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Profile Monitoring by Nonparametric Regression

Student : Zheng-Pei Weng Advisor : Dr. Jyh-Jen Horng Shiau

Institute of Statistics

National Chiao Tung University

ABSTRACT

In this paper, we propose and study some control chart methods for monitoring
processes for which the quality is characterized by a profile or a function. No
assumptions are made on the form:of the function except that it represents a smooth
curve.

Three approaches of monitoring. schemes-are ‘proposed: (1) Use the “B-spline”
smoothing method to fit the profiles of processes-and design a T chart to monitor the
deviations of the sample profiles from the in-control reference profile. (2) Use typical
control charts — the EWMA, or EWMSD, or R chart to monitor the residuals between
the sample profiles and the in-control reference profile. (3) Use some metrics defined
to measure the deviations of the sample profiles from the in-control reference profile
to monitor the sample profiles.

We construct a simulation study using an exponential profile as an example to
investigate the effectiveness of the proposed schemes. The performances of these
schemes are evaluated and compared in terms of the average run length. The results of
the simulation study show that all approaches appear to perform well for exponential
profiles. It is found that some control schemes are preferable to others for particular

types of process changes.
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1. Introduction

Statistical process control (SPC) has been successfully applied in many domains,
especially in industries. We often use control charts to monitor processes in most SPC
applications. In the past, it was always assumed that the quality of a product or
process can be measured by one or multiple quality characteristics. However, in many
practical situations, the quality of a product or process is better characterized by a
profile or a function. One example involved aspartame (an artificial sweetener), which
is characterized by the amount that dissolves per liter of water at different levels of
temperature (Kang and Albin, 2000). For illustration purpose, Figure 1 gives an
example of 4 hypothetical sample profiles created based on the Figure 1 of Kang and
Albin (2000). Another example .is' ‘a“semiconductor manufacturing application
involving the calibration of a mass flow:controller-in which the performance of the
process is characterized by a finear function (Mestek et al., 1994). Some profiles
monitoring methods are proposed for this type of processes. Walker and Wright (2002)
proposed additive models to assess the sources of variation of the density profile of
particleboards. Jin and Shi (2001) used wavelets to monitor and diagnose process
faults. Kang and Albin (2000) and Kim, Mahmoud, and Woodall (2003) proposed
some methods for monitoring the process in which the performance is characterized
by a linear profile.

Kang and Albin (2000) presented two approaches to monitor linear profiles. The
first approach uses a multivariate T2 control chart to monitor the profile parameters,
slope and intercept, simultaneously. The second approach treats the residuals of the
sample profile (from the reference profile) as a subgroup and uses a combined
EWMA/R (exponentially weighted moving average/range) chart for profile

monitoring. Kim et al. (2003) presented another approach. First, for each profile, code
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the X-values so that the X is zero and the estimators of the intercept and the slope
of the regression line are independent. Then, construct two two-sided EWMA charts
to monitor the intercept and the slope separately, and use a one-sided EWMA chart to
monitor the process variation. This scheme is called EWMA;. We remark that these
two papers only addressed liner profiles.

The main objective of this paper is to propose and study profile monitoring
schemes for profiles of more flexible shapes such that the schemes can be applied to
more general and practical situations. To model a profile with no restriction on the
functional form, it is natural to consider the nonparametric regression model in which
the function is only assumed to be smooth. In this paper, for the profile modeling, we
adopt the spline regression as the curve fitting/smoothing technique for the simplicity
and readiness of a direct extension from the simple linear regression used by Kang
and Albin (2000) and Kim et-al..(2003) in-constructing the T2 chart. The second
approach we consider is a monitoring-scheme based on the residuals of sample
profiles from the reference profile; Similar to-the combined EWMA/R scheme given
in Kang and Albin (2000) and the combined EWMA; scheme by Kim et al. (2003).
But instead of combining several control charts, we consider the EWMA chart for
detecting the mean shift, the R chart for variation change, and the exponentially
weighted moving standard deviation (EWMSD) chart for the variation increase
separately. Since each of these control charts is designed for a particular type of
process changes, their detecting powers usually are better than those more
general-purposed charts. The 3" approach is to use some metrics defined to measure
the deviations between observed profiles and the reference profile to detect process
changes. This method was firstly presented in Gardner et al. (1997), in which spatial
signature metrics were used to diagnose the equipment faults. They reported that these

metric-related charts are very powerful in detecting standard deviation shifts. Finally,
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a simulation study is conducted to compare the performances of all the proposed
methods in terms of the average run length (ARL).

The remaining of this paper is organized as follows. Section 2 reviews the
monitoring schemes proposed by Kang and Albin (2000) and Kim et al. (2003).
Section 3 describes the three proposed approaches in details. Section 4 presents the
results of a simulation study with some discussions and recommendations. Finally,

Section 5 concludes the paper with a brief summary and discussion.

2. Literature Review

Let {(xi,yij),izl,Z,...,n} be the observations of the jth profile, j=12,....

Kang and Albin (2000) and Kim et al. (2003) assumed that, when the process is in

statistical control, the underlying model is
Vi =B #AX+e, - 1=12,...n, (1)
where theg;'s are independent.and-identically ‘distributed (i.i.d.) normal random

variables with mean zero and variance s > 0.

In establishing a monitoring scheme, there are usually two phases: Phase | and
Phase Il. The interests in Phase | are on understanding the process variation and
estimating the in-control process parameters from historical data in order to set up
appropriate control limits. In Phase I, we then use the control limits established from
Phase | to monitor the on-line process data successively. The multivariate T and the
residual control charts designed for Phase Il by the two sets of authors mentioned
above are described below.

Kang and Albin (2000) proposed two control strategies to monitor the process.

The first strategy is to use the bivariate T2 chart to examine the regression coefficients.
Assume that the in-control values of the parameters A,, A, ando’ in Equation (1)
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are known. The least-squares estimators of A, and A for the j™ sample profile are,

respectively,

— — Sx i
3, =Y,-a,;X and a; = Sy(”’ (2)

XX

where y; =n"3 0y X=n"30 X, S, =2 ¥ (x —X), and

2
Sy = Zi":l(xi —X) . The estimators a,; and a,; jointly follow the bivariate normal

distribution with the mean vector

n=(A,A) (3)
and the variance-covariance matrix
62 O,
= ° %, (4)
Oy O
where
Bl N
O-g =O-2(E+S_) 1
b SoP L
and
on=c"

It can be seen that a;; and a; are dependent. We express the sample slope and the

sample intercept in Equation (2) as the vector z; =(a,;,a,;)". Then, the T? statistic
for the | sample is given by

7 =(z;,-n)'E7(z; - ), )
which follows the chi-square distribution with 2 degrees of freedom. Thus, the upper
control limit is UCL :;(zzya, where ;(22’0[ is the 100(1-e«) percentile of the chi-square

distribution with 2 degrees of freedom. When there are shifts from the nominal values,



A, and A, Kang and Albin (2000) pointed out that TJ.2 in Equation (5) follows the

non-central chi-square distribution with the parameter of noncentrality
r=(A+BX)°n+BS, (6)
when the intercept A, shiftsto A + Ao andtheslope A shiftsto A + fo.

One disadvantage of the T2 chart is that it cannot distinguish the sources of the
process change --- mean or variance. Kang and Albin (2000) then proposed another
approach to monitor the mean and variance separately with two charts. The second
strategy is to use an EWMA chart to monitor the average of the regression residuals
and simultaneously an R chart to monitor the range of the residuals. One reason for
adding the R chart to the EWMA chart is that the EWMA chart is not sensitive to
shifts in the process variation. Another reasonis that the EWMA chart based on the
residual average is not sensitive to some ‘shifts-in A, and A, for which the
magnitudes of the residuals tend to be large, but the residual average tends to be very
small. Details of these two charts‘are reviewed below.

The regression residuals for the j* sample are
_ P 7
& =Yi—A-AX, 1=12,..,n. (7)

The average of the residuals for sample j is

n

it Gi

D

n
Then, the EWMA statistic for sample j is given by

2, =08, +(1-0)z, ,,
where € (0<@<1) is a smoothing constant and z, =0. The control limits for the

EWMA chart are



LCL:—Lo-/ 9 and UCL:Lo-/ o (8)
(2-06)n (2-0)n

where L is a constant selected for the control chart to achieve a prescribed in-control

ARL. If z; is smaller than LCL or greater than UCL, it is regarded as an

out-of-control signal. For the R chart, the R statistic for the j™ sample is given by
R; = max; (e;) —min;(g;).

The control limits are

LCL=0(d,-L,d;) and UCL=o0o(d,+Lgd,), 9)
where Lg is also a positive constant chosen to achieve a specified false alarm rate, d,
and d, are constants relating the range and the standard deviation, which depend on
the subgroup size n. Commonly_used values of d, and d, can be found in
Montgomery (2001). The process is claimed out of control when any of the EWMA
and the R statistics is out of control.

Kang and Albin (2000) used simulations to'demonstrate the effectiveness of
these two approaches. They reported that the out-of-control ARL of the combined
EWMAVR chart for the residuals is smaller than that of the T* chart for shifts in the
intercept and the slope. On the other hand, the multivariate T chart requires only one
chart.

Kim et al. (2003) first coded the X-values by centering so that the average of the
coded X-values is zero. Then, the least-squares estimators of the slope and intercept
are independent. See Myers (1990) and Ryan (1997). Accordingly, transform the

model in Equation (1) into

y; =By +BX +g, i=12..n, (10)

where B, = A, + AX,B,= A, andx =x —X. For the j'" sample, the least-squares



estimator of B, is by;=y;. The estimator of B, is the same as that of A .
Becauseh,; and by; are independent, they are normally distributed with means B,

B, and variances o&’/n, o°/S respectively. Consequently, the authors

XX !

recommended three EWMA charts to monitor the slope, the intercept, and the error

variance, respectively. The EWMA statistic for the intercept parameter B, is
EWMA, (j) = 6b,, + (1- )EWMA, (j -1) (11)

with € (0<@<1) being a smoothing constant and EWMA, (0) = B, . The control

LCL=B,~Lo |-  and UCL=B,+Lo |2 (12)
(2-6)n (2-06)n

where L, is a constant chosenfor achieving a prescribed in-control ARL. When

limits are

EWMA, (j) <LCL or EWMAXJ)>UCL , an out-of-control signal is alarmed. The

EWMA statistic for the slope parameter. B, is
EWMA, () = b, + (A=) EWMA, (j 1) (13)
with 8 (0<@<1) being a smoothing constant and EWMA (0) = B,. The lower and

upper control limits are, respectively,

LCL=B - Lo |—Y — and UCL=B+Lo |2 — (14
(2—(9)8)0( (Z_Q)Sxx

where Lg is a constant chosen in order to obtain a specified in-control ARL. They
also used a one-sided EWMA chart to detect only increases in process variability. The

EWMA statistic for that is given by

EWMA, (j) = max{@In(MSE,) + (L- O)EWMA, (j 1) ,In(c?)}, (15)

where @ (0<@<1) again is a smoothing constant, EWMA_(0) =In(c?) , and



MSE; =(n-2)">"" (¥, —by; —by;%)?. They used the following approximation that

is very similar to the result derived by Crowder and Hamilton (1992) to construct the

control limit:

2 2 4 16

Var[In(MSE;)] ~ + >+ 5 -
n-2 (n-2)° 3(n-2)° 15(n-2)

Then an upper control limit is given by

B 6 (16)
ucL=L, \/—(Z_G)Var[ln(MSEj)] ,

where L. is again a constant selected to give a specified in-control ARL. The
process is claimed out of control if any of the three statistics given in (11), (13), and
(15), respectively is beyond the control limits.

Kim et al. (2003) showed by a simulation study that their methods are generally
more effective and seem much more interpretable than the methods of Kang and Albin
(2000) in Phase Il for detecting.sustained shifts in either the intercept or the slope or
increases in the error variance.

In practice, the in-control values of parameters are usually unknown. Common
practice is to use some historical data to estimate these parameters and construct
preliminary control charts during Phase I. Kang and Albin (2000) estimated the

regression parameters of Equation (1) based on the historical data containing k sample

profiles. For each profile, obtain estimates a,; and a; of A, and A, respectively.

Then the reference line can be estimated by Y = a,+aX and &°=MSE, where

k k k
- . : - MSE.
a, = 1;1 0j 1 a1=ZJk1a1] “and MSEZZJlk j

with MSE; = (n—2)’1zin:1(yi,- —ay;—ay,;X )° . The T statistic is modified by



k .
T02j=m(zj—z) Sl(zj—z), (17)
where z=(a,,a)" and S is an unbiased estimate of X with components

—2 —
SM:MSE(%+;(—), s, =B and s, = -MsE().

XX XX XX

Kang and Albin (2000) proved that the T?%/2 statistic in Equation (17) has the F

distribution. Thus, the upper control limit of the T2 chart in Phase | is

UCL =2F, , ,)..- For EWMA and R charts in Phase I, the control limits are modified

by substituting o with+/MSE . There are other methods to examine the historical
data in Phase I. Stover and Brill (1998) proposed a Hotelling’s T? approach that is
similar to the T> method of Kang and Albin (2000). The distinction between the two is
the estimate of the variance-covariance matrix. Another approach is to use a univariate
chart based on the first principal component corresponding to the vectors containing
the estimators of the intercept and.slope. But Kim et al. (2003) advised against this
principal component method since it-is-unable to detect the shifts in the direction

perpendicular to the first principal component.

3. Methodologies
3.1 B-splines
In order to extend linear profiles to any smooth functions, a smooth curve fitting
technique is needed for profile smoothing from noisy data. A polynomial function is
not very flexible for approximating curves with different degrees of smoothness at
different locations. One way to overcome this drawback is to use locally a
polynomial approximation of low degree. Another way is to allow the derivatives of
the approximating function to have discontinuities at certain locations. This can be
accomplished by fitting piecewise polynomials or splines. Frequently, a cubic spline,

I.e., a piecewise polynomial with continuous first two derivatives, is used for such

-9-



approximation. Consider the nonparametric regression model
y.=m(x)+eg, 1=1..n, (18)
where m(x) is a regression curve and ¢ are i.i.d. normally distributed with zero

mean and common variance o > 0. In this paper, we adopt the B-spline regression
method for its popularity and simplicity. See de Boor (1978) for the definition of the
B-spline basis. The points where the derivatives of the approximation function could

have discontinuities are called knots. Let t,...,t,, be the knots, where b is the

number of bases and each polynomial is of order k. Then each basis of order k is a k-2
continuously differentiable function. Define B,, as a B-spline basis that is nonzero
only on the interval (t,t,,),1=12,..,b. A B-spline curve of order k can be
constructed as

P(x) = 6B (¢) V& € [up], i=1...n,
where ¢, ’s are the unknown B-spline coefficients and n is the number of set points in
the interval [u, v]. So we can modify. Equation (18)-to

Yi :Z:):1CIBI,k(Xi)+5i, i=1..n. (19)

The B-spline basis B, of order k can be defined as

_ 1fort <t<t,,,
if k=1, B,(t)=
' 0 fort<t andt>t,,;
if k=2, B, (t)= -t B .(t)+ b 1 Byaxa(t):
l+k-1 M l+k — H+1

The following S-PLUS function “spline.des” generates a matrix of B-spline bases
evaluated at points provided by users.

spline.des(knots, x, ord, derives),
where “knots” is the vector of knots for the spline, “X” represents x-coordinates at

which to evaluate the spline basis functions, “ord” is the order of the spline, and
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“derives” is the order of the derivative to evaluate at each of the points. If this vector
is given, it must have the same length as x. The default is a vector of zeros of the same
length as x. We show an example of B-spline bases in Figure 2.

After constructing B-spline bases, we use these normalized B-spline functions

B,, as the regression basis function. For the given knots, the spline regression

method finds the best spline approximation via the following least squares regression:
min i{yi —Zb:c, B, (X)¥, (20)
¢ i I=1
where ¢=(c,...,C,)". So the least-squares estimator of ¢ is
¢=(B'B)'B'y
wherey = (Y, ... ¥,)', €=(C1,..,Cv)", and B is the design matrix with the (i, I )"
element B (x), I=1..b, i=1..n. Then, ¢ has a multivariate normal

distribution with the mean= vector ¢~ and the variance-covariance matrix
r=c°(B'B)".
In phase 11, it is assumed that the‘reference profile is known. Denote it by f (x).

We now establish a B-spline representation of the reference profile. First obtain n
pairs of data, {(x,f(x)),i=1..,n}.Let ¢ be the least squares solution of (20) with

y;, replaced by f(x;) . We then treat this vector ¢ as the true in-control value. For the
j™ sample profile, compute the vector of sample estimators E; = (61j,...,6bj)', where
61,-,...,6bj are the estimated sample B-spline coefficients. Then the T? statistic of the
j™ sample is given by Tf = (E,- —c)'Z’l(E,- —c¢) . But the upper control limit in phase Il
needs to be modified as UCL =y, ,. And in Phase I, we also use historical data

containing k sample profiles to construct the control chart. Then the reference curve
can be estimated by y=B¢& with ¢=(¢,...,¢,)' and &°=MSE where
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K . k . Kk
ZClj Zij ZMSEJ-
= =

v € =22 and MSE=12 (21)
K K k

G

with MSE, :Hyj—Béj *J(n—b) and |+| denotes the Euclidean norm. The T?

statistic for the j™ sample profile is then modified by

K o~ o~ -
T = @0 (e ), (22)

where S=¢5%(B'B)™" is an unbiased estimate of X . Thus, the upper control limit of

the T? chart in Phase | is UCL =bF, , .,

The choice of the number of bases, as in the role of the smoothing parameter in
any nonparametric regression methods, is an important issue. The boundary effect is

another issue. We will address these two issues in Section 4.

3.2 Residual EWMA and R Charts

The second approach we propose is.to use the EWMA and the R chart to monitor
the residual average and the range, respectively; instead of the combined EWMA/R
chart proposed by Kang and Albin (2000). Kang and Albin (2000) found that the value
L = 3.1151 yields an in-control ARL of approximately 802 for the EWMA chart and
an in-control ARL of approximately 261 for the R-chart. Although ARL, of their
combined procedure is close to 200, the detecting power of the EWMA chart is
unequal to that of the R chart. In order to increase the detecting powers of both the
EWMA and the R charts, we decide to monitor the process by using the EWMA chart
to detect mean shifts and the R chart to detect standard deviation shifts of the residuals.

The regression residual vector for the j™ sample is
e;=y,-y,={I-B(B'B)'Bly,.

The details of the EWMA and the R charts are the same as that described in Section 2.
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3.3 Metrics

The third approach is to use some metrics to monitor the process. Gardner et al.
(1997) presented a new methodology based on some “metrics” for the equipment fault
detection. The equipment fault detection was not only in that it incorporates the use of
integrated spatial information in a virtual wafer surface that was fitted by thin-plate
splines, but also in that it can be used to detect and classify equipment faults at the
same time. Their main focus was to use the differences between the observed and the
expected virtual wafer surfaces to construct metrics which can be used to detect and
diagnose various types of equipment faults. Thus, the following general and specific

metrics were designed:

M1= _[R(g ~T)’dR  (Squared metric) ;

M2 = '[R|g ~T|dR " (Absolute-value metric) ;

2 B 0
M3:IR(9 -T) R, IFjg=T|=15A (Spec-limit metric);

=0 otherwise
M4=[ (g-T)'dR if (g-T)>0
=_'[R|g—T|dR if (9-T)<0
(Square-above-absolute-value-below metric);
M5=[ (g-T)'dR if (g-T)<0
=-jR|g-T|dR if (9—T)>0
(Square-below-absolute-value-above metric);
where g is a newly fitted thin-plate spline surface, T is the target surface, and R
denotes the wafer surface region. Metrics 1-3 are general metrics used to detect the
presence of an equipment fault, and Metrics 4-5 are specific metrics used to detect
specific fault patterns. Gardner et al. (1997) proposed an alternate Bayesian

(simulation) approach that can be taken to determine the null distribution of the
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metrics. According to a procedure given in Green and Silverman (1994), assuming a
Gaussian prior distribution, the posterior distribution of the thin-plate spline surface g
has the following multivariate normal distribution:

g~ MVN[g 6"A(D)],

2

where g is the vector of fitted values, &° is calculated as the residual sums of

squares about the fitted curve divided by an effective degrees of freedom, and A(i)

Is the projection matrix which maps the vector of observed values to their predicted
values. Simulate M independent sets of n observations from the posterior multivariate
normal distribution described above. A spline surface is fitted to each set of
observations, and the metrics are calculated. As a result, M independent values are
obtained from the null distribution of .eaéh'metric. The (100x )™ percentile of the M
simulated metric values is the critical value for. determining if the new curve is far
from the target curve. For each newly.observed curve, metrics are calculated and
compared to their corresponding critical values in order to determine whether or not a
fault is detected. In the experimental data, they used the average predicted surface of

two wafers as the target surface. 5,000 observations were simulated using parametric

A ~2

bootstrapping from MVN]g, o A(i)] where g is the average of the predicted

values using the thin-plate spline fitting for these two wafers, and &ZA(/{) is the

average of the covariance matrices from the thin-plate spline fitting for these two
wafers. Then these simulated observations were used to obtain 5,000 metric values
and the corresponding empirical « =0.01 *“critical value” for each metric.

With the same idea, we select two different and popular metrics to monitor the
process in all types of shifts. They are Squared metric and Absolute-value metric. Two

metrics are defined in the following:
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M1= Zn:{g (x)-T(x)¥ (Squared metric);

M2= Z| g(x)-T(x)| (Absolute-value metric);
i=1

where g is a newly fitted B-spline curve and T is the reference profile. To construct
the control charts, we need to find the critical value of the null distribution of each
metric.

Since the distributions of these metrics are difficult to obtain, we use historical
data (k sample profiles) to compute the reference profile in Phase I. Fit a B-spline to

each of the k sample profiles. Denote the average of k regression estimators for the I™

b
B-spline coefficient by ¢ . So the estimated reference profile ZGIB,YK(X) and
1=1

6% =MSE are available by Equation (21).,Simulate M sets of n observations from

the following model:

Yi :Z:):lélBl,k(Xi)-l_gi’ i=1...n, (23)

iid.
where ¢ ~ N(0,6°). For each metric, compute the metric value for each of the

simulated profiles. Let the (100x )™ percentile of these M values of the metric be
the critical value. The process is claimed out-of-control when the metric of the newly

observed profile is greater than the critical value.

3.4 EWMSD Chart

The last approach is using exponentially weighted moving standard deviation
(EWMSD) to monitor the process. It is very sensitive in detecting shifts in process
variation, particularly when shifts are relatively small. Define the sample standard

deviation of the residuals for the j™ sample as

2

S; = —Her]:Z‘ ,1=12,....
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The EWMSD statistic is given by
v, =0s;+([1-0)v,,,
where € (0<@<1) is a smoothing constant and v, =o,. In Phase II, assume the

in-control value of o2 is known. The control limits for the EWMSD chart are

o and UCL=oc+Lo 0 :
(2-0)n (2-0)n

where L is also a constant chosen to give a specified in-control ARL. When the

LCL=0o-Lo

EWMSD statistic is beyond the control limits, the process is claimed out-of-control.

In Phase I, the control limits are modified by substituting o with ~/MSE .

4. Simulation Studies

We assess the performances:of these approaches in terms of ARL through
simulation studies. For all approaches except the -metric method, we assume the
underlying reference profile is known.-Denote-the in=control ARL value by ARL,. All
charts are designed to have the same ARLy =200, which corresponds to « =0.005.
For each metric under study, we simulate 50,000 in-control profiles to approximate
the distribution of the metric. The critical value is set to be the 99.5™ percentile of
these simulated metric values such that the ARL,= 200. The smoothing constant &
may affect the ARL performances of the EWMA and EWMSD charts. Details can be
seen in Lucas and Saccucci (1990). In our study, the smoothing constant is set to 0.2.
In Phase Il process monitoring, for each control chart, run lengths are generated for
the in-control and various out-of-control situations. The run length is the number of
profiles generated when the first out-of-control signal occurs. Generate profiles from
the underlying model until the first out-of-control signal is alarmed to obtain a run
length. Repeat N times to obtain N run lengths and then estimate the ARL by

averaging these N run lengths. Denote the estimator byAIiL. To obtain the standard
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error of ARL (the ARL estimator), one simple way is to compute the sample standard
deviation of the N simulated run lengths and then divided it by JN . Another
estimator of the standard error is
ARL(1—— %y
ARL
JIN

since the run length has a geometric distribution with mean 1/ p and standard

deviation (1 -p)*? / p with p = 1/ ARL. In our simulation, we generate a total of N =

100,000 run lengths to estimate the ARL value. If we construct the control charts such

that AFAQLO is about 200, then the standard error of this estimator is about

200(1—2%0)” 2 /4/100,000 ~ 0.631. We adopt the first approach in this study.

In this paper, we extend the,linear profile to a functional-form-free smooth
function to adapt to more general cases. To choose an underlying reference profile for
our study, we mimic the aspartame curves In Figure 1. As a result, we take an

exponential function as the reference profile. In our simulation study, consider the
exponential profile of the form Y =1,+Me™*Y +¢, where &~N(0,1). The

in-control reference profile is 1+15¢ *Y", which is displayed in Fiugre 3. We choose

x. -values of 0, 0.08,..., 3.92 (n = 50) in our simulation. Four different types of shifts
are considered in the simulation study: I shift, M shift, N shift, and error variance
increase. The curve varies in different ways with different varying coefficients.

Figures 4-6 illustrate the effect of the shifts. In these figures, the solid lines represent

—(x-1)?

the true function 1+15e , While the dotted lines represent the shifted curves.

Figure 4 gives the curve that is 2 units upward by an | shift. The dotted line in Figure

-1)2

5 is the curve of 1+18e ™" that is, the y-value is magnified with the same multiple

at each point because of an M shift. Figure 6 shows a case of N shift, and the resulting

- - — . 2
curve seems narrower than the reference curve. Its function is 1+15e %"
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For T2 chart, we use the sequence (-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8,
3.2,3.6,4,4.4,4.8, 5.2) as the knots with order 4 so that the number of B-spline bases
is 13. The knots sequence is equidistant, and the thirteen cubic B-splines are shown in
Figure 7. Approximate the true exponential function by spline regression with these
13 B-spline bases. The fitted curve (dashed line) is shown in Figure 8. The circles are
the values on the exponential function and the dashed line goes through these values
smoothly. So the B-spline approximation is very close to the true function. The
average squared error of the approximation is 0.0000099498 and it is computed by
1o b A
HZH(f ()= 2, 6B (X))

It is well known that boundary effect is a potential problem in smoothing
methods. We use a simple simulation, study_for T® chart to illustrate the boundary
effect that we encountered in our:study. First; we fix the number of set points at 20,
and change the number of B-spline bases to'5, 9, and:13 and find that the ARL, of T?
chart are 197.976, 193.265, and 187.814, respectively. That is, when n = 20, the ARL,
decreases as the number of B-spline bases increases and the boundary effect is more
and more obvious. Because the number of set points 20 is small, the B-spline
coefficients for the boundary bases are not accurate enough. It leads to a larger T?
statistic and a smaller ARL,. So we increase the number of set points to 50. Compute
the average of 50,000 replications of each B-spline coefficient. The simulation results
are shown in Table 1. The first row is the 13 coefficients of the exponential reference
curve fitted by B-splines and these values are treated as the true coefficients. The
second row gives the differences between the average of 50,000 replications and the
true coefficient for the first simulation. The third and fourth rows give the results of
the second simulation and the third simulation, respectively. From Table 1, we can see

the variability of each coefficient estimate. The two largest differences occur at the
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13™ and the first coefficient, respectively, in every simulation. In order to achieve

ARL, = 200, we omit the coefficients 1 and 13 in constructing the T? statistic.

Naturally, the control limit of the T® chart is adjusted to X000 -

Instead of using the EWMA and R charts simultaneously to monitor the process,
we use the EWMA chart to detect the mean shifts, say, I, M, or N shifts, and use the R
chart to detect the shift in the error variance. For the metric method, use Squared
metric and Absolute-value metric to detect all types of shifts. All simulation results
are presented below.

Table 2 and Figure 9 give the ARL values and curves for shifts in I in unit of
o, respectively. In Table 2, the smallest ARL values are marked with the deep gray
and the second smallest are marked with.the light gray. The EWMA chart and two
metrics perform better than the TA¢hart. The'EWMA chart detects all shifts faster than
others and the Absolute-value metric is the second best.

Table 3 and Figure 10 show-the ARLvalues and curves for M shifts, respectively.
The EWMA chart also performs much better'than the T chart and two metrics over
the entire range of shifts considered. We can see that the performances of two metrics
and T? chart are very similar with the Absolute-value metric better for smaller shifts
and T chart better for larger shifts.

Table 4 and Figure 11 show the ARL values and curves for N shifts, respectively.
Again, the detecting power of the EWMA chart is the largest and the T?chart is the
smaller than the other charts. Secondly, the results of two metrics are similar and the
Absolute-value metric is faster for smaller shifts, say, 0.14c or less, and slower for
larger shifts.

Table 5 and Figure 12 give the ARLSs for shifts in the process standard deviation.

The R chart performs slightly better than the T?chart and two metrics over the entire
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range of shifts. And the Squared metric is also slightly faster than the Absolute-value
metric over the whole range of shifts. But the EWMSD chart performs much better
than the other charts, because it is designed specially for detecting the standard
deviation shifts. This demonstrates that the EWMA and EWMSD charts are more
sensitive for all shifts than others, especially for smaller shifts.

Table 6 gives the ARL performances when simultaneous M and N shifts are
considered. The T? chart is uniformly slower than other charts over the entire range of
shifts. The EWMA chart performs the best with any combination of M and N shifts,
and Absolute-value metric is the second best. Tables 7 and 8 present the simulation
results with I and M, | and N combinations, respectively. Two tables also show similar
results.

To investigate the effect of .the number of.set points (n) and the number of
B-spline bases (b), another simulation study is conducted. Table 9 and Figure 13 give
the ARLs of the T? chart with different iumber.of bases, 5, 9, and 13, for | shifts. The
results show that the detecting power. of the T chart increases as parameter b
decreases. Table 10 and Figure 14 give the ARLs of the T chart with different n = 30,
40, and 50 for | shifts. We can see that the ARL decreases as n increases with various
sizes in | shifts. In order to improve the power of the T? chart, it seems that a smaller b
and larger n is suggested. However, there is another concern — the squared error
between the fitted profile estimated by B-splines and the reference profile. Although
the detecting power of T2 chart with n = 50 and b = 5 is larger, the average squared
error comes to 0.4829616. From Figure 15 we can see that, with b = 5, the B-spline
does not approximate the reference profile well. Thus, b should not be too small.

Table 11 and Figure 16 show that the ARL decreases as n increases for the
EWMA chart with various shifts in M shifts. Tables 12-13 and Figures17-18 show that

the detecting power increases as n increases for all metrics with | shifts or standard
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deviation shifts.
Back to linear profiles, we compare the ARL performances of our approaches to
that of the methods proposed by Kang and Albin (2000) and Kim et al. (2003). We

simulate again by using the same control limits of each chart. The linear profile model

iid.
used by Kang and Albin (2000) is y; =3+2x +¢;, where g ~ N(0,1) with

ij !
fixed x; -values of 2, 4, 6, and 8. Three different types of shifts, intercept shifts, slope
shifts and standard deviation shifts, are considered in their papers. From our
simulation study, we notice that our ARL values of EWMA; are 1 more than the
values given in Kim et al. (2003). We guess the discrepancy may come from the way
of counting the run lengths. They probably counted the run lengths as the number of
the profiles before the out-of-control signal.occurs, so that all values are one less than
ours.

Table 14 and Figure 19 give the ARL values-and curves for intercept shifts,
respectively. The EWMA chart-performs much better than other charts for smaller
shifts. The Absolute-value metric detects the larger shifts, say, 1.4 or more, faster
than the other charts. We can clearly see the performance of EWMA; is better than
that of the methods of Kang and Albin (2000) for smaller shifts, say 0.4c or less,
and the power of detecting larger shifts is the worst.

Table 15 and Figure 20 show the ARL performances for slope shifts. The EWMA
chart is much better that the other charts over the entire range of shifts. Two metrics
perform well for larger shifts with Absolute-value metric better. And the performance
of EWMAg is worse than that for intercept shifts. So in this case, we can use the
EWMA chart or EWMA; chart to detect the smaller shifts and use the EWMA chart or

Absolute-value metric to detect the larger shifts of intercept and slope.

Table 16 and Figure 21 give the ARL values for standard deviation shifts. The
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EWMSD chart also performs the best for smaller shifts, say 2.4o or less and
EWMA/R chart and the R chart perform better than others for larger shifts. The
detecting power of Squared metric, Absolute-value metric, and T? chart are similar.
Our ARL comparisons show that our methods are slightly effective than the methods
of Kang and Albin (2000) and Kim et al. (2003) for shifts in either the intercept or

slope or increases in the error variance.

5. Conclusions

The profile monitoring is a very useful and promising area of research. In this
thesis, we focus on the non-linear profile monitoring. Three profile monitoring
approaches are proposed. And from the simulation studies, all approaches appear to
perform well for the exponential profile under study.

Comparisons among these:approaches are-made. For I, M, and N shifts in the
exponential profile, the EWMA chart performs the best over entire range of shifts,
while the Absolute-value metric ‘has secondly Smaller ARL. And for standard
deviation shifts, the EWMSD chart is a good choice to detect, while we also can use
the R chart to monitor the process. And for linear profiles, our simulation study shows
that new methods proposed by us are slightly effective than the methods of Kang and
Albin (2000) and Kim et al. (2003). As a design issue, it is observed that increasing n
is helpful in reducing the out-of-control ARL values. How to properly choose the
number of bases is worth further studies.

This study extends the framework of statistical process control to more general
applications. More statistical methods, models, and ideas are needed to extend the

framework to a more complete profile monitoring strategy.
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Figurel. Milligrams of aspartame dissolved per liter of water from four samples.

0.6

0.4

0.2

0.0

Figure 2. 8 B-spline bases; each basis is of order 4.
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10
1

Figure 3. The reference profile. :m(x) =1+15e V"

solid line :1+15e

dotted line : 3+15e *Y°

Figure 4. The reference curve (solid line) and the curve affected by I shift (dotted
line).
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- - —_ - 2
e solid line :1+15e "™

dotted line :1+18e

Figure 5. The reference curve (solid line)-and the curve affected by M shift
(dotted line).

solid line :1+15¢ <’

dotted line : 1+ 15 +5*V*

Figure 6. The reference curve (solid line) and the curve affected by N shift
(dotted line).
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Figure 7. Thirteen cubie B-splines bases.
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Figure 8. Scatter plot is the reference curve and the dashed line is the B-spline
estimate.
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deviations.

2.874264

6.157306

11.611126

16.178782

Table 1. Simulation results to illustrate boundary effects; Underlines are larger

16.183834

-0.0437711

0.0042971

0.00457416

0.00045094

-0.0013554

72-C | 0.06077714

0.00684893

-0.0002403

-0.0109680

0.00645003

Z3-C || 0.08942159

11.603308

-0.0136533

6.176568

0.01052427

2.767467

-0.0160640

1.423282

0.01881415

1.070967

Z1-C || -0.0031249

-0.0001978

0:00197017

-0.0013328

-0.0054912

Z2-C || -0.0079634

0.01199316

-0.0198097

0.0244964

-0.0223153

Z3-C | 0.00019966

1.008571

-0.0030393

1.000276

0..00455043

1.003893

0.01870481

-0.0077123

Z1-U || 0.00677231

0.00502447

-0.0936737

Z2-U | 0.00303271

0.01045864

-0.1506641

-0.0079037

0.02057199

-0.2117598
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Table 2. ARL comparisons under | shifts froml, To I, + ao

o
Chart
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
T2 199.86 | 180.07 | 138.44 | 93.67 | 58.76 | 3540 | 21.27 | 13.03 8.20 5.38 3.70
(0.622) | (0.569) | (0.437) | (0.294) | (0.183) | (0.110) | (0.066) | (0.040) | (0.024) | (0.015) | (0.010)
200.42 | 47. 14.71 7.62 . 7 : 2, 2.27 2.04 1.87
EWMA 00 39 6 5.06 3.79 3.06 59 0 8
(0.613) | (0.135) | (0.033) | (0.014) i (0.007) i (0.005) i (0.003) | (0.003) | (0.002) | (0.002) i (0.002)
. | 20070 | 179.76 | 13892 | 9437 | 5864 | 3515 | 2085 | 12.63 7.86 5.15 352
Squared metric
(0.622) | (0.566) | (0.435) | (0.297) | (0.184) | (0.109) | (0.064) | (0.038) | (0.023) | (0.015) | (0.009)
Absolute-value | 199.49 | 17520 | 134.78 | 88.79 | 53.08 | 30.87 | 17.76 | 10.53 6.49 4.23 2.93
metric (0.625) | (0.561) | (0.424) | (0.277) | (0.167) | (0.096) | (0.055) | (0.032) | (0.019) | (0.012) | (0.008)
200 NS, T2
\ — = EWMA
150 r .
\ = = = Squared metric
J -
ne \ Absolute value metric
< 100 - \
50 \
N
~—
0
0 0.1 0.2 0.3 0.4 05

Figure 9. ARL comparisons under | shifts of size «r .
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Table 3. ARL comparisons under M shifts fromM, To M, + o

Chart L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T2 199.15 | 17579 | 12460 | 77.34 | 4392 | 2432 | 1376 | 8.05 5.00 3.32 2.35
(0.623) | (0.560) | (0.391) | (0.243) | (0.137) | (0.075) | (0.042) | (0.024) | (0.014) | (0.009) | (0.006)
199.2 21 i 20. 10. . 4. 84 2 2.7 2.4 2.21
EWMA 99.26 | 63 0.63 036 | 6.65 86 3.8 3.20 6 5
(0.613) | (0.184) | (0.051) | (0.021) i (0.011) i (0.007) i (0.005) | (0.004) | (0.003) | (0.002) i (0.002)
. | 20130 | 17635 | 12885 | 81.84 | 47.02 | 2647 | 14.93 8.79 5.39 3.55 2.49
Squared metric
(0.623) | (0.554) | (0.405) | (0.257) | (0.147) | (0.082) | (0.046) | (0.026) | (0.015) | (0.010) | (0.006)
Absolute-value | 199.37 | 173.90 | 122.30 | 7454 | 4239 | 23.79 | 1356 8.14 5.10 3.43 2.45
metric (0.620) | (0.548) | (0.385) | (0.233) | (0.132) | (0.074) | (0.041) | (0.024) | (0.014) | (0.009) | (0.006)
200 T2
- = EWMA
150 .
= = = Squared metric
- .
(ne Absolute value metric
< 100

50

Figure 10. ARL comparisons under M shifts of size 5.
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Table 4. ARL comparisons under N shifts from N, To N, + yo

Chart L
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
T2 199.4 | 173.86 | 120.61 | 73.36 | 4199 | 2382 | 1380 | 838 5.37 3.67 2.66
(0.628) | (0.547) | (0.380) | (0.231) | (0.131) | (0.073) | (0.042) | (0.025) | (0.015) | (0.010) | (0.007)
EWMA 201.3 | 50.39 | 1621 | 8.44 5.61 423 3.43 2.91 2.55 2.30 2.11

(0.608) | (0.144) | (0.038) | (0.016) | (0.009) | (0.006) | (0.004) i (0.003) i (0.002) i (0.002) i (0.002)

201.05 | 171.84 | 117.68 69.62 38.53 21.16 11.94 7.17 4.58 3.12 2.28

Squared metric
(0.638) | (0.542) | (0.369) | (0.219) | (0.121) | (0.065) | (0.036) | (0.021) | (0.013) | (0.008) | (0.005)

Absolute-value | 199.35 | 169.74 | 11429 | 66.73 | 36.79 | 20.34 | 11.67 7.14 4.63 3.19 2.36

metric (0.621) | (0.537) | (0.361) | (0.210) | (0.115) | (0.063) | (0.035) | (0.021) | (0.013) | (0.008) | (0.006)
200 \ T2
\ - =—EWMA
150 *\ = = = Squared metric
D_il \ Absolute value
< 100 | metric
50
0
0 0.04 0.08 0.12 0.16 0.2

Y
Figure 11. ARL comparisons under N shifts of size y .
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Table 5. ARL comparisons under standard deviation shifts fromo To Ao

A
Chart
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
T 199.71 | 8574 | 4231 | 2353 | 1442 | 958 | 676 | 505 | 395 | 322 | 270
(0.624) | (0.270) | (0.132) | (0.073) | (0.044) | (0.029) | (0.020) | (0.014) | (0.011) | (0.008) | (0.007)
R 20069 | 79.84 | 3612 i 1850 | 1051 | 658 | 445 | 322 | 249 | 201 | 1.69
(0.634) | (0.253) | (0.113) | (0.057) | (0.032) | (0.019) | (0.012) | (0.008) i (0.006) i (0.005) i (0.003)
. | 20023 | 8103 | 3873 | 2103 | 1258 | 826 5.80 433 3.41 2.78 2.34
Squared metric
0.632) | (0.255) | (0.121) | (0.065) | (0.038) | (0.025) | (0.017) | (0.012) | (0.009) | (0.007) | (0.006)
Absolute-value | 19962 | 8542 | 4248 | 2368 | 1439 | 953 6.70 5.03 391 317 2.65
metric 0.628) | (0.269) | (0.133) | (0.073) | (0.044) | (0.029) | (0.020) | (0.014) | (0.011) | (0.008) | (0.007)
200. . 14 04 . 27 227 | 1L 17 154 | 14
EWMVY 00.08 | 3069 | 9 5.0 3.50 3 95 3 5 0
(0.618) | (0.084) | (0.018) | (0.008) i (0.005) | (0.003) i (0.003) | (0.002) | (0.002) | (0.002) | (0.002)
200 ‘f T2
— —R
150 = = = Squared metric
— Absolute value metric
(ne
< 100 EWMV

50

11

15

Figure 12. ARL comparisons under standard deviation shifts of size 4
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Table 6. ARL comparisons under combinations of M and N shifts

T2
EWMA

Absolute-value
metric

B

0.1

0.2

0.3

0.4

0.5

132.527
(0.417)

86.171
(0.272)

50.568
(0.158)

28.459
(0.088)

16.038
(0.049)

17.461
(0.042)

9.290
(0.018)

6.166
(0.010)

4591
(0.006)

3.682
(0.004)

127.463
(0.401)

82.180
(0.259)

46.314
(0.146)

26.716
(0.083)

14.851
(0.045)

81.769
(0.257)

51.071
(0.160)

29.896
(0.093)

17.262
(0.053)

10.149
(0.030)

8.366
(0.016)

5.720
(0.009)

4.331
(0.006)

3.497
(0.004)

2.969
(0.003)

75.389
(0.236)

45.172
(0.141)

26.194
(0.081)

15.078
(0.045)

8.938
(0.027)

44.251
(0.138)

27.757
(0.086)

16.727
(0.051)

10.175
(0.031)

6.299
(0.018)

5.294
(0.008)

4.086
(0.005)

3.343
(0.004)

2.849
(0.003)

2504
(0.002)

39.093
(0.124)

23.681
(0.074)

14.163
(0.043)

8.560
(0.026)

5.328
(0.015)

22.900
(0.070)

14721
(0.045)

9.376
(0.028)

5.992
(0.017)

4.021
(0.011)

3.856
(0.005)

3.187
(0.004)

2.745
(0.003)

2.421
(0.002)

2.185
(0.002)

18.998
(0.059)

12.282
(0.037)

7.735
(0.023)

5.046
(0.014)

3.379
(0.009)

11.786
(0.036)

7.943
(0.024)

5.402
(0.015)

3.728
(0.010)

2.688
(0.007)

3.050
(0.003)

2.635
(0.003)

2.343
(0.002)

2.126
(0.002)

1.957
(0.002)

10.053
(0.030)

6.615
(0.019)
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4.439
(0.012)

3.111
(0.008)

2.300
(0.005)




Table 7. ARL comparisons under combinations of | and M shifts.

T2
EWMA

Absolute-value
metric

o

0.05

0.10

0.15

0.20

0.25

138.147
(0.436)

95.299
(0.301)

60.914
(0.190)

36.854
(0.115)

22.197
(0.068)

17.308
(0.041)

8.387
(0.016)

5.375
(0.008)

3.961
(0.005)

3.166
(0.004)

132.874
(0.421)

90.184
(0.283)

55.410
(0.174)

32.321
(0.100)

19.042
(0.058)

89.390
(0.281)

58.511
(0.184)

36.237
(0.113)

22.241
(0.069)

13.733
(0.042)

9.289
(0.018)

5.740
(0.009)

4.157
(0.005)

3.279
(0.004)

2738
(0.003)

85.664
(0.272)

53.523
(0.170)

32.597
(0.101)

18.822
(0.057)

11.481
(0.035)

52.159
(0.163)

33.431
(0:104)

20.896
(0.064)

13.239
(0.040)

8.467
(0.025)

6.163
(0.010)

4357
(0.006)

3.403
(0.004)

2.817
(0.003)

2.425
(0.002)

49.722
(0.155)

31.011
(0/096)

19.080
(0.058)

11.463
(0.034)

7.294
(0.021)

29.134
(0.090)

18.945
(0.058)

12,252
(0.037)

8.056
(0.024)

5.420
(0.015)

4.601
(0.006)

3.536
(0.004)

2.903
(0.003)

2.489
(0.002)

2.193
(0.002)

27.553
(0.085)

17.439
(0.053)

11.081
(0.033)

7.096
(0.020)

4615
(0.013)

16.393
(0.050)

10.946
(0.033)

7.410
(0.022)

5.129
(0.015)

3.637
(0.010)

3.688
(0.004)

2.994
(0.003)

2.549
(0.002)

2.234
(0.002)

2.020
(0.002)

15.675
(0.048)

10.151
(0.030)
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6.699
(0.020)

4.560
(0.012)

3.201
(0.008)




Table 8. ARL comparisons under combinations of I and N shifts.

T? a

EWMA

Absolute-value 0.05 0.10 0.15 0.20 0.25
metric

133.834 91.698 57.973 35.111 21.181
(0.423) (0.287) (0.182) (0.109) (0.065)
15.043 7.713 5.088 3.808 3.073
(0.034) (0.014) (0.007) (0.005) (0.003)
128.016 85.045 51.029 30.966 17.402
(0.404) (0.269) (0.161) (0.097) (0.053)
81.250 51.889 32.281 19.822 12.282
(0.225) (0.163) (0.100) (0.061) (0.037)
7.702 5.074 3.802 3.062 2.596
(0.014) (0.007) (0.005) (0.003) (0.003)
74.088 47.078 27.204 16.285 9.805
(0.233) (0.145) (0.084) (0.050) (0.029)
43.259 27.714 17.410 11.021 7.214
(0.135) (0,086) (0.053) (0.033) (0.021)
5.013 3.773 3.045 2.582 2.265
(0.007) (0.005) (0.003) (0.003) (0.002)
37.935 23.307 14,090 8.931 5.658
(0.119) (0.070) (0.044) (0.027) (0.016)
22.217 14523 9.459 6.309 4.375
(0.069) (0.044) (0.028) (0.018) (0.012)
3.724 3.018 2.565 2.248 2.027
(0.005) (0.003) (0.002) (0.002) (0.002)
18.990 12.084 7.822 5.085 3.490
(0.059) (0.036) (0.023) (0.015) (0.009)
11.466 7.803 5.389 3.822 2.824
(0.035) (0.023) (0.015) (0.010) (0.007)

2.967 2.531 2.222 2.010 1.841
(0.003) (0.002) (0.002) (0.002) (0.002)

9.519 6.361 4.420 3.102 2.331
(0.028) (0.018) (0.012) (0.008) (0.006)
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Table 9. ARL comparisons of T2 chart with different number of bases for | shifts.

o
Chart
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
b=13 199.6 | 180.28 | 138.93 | 94.34 | 5884 | 3513 | 2089 | 1268 | 7.88 5.14 3.53
(0.626) | (0.569) | (0.441) | (0.297) | (0.184) | (0.109) | (0.064) | (0.038) | (0.023) | (0.015) | (0.009)
b=9 199.22 | 176.11 | 128.00 | 81.01 | 4756 | 27.31 | 1580 | 9.46 5.93 3.92 2.77
(0.626) | (0.556) | (0.403) | (0.225) | (0.147) | (0.085) | (0.048) | (0.028) | (0.017) | (0.011) | (0.007)
b=5 199.61 | 168.45 | 108.79 | 6125 | 3308 | 17.98 | 10.26 | 6.19 4.01 2.76 2.04
(0.629) | (0.529) | (0.345) | (0.193) | (0.103) | (0.055) | (0.031) | (0.018) | (0.011) | (0.007) | (0.005)
200
150
|
o
<C 100

0.1

0.2

0.4

0.5

Figure 13. ARL comparisons of T? chart with different number of bases for | shifts.
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Table 10. ARL comparisons of T2 chart with different n’s for I shifts.

a
Chart i i i i i i i i i i
000 | 005 | 010 { 015 { 020 | 025 | 030 | 0.35 | 040 | 0.45 | 0.50
=50 199.97 | 180.01 | 139.09 | 9453 | 5839 | 3519 | 2097 | 1262 | 7.88 5.16 351
B (0.624) | (0.567) | (0.438) | (0.296) | (0.182) | (0.110) | (0.064) | (0.038) | (0.023) | (0.015) | (0.009)
n =40 199.30 | 184.07 | 148.98 | 107.22 | 72.16 | 4637 | 29.02 | 1824 | 1173 | 767 5.26
B (0.621) | (0.579) | (0.470) | (0.338) | (0.226) | (0.145) | (0.090) | (0.056) | (0.035) | (0.023) | (0.015)
=30 199.1 | 187.94 | 159.24 | 12477 | 90.39 | 6239 | 4230 | 2828 | 1886 | 1278 | 8.88
B (0.622) | (0.593) | (0.503) | (0.393) | (0.284) | (0.196) | (0.133) | (0.088) | (0.058) | (0.039) | (0.026)
200
150
-
o
< 100

0.1

0.2

0.3

0.5

Figure 15. The reference curve (solid line) and the fitted B-spline curve with 5
bases and n=50.
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Table 11. ARL comparisons of EWMA chart with different n’s for M shifts.

Chart L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
n=50 201.13 | 63.98 | 20.69 | 10.43 | 6.66 4.87 3.86 3.21 2.77 2.45 2.22
B (0.627) | (0.186) | (0.051) | (0.021) | (0.011) | (0.007) | (0.005) | (0.004) | (0.003) | (0.002) | (0.002)
n = 40 199.86 | 7348 | 2494 | 1245 | 7.82 5.67 4.43 3.65 3.12 2.74 2.46
B (0.615) | (0.236) | (0.064) | (0.027) | (0.014) | (0.009) | (0.006) | (0.004) { (0.003) | (0.003) | (0.002)
n =30 200.23 | 88.39 | 3219 | 1588 | 9.83 6.95 5.35 4.36 3.68 3.21 2.85
B (0.628) | (0.264) | (0.087) | (0.037) | (0.019) | (0.012) | (0.008) | (0.006) | (0.004) | (0.004) | (0.003)
=20 201.60 | 109.19 | 44.66 | 2257 | 1369 | 9.45 7.10 5.69 4.73 4.07 3.58
B (0.637) | (0.329) | (0.125) | (0.057) | (0.030) | (0.018) | (0.012) | (0.009) | (0.007) | (0.005) | (0.004)
200
150
-
nd
< 100
50
0

0.2

0.6

0.8

Figure 16. ARL comparisons of the EWMA chart with different n’s for M shifts.
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Table 12. ARL comparisons of Squared metric with different n’s for standard
deviation shifts.

A
Chart
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
N =50 200.36 | 8103 | 3873 | 2103 | 1258 | 826 583 | 435 | 341 277 | 232
B (0.632) | (0.255) | (0.121) | (0.065) | (0.038) | (0.025) | (0.017) | (0.012) | (0.009) | (0.007) | (0.005)
N = 40 20022 | 8938 | 4415 | 2648 | 17.32 | 1164 | 822 | 558 | 417 33 | 27
B (0.639) | (0272) | (0.142) | (0.079) | (0.045) | (0.033) | (0.023) | (0.016) | (0.011) | (0.008) | (0.006)
N =30 20068 | 9610 | 5255 | 3267 | 2217 | 1511 | 1059 | 663 | 514 | 375 | 324
B (0.631) | (0.296) | (0.169) | (0.090) i (0.057) | (0.039) i (0.031) | (0.021) i (0.015) | (0.010) | (0.007)
=20 201.09 | 10697 | 6220 | 4000 | 3061 | 1098 | 1477 | 940 | 649 | 445 | 482
B (0.643) | (0.324) | (0.194) | (0.112) | (0.083) | (0.048) | (0.040) | (0.029) | (0.020) | (0.013) | (0.009)
200
150
-l
e
< 100

50

Figure 17. ARL comparisons of Squared metric with different n’s for standard
deviation shifts.
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Table 13. ARL comparisons of Absolute-value metric with different n’s for I shifts

o
Chart
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
n=50 200.25 | 17664 | 13426 | 8890 | 5420 | 30.86 | 17.93 | 1059 6.58 422 2.96
B (0.631) | (0559) | (0.423) | (0.280) | (0.169) | (0.097) | (0.056) | (0.032) | (0.019) | (0.011) | (0.007)
n = 40 200.46 | 179.69 | 14541 | 10391 | 6633 | 4220 | 2516 | 15.90 9.83 6.45 4.29
B (0.632) | (0582) | (0.457) | (0.328) | (0.210) | (0.133) | (0.076) | (0.049) | (0.029) { (0.019) | (0.012)
n =30 201.73 | 184.97 | 156.89 | 123.00 | 8588 | 59.14 | 3839 | 2531 | 1633 | 11.00 7.45
B (0.642) | (0591) | (0.494) | (0.387) | (0.268) | (0.186) | (0.120) | (0.077) | (0.050) | (0.033) | (0.022)
=20 200.42 | 190.15 | 174.07 | 14236 | 11042 | 8534 | 6267 | 4288 | 3171 | 2246 | 1596
B (0.632) | (0598) | (0.556) | (0.444) | (0.346) | (0.272) | (0.197) | (0.134) | (0.098) | (0.069) | (0.049)
200
150
-l
'
< 100

50

0.1

0.2

Figure 18. ARL comparisons of Absolute-value metric with different n’s for | shifts.
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Table 14. ARL comparisons under intercept shifts of a linear profile.

A
Chart
0.0 0.2 04 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
19885 | 6558 | 1754 | 832 5.33 3.95 3.17 267 233 210 1.94
EWMA/R
/ (0.619) | (0.192) | (0.040) | (0.013) | (0.007) | (0.004) | (0.003) | (0.002) | (0.002) | (0.001) | (0.001)
T2 19844 | 13721 | 640 | 2796 | 1320 | 6.90 4.00 257 1.84 1.45 1.23
(0.627) | (0.433) | (0.198) | (0.087) | (0.040) | (0.020) { (0.011) | (0.006) | (0.004) { (0.003) | (0.002)
EWMA 199.36 | 6023 | 17.28 | 891 6.12 4.82 4.08 3.59 3.27 3.05 2.89
$ (0.614) | (0.170) | (0.036) | (0.013) | (0.007) | (0.004) { (0.003) | (0.002) | (0.002) { (0.001) | (0.001)
EWMA 2006 | 3928 | 1202 | 637 | 430 | 328 | 268 2.29 2.03 1.84 1.67
(0.616) | (0.109) | (0.025) | (0.010) | (0.006) | (0.004) | (0.003) | (0.002) | (0.002) | (0.002) | (0.002)
Squared metric 201.43 | 13740 | 6331 | 2790 | 1317 | 6.89 3.9 258 1.84 1.45 1.23
(0.638) | (0.435) | (0.199) | (0.087) | (0.040) | (0.020) { (0.011) | (0.006) | (0.004) { (0.003) | (0.002)
Absolute-value | 19992 | 12464 | 5203 | 2191 | 1031 | 545 3.25 219 1.63 1.33 1.16
metric (0.627) | (0.395) | (0.163) | (0.067) | (0.031) | (0.016) | (0.009) | (0.005) | (0.003) | (0.002) | (0.001)
\
200 — - EWMAR
-T2
150 EWMA3
] ——— EWMA
(aed Squared metric
< 100

50

Absolute value metric

15

Figure19. ARL comparisons under intercept shifts of a linear profile.
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Table 15. ARL comparisons under slope shifts of a linear profile.

Chart L
0.000 { 0.025 | 0.050 { 0.075 | 0.100 { 0.125 | 0.150 { 0.175 | 0.200 | 0.225 | 0.250
198.75 | 11711 | 4356 | 1967 | 1133 | 771 | 580 | 465 | 389 | 346 | 2.97
EWMA/R
(0.625) | (0.361) | (0.122) | (0.047) | (0.022) | (0.013) | (0.008) | (0.006) | (0.005) | (0.004) | (0.003)
T 200.25 | 165.33 | 10543 | 60.30 | 3431 | 2014 | 1218 | 781 | 523 | 370 | 274
(0.630) | (0523) | (0.322) | (0.191) | (0.107) | (0.062) | (0.037) | (0.023) | (0.015) | (0.010) | (0.007)
2003 | 102.65 | 37.33 | 1812 | 1122 | 814 | 647 | 545 | 475 | 427 | 390
EWMA;
(0.614) | (0.306) | (0.098) | (0.038) { (0.019) | (0.011) | (0.007) | (0.005) | (0.004) { (0.003) | (0.003)
EWMA 200.79 | 77.93 | 2683 | 1341 | 839 | 600 | 469 | 385 | 328 | 28 | 257
(0.622) | (0.232) | (0.070) | (0.030) | (0.016) | (0.009) | (0.007) | (0.005) | (0.004) | (0.003) | (0.002)
Squared metric | 19950 | 16512 | 10532 | 6074 | 3450 | 209 | 1232 | 783 5.20 3.71 2.74
(0.627) | (0.524) | (0.330) | (0.190) | (0.108) | (0.062) | (0.037) | (0.023) | (0.015) | (0.010) | (0.007)
Absolute-value | 200.71 | 15954 | 9656 | 5459 | 3090 | 1814 | 1127 | 7.28 | 495 | 342 | 267
metric (0.623) | (0.504) | (0.304) | (0.171) | (0.096) | (0.056) | (0.034) | (0.021) | (0.014) | (0.009) | (0.007)
200 — = =EWMA/R
-T2
150 EWMA3
E:I ————-EWMA
< 100 Squared metric
Absolute value metric
50
0 e =
0 0.05 0.1 0.15 0.2 0.25
p

Figure 20. ARL comparisons under slope shifts of a linear profile
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Table 16. ARL comparisons under standad deviation shifts of a linear profile.

Y
Chart
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
198.55 | 3409 | 1207 | 6.15 3.96 2.86 2.28 1.93 1.70 1.53 1.42
EWMA/R

(0.623) | (0.105) | (0.036) | (0.017) | (0.010) | (0.007) | (0.005) { (0.004) | (0.003) | (0.002) | (0.002)

T2 20032 | 3973 | 1501 | 7.91 5.14 3.76 2.98 2.51 2.20 1.96 1.80
(0.633) | (0.123) | (0.046) | (0.023) | (0.015) { (0.010) | (0.008) i (0.006) | (0.005) i (0.004) | (0.004)

199.2 | 3451 | 1380 | 831 6.10 4.97 427 3.84 3.51 3.26 3.07

EWMA;

(0.606) | (0.095) | (0.032) | (0.016) | (0.010) | (0.007) | (0.005) | (0.004) | (0.004) | (0.003) | (0.003)

R 200.1 | 3438 | 1212 | 620 3.99 2.89 2.31 1.96 1.73 1.57 1.46

(0.638) | (0.107) | (0.037) | (0.018) | (0.011) | (0.007) | (0.006) | (0.004) | (0.004) | (0.003) | (0.003)

201.27 39.54 14.92 7.92 5.14 3.74 2.99 2.52 2.19 1.96 1.80

Squared metric
(0.638) | (0.123) | (0.045) | (0.024) | (0.015) | (0.010) | (0.008) | (0.006) | (0.005) | (0.004) | (0.004)

Absolute-value | 199.92 | 41.90 | 15.99 8.45 5.43 3.93 3.13 2.62 2.26 2.02 1.85

metric (0.632) | (0.131) | (0.049) | (0.025) | (0.015) | (0.011) | (0.008) | (0.006) | (0.005) | (0.004) | (0.004)
EWMV 199.83 | 20.19 7.46 4.44 3.22 2.57 217 1.91 1.73 1.59 1.49
(0.629) | (0.058) i (0.019) | (0.010) i (0.007) i (0.005) { (0.004) i (0.003) | (0.003) | (0.003) { (0.002)
200 — = =EWMA/R
====T2
EWMA3
150
-—-——-—-R
—
ae Squared metric
< 100 )
Absolute value metric
—--— EWMV
50
0 B T
1 1.5 2 2.5 3

Figure 21. ARL comparisons under standad deviation shifts of a linear profile.
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