARL

1/ 21200(1 ) / 100,000 0.631
200

− ≈ . We adopt the first approach in this study.   

In this paper, we extend the linear profile to a functional-form-free smooth 

function to adapt to more general cases. To choose an underlying reference profile for 

our study, we mimic the aspartame curves in Figure 1. As a result, we take an 

exponential function as the reference profile. In our simulation study, consider the 

exponential profile of the form 
2

0 ( 1)
0 0

N xY I M e ε− −= + + ., where ~ (0,1)Nε  The 

in-control reference profile is , which is displayed in Fiugre 3. We choose 
2( 1)1 15 xe− −+

ix -values of 0, 0.08,…, 3.92 (n = 50) in our simulation. Four different types of shifts 

are considered in the simulation study: I shift, M shift, N shift, and error variance 

increase. The curve varies in different ways with different varying coefficients. 

Figures 4-6 illustrate the effect of the shifts. In these figures, the solid lines represent 

the true function , while the dotted lines represent the shifted curves. 

Figure 4 gives the curve that is 2 units upward by an I shift. The dotted line in Figure 

5 is the curve of , that is, the y-value is magnified with the same multiple 

at each point because of an M shift. Figure 6 shows a case of N shift, and the resulting 

curve seems narrower than the reference curve. Its function is .  

2( 1)1 15 xe− −+

2( 1)1 18 xe− −+

21.5( 1)1 15 xe− −+
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For T2 chart, we use the sequence (-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, 

3.2, 3.6, 4, 4.4, 4.8, 5.2) as the knots with order 4 so that the number of B-spline bases 

is 13. The knots sequence is equidistant, and the thirteen cubic B-splines are shown in 

Figure 7. Approximate the true exponential function by spline regression with these 

13 B-spline bases. The fitted curve (dashed line) is shown in Figure 8. The circles are 

the values on the exponential function and the dashed line goes through these values 

smoothly. So the B-spline approximation is very close to the true function. The 

average squared error of the approximation is 0.0000099498 and it is computed by 

,1 1

1 ˆ( ( ) ( ))n b
i l l ki l if x c B

n = =
−∑ ∑ x . 

It is well known that boundary effect is a potential problem in smoothing 

methods. We use a simple simulation study for T2 chart to illustrate the boundary 

effect that we encountered in our study. First, we fix the number of set points at 20, 

and change the number of B-spline bases to 5, 9, and 13 and find that the ARL0 of T2 

chart are 197.976, 193.265, and 187.814, respectively. That is, when n = 20, the ARL0 

decreases as the number of B-spline bases increases and the boundary effect is more 

and more obvious. Because the number of set points 20 is small, the B-spline 

coefficients for the boundary bases are not accurate enough. It leads to a larger T2 

statistic and a smaller ARL0. So we increase the number of set points to 50. Compute 

the average of 50,000 replications of each B-spline coefficient. The simulation results 

are shown in Table 1. The first row is the 13 coefficients of the exponential reference 

curve fitted by B-splines and these values are treated as the true coefficients. The 

second row gives the differences between the average of 50,000 replications and the 

true coefficient for the first simulation. The third and fourth rows give the results of 

the second simulation and the third simulation, respectively. From Table 1, we can see 

the variability of each coefficient estimate. The two largest differences occur at the 
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13th and the first coefficient, respectively, in every simulation. In order to achieve 

ARL0 = 200, we omit the coefficients 1 and 13 in constructing the T2 statistic. 

Naturally, the control limit of the T2 chart is adjusted to . 2
11,0.005χ

Instead of using the EWMA and R charts simultaneously to monitor the process, 

we use the EWMA chart to detect the mean shifts, say, I, M, or N shifts, and use the R 

chart to detect the shift in the error variance. For the metric method, use Squared 

metric and Absolute-value metric to detect all types of shifts. All simulation results 

are presented below. 

Table 2 and Figure 9 give the ARL values and curves for shifts in I0  in unit of 

σ , respectively. In Table 2, the smallest ARL values are marked with the deep gray 

and the second smallest are marked with the light gray. The EWMA chart and two 

metrics perform better than the T2 chart. The EWMA chart detects all shifts faster than 

others and the Absolute-value metric is the second best.  

Table 3 and Figure 10 show the ARL values and curves for M shifts, respectively. 

The EWMA chart also performs much better than the T2 chart and two metrics over 

the entire range of shifts considered. We can see that the performances of two metrics 

and T2 chart are very similar with the Absolute-value metric better for smaller shifts 

and T2 chart better for larger shifts. 

Table 4 and Figure 11 show the ARL values and curves for N shifts, respectively. 

Again, the detecting power of the EWMA chart is the largest and the T2 chart is the 

smaller than the other charts. Secondly, the results of two metrics are similar and the 

Absolute-value metric is faster for smaller shifts, say, 0.14σ  or less, and slower for 

larger shifts. 

 Table 5 and Figure 12 give the ARLs for shifts in the process standard deviation. 

The R chart performs slightly better than the T2 chart and two metrics over the entire 
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range of shifts. And the Squared metric is also slightly faster than the Absolute-value 

metric over the whole range of shifts. But the EWMSD chart performs much better 

than the other charts, because it is designed specially for detecting the standard 

deviation shifts. This demonstrates that the EWMA and EWMSD charts are more 

sensitive for all shifts than others, especially for smaller shifts.  

Table 6 gives the ARL performances when simultaneous M and N shifts are 

considered. The T2 chart is uniformly slower than other charts over the entire range of 

shifts. The EWMA chart performs the best with any combination of M and N shifts, 

and Absolute-value metric is the second best. Tables 7 and 8 present the simulation 

results with I and M, I and N combinations, respectively. Two tables also show similar 

results.  

To investigate the effect of the number of set points (n) and the number of 

B-spline bases (b), another simulation study is conducted. Table 9 and Figure 13 give 

the ARLs of the T2 chart with different number of bases, 5, 9, and 13, for I shifts. The 

results show that the detecting power of the T2 chart increases as parameter b 

decreases. Table 10 and Figure 14 give the ARLs of the T2 chart with different n = 30, 

40, and 50 for I shifts. We can see that the ARL decreases as n increases with various 

sizes in I shifts. In order to improve the power of the T2 chart, it seems that a smaller b 

and larger n is suggested. However, there is another concern – the squared error 

between the fitted profile estimated by B-splines and the reference profile. Although 

the detecting power of T2 chart with n = 50 and b = 5 is larger, the average squared 

error comes to 0.4829616. From Figure 15 we can see that, with b = 5, the B-spline 

does not approximate the reference profile well. Thus, b should not be too small.  

Table 11 and Figure 16 show that the ARL decreases as n increases for the 

EWMA chart with various shifts in M shifts. Tables 12-13 and Figures17-18 show that 

the detecting power increases as n increases for all metrics with I shifts or standard 
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deviation shifts.  

Back to linear profiles, we compare the ARL performances of our approaches to 

that of the methods proposed by Kang and Albin (2000) and Kim et al. (2003). We 

simulate again by using the same control limits of each chart. The linear profile model 

used by Kang and Albin (2000) is 3 2ij i ijy x ε= + + , where  with 

fixed

. . .
~ (0,1

i i d

ij Nε )

ix -values of 2, 4, 6, and 8. Three different types of shifts, intercept shifts, slope 

shifts and standard deviation shifts, are considered in their papers. From our 

simulation study, we notice that our ARL values of EWMA3 are 1 more than the 

values given in Kim et al. (2003). We guess the discrepancy may come from the way 

of counting the run lengths. They probably counted the run lengths as the number of 

the profiles before the out-of-control signal occurs, so that all values are one less than 

ours.  

Table 14 and Figure 19 give the ARL values and curves for intercept shifts, 

respectively. The EWMA chart performs much better than other charts for smaller 

shifts. The Absolute-value metric detects the larger shifts, say, 1.4σ  or more, faster 

than the other charts. We can clearly see the performance of EWMA3 is better than 

that of the methods of Kang and Albin (2000) for smaller shifts, say 0.4σ  or less, 

and the power of detecting larger shifts is the worst.  

Table 15 and Figure 20 show the ARL performances for slope shifts. The EWMA 

chart is much better that the other charts over the entire range of shifts. Two metrics 

perform well for larger shifts with Absolute-value metric better. And the performance 

of EWMA3 is worse than that for intercept shifts. So in this case, we can use the 

EWMA chart or EWMA3 chart to detect the smaller shifts and use the EWMA chart or 

Absolute-value metric to detect the larger shifts of intercept and slope.  

Table 16 and Figure 21 give the ARL values for standard deviation shifts. The 
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EWMSD chart also performs the best for smaller shifts, say 2.4σ  or less and 

EWMA/R chart and the R chart perform better than others for larger shifts. The 

detecting power of Squared metric, Absolute-value metric, and T2 chart are similar. 

Our ARL comparisons show that our methods are slightly effective than the methods 

of Kang and Albin (2000) and Kim et al. (2003) for shifts in either the intercept or 

slope or increases in the error variance.  

5. Conclusions 

The profile monitoring is a very useful and promising area of research. In this 

thesis, we focus on the non-linear profile monitoring. Three profile monitoring 

approaches are proposed. And from the simulation studies, all approaches appear to 

perform well for the exponential profile under study. 

Comparisons among these approaches are made. For I, M, and N shifts in the 

exponential profile, the EWMA chart performs the best over entire range of shifts, 

while the Absolute-value metric has secondly smaller ARL. And for standard 

deviation shifts, the EWMSD chart is a good choice to detect, while we also can use 

the R chart to monitor the process. And for linear profiles, our simulation study shows 

that new methods proposed by us are slightly effective than the methods of Kang and 

Albin (2000) and Kim et al. (2003). As a design issue, it is observed that increasing n 

is helpful in reducing the out-of-control ARL values. How to properly choose the 

number of bases is worth further studies. 

This study extends the framework of statistical process control to more general 

applications. More statistical methods, models, and ideas are needed to extend the 

framework to a more complete profile monitoring strategy. 
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Figure1. Milligrams of aspartame dissolved per liter of water from four samples.  
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Figure 3. The reference profile . 
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Figure 4. The reference curve (solid line) and the curve affected by I shift (dotted 

line). 
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Figure 5. The reference curve (solid line) and the curve affected by M shift 

(dotted line). 
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Figure 6. The reference curve (solid line) and the curve affected by N shift 

(dotted line). 
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Figure 7. Thirteen cubic B-splines bases. 
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Figure 8. Scatter plot is the reference curve and the dashed line is the B-spline 

estimate. 
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Table 1. Simulation results to illustrate boundary effects; Underlines are larger 
deviations. 

Basis 1 2 3 4 5 

Cc 2.874264 6.157306 11.611126 16.178782 16.183834 

Z1-C -0.0437711 0.0042971 0.00457416 0.00045094 -0.0013554

Z2-C 0.06077714 0.00684893 -0.0002403 -0.0109680 0.00645003

Z3-C 0.08942159 -0.0136533 0.01052427 -0.0160640 0.01881415

Basis 6 7 8 9 10 

C 11.603308 6.176568 2.767467 1.423282 1.070967 

Z1-C -0.0031249 -0.0001978 0.00197017 -0.0013328 -0.0054912

Z2-C -0.0079634 0.01199316 -0.0198097  0.0244964 -0.0223153

Z3-C 0.00019966 -0.0030393  0.00455043 0.01870481 -0.0077123

Basis 11 12 13  

U 1.008571 1.000276 1.003893  

Z1-U 0.00677231 0.00502447 -0.0936737  

Z2-U 0.00303271 0.01045864 -0.1506641  

Z3-U -0.0079037 0.02057199 -0.2117598  
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Table 2. ARL comparisons under I shifts from 0 0ToI I ασ+  

α  
Chart 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

T2 199.86

(0.622)

180.07 

(0.569) 

138.44 

(0.437)

93.67 

(0.294)

58.76 

(0.183)

35.40 

(0.110)

21.27 

(0.066)

13.03 

(0.040)

8.20 

(0.024) 

5.38 

(0.015) 

3.70 

(0.010)

EWMA 200.42

(0.613)

47.39 

(0.135) 

14.71 

(0.033)

7.62 

(0.014)

5.06 

(0.007)

3.79 

(0.005)

3.06 

(0.003)

2.59 

(0.003)

2.27 

(0.002) 

2.04 

(0.002) 

1.87 

(0.002)

Squared metric 
200.70

(0.622)

179.76 

(0.566) 

138.92 

(0.435) 

94.37 

(0.297)

58.64 

(0.184)

35.15 

(0.109)

20.85 

(0.064)

12.63 

(0.038)

7.86 

(0.023) 

5.15 

(0.015) 

3.52 

(0.009)

Absolute-value 
metric 

199.49

(0.625)

175.20 

(0.561) 

134.78 

(0.424)

88.79 

(0.277)

53.08 

(0.167)

30.87 

(0.096)

17.76 

(0.055)

10.53 

(0.032)

6.49 

(0.019) 

4.23 

(0.012) 

2.93 

(0.008)
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Figure 9. ARL comparisons under I shifts of sizeα . 
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Table 3. ARL comparisons under M shifts from 0 0ToM M βσ+  

β  
Chart 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

T2 199.15

(0.623)

175.79 

(0.560) 

124.60 

(0.391)

77.34 

(0.243)

43.92 

(0.137)

24.32 

(0.075)

13.76 

(0.042)

8.05 

(0.024)

5.00 

(0.014) 

3.32 

(0.009) 

2.35 

(0.006)

EWMA  199.26

(0.613)

63.21 

(0.184) 

20.63 

(0.051)

10.36 

(0.021)

6.65 

(0.011)

4.86 

(0.007)

3.84 

(0.005)

3.20 

(0.004)

2.76 

(0.003) 

2.45 

(0.002) 

2.21 

(0.002)

Squared metric 
201.30

(0.623)

176.35 

(0.554) 

128.85 

(0.405) 

81.84 

(0.257)

47.02 

(0.147)

26.47 

(0.082)

14.93 

(0.046)

8.79 

(0.026)

5.39 

(0.015) 

3.55 

(0.010) 

2.49 

(0.006)

Absolute-value
metric 

199.37

(0.620)

173.90 

(0.548) 

122.30 

(0.385)

74.54 

(0.233)

42.39 

(0.132)

23.79 

(0.074)

13.56 

(0.041)

8.14 

(0.024)

5.10 

(0.014) 

3.43 

(0.009) 

2.45 

(0.006)
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Figure 10. ARL comparisons under M shifts of sizeβ . 
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Table 4. ARL comparisons under N shifts from 0 0ToN N γσ+  

γ  
Chart 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

T2 199.4 

(0.628)

173.86 

(0.547) 

120.61 

(0.380)

73.36 

(0.231)

41.99 

(0.131)

23.82 

(0.073)

13.80 

(0.042)

8.38 

(0.025)

5.37 

(0.015) 

3.67 

(0.010) 

2.66 

(0.007)

EWMA  201.3 

(0.608)

50.39 

(0.144) 

16.21 

(0.038)

8.44 

(0.016)

5.61 

(0.009)

4.23 

(0.006)

3.43 

(0.004)

2.91 

(0.003)

2.55 

(0.002) 

2.30 

(0.002) 

2.11 

(0.002)

Squared metric 
201.05

(0.638)

171.84 

(0.542) 

117.68 

(0.369) 

69.62 

(0.219)

38.53 

(0.121)

21.16 

(0.065)

11.94 

(0.036)

7.17 

(0.021)

4.58 

(0.013) 

3.12 

(0.008) 

2.28 

(0.005)

Absolute-value 
metric 

199.35

(0.621)

169.74 

(0.537) 

114.29 

(0.361)

66.73 

(0.210)

36.79 

(0.115)

20.34 

(0.063)

11.67 

(0.035)

7.14 

(0.021)

4.63 

(0.013) 

3.19 

(0.008) 

2.36 

(0.006)
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Figure 11. ARL comparisons under N shifts of sizeγ . 
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Table 5. ARL comparisons under standard deviation shifts from Toσ λσ  

λ  
Chart 

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

T2 199.71

(0.624)

85.74 

(0.270) 

42.31 

(0.132)

23.53 

(0.073)

14.42 

(0.044)

9.58 

(0.029)

6.76 

(0.020)

5.05 

(0.014)

3.95 

(0.011) 

3.22 

(0.008) 

2.70 

(0.007)

R 200.69

(0.634)

79.84 

(0.253) 

36.12 

(0.113)

18.50 

(0.057)

10.51 

(0.032)

6.58 

(0.019)

4.45 

(0.012)

3.22 

(0.008)

2.49 

(0.006) 

2.01 

(0.005) 

1.69 

(0.003)

Squared metric 
200.23

(0.632)

81.03 

(0.255) 

38.73 

(0.121) 

21.03 

(0.065)

12.58 

(0.038)

8.26 

(0.025)

5.80 

(0.017)

4.33 

(0.012)

3.41 

(0.009) 

2.78 

(0.007) 

2.34 

(0.006)

Absolute-value 
metric 

199.62

(0.628)

85.42 

(0.269) 

42.48 

(0.133) 

23.68 

(0.073)

14.39 

(0.044)

9.53 

(0.029)

6.70 

(0.020)

5.03 

(0.014)

3.91 

(0.011) 

3.17 

(0.008) 

2.65 

(0.007)

EWMV 200.08

(0.618)

30.69 

(0.084) 

9.14 

(0.018)

5.04 

(0.008)

3.50 

(0.005)

2.73 

(0.003)

2.27 

(0.003)

1.95 

(0.002)

1.73 

(0.002) 

1.54 

(0.002) 

1.40 

(0.002)
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Figure 12. ARL comparisons under standard deviation shifts of sizeλ  
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Table 6. ARL comparisons under combinations of M and N shifts 

β  T2

EWMA 
Absolute-value 

metric 
0.1 0.2 0.3 0.4 0.5 

132.527 
(0.417) 

86.171 
(0.272) 

50.568 
(0.158) 

28.459 
(0.088) 

16.038 
(0.049) 

17.461 
(0.042) 

9.290 
(0.018) 

6.166 
(0.010) 

4.591 
(0.006) 

3.682 
(0.004) 

-0.02 

127.463 
(0.401) 

82.180 
(0.259) 

46.314 
(0.146) 

26.716 
(0.083) 

14.851 
(0.045) 

81.769 
(0.257) 

51.071 
(0.160) 

29.896 
(0.093) 

17.262 
(0.053) 

10.149 
(0.030) 

8.366 
(0.016) 

5.720 
(0.009) 

4.331 
(0.006) 

3.497 
(0.004) 

2.969 
(0.003) 

-0.04 

75.389 
(0.236) 

45.172 
(0.141) 

26.194 
(0.081) 

15.078 
(0.045) 

8.938 
(0.027) 

44.251 
(0.138) 

27.757 
(0.086) 

16.727 
(0.051) 

10.175 
(0.031) 

6.299 
(0.018) 

5.294 
(0.008) 

4.086 
(0.005) 

3.343 
(0.004) 

2.849 
(0.003) 

2.504 
(0.002) 

-0.06 

39.093 
(0.124) 

23.681 
(0.074) 

14.163 
 (0.043) 

8.560 
(0.026) 

5.328 
(0.015) 

22.900 
(0.070) 

14.721 
(0.045) 

9.376 
(0.028) 

5.992 
(0.017) 

4.021 
(0.011) 

3.856 
(0.005) 

3.187 
(0.004) 

2.745 
(0.003) 

2.421 
(0.002) 

2.185 
(0.002) 

-0.08 

18.998 
(0.059) 

12.282 
 (0.037) 

7.735 
(0.023) 

5.046 
(0.014) 

3.379 
(0.009) 

11.786 
(0.036) 

7.943 
 (0.024) 

5.402 
(0.015) 

3.728 
(0.010) 

2.688 
(0.007) 

3.050 
(0.003) 

2.635 
(0.003) 

2.343 
(0.002) 

2.126 
(0.002) 

1.957 
(0.002) 

γ  

-0.10 

10.053 
(0.030) 

6.615 
 (0.019) 

4.439 
(0.012) 

3.111 
(0.008) 

2.300 
(0.005) 
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Table 7. ARL comparisons under combinations of I and M shifts. 

α  T2

EWMA 
Absolute-value 

metric 0.05 0.10 0.15 0.20 0.25 

138.147 
(0.436) 

95.299 
(0.301) 

60.914 
(0.190) 

36.854 
(0.115) 

22.197 
(0.068) 

17.308 
(0.041) 

8.387 
(0.016) 

5.375 
(0.008) 

3.961 
(0.005) 

3.166 
(0.004) 

0.1 

132.874 
(0.421) 

90.184 
(0.283) 

55.410 
(0.174) 

32.321 
(0.100) 

19.042 
(0.058) 

89.390 
(0.281) 

58.511 
(0.184) 

36.237 
(0.113) 

22.241 
(0.069) 

13.733 
(0.042) 

9.289 
(0.018) 

5.740 
(0.009) 

4.157 
(0.005) 

3.279 
(0.004) 

2.738 
(0.003) 

0.2 

85.664 
 (0.272) 

53.523 
 (0.170) 

32.597 
(0.101) 

18.822 
(0.057) 

11.481 
(0.035) 

52.159 
(0.163) 

33.431 
(0.104) 

20.896 
(0.064) 

13.239 
(0.040) 

8.467 
(0.025) 

6.163 
(0.010) 

4.357 
(0.006) 

3.403 
(0.004) 

2.817 
(0.003) 

2.425 
(0.002) 

0.3 

49.722 
(0.155) 

31.011 
 (0.096) 

19.080 
(0.058) 

11.463 
(0.034) 

7.294 
(0.021) 

29.134 
(0.090) 

18.945 
(0.058) 

12.252 
(0.037) 

8.056 
(0.024) 

5.420 
(0.015) 

4.601 
(0.006) 

3.536 
(0.004) 

2.903 
(0.003) 

2.489 
(0.002) 

2.193 
(0.002) 

0.4 

27.553 
(0.085) 

17.439 
(0.053) 

11.081 
(0.033) 

7.096 
(0.020) 

4.615 
(0.013) 

16.393 
(0.050) 

10.946 
(0.033) 

7.410 
(0.022) 

5.129 
(0.015) 

3.637 
(0.010) 

3.688 
(0.004) 

2.994 
(0.003) 

2.549 
(0.002) 

2.234 
(0.002) 

2.020 
(0.002) 

β  

0.5 

15.675 
(0.048) 

10.151 
(0.030) 

6.699 
(0.020) 

4.560 
(0.012) 

3.201 
(0.008) 
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Table 8. ARL comparisons under combinations of I and N shifts. 

α  T2

EWMA 
Absolute-value 

metric 0.05 0.10 0.15 0.20 0.25 

133.834 
(0.423) 

91.698 
(0.287) 

57.973 
(0.182) 

35.111 
(0.109) 

21.181 
(0.065) 

15.043 
(0.034) 

7.713 
(0.014) 

5.088 
(0.007) 

3.808 
(0.005) 

3.073 
(0.003) 

-0.02 

128.016 
(0.404) 

85.045 
(0.269) 

51.029 
(0.161) 

30.966 
(0.097) 

17.402 
(0.053) 

81.250 
(0.225) 

51.889 
(0.163) 

32.281 
(0.100) 

19.822 
(0.061) 

12.282 
(0.037) 

7.702 
(0.014) 

5.074 
(0.007) 

3.802 
(0.005) 

3.062 
(0.003) 

2.596 
(0.003) 

-0.04 

74.088 
(0.233) 

47.078 
(0.145) 

27.204 
(0.084) 

16.285 
(0.050) 

9.805 
(0.029) 

43.259 
(0.135) 

27.714 
(0.086) 

17.410 
(0.053) 

11.021 
(0.033) 

7.214 
(0.021) 

5.013 
(0.007) 

3.773 
(0.005) 

3.045 
(0.003) 

2.582 
(0.003) 

2.265 
(0.002) 

-0.06 

37.935 
(0.119) 

23.307 
(0.070) 

14.090 
(0.044) 

8.931 
(0.027) 

5.658 
(0.016) 

22.217 
(0.069) 

14.523 
(0.044) 

9.459 
(0.028) 

6.309 
(0.018) 

4.375 
(0.012) 

3.724 
(0.005) 

3.018 
(0.003) 

2.565 
(0.002) 

2.248 
(0.002) 

2.027 
(0.002) 

-0.08 

18.990 
(0.059) 

12.084 
(0.036) 

7.822 
 (0.023) 

5.085 
(0.015) 

3.490 
(0.009) 

11.466 
(0.035) 

7.803 
(0.023) 

5.389 
(0.015) 

3.822 
(0.010) 

2.824 
(0.007) 

2.967 
(0.003) 

2.531 
(0.002) 

2.222 
(0.002) 

2.010 
(0.002) 

1.841 
(0.002) 

γ  

-0.10 

9.519 
(0.028) 

6.361 
(0.018) 

4.420 
(0.012) 

3.102 
(0.008) 

2.331 
(0.006) 
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Table 9. ARL comparisons of T2 chart with different number of bases for I shifts. 

α  
Chart 

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

b = 13 199.6 

(0.626)

180.28 

(0.569) 

138.93 

(0.441)

94.34 

(0.297)

58.84 

(0.184)

35.13 

(0.109)

20.89 

(0.064)

12.68 

(0.038)

7.88 

(0.023) 

5.14 

(0.015) 

3.53 

(0.009)

b = 9 199.22

(0.626)

176.11 

(0.556) 

128.00 

(0.403)

81.01 

(0.225)

47.56 

(0.147)

27.31 

(0.085)

15.80 

(0.048)

9.46 

(0.028)

5.93 

(0.017) 

3.92 

(0.011) 

2.77 

(0.007)

b = 5 199.61

(0.629)

168.45 

(0.529) 

108.79 

(0.345)

61.25 

(0.193)

33.08 

(0.103)

17.98 

(0.055)

10.26 

(0.031)

6.19 

(0.018)

4.01 

(0.011) 

2.76 

(0.007) 

2.04 

(0.005)
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 Figure 13. ARL comparisons of T2 chart with different number of bases for I shifts.  
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Table 10. ARL comparisons of T2 chart with different n’s for I shifts. 

α  
Chart 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

n = 50 199.97

(0.624)

180.01 

(0.567) 

139.09 

(0.438)

94.53 

(0.296)

58.39 

(0.182)

35.19 

(0.110)

20.97 

(0.064)

12.62 

(0.038)

7.88 

(0.023) 

5.16 

(0.015) 

3.51 

(0.009)

n = 40 199.30

(0.621)

184.07 

(0.579) 

148.98 

(0.470)

107.22

(0.338)

72.16 

(0.226)

46.37 

(0.145)

29.02 

(0.090)

18.24 

(0.056)

11.73 

(0.035) 

7.67 

(0.023) 

5.26 

(0.015)

n = 30 199.1 

(0.622)

187.94 

(0.593) 

159.24 

(0.503)

124.77

(0.393)

90.39 

(0.284)

62.39 

(0.196)

42.30 

(0.133)

28.28 

(0.088)

18.86 

(0.058) 

12.78 

(0.039) 

8.88 

(0.026)
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Figure 14. ARL comparisons of T2 chart with different n’s for I shifts. 
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Figure 15. The reference curve (solid line) and the fitted B-spline curve with 5 
bases and n=50. 
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Table 11. ARL comparisons of EWMA chart with different n’s for M shifts. 

β  
Chart 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

n = 50 201.13

(0.627)

63.98 

(0.186) 

20.69 

(0.051)

10.43 

(0.021)

6.66 

(0.011)

4.87 

(0.007)

3.86 

(0.005)

3.21 

(0.004)

2.77 

(0.003) 

2.45 

(0.002) 

2.22 

(0.002)

n = 40 199.86

(0.615)

73.48 

(0.236) 

24.94 

(0.064)

12.45 

(0.027)

7.82 

(0.014)

5.67 

(0.009)

4.43 

(0.006)

3.65 

(0.004)

3.12 

(0.003) 

2.74 

(0.003) 

2.46 

(0.002)

n = 30 200.23

(0.628)

88.39 

(0.264) 

32.19 

(0.087)

15.88 

(0.037)

9.83 

(0.019)

6.95 

(0.012)

5.35 

(0.008)

4.36 

(0.006)

3.68 

(0.004) 

3.21 

(0.004) 

2.85 

(0.003)

n =20 201.60

(0.637)

109.19 

(0.329) 

44.66 

(0.125)

22.57 

(0.057)

13.69 

(0.030)

9.45 

(0.018)

7.10 

(0.012)

5.69 

(0.009)

4.73 

(0.007) 

4.07 

(0.005) 

3.58 

(0.004)
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Figure 16. ARL comparisons of the EWMA chart with different n’s
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Table 12. ARL comparisons of Squared metric with different n’s for standard 
deviation shifts. 

λ  
Chart 

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

n = 50 200.36

(0.632)

81.03 

(0.255) 

38.73 

(0.121) 

21.03 

(0.065)

12.58 

(0.038)

8.26 

(0.025)

5.83 

(0.017)

4.35 

(0.012)

3.41 

(0.009) 

2.77 

(0.007) 

2.32 

(0.005)

n = 40 200.22

(0.639)

89.38 

(0.272) 

44.15 

(0.142) 

26.48 

(0.079)

17.32 

(0.045)

11.64 

(0.033)

8.22 

(0.023)

5.58 

(0.016)

4.17 

(0.011) 

3.36 

(0.008) 

2.71 

(0.006)

n = 30 200.68

(0.631)

96.10 

(0.296) 

52.55 

(0.169) 

32.67 

(0.090)

22.17 

(0.057)

15.11 

(0.039)

10.59 

(0.031)

6.63 

(0.021)

5.14 

(0.015) 

3.75 

(0.010) 

3.24 

(0.007)

n =20 201.09

(0.643)

106.97 

(0.324) 

62.29 

(0.194) 

40.09 

(0.112)

30.61 

(0.083)

19.98 

(0.048)

14.77 

(0.040)

9.40 

(0.029)

6.49 

(0.020) 

4.45 

(0.013) 

4.82 

(0.009)
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 Figure 17. ARL comparisons of Squared metric with different n’s f

λ

λ

deviation shifts. 
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Table 13. ARL comparisons of Absolute-value metric with different n’s for I shifts 

α  
Chart 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

n = 50 200.25

(0.631)

176.64 

(0.559) 

134.26 

(0.423) 

88.90 

(0.280)

54.20 

(0.169)

30.86 

(0.097)

17.93 

(0.056)

10.59 

(0.032)

6.58 

(0.019) 

4.22 

(0.011) 

2.96 

(0.007)

n = 40 200.46

(0.632)

179.69 

(0.582) 

145.41 

(0.457) 

103.91

(0.328)

66.33 

(0.210)

42.20 

(0.133)

25.16 

(0.076)

15.90 

(0.049)

9.83 

(0.029) 

6.45 

(0.019) 

4.29 

(0.012)

n = 30 201.73

(0.642)

184.97 

(0.591) 

156.89 

(0.494) 

123.00

(0.387)

85.88 

(0.268)

59.14 

(0.186)

38.39 

(0.120)

25.31 

(0.077)

16.33 

(0.050) 

11.00 

(0.033) 

7.45 

(0.022)

n =20 200.42

(0.632)

190.15 

(0.598) 

174.07 

(0.556) 

142.36

(0.444)

110.42

(0.346)

85.34 

(0.272)

62.67 

(0.197)

42.88 

(0.134)

31.71 

(0.098) 

22.46 

(0.069) 

15.96

(0.049)
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Figure 18. ARL comparisons of Absolute-value metric with different
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Table 14. ARL comparisons under intercept shifts of a linear profile. 

λ  
Chart 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

EWMA/R 
198.85

(0.619)

65.58 

(0.192) 

17.54 

(0.040) 

8.32 

(0.013)

5.33 

(0.007)

3.95 

(0.004)

3.17 

(0.003)

2.67 

(0.002)

2.33 

(0.002) 

2.10 

(0.001) 

1.94 

(0.001)

T2 198.44

(0.627)

137.21 

(0.433) 

64.0 

(0.198) 

27.96 

(0.087)

13.20 

(0.040)

6.90 

(0.020)

4.00 

(0.011)

2.57 

(0.006)

1.84 

(0.004) 

1.45 

(0.003) 

1.23 

(0.002)

EWMA3
199.36

(0.614)

60.23 

(0.170) 

17.28 

(0.036) 

8.91 

(0.013)

6.12 

(0.007)

4.82 

(0.004)

4.08 

(0.003)

3.59 

(0.002)

3.27 

(0.002) 

3.05 

(0.001) 

2.89 

(0.001)

EWMA  
200.6 

(0.616)

39.28 

(0.109) 

12.02 

(0.025) 

6.37 

(0.010)

4.30 

(0.006)

3.28 

(0.004)

2.68 

(0.003)

2.29 

(0.002)

2.03 

(0.002) 

1.84 

(0.002) 

1.67 

(0.002)

Squared metric 201.43

(0.638)

137.40 

(0.435) 

63.31 

(0.199) 

27.90 

(0.087)

13.17 

(0.040)

6.89 

(0.020)

3.99 

(0.011)

2.58 

(0.006)

1.84 

(0.004) 

1.45 

(0.003) 

1.23 

(0.002)

Absolute-value 
metric 

199.92

(0.627)

124.64 

(0.395) 

52.03 

(0.163) 

21.91 

(0.067)

10.31 

(0.031)

5.45 

(0.016)

3.25 

(0.009)

2.19 

(0.005)

1.63 

(0.003) 

1.33 

(0.002) 

1.16 

(0.001)
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Figure19. ARL comparisons under intercept shifts of a linear profile. 
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Table 15. ARL comparisons under slope shifts of a linear profile. 

β  
Chart 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

EWMA/R 
198.75

(0.625)

117.11 

(0.361) 

43.56 

(0.122) 

19.67 

(0.047)

11.33 

(0.022)

7.71 

(0.013)

5.80 

(0.008)

4.65 

(0.006)

3.89 

(0.005) 

3.46 

(0.004) 

2.97 

(0.003)

T2 200.25

(0.630)

165.33 

(0.523) 

105.43 

(0.322) 

60.30 

(0.191)

34.31 

(0.107)

20.14 

(0.062)

12.18 

(0.037)

7.81 

(0.023)

5.23 

(0.015) 

3.70 

(0.010) 

2.74 

(0.007)

EWMA3
200.3 

(0.614)

102.65 

(0.306) 

37.33 

(0.098) 

18.12 

(0.038)

11.22 

(0.019)

8.14 

(0.011)

6.47 

(0.007)

5.45 

(0.005)

4.75 

(0.004) 

4.27 

(0.003) 

3.90 

(0.003)

EWMA  
200.79

(0.622)

77.93 

(0.232) 

26.83 

(0.070) 

13.41 

(0.030)

8.39 

(0.016)

6.00 

(0.009)

4.69 

(0.007)

3.85 

(0.005)

3.28 

(0.004) 

2.87 

(0.003) 

2.57 

(0.002)

Squared metric 199.50

(0.627)

165.12 

(0.524) 

105.32 

(0.330) 

60.74 

(0.190)

34.59 

(0.108)

20.19 

(0.062)

12.32 

(0.037)

7.83 

(0.023)

5.20 

(0.015) 

3.71 

(0.010) 

2.74 

(0.007)

Absolute-value 
metric 

200.71

(0.623)

159.54 

(0.504) 

96.56 

(0.304) 

54.59 

(0.171)

30.90 

(0.096)

18.14 

(0.056)

11.27 

(0.034)

7.28 

(0.021)

4.95 

(0.014) 

3.42 

(0.009) 

2.67 

(0.007)
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Figure 20. ARL comparisons under slope shifts of a linear profile 
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Table 16. ARL comparisons under standad deviation shifts of a linear profile. 

γ  
Chart 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

EWMA/R 198.55

(0.623)

34.09 

(0.105) 

12.07 

(0.036) 

6.15 

(0.017)

3.96 

(0.010)

2.86 

(0.007)

2.28 

(0.005)

1.93 

(0.004)

1.70 

(0.003) 

1.53 

(0.002) 

1.42 

(0.002)

T2 200.32

(0.633)

39.73 

(0.123) 

15.01 

(0.046) 

7.91 

(0.023)

5.14 

(0.015)

3.76 

(0.010)

2.98 

(0.008)

2.51 

(0.006)

2.20 

(0.005) 

1.96 

(0.004) 

1.80 

(0.004)

EWMA3
199.2 

(0.606)

34.51 

(0.095) 

13.80 

(0.032) 

8.31 

(0.016)

6.10 

(0.010)

4.97 

(0.007)

4.27 

(0.005)

3.84 

(0.004)

3.51 

(0.004) 

3.26 

(0.003) 

3.07 

(0.003)

R 200.1 

(0.638)

34.38 

(0.107) 

12.12 

(0.037) 

6.20 

(0.018)

3.99 

(0.011)

2.89 

(0.007)

2.31 

(0.006)

1.96 

(0.004)

1.73 

(0.004) 

1.57 

(0.003) 

1.46 

(0.003)

Squared metric 201.27

(0.638)

39.54 

(0.123) 

14.92 

(0.045) 

7.92 

(0.024)

5.14 

(0.015)

3.74 

(0.010)

2.99 

(0.008)

2.52 

(0.006)

2.19 

(0.005) 

1.96 

(0.004) 

1.80 

(0.004)

Absolute-value 
metric 

199.92

(0.632)

41.90 

(0.131) 

15.99 

(0.049) 

8.45 

(0.025)

5.43 

(0.015)

3.93 

(0.011)

3.13 

(0.008)

2.62 

(0.006)

2.26 

(0.005) 

2.02 

(0.004) 

1.85 

(0.004)

EWMV 199.83

(0.629)

20.19 

(0.058) 

7.46 

(0.019) 

4.44 

(0.010)

3.22 

(0.007)

2.57 

(0.005)

2.17 

(0.004)

1.91 

(0.003)

1.73 

(0.003) 

1.59 

(0.003) 

1.49 

(0.002)
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 Figure 21. ARL comparisons under standad deviation shifts of a linear profile. 
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