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Abstract Studying the shape of phylogenetic trees under different random mod-
els is an important issue in evolutionary biology. In this paper, we propose a general
framework for deriving detailed statistical results for patterns in phylogenetic trees
under the Yule–Harding model and the uniform model, two of the most fundamental
random models considered in phylogenetics. Our framework will unify several recent
studies which were mainly concerned with the mean value and the variance. Moreover,
refined statistical results such as central limit theorems, Berry–Esseen bounds, local
limit theorems, etc., are obtainable with our approach as well. A key contribution of
the current study is that our results are applicable to the whole range of possible sizes
of the pattern.
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1 Introduction

Phylogenetic trees are the standard tool in evolutionary biology for depicting the
ancestor history of a set of given species (or taxa); see page 117 in Darwin (1859).
Consequently, their properties have been extensively studied. In particular, the investi-
gation of the probabilistic behavior of parameters related to the shape of phylogenetic
trees under different random models has evolved into a major issue in recent decades.
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The reason for this is multi-fold: such results can be used in statistical tests, e.g., for
testing the appropriateness of a random model; they enhance our understanding of
the process that generates the data; they yield conclusions about possible outcomes
of evolution; etc.; for further motivation we refer the reader to Blum et al. (2006a),
Mooers and Heard (1997), Mooers and Heard (2002), Rosenberg (2006) and references
therein.

First, we will make precise the notation of phylogenetic trees. Throughout this
paper, phylogenetic trees will be binary trees, where the external nodes represent the
species and the internal nodes represent their ancestors. Moreover, all trees considered
will be rooted meaning that we assume that the set of species has a common ancestor.
Finally, branch lengths will be ignored, i.e., we will just look at the topology of the tree.
So, the family of phylogenetic trees of size n is the family of plane, rooted, unlabelled
binary trees with n external nodes (and consequently n − 1 internal nodes).

Next, we will equip the family of phylogenetic trees of size n with a random model.
In this paper, we will consider the two most fundamental random models of evolution-
ary biology: the Yule–Harding model and the uniform model; see Semple and Steel
(2003).

First, the Yule–Harding model (see Harding 1971 and Yule 1924) is defined by a
tree evolution process: the tree grows by choosing at random one of the leaves and
replacing it by a cherry (an internal node with two children); we stop when a tree with
n external nodes is constructed. This is the top-down construction of a phylogenetic
tree of size n under the Yule–Harding model. Alternatively, a bottom-up construction
can be used as well: start with n external nodes and successively choose a random pair
and coalesce the two nodes; stop when only one node (the root) is left. It is easy to see
that the random models arising from these two constructions are the same. Moreover,
it is easy to see as well that the Yule–Harding model is the same as the permutation
model of binary search trees considered in computer science; see Blum et al. (2006b).

The usage of the Yule–Harding model is well motivated since it provides an easy
way of mimicking how the data might have evolved over time. Note, however, that it
does not assign the same probability to every phylogenetic tree of size n. This moti-
vates a second model which does assign the same probability and is hence called
uniform model (or PDA model see Blum et al. 2006a). Although less motivated from
a practical point of view, the usage of this model is justified as well by a couple of
theoretical results; see Aldous (1991) and McKenzie and Steel (1991). Moreover, this
model has also been investigated in computer science, where it is called the Catalan
model; see Fill and Kapur (2004) and references therein. The name comes from the fact
that the number of phylogenetic trees of size n is given by the n − 1-st Catalan num-
ber, subsequently denoted by Cn−1 (a proof of this can be found in standard textbook
on enumerative combinatorics such as Stanley 1997, Stanley 1999 and Flajolet and
Sedgewick 2009).

This paper will be concerned with a study of statistical properties of the occurrence
of patterns in phylogenetic trees under the above two random models. Here, the word
“pattern” will be used in a rather broad sense, namely, any subset of the set of all phy-
logenetic trees of a fixed size k will be considered as pattern. Moreover, throughout
this work, we will fix the notation Xn,k to denote the number of occurrences of this
pattern in a random phylogenetic tree of size n.
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Table 1 Values of pk

Pattern Yule–Harding model Uniform model

k-pronged nodes 1 1

k-caterpillars 2k−2/(k − 1)! 2k−2/Ck−1

Nodes with minimal clade size k 2/(k − 1) 2Ck−2/Ck−1

For both random models above, Xn,k satisfies

Xn,k
d= X In ,k + X∗

n−In ,k, (n > k), (1)

where Xn,k, X∗
n,k, and In are independent random variables, X∗

n,k has the same dis-
tribution as Xn,k , and In is the size of the left subtree of the root. This distributional
recurrence is nothing more than the mathematical formulation of the trivial observation
that the number of occurrences of a pattern is the sum of the number of occurrences of
the pattern in the left and in the right subtree of the root. The initial conditions of this
recurrence are given by Xn,k = 0 for n < k and Xk,k is a Bernoulli random variable
with success probability pk that equals the probability that a phylogenetic tree of size
k belongs to our pattern. In order to avoid ambiguity, we will assume that pk > 0
throughout this work. Note that this probabilistic description of Xn,k already implies
that stochastic properties of Xn,k just depend on pk and not on the specific pattern.

In order to make the above more lucid, we recall some of the patterns previously
considered in literature. The first and most straightforward pattern is the set of all
trees of size k. The root of such a subtree in a phylogenetic tree of size n is called
k-pronged node; see Rosenberg (2006) and McKenzie and Steel (2000) for the special
case of k = 2. Hence, in this situation, Xn,k counts the number of such nodes. The
second pattern is the set of k-caterpillars also considered in Rosenberg (2006). Here,
the pattern consists of phylogenetic trees of size k that have an internal node which is
descendent of all other internal nodes. A final pattern is given by the set of all phylo-
genetic trees of size k with either left or right subtree of the root empty. Here, Xn,k

is the same as the number of taxa with minimal clade size k if k ≥ 3; see Blum and
François (2005). A related parameter was also considered in computer science; see
Drmota et al. (2008b). The probabilities pk for these three patterns under the above
two random models are easily obtained and collected in Table 1.

The aim of this paper is to study moments of Xn,k as well as more refined prop-
erties such as limit laws, rates of convergence, local limit theorems, etc. Therefore,
we will use the setting of (1). Consequently, our setting will contain all three cases
discussed above as special cases. As for k-pronged nodes and k-caterpillars, mean and
variance were derived in Rosenberg (2006) under the Yule–Harding model by a bot-
tom-up approach. We will re-derive these results using (1). So, in contrast to Rosenberg
(2006), our approach will be top-down. We will see that our approach is technically
easier and also allows us to derive higher moments and more refined properties. Here,
we should mention that for k-pronged nodes our results were already sketched in Fuchs
(2008); see also Feng et al. (2008) for related results. As for the uniform model, only

123



484 H. Chang, M. Fuchs

results on k-pronged nodes with k = 2 have been obtained before; see McKenzie and
Steel (2000). Mean value and variance of the number of nodes with minimal clade
size k have been derived in Blum and François (2005) under the Yule–Harding model.
Moreover, in the latter paper, the authors also derived a central limit theorem of Xn,k

for fixed k. Again, we will re-derive all those results and add many new ones as well
as prove corresponding results under the uniform model.

Before we start to explain our results in more details, it should be mentioned that the
behavior of Xn,k for fixed k is well understood. Here, a detailed description of the sto-
chastic properties of Xn,k follows from results in computer science; see Flajolet et al.
(1997), Hwang (2003), Hwang and Neininger (2002) for the Yule–Harding model and
Flajolet and Sedgewick (2009) for the uniform model. However, from an application
point of view, results which hold uniformly in k are more desirable. So, one of the
main contributions of this paper is to provide results where k is allowed to grow with
n. Proving such results will involve multivariate asymptotics which in recent years
has evolved into a major topic in analytic combinatorics; see Drmota and Hwang
(2005), Drmota et al. (2008a), Fuchs et al (2007), Hwang (2007), Hwang (2008) and
Pemantle (2000), Pemantle and Wilson (2002), Pemantle and Wilson (2004), Pemantle
and Wilson (2008).

Now, we will discuss our findings in more details. For the sake of simplicity, we
will choose the number of nodes with minimal clade size k as a guiding example. For
our general results, we refer the reader to Sects. 2 and 3.

First, we consider the Yule–Harding model. Here, we have the following results for
mean value and variance.

Theorem 1 For k < n,

E(Xn,k) = 4n

(k − 1)k(k + 1)

and

Var(Xn,k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4(4k4−27k2+11)n
(k−1)2k(k+1)2(2k−1)(2k+1)

, if n > 2k;
4(4k3−32k+20)

(k−1)2(k+1)2(2k−1)
, if n = 2k;

4(k3−k−4n)n
(k−1)2k2(k+1)2 , if k < n < 2k.

In particular, for k < n and k → ∞,

E(Xn,k) ∼ Var(Xn,k) ∼ 4n

k3 , (n → ∞).

Moreover, the first order asymptotic of all higher moments will be derived as well.
This will then allow us to study limit laws. Note that for fixed k, a central limit theorem
follows from previous results; see Hwang and Neininger (2002). We will show that
the central limit theorem continues to hold for some range with k → ∞. Moreover,
we will derive the Berry–Esseen bound as well.
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Theorem 2 Let 3 ≤ k = o( 3
√

n). Then,

sup
−∞<x<∞

∣
∣
∣
∣
∣
P

(
Xn,k − E(Xn,k)
√

Var(Xn,k)
≤ x

)

− �(x)

∣
∣
∣
∣
∣
= O

(
k3/2

√
n

)

,

where �(x) denotes the distribution function of the standard normal random variable.

The above range will turn out to be the largest possible range for which a central
limit theorem holds. Hence, the normal distribution just provides a good approxima-
tion for k small. From a practical point of view, this is quite unsatisfactory. Therefore,
we will show that approximating by a Poisson random variable works well in a much
larger range and is hence more desirable.

Theorem 3 Let k < n and k → ∞. Then,

dT V (Xn,k, Po(E(Xn,k))) = 1

2

∑

l≥0

∣
∣
∣
∣P(Xn,k = l) − e−E(Xn,k )

(E(Xn,k))
l

l!
∣
∣
∣
∣ → 0.

More precisely, we have

dT V (Xn,k, Po(E(Xn,k))) =
{O (

1/k2α/(3α+1)
)
, if n ≥ k3;

O (
n/k3+2α

)
, if n < k3,

where α = 2m/(2m + 1) with a fixed (but arbitrary) m ≥ 1.

So, only for very small k one should use the normal distribution as an approximation.
For the remaining range, a Poisson random variable yields a better approximation.

As for the proofs of these results, we will use the elementary approach (in the sense
that complex analysis is avoided) from Fuchs (2008); for more details see Sect. 2.

Now, we turn to the uniform model. Here, we will prove similar results as above.
First, for mean value and variance, we have the following theorem.

Theorem 4 (i) For constant k,

E(Xn,k) = 2Ck−2

4k−1 n + O(1), (n → ∞),

and

Var(Xn,k) =
(

2Ck−2

4k−1 − (2k − 1)C2
k−2

42k−3

)

n + O(1), (n → ∞).

(ii) For k → ∞ and n − k → ∞,

E(Xn,k) ∼ Var(Xn,k) ∼ n√
4πk3

(n → ∞).
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(iii) For constant n − k = l ≥ 0,

E(Xn,k) = (l + 1)Cl

22l+1 + O
(

1

n

)

, (n → ∞),

and

Var(Xn,k) = (l + 1)Cl

22l+1

(

1 − (l + 1)Cl

22l+1

)

+ O
(

1

n

)

, (n → ∞).

Moreover, we again have a central limit theorem with Berry–Esseen bound that
holds for small k.

Theorem 5 Let 3 ≤ k = o(n2/3). Then,

sup
−∞<x<∞

∣
∣
∣
∣
∣
P

(
Xn,k − E(Xn,k)
√

Var(Xn,k)
≤ x

)

− �(x)

∣
∣
∣
∣
∣
= O

(
k3/4

√
n

)

.

Again, the central limit theorem does not hold beyond this range. However, as
above, we have a Poisson approximation result.

Theorem 6 Let k → ∞ and n − k → ∞. Then,

dT V (Xn,k, Po(E(Xn,k)) = 1

2

∑

l≥0

∣
∣
∣
∣P(Xn,k = l) − e−E(Xn,k )

(E(Xn,k))
l

l!
∣
∣
∣
∣ → 0.

More precisely,

dT V (Xn,k, Po(E(Xn,k)) =

⎧
⎪⎪⎨

⎪⎪⎩

O
(

1/
√

k
)

, if n ≥ k3/2;
O (

n/k2
)
, if k1+ε ≤ n < k3/2;

O (
E(Xn,k)

)
, if n < k1+ε,

where ε > 0 is an arbitrarily small constant.

So, Xn,k is again well approximated by a Poisson random variable unless k is either
very small or very large. In the latter two cases, the Poisson random variable has to
be replaced by a standard normal random variable and a Bernoulli random variable,
respectively.

The proofs of the results in the uniform case will follow from a rather different
method compared to the approach used in the Yule–Harding case. This is largely due
to the fact that involved generating functions can be solved explicitly. Hence, the
results are obtained more easily by using complex-analytic tools. For more details we
refer the reader to Sect. 3.

In order to conclude the introduction, we give a brief sketch of the paper. First,
since we intend to prove results for two different random models, we will split the
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paper into two parts; the first part (Sect. 2) will discuss the Yule Harding model and
the second part (Sect. 3) the uniform model. Every part will consist of three sections
which will be concerned with deriving results for moments, discussing the validity
of the central limit theorem, and finally proving our Poisson approximation results,
respectively. We will end the paper with some concluding remarks.

Notations Subsequently, ε will always denote a small positive real number and c
a large constant. Moreover, the values of both ε and c may be different from one
occurrence to the next.

2 Yule–Harding model

In this section, we are going to investigate the statistical properties of Xn,k under
the Yule–Harding model. As already mentioned in the introduction, we will use the
elementary method introduced in Fuchs (2008) which was based on studying the
underlying recurrence satisfied by the moments and applying the method of moments
and its refinements.

In fact, some of the results below will follow similarly as in Fuchs (2008) and in
order to avoid repetition we will not give any details. We will, however, discuss in
details a more simplified proof of the central limit theorem (without the Berry–Esseen
bound) and refined bounds for the total variation distance; the former will constitute
a simplification of the approach in Feng et al. (2008) for k-pronged nodes as well.

2.1 Moments

In this section, we will compute moments of Xn,k . Therefore, we will work out in
details the approach briefly sketched in Fuchs (2008) for k-pronged nodes; see Feng
et al. (2008) for a similar approach. This part should be compared with Rosenberg
(2006) where the same results are proved for k-pronged nodes and k-caterpillars, but
with a more complicated approach.

First, note that Xn,k satisfies (1) with

P(In = j) = 1

n − 1
, 1 ≤ j ≤ n − 1,

where the latter follows straightforwardly from the probabilistic description of the
random model.

Next, we consider Pn,k(z) = E(exp{Xn,k z}). Then, (1) translates into

Pn,k(z) = 1

n − 1

n−1∑

j=1

Pj,k(z)Pn− j,k(z), (n > k)

with Pn,k(z) = 1 for n < k and Pk,k(z) = pk(ez − 1) + 1. Differentiating this recur-
rence m times and evaluating at z = 0 give a corresponding recurrence for the m-th
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moment. The key observation is that all these recurrences are of the following type

an,k = 2

n − 1

n−1∑

j=1

a j,k + bn,k, (n > k),

where an,k = 0 for n < k, bn,k = 0 for n ≤ k, ak,k is determined by the initial
conditions and bn,k for n > k is a function of moments of lower order. Moreover, a
similar computation reveals that also all central moments satisfy a recurrence of the
latter shape. So, we start by investigating this recurrence.

First, this recurrence can be easily solved. Therefore, consider (n − 1)an,k −
(n − 2)an−1,k and iterate the resulting recurrence. Then, for k < l < n,

an,k = n

l
al,k + 2n

∑

l< j<n

b j,k

j ( j + 1)
+ bn,k − n(l − 1)

l(l + 1)
bl,k (2)

= 2n

k(k + 1)
ak,k + 2n

∑

k< j<n

b j,k

j ( j + 1)
+ bn,k . (3)

In order to find the mean value, we set bn,k = 0 and ak,k = pk in the last formula
above. Then,

µn,k := E(Xn,k) = 2pkn

k(k + 1)
, (n > k).

Obviously, µk,k = pk and µn,k = 0 for n < k.
The computation of the variance σ 2

n,k := Var(Xn,k) is slightly more involved. First,
note that the variance satisfies the above recurrence with

bn,k = 1

n − 1

n−1∑

j=1

(
µ j,k + µn− j,k − µn,k

)2
.

A lengthy computation gives

bn,k =

⎧
⎪⎨

⎪⎩

2(k−1)(3k−2)p2
k

3(n−1)k(k+1)
, if n > 2k;

4(k−1)(3k2−k−1)p2
k

3k(k+1)2(2k−1)
, if n = 2k.

Then, by plugging this into (2) with l = 2k,

σ 2
n,k = n

2k
σ 2

2k,k − (k − 1)2 p2
k n

k(k + 1)2(2k + 1)
,

where n > 2k. So, we first need to compute σ 2
2k,k .
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Lemma 1 We have

σ 2
2k,k = 2(4k2 + 2k − 2 + (k2 − 14k + 9)pk)pk

(k + 1)2(2k − 1)
.

Proof First, observe that X2k,k only takes on the values 0, 1, 2. A simple combinato-
rial argument shows that P(X2k,k = 2) = p2

k/(2k − 1). The other probabilities are
easily computed from the latter by

4pk

k + 1
= E(X2k,k) = 2P(X2k,k = 2) + P(X2k,k = 1)

and P(X2k,k = 2) + P(X2k,k = 1) + P(X2k,k = 0) = 1. Overall,

X2k,k =
⎧
⎨

⎩

2, with probability p2
k/(2k − 1);

1, with probability 4pk/(k + 1) − 2p2
k/(2k − 1);

0, with probability 1 − 4pk/(k + 1) + p2
k/(2k − 1).

The result follows now by a straightforward computation. �	

Plugging the latter result into the formula above together with some simplifications
yields

σ 2
n,k = 2(4k3 + 4k2 − k − 1 − (11k2 − 5)pk)pkn

k(k + 1)2(2k − 1)(2k + 1)
,

for n > 2k. Finally, for the range n < 2k, we deduce from the above result for the
mean value

σ 2
n,k = 2(k2 + k − 2npk)pkn

k2(k + 1)2 .

To sum up, we have proved the following result.

Proposition 1 We have,

µn,k =

⎧
⎪⎪⎨

⎪⎪⎩

2pk n
k(k+1)

, if n > k;
pk, if n = k;
0, if n < k

and

σ 2
n,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(4k3+4k2−k−1−(11k2−5)pk )pk n
k(k+1)2(2k−1)(2k+1)

, if n > 2k;
2(4k2+2k−2+(k2−14k+9)pk)pk

(k+1)2(2k−1)
, if n = 2k;

2(k2+k−2npk )pk n
k2(k+1)2 , if k < n < 2k;

pk(1 − pk), if n = k;
0, if n < k.
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The latter result immediately gives the following corollary.

Corollary 1 As k → ∞, we have

µn,k ∼ σ 2
n,k ∼ 2pkn

k2 , (n → ∞).

Moreover, higher moments could be computed by this approach as well. The com-
putation, however, becomes more and more involved. We will see in the next section
that this problem becomes easier when only the main order term in the asymptotic
expansion is sought.

2.2 Central limit theorem

Now, we will turn to limiting distributions of Xn,k . First, it is well known that for fixed
k, the following central limit theorem holds (see Hwang and Neininger 2002)

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Moreover, the Berry–Esseen bound was derived by Hwang (2003) and is O(n−1/2).
Our first result extends the range of validity of the above central limit theorem.

Theorem 7 Let pkn/k2 → ∞. Then,

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Due to the result for constant k, we can focus on k → ∞ as n → ∞. First, consider
P̄n,k(z) = E(exp{(Xn,k − µn,k)z}). Then, (1) translates into

P̄n,k(z) = 1

n − 1

n−1∑

j=1

P̄j,k(z)P̄n− j,k(z)e
�n, j,k z (n > k) (4)

with P̄n,k(z) = 1 for n < k and P̄k,k(z) = e−pk z(pkez − pk + 1) and

�n, j,k = µ j,k + µn− j,k − µn,k .

Next, we introduce A(m)
n,k = E(Xn,k − µn,k)

m . Differentiating (4) m times (m ≥ 1)

and setting z = 0 reveal

A(m)
n,k = 2

n − 1

n−1∑

j=1

A(m)
j,k + B(m)

n,k ,
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where A(m)
n,k = 0 for n < k, A(m)

k,k = pk(1 − pk)
m + (1 − pk)(−pk)

m and

B(m)
n,k =

∑

i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)
1

n − 1

n−1∑

j=1

A(i1)
j,k A(i2)

n− j,k�
i3
n, j,k . (5)

We first consider the case m = 2. Here, A(2)
n,k = σ 2

n,k and as already mentioned in
the previous section

B(2)
n,k = 1

n − 1

n−1∑

j=1

�2
n, j,k .

Even though we have obtained an asymptotic expansion of the variance as k → ∞ in
Corollary 1, we give here a second and more simplified proof of this result. Therefore,
observe that for n > k

�n, j,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if k < j < n − k;
O(pk/k), if j < k, j 
= n − k or j > n − k, j 
= k;
pk + O(pk/k), if j = k, j 
= n − k or j = n − k, j 
= k;
2pk + O(pk/k), if j = k and j = n − k

which yields

A(2)
k,k = pk(1 − pk), B(2)

n,k =
{

2p2
k/(n − 1) + O (

p2
k/k2

)
, if n 
= 2k;

4p2
k/(2k − 1) + O (

p2
k/k2

)
, if n = 2k,

where all implied constants are absolute. Plugging this into (3) then reveals

σ 2
n,k = 2pk(1 − pk)n

k2 + 4p2
k n

∑

k< j<n

1

( j − 1) j ( j + 1)
+ O

(
pkn

k3 + p2
k

n

)

,

= 2pkn

k2 + O
(

pkn

k3 + p2
k

n

)

,

where the implied constant is absolute. So, we obtain the bound

σ 2
n,k = O

( pkn

k2

)
(6)

which holds uniformly in n and k with n > k. Moreover, if k → ∞ as n → ∞, we
have

σ 2
n,k ∼ 2pkn

k2 . (7)
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Next, we are going to show that both (6) and (7) can be extended to all moment
as well. Therefore, we will use (3) together with induction. This is a standard method
that is called “moment-pumping” and was applied to numerous problems; see Chern
(2007) and references therein.

We first extend (6).

Proposition 2 For m ≥ 1,

A(m)
n,k = O

(

max

{
pkn

k2 ,
( pkn

k2

)m/2
})

uniformly in n > k.

Proof First, note that the claim trivially holds for m = 1 and was proved for m = 2
above. Now, we assume that the claim holds for all m′ with m′ < m. We will establish
that it holds for m as well.

Before starting with the proof, we need a notation. For fixed k denote by jk the
smallest integer such that pk jk/k2 ≥ 1.

Now, we can start with the proof. First consider (5) and break the involved sums
into two parts

B(m)
n,k =

∑

i1+i2+i3=m
0≤i1,i2<m

∑

j=k or j=n−k

+
∑

i1+i2+i3=m
0≤i1,i2<m

n−1∑

j=1
j 
=k, j 
=n−k

=: �1 + �2.

We will bound the two parts separately. We start with the first one. Therefore, observe
that

�1 = O

⎛

⎜
⎜
⎝

1

n

∑

i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)

A(i1)
k,k A(i2)

n−k,k�
i3
n,k,k

⎞

⎟
⎟
⎠

= O
(

pk

n

m−1∑

i=0

A(i)
n−k,k

)

= O
(

pk

n

( pkn

k2

)(m−1)/2 + pk

n

)

.

Next, we will consider the second part which we again break into two parts

�2 =
∑

i1+i2=m
0≤i1,i2<m

n−1∑

j=1
j 
=k, j 
=n−k

+
∑

i1+i2+i3=m
0≤i1,i2<m, 0<i3

n−1∑

j=1
j 
=k, j 
=n−k

=: �2,1 + �2,2.
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The second of the two sums can be bounded as follows

�2,2 = O

⎛

⎜
⎜
⎝

1

n

∑

i1+i2+i3=m
0≤i1,i2<m, 0<i3

(
m

i1, i2, i3

)∑

j<k

A(i1)
j,k A(i2)

n− j,k�
i3
n, j,k

⎞

⎟
⎟
⎠

= O
⎛

⎝
pk

kn

m−1∑

i=0

∑

j<k

A(i)
n− j,k

⎞

⎠ = O
(

pk

n

( pkn

k2

)(m−1)/2 + pk

n

)

.

So, what is left is to bound �2,1. Therefore, we break it into three parts

�2,1 ≤
∑

i1+i2=m
0≤i1,i2<m

∑

j≤ jk , j 
=k

+
∑

i1+i2=m
0≤i1,i2<m

∑

jk< j<n− jk

+
∑

i1+i2=m
0≤i1,i2<m

∑

j≥n− jk , j 
=n−k

=: �2,1,1 + �2,1,2 + �2,1,3.

Due to symmetry, the bound for the first and last of the three sums will be the same.
Therefore, we will concentrate on the first one which can be treated as follows

�2,1,1 = 1

n − 1

m−1∑

i=1

(
m

i

) ∑

j≤ jk , j 
=k

A(i)
j,k A(m−i)

n− j,k

=
{

O
(
( jk/n)

(
pkn/k2

)(m−1)/2
)

, n > 2 jk;
O (

(pkn/k2)2
)
, n ≤ 2 jk .

Finally, we have

�2,1,2 = 1

n − 1

m−1∑

i=1

(
m

i

) ∑

jk< j<n− jk

A(i)
j,k A(m−i)

n− j,k

= O
⎛

⎝
( pkn

k2

)m/2 m−1∑

i=1

(
m

i

) 1∫

0

xi/2(1 − x)(m−i)/2dx

⎞

⎠ = O
(( pkn

k2

)m/2
)

.

Collecting all terms above yields

B(m)
n,k = O

(( pkn

k2

)m/2 +
( pkn

k2

)2 + pk

k

)

(8)
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for m ≥ 5. Now we plug this together with A(m)
k,k = O (pk) into (3) and obtain

A(m)
n,k

= O
( pkn

k2

)
+O

⎛

⎝
pm/2

k n

km

∑

k< j<n

jm/2−2+ p2
k n

k4

∑

k< j<n

1+ pkn

k

∑

k< j<n

j−2

⎞

⎠ + B(m)
n,k

= O
(

pkn

k2 +
( pkn

k2

)m/2
)

.

For m = 4, we have to replace the second term in (8) by (pkn/k2)3/2. The claim
then follows as above.

For m = 3, we have to be slightly more careful. Here the second term in (8) has to
be replaced by the above bound for �2,1,1. Since the above arguments still work for
the first and third term in (8), we just have to concentrate on the contribution of the
new second term. Therefore, observe that

n
∑

k< j<n

�2,1,1

j2 = O
⎛

⎝
p2

k n

k4

∑

k< j≤2 jk

1 + pk jkn

k2

∑

2 jk< j<n

j−2

⎞

⎠ = O
( pkn

k2

)
.

Hence, also in this case, we obtain the claimed bound. This concludes the induction
step and hence our claim is established. �	

Next, we will refine our previous result for the range where the claimed central
limit theorem holds.

Proposition 3 For pkn/k2 → ∞ and k → ∞ as n → ∞, we have

A(2m−1)
n,k = o

(( pkn

k2

)m−1/2
)

;

A(2m)
n,k ∼ gm

(
2pkn

k2

)m

,

for m ≥ 1, where gm = (2m)!/(2mm!).

Proof We again use induction on m. Note that for m = 1 the first assertion is trivial
and the second assertion follows from (6). Now, assume the assertions hold for all m′
with m′ < m. We will show that they hold for m as well.

Therefore, we again first consider (5). Note that the proof of the last proposition
yields

B(l)
n,k =

l−1∑

i=1

(
l

i

)
1

n − 1

∑

jk< j<n− jk

A(i)
j,k A(l−i)

n− j,k + o

(( pkn

k2

)l/2
)

,
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where jk is defined as in the proof of the last proposition. We fix an ε > 0 and split
the sum into three parts

l−1∑

i=1

∑

jk< j≤εn

+
l−1∑

i=1

∑

εn< j<(1−ε)n

+
l−1∑

i=1

∑

(1−ε)n≤ j<n− jk

=: �1 + �2 + �3.

We first concentrate on the second of the three parts. Therefore, we consider two cases.
First, if l = 2m − 1 is odd, then either i or 2m − 1 − i is odd. Hence,

�2 = o

⎛

⎝
( pkn

k2

)m−1/2 2m−2∑

i=1

(
2m − 1

i

) 1−ε∫

ε

xi/2(1 − x)(2m−1−i)/2dx

⎞

⎠

= o

(( pkn

k2

)m−1/2
)

.

Second, if l = 2m is even, then the above reasoning shows that the sum over the odd
indices i has the same bound as above. As for the sum over the even indices, we have

m−1∑

i=1

(
2m

2i

)
1

n

∑

εn< j<(1−ε)n

A(2i)
j,k A(2m−2i)

n− j,k

∼
(

2pkn

k2

)m m−1∑

i=1

(
2m

2i

)

gi gm−i

1−ε∫

ε

xi (1 − x)m−i dx .

So, overall

�2 ∼
(

2pkn

k2

)m m−1∑

i=1

(
2m

2i

)

gi gm−i

1−ε∫

ε

xi (1 − x)m−i dx .

As for the first and third sum above, using the uniform bound from our last proposition
shows that

�1 = �3 = O (ε�2) .

So, by letting ε → 0, we see that the main contribution comes from the second sum.
Overall, we have

B(2m−1)
n,k = o

(( pkn

k2

)m−1/2
)

;

B(2m)
n,k ∼ ḡm

(
2pkn

k2

)m

,

where

ḡm =
m−1∑

i=1

(
2m

2i

)

gi gm−i
�(i + 1)�(m − i + 1)

�(m + 2)
= m − 1

m + 1
gm .
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Now, we plug this together with A(l)
k,k = O (pk) into (3). This gives

A(l)
n,k = O

( pkn

k2

)
+ 2n

∑

k< j<εn

B(l)
j,k

j ( j + 1)
+ 2n

∑

εn< j<n

B(l)
j,k

j ( j + 1)
+ B(l)

n,k,

where ε > 0 is again fixed. Using our uniform bound from the last proposition again
shows that the main contribution comes from the third and fourth term. First, for
l = 2m − 1, we have

A(2m−1)
n,k = o

⎛

⎝
pm−1/2

k n

k2m−1

∑

j<n

jm−5/2 +
( n

k3

)m−1/2

⎞

⎠ = o

(( pkn

k2

)m−1/2
)

.

Finally, for l = 2m, we have

A(2m)
n,k ∼ 2ḡm

(
2pkn

k2

)m 1∫

ε

xm−2dx + ḡm

(
2pkn

k2

)m

.

Letting ε → 0 and simplifying the right hand side yield the claimed result also for
even moments. This concludes the induction step and hence the proof is finished as
well. �	

Theorem 7 now follows from the previous proposition by the theorem of Fréchet–
Shohat; see Loève (1977).

As for the Berry–Esseen bound, we can use the method from Fuchs (2008) which
constitutes a refinement of the previous approach. Since there are only minor techni-
cal differences compared to the situation discussed in Fuchs (2008), we only state the
result and omit the proof details.

Theorem 8 Let pkn/k2 → ∞. Then,

sup
−∞<x<∞

∣
∣
∣
∣P

(
Xn,k − µn,k

σn,k
≤ x

)

− �(x)

∣
∣
∣
∣ = O

(
k√
pkn

)

.

2.3 Poisson approximation

With the proof method introduced in the last section, it can be shown that the limit
distribution of Xn,k is Poisson for pkn/k2 → c ≥ 0; see Feng et al. (2008) for similar
results. Hence, Theorem 7 gives the maximal range for which the central limit theorem
holds.

Instead of proving such a result, we will prove the stronger Poisson approximation
result stated in the introduction for the special case of nodes with given minimal clade
size. Before, we can do so, we need local limit theorems for Xn,k . The following two
results also follow from the method in Fuchs (2008).
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Proposition 4 (i) Let pkn/k2 → ∞. Then,

P(Xn,k = �µn,k + xσn,k) = e−x2/2
√

2πσ 2
n,k

(

1 + O
((

1 + |x |3
) k√

pkn

))

uniformly in x = o((pkn)1/6/k1/3).
(ii) Let k < n. Then,

P(Xn,k = l) = e−µn,k
(µn,k)

l

l! + O
(

p2
k n

k3

)

uniformly in l.

From the last proposition together with the bounds from Proposition 2 of the last
section, we will obtain quite sharp bounds for the total variation distance between Xn,k

and a Poisson random variable with the same mean. Note that these bounds improve
upon the bounds given in Fuchs (2008).

Theorem 9 Let k < n and k → ∞. Then,

dT V (Xn,k, Po(µn,k)) =
{O (

(pk/k)α/(3α+1)
)
, if µn,k ≥ 1;

O (
(pk/k)α · µn,k

)
, if µn,k < 1,

where α = 2m/(2m + 1) with a fixed (but arbitrary) m ≥ 1.

Proof We start by considering the case where µn,k ≥ 1. Here, we will split the sum
in the formula of the total variation distance into two parts

dT V (Xn,k, Po(µn,k)) = 1

2

∑

|l−µn,k |<η
√

µn,k

|· · · | + 1

2

∑

|l−µn,k |≥η
√

µn,k

|· · · | =: �1 + �2.

(9)

where η will be chosen below. In order to bound the second part, observe that from
Proposition 2,

P(|Xn,k − µn,k | ≥ η
√

µn,k) = O
(
η−2m

)
(10)

for all m ≥ 1. Moreover, the same bound holds as well when Xn,k is replaced by
Po(µn,k). Consequently,

�2 = O
(
η−2m

)

for all m ≥ 1.
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Now, we consider three cases. First assume that µn,k ≥ k2/p2
k and choose η =

(k/pk)
ε with ε > 0 sufficiently small. By Proposition 4, part (i), we have

P(Xn,k = l) = 1
√

2πµn,k
exp

(

− (l − µn,k)
2

2µn,k

)(
1 + O

(
(1 + x2 + |x |3) pk

k

))

(11)

uniformly for x with |x | < η, where x is such that l = µn,k + x
√

µn,k . Here, we used
the following expansion for the variance

σ 2
n,k = µn,k

(
1 + O

( pk

k

))

which follows from Proposition 1. Next, by the well-known local limit theorem for
the Poisson distribution

e−µn,k
(µn,k)

l

l! = 1
√

2πµn,k
exp

(

− (l − µn,k)
2

2µn,k

)(

1 + O
((

1 + |x |3
) 1√

µn,k

))

again uniformly in x with |x | < η. Plugging this into �1, we obtain

�1 = O
( pk

k

)
.

The same bound holds for �2 as well. Hence, for the first range, we obtain the estimate
pk/k which is even better than the claimed one.

As second range, we consider (k/pk)
2α/(3α+1) ≤ µn,k < k2/p2

k and again choose
η = kε/pε

k . Then, the above reasoning works as well with the only difference that
pk/k in (11) has to be replaced by 1/

√
µn,k . So, the bound for �1 becomes

�1 = O
(

1√
µn,k

)

= O
(( pk

k

)α/(3α+1)
)

.

Again the same bound holds for �2 as well. Hence, we are done in this range.
For the third range, we consider 1 ≤ µn,k < (k/pk)

2α/(3α+1) and choose η =
(k/(pkµ

3/2
n,k ))1/(2m+1). Moreover, we use the expansion of Proposition 4, part (ii)

instead of (11) above. This yields the following bound

�1 = O
(

p2
k n

k3 η
√

µn,k

)

= O
(( pk

k

)α/(3α+1)
)

.

Again the same bound holds for �2. Consequently, the claim is proved for this range
as well.

123



Limit theorems for patterns in phylogenetic trees 499

For the final range where µn,k < 1, we split the sum in the formula for the total
variation distance slightly different

dT V (Xn,k, Po(µn,k)) = 1

2

∑

|l−µn,k |<η

|· · · | + 1

2

∑

|l−µn,k |≥η

|· · · | =: �1 + �2, (12)

where η = (k/pk)
1/(2m+1). Then, as in the third case above, we obtain for �1 the

bound

�1 = O
(

p2
k n

k3 η

)

= O
(( pk

k

)α

µn,k

)
.

As for �2, we use Proposition 2 and obtain

�2 = O
(

µn,k

η2m

)

= O
(( pk

k

)α

µn,k

)
.

Hence, the claimed result follows in the present case as well. This concluded the proof.
�	

Remark 1 The bounds in the previous theorem are still not optimal. In order to get
better bounds, one needs to improve upon the second local limit theorem of Proposi-
tion 4. An improvement in the same style as in the (easier) uniform case below will
lead to the following sharp bound

dT V (Xn,k, Po(µn,k)) = O
( pk

k
· min{1, µn,k}

)
.

3 Uniform model

Now, we will turn to the uniform model which assigns the same probability to every
phylogenetic tree of size n. Here, we will use a completely different approach based
on complex-analytic tools from the analysis of algorithms. The latter area is concerned
with analyzing algorithms on random inputs. One of the standard approaches to do this
is to use generating functions. If the generating functions are explicit (which will be
the case here), then asymptotic properties of the encoded sequences are most easiest
obtained from complex-analytic properties of the functions. Many sophisticated tools
have been developed along this line. Most of the tools can be considered classic by
now and are found in the standard textbooks of the area; see Flajolet and Sedgewick
(2009), Knuth (1997, 1998a,b) and Szpankowski (2001).

In particular, the case of fixed k is quickly derived by these standard tools (see
below for more detailed references). Hence, we will mainly focus on the case where k
is allowed to grow with n which will turn out to be more involved. Here, we will use an
approach introduced in Baron et al. (1996) for studying the number of predecessors in
random mappings which itself was based on singularity analysis, a standard method
from the analysis of algorithms. However, we will make some technical improve-
ments to obtain the optimal Berry–Esseen bound as well as sharp bounds for the total
variation distance.
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3.1 Moments

We will start by investigating mean value and variance. As already mentioned in the
introduction, Xn,k satisfies (1) as well. The crucial difference is the distribution of In

which is given as

P(In = j) = C j−1Cn−1− j

Cn−1
, (1 ≤ j < n).

First, we introduce the probability generating function Qn,k(u) = E(u Xn,k ). Then,
the above recurrence becomes

Qn,k(u) =
n−1∑

j=1

C j−1Cn−1− j

Cn−1
Q j,k(u)Qn− j,k(u), (n > k)

with initial conditions Qn,k(u) = 1 for n < k and Qk,k(u) = pk(u − 1) + 1. Next,
we introduce the bivariate generating function

Gk(u, z) =
∑

n≥1

Cn−1 Qn,k(u)zn .

Then, the above recurrence translates into the following quadratic equation

Gk(u, z) = Gk(u, z)2 + Ck−1 pk(u − 1)zk + z

with solution

Gk(u, z) = 1 − √
1 − 4Ck−1 pk(u − 1)zk − 4z

2
. (13)

So, compared with the Yule–Harding case, the generating function is here explicitly
computable. This will make things much more easier. All results below will be deduced
with the help of (13).

First, we can quickly compute moments from the last expression by differentiation.
For instance,

µn,k := E(Xn,k) = 1

Cn−1
[zn] ∂

∂u
Gk(u, z)

∣
∣
∣
u=1

= Ck−1 pk

Cn−1
[zn−k] 1√

1 − 4z

= (n − k + 1)Ck−1Cn−k pk

Cn−1

for n ≥ k. Obviously, µn,k = 0 for n < k.
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As for the variance, a similar computation reveals

E(Xn,k(Xn,k − 1)) = 1

Cn−1
[zn] ∂2

∂u2 Gk(u, z)
∣
∣
∣
u=1

= (n − 2k + 2)(n − 2k + 1)C2
k−1Cn−2k+1 p2

k

Cn−1

for n ≥ 2k. Consequently, σ 2
n,k := Var(Xn,k) equals

(n − k + 1)Ck−1Cn−k pk

Cn−1
+ (n − 2k + 2)(n − 2k + 1)C2

k−1Cn−2k+1 p2
k

Cn−1

− (n − k + 1)2C2
k−1C2

n−k p2
k

C2
n−1

(14)

for n ≥ 2k. The corresponding formula for the range k ≤ n < 2k follows from the
above expression for the mean value. The remaining range n < k is trivial.

Overall, we have the following expression for mean and variance.

Proposition 5 We have,

µn,k =
{

(n−k+1)Ck−1Cn−k pk
Cn−1

, if n ≥ k;
0, if n < k

and

σ 2
n,k =

⎧
⎪⎪⎨

⎪⎪⎩

(14), if n ≥ 2k;
(n−k+1)Ck−1Cn−k pk (Cn−1−(n−k+1)Ck−1Cn−k pk )

C2
n−1

, if k ≤ n < 2k;
0, if n < k.

This proposition gives the following corollary.

Corollary 2 (a) For constant k,

µn,k = Ck−1 pk

4k−1 n + (k − 1)Ck−1 pk

2 · 4k−1 + O
(

1

n

)

, (n → ∞)

and, as n → ∞,

σ 2
n,k =

(
Ck−1 pk

4k−1 − (2k − 1)C2
k−1 p2

k

42k−2

)

n + (k − 1)Ck−1 pk

2 · 4k−1

− (3k2 − 4k + 1)C2
k−1 p2

k

2 · 42k−2 + O
(

1

n

)

.
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(b) As k → ∞ and n − k → ∞,

µn,k ∼ σ 2
n,k ∼ pk√

πk3/2
n, (n → ∞).

(c) For constant n − k = l ≥ 0,

µn,k = (l + 1)Cl pn−l

4l
+ O

(
1

n

)

, (n → ∞)

and

σ 2
n,k = (l + 1)Cl pn−l

4l

(

1 − (l + 1)Cl pn−l

4l

)

+ O
(

1

n

)

, (n → ∞).

Proof All results can easily be derived with Maple from the following well-known
expansion for the Catalan numbers (see page 186 in Flajolet and Sedgewick 1995)

Cn = 4n

√
πn3/2

(

1 + 9

8n
+ O

(
1

n2

))

, (n → ∞).

We just indicate how to show part (b). Therefore, note that for k ≤ εn with ε < 1, we
have

µn,k = Ck−1 pk

4k−1 n + O
(

pk√
k

)

, (n → ∞) (15)

and

σ 2
n,k =

(
Ck−1 pk

4k−1 − (2k − 1)C2
k−1 p2

k

42k−2

)

n + O
(

pk√
k

)

, (n → ∞). (16)

By expanding Ck−1 as well, the claim is easily proved. So, what is left is to show
that both µn,k and σ 2

n,k tend to 0 as k ≥ εn and n − k → ∞. Therefore, we use the
following expansion for the mean

µn,k = pk√
π

(n

k

)3/2 1√
n − k

(

1 + O
(

1

k

)

+ O
(

1

n − k

))

, (n → ∞).

From this the claim follows. The variance is slightly more involved, but handled sim-
ilarly. �	

3.2 Central limit theorem

Now, we turn to limit laws. As for the Yule–Harding Model, we start by briefly dis-
cussing the case of fixed k. Here, a result from the treatise of Flajolet and Sedgewick
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(see Theorem IX.12 in Flajolet and Sedgewick 2009) immediately gives the following
central limit theorem

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Moreover, the above result also yields the Berry–Esseen bound which is of order
O(n−1/2).

So, we can again concentrate on the case k → ∞. Here, we will use a variant of
the proof of the above result to show that the central limit theorem remains valid in
the (maximal) range where µn,k → ∞; a similar approach was used in Baron et al.
(1996).

Theorem 10 Let pkn/k3/2 → ∞. Then,

Xn,k − µn,k

σn,k

d−→ N (0, 1).

For the proof of the above theorem, we have to revisit the proof of Theorem IX.12
in Flajolet and Sedgewick (2009) which roughly consisted of two parts: first using a
uniform version of singularity analysis (see Lemma IX.2 in Flajolet and Sedgewick
2009) and then applying the quasi-power theorem (see Theorem IX.9 in Flajolet and
Sedgewick 2009). In the current situation, the largest differences will occur in the first
step since also uniformity in k is needed.

We start by collecting a couple of properties of (13).

Lemma 2 The three properties below hold for k suitable large.

(i) For |u| ≤ 1 + ε, the polynomial

F(u, z) := 1 − 4Ck−1 pk(u − 1)zk − 4z = 0

has a unique, analytic solution ρk(u) inside the circle |z| ≤ 1/4 + c/k. More-
over,

ρk(u) = 1

4
− Ck−1 pk

4k
(u − 1) + kC2

k−1 p2
k

42k−1 (u − 1)2 + O
(

p3
k

k5/2
|u − 1|3

)

(17)

uniformly in u with |u| ≤ 1 + ε.
(ii) We have,

Gk(u, z)= 1

2
−

√
k−4(k−1)ρk(u)

2

√

1− z

ρk(u)
+O

(
pk

√
k|1 − z/ρk(u)|3/2

)

uniformly for |u| ≤ 1 + ε, |z − ρk(u)| ≤ 1/k, and arg(1 − z/ρk(u)) 
= π .
(iii) Gk(u, z) is uniformly bounded for |u| ≤ 1 + ε, |z| ≤ 1/4 + c/k, and

arg(1 − z/ρk(u)) 
= π .
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Proof Let |u| ≤ 1 + ε. In order to prove the existence and uniqueness of a solution
of F(z, u) = 0, we use Rouché’s theorem (see page 270 in Flajolet and Sedge-
wick 2009 or any standard textbook on complex analysis). Therefore, we choose
f (z) = 1 − 4z, g(z) = −4Ck−1 pk(u − 1)zk . Then, for a suitable constant c1,

|g(z)| ≤ c1

k3/2 <
4c

k
≤ | f (z)|

for all z with |z| = 1/4 + c/k and k sufficiently large. Hence, the existence and
uniqueness of ρk(u) is established. Moreover, since ρk(u) is a simple root, we have

d F

dz
(u, ρk(u)) 
= 0.

Consequently, the implicit function theorem implies that ρk(u) is analytic for u with
|u| ≤ 1 + ε. Finally, (17) follows from F(u, ρk(u)) = 0 by implicit differentiation.
This concludes the proof of part (i).

In order to prove part (ii), we expand F(u, z) around z = ρk(u). This yields

F(u, z) = (k − 4(k − 1)ρk(u))

(

1 − z

ρk(u)

)

+ O
(√

k pk

(

1 − z

ρk(u)

)2
)

,

where |u| ≤ 1 + ε and |z| ≤ 1/4 + c/k. Plugging this into (13) together with another
Taylor series expansion gives the claimed result.

Finally, part (iii) is trivial. �	
From the latter result, we can deduce the following proposition.

Proposition 6 For c ≤ k ≤ Cn/(ln n)2 with c and C large enough,

Qn,k(u) =
√

k − 4(k − 1)ρk(u)

4n
ρk(u)−n

(

1 + O
(

pk
√

k

n

))

uniformly in u with |u| ≤ 1 + ε.

Proof This follows from the properties of the above lemma together with the tradi-
tional proof method used in singularity analysis; see Flajolet and Sedgewick (2009).
We only have to be careful that the contour of integration is inside the domain, where
we have a unique singularity. The latter is ensured for k with k ≤ Cn/(ln n)2. �	

Now, we can prove Theorem 10.

Proof of Theorem 10 First by the above proposition,

Qn,k(e
it/σn,k ) = exp

{
−n ln

(
4ρk

(
eit/σn,k

))
+ 1/2 ln

(
k − 4(k − 1)ρk

(
eit/σn,k

))}

×
(

1 + O
(

1√
n

))

.
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Then, by using (17) and a lengthy computation,

Qn,k(e
it/σn,k ) = exp

{

i tan,k − t2

2
bn,k

}(

1 + O
( |t | + |t |3

σn,k

)

+ O
(

1√
n

))

(18)

uniformly in |t | ≤ Cσn,k , where

an,k = n

σn,k
· Ck−1 pk

4k−1 , bn,k = n

σ 2
n,k

(
Ck−1 pk

4k−1 − (2k − 1)C2
k−1 p2

k

42k−2

)

.

Next, by (15) and (16),

an,k − µn,k

σn,k
= O

(
1

σn,k

)

, bn,k = O
(

1

σ 2
n,k

)

.

Consequently, the characteristic function satisfies

ϕn,k(t) := e−i tµn,k/σn,k Qn,k

(
eit/σn,k

)
= e−t2/2

(

1 + O
( |t | + |t |3

σn,k

)

+ O
(

1√
n

))

uniformly in |t | ≤ Cσn,k . The result follows from this by Lévy’s continuity theorem;
see Petrov (1975). �	

Finally, also the (optimal) Berry–Esseen bound can be derived.

Theorem 11 Let pkn/k3/2 → ∞. Then,

sup
−∞<x<∞

∣
∣
∣
∣P

(
Xn,k − µn,k

σn,k
≤ x

)

− �(x)

∣
∣
∣
∣ = O

(
k3/4

√
pkn

)

.

Proof This follows from the expansion for the characteristic function in the above
proof together with the Berry–Esseen inequality; see Petrov (1975). �	

3.3 Poisson approximation

As in the Yule–Harding case, the central limit theorem just holds in the range of
µn,k → ∞. We will again show that a Poisson random variable approximates Xn,k

well in a much larger range of k.
Before we can make the last statement precise, we again have to prove local limit

theorems.

Proposition 7 (i) Let pkn/k3/2 → ∞. Then,

P(Xn,k = �µn,k + xσn,k) = e−x2/2
√

2πσ 2
n,k

(

1 + O
((

1 + |x |3
) k3/4

√
pkn

))

uniformly in x = o((pkn)1/6/k1/4).
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(ii) Let k ≤ cn/(ln n)2. Then,

P(Xn,k = l) = e−µn,k
(µn,k)

l

l! + O
(

p2
k n

k2

)

+ O
(

pk
√

k

n

)

uniformly in l.

Proof Part (i) follows from expansion (18) and Cauchy’s formula; see for instance
Hwang (2003) where a similar local limit theorem is derived.

As for part (ii), we will actually prove a more refined result than the one claimed
above.

We first consider the range where kε/p2ε
k ≤ µn,k ≤ εk/p2

k with ε > 0 suitable
small. Then from Proposition 6, (17) and Taylor series expansion

Qn,k(u) = exp

{

an,k(u − 1) + bn,k(u − 1)2 + O
(

p2
kµn,k

k
|u − 1|3

)}

×
(

1 + O
(

pk
√

k

n

))

, (19)

where

an,k = (n + (k − 1)/2)
Ck−1 pk

4k−1 = µn,k + O
(

pk
√

k

n

)

and

bn,k = O
(

pkµn,k√
k

)

.

From Cauchy’s formula, we obtain

P(Xn,k = l) = 1

2π i

∫

|u|=1

Qn,k(u)
du

ul+1

=
∫

|u−1|≤η1,|u|=1

+
∫

η2≥|u−1|>η1,|u|=1

+
∫

|u−1|>η2,|u|=1

=: I1 + I2 + I3,

where η1 = (µn,k)
−1/2+ε and η2 = (µn,k)

−1/4. We first bound the third integral

I3 � exp

{

−c
√

µn,k + O
(

pkµn,k√
k

)}

� exp
{−c0

√
µn,k

}
,

where c0 is a suitable, positive constant. Next, for the second integral, observe that

I2 = 1

2π i

∫

η2≥|u−1|>η1,|u|=1

ean,k (u−1)

(

1 + O
(

pkµn,k√
k

(u − 1)2
))

du

ul+1

� exp
{
−c(µn,k)

2ε
}

.
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Finally, for the first integral, we use the above expansion and obtain

I1 = e−µn,k

(
µn,k

)l

l!

(

1 + O
(

pkµn,k√
k

�
(1)
n,k,l + p2

kµ
2
n,k

k
�

(2)
n,k,l

))

+O
((

pk√
k

)1+ε 1√
µn,k

)

, (20)

where

�
(1)
n,k,l =

∣
∣
∣
∣
∣

l(l − 1)

µ2
n,k

− 2l

µn,k
+ 1

∣
∣
∣
∣
∣

and

�
(2)
n,k,l =

∣
∣
∣
∣
∣

l(l − 1)(l − 2)(l − 3)

µ4
n,k

− 4l(l − 1)(l − 2)

µ3
n,k

+ 6l(l − 1)

µ2
n,k

− 4l

µn,k
+ 1

∣
∣
∣
∣
∣
.

Overall, we obtain the claimed result of the proposition as special case.
For the remaining range of µn,k < kε/p2ε

k the above line of reasoning does not
work since the estimates of I2 and I3 are not necessarily small. However, here we do
not need to break the integral into three parts since higher order terms in the above
expansion are small anyway. More precisely, from the above expansion and Cauchy’s
formula

P(Xn,k = l) = 1

2π i

∫

|u|=1

Qn,k(u)
du

ul+1

= e−µn,k
(µn,k)

l

l!
(

1+O
(

pkµn,k√
k

�
(1)
n,k,l

))

+ O
(

p2
kµn,k

k
+ pk

√
k

n

)

,

(21)

where �
(1)
n,k,l is as above. This concludes the proof of part (ii) of the proposition. �	

From the last proposition, we can deduce our claimed result.

Theorem 12 Let k → ∞ and n − k → ∞. Then,

dT V (Xn,k, Po(µn,k)) =
⎧
⎨

⎩

O
(

pk/
√

k · min{1, µn,k}
)
, if µn,k ≥ (pk/

√
k)1−ε;

O (
µn,k

)
, if µn,k < (pk/

√
k)1−ε,

where ε > 0 is an arbitrarily small constant.
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Proof First, note that the proof of this result is trivial for the range where µn,k → 0
(this is the range where pkn/k3/2 → 0 and n − k → ∞). This follows from the
following estimate

dT V (Xn,k, Po(µn,k)) ≤
∑

l≥1

∣
∣
∣
∣P(Xn,k = l) − e−µn,k

(µn,k)
l

l!
∣
∣
∣
∣

= P(Xn,k ≥ 1) + P(Po(µn,k) ≥ 1) ≤ 2µn,k .

Hence, we can focus on the other ranges. First assume that µn,k ≥ 1. Here, we
proceed as in the proof of the corresponding result for the Yule–Harding model. Con-
sequently, we first split the sum in the formula for the total variation distance as in (9).
In order to bound the second sum, observe that

P(|Xn,k − µn,k | ≥ η
√

µn,k) ≤ e−sµn,k−sη
√

µn,k E

(
es Xn,k

)
,

where s will be chosen below. From (19), we obtain

E

(
es Xn,k

)
= O

(
eµn,k (es−1)

)

uniformly for s with |s| ≤ 1/
√

µn,k . Plugging this into the bound above and choosing
s = 1/

√
µn,k yields

P(|Xn,k − µn,k | ≥ η
√

µn,k ) = O (
e−η

)
.

A similar bound holds when Xn,k is replaced by Po(µn,k). Hence,

�2 = O (
e−η

)
. (22)

In order to bound the first sum in (9), we consider three cases. The first case, where
µn,k ≥ εk/p2

k is treated as in the proof of Theorem 9.
For the second case, we assume that kε/p2ε

k ≤ µn,k ≤ εk/p2
k , where ε is a suitable

small constant. Then, we choose η = kε/p2ε
k . We can use (20) in order to get the

bound

�1 = O
⎛

⎝
pkµn,k√

k

∑

l≥0

e−µn,k
(µn,k)

l

l! �
(1)
n,k,l + p2

kµ
2
n,k

k

∑

l≥0

e−µn,k
(µn,k)

l

l! �
(2)
n,k,l

⎞

⎠

+O
(

pk√
k

)

.

Next, observe that

∑

l≥0

e−µn,k
(µn,k)

l

l! �
(1)
n,k,l = 1

µ2
n,k

∑

l≥0

e−µn,k
(µn,k)

l

l! |(l − µn,k)
2 − l| = O

(
1

µn,k

)

.
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Similarly,

∑

l≥0

e−µn,k
(µn,k)

l

l! �
(2)
n,k,l = O

(
1

µ2
n,k

)

.

Plugging the latter two estimates into the above bound yields

�1 = O
(

pk√
k

)

.

Due to (22) and our choice of η the same bound holds for �2 as well. This proves the
claim in this case.

As for the third and final case, we consider the range 1 ≤ µn,k ≤ kε/p2ε
k and again

choose η = kε/p2ε
k . Then, we use (21) to get the bound

�1 = O
⎛

⎝
pkµn,k√

k

∑

l≥0

e−µn,k
(µn,k)

l

l! �
(1)
n,k,l

⎞

⎠ + O
(

p2
kηµ

3/2
n,k

k
+ pk

√
k

n
η
√

µn,k

)

,

The first term is treated as above. The second term can be further bounded as

p2
kηµ

3/2
n,k

k
+ pk

√
k

n
η
√

µn,k �
(

pk√
k

)2−5ε

+
(

pk√
k

)2−2ε

· 1√
µn,k

� pk√
k
.

Hence, we get the same bound for �1 as above. Moreover, again due to (22) the same
bound holds for �2 as well. Hence, the result is for this case established as well.

Next, assume that µn,k ≤ 1. Here, we use (12). In order to bound �2 observe that

P(|Xn,k − µn,k | ≥ η) ≤ e−sµn,k−sη
E

(
es Xn,k

)
.

From (19), we obtain

E

(
es Xn,k

)
= O

(
eµn,k (es−1)

)

uniformly for s with |s| ≤ c where c is an arbitrary constant. Consequently,

P(|Xn,k − µn,k | ≥ η) = O (
e−cη) .

The same bound holds for Po(µn,k) as well. Hence,

�1 = O (
e−cη) .
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Now, we again choose η = kε/p2ε
k . For �1, we obtain

�1 = O
(

pkµn,k√
k

)

+ O
(

p2
kηµn,k

k
+ pk

√
kη

n

)

.

For the second term, we obtain

p2
kηµn,k

k
+ pk

√
kη

n
�

(
pk√

k

)2−2ε

µn,k +
(

pk√
k

)2−2ε 1

µn,k
� pkµn,k√

k
.

The same bound holds for �2 as well. Hence, the Theorem is proved. �	

4 Conclusion

In this paper, we proposed a general framework for deriving statistical properties of
the occurrences of patterns in phylogenetic trees under the Yule–Harding model and
the uniform model. An important feature of the current study is that our results are
useful for the whole range of possible sizes of the pattern. Apart from exact and
asymptotic expansions for mean value and variance, we were mainly concerned with
limit laws. We demonstrated that for both models the Poisson distribution provides a
good approximation for almost the whole range of the size of the pattern. When the
pattern size is small, however, the normal distribution should be used. For the uniform
model, we have in addition a small range with large pattern size, where the Bernoulli
distribution yields a better approximation. Moreover, we also obtained sharp bounds
for the error of approximation.

In recent years, phenomena of the above type have been observed for shape param-
eters of many discrete structures and the name “phase change” has been ascribed to
them. Hence, our results show that the limit law of the number of occurrence of a
given pattern in a random phylogenetic tree provides yet another example of a phase
change, namely, it changes from normal to Poisson for pattern sizes that are fixed to
pattern sizes that grow to infinity as the size of the tree tends to infinity. Moreover, for
the uniform model, there is a second phase change to Bernoulli for pattern sizes that
are close to the size of tree.

Acknowledgments The authors are indebted to the two anonymous referees for many helpful suggestions
and comments. The second author acknowledges partial support by National Science Council under the
grant NSC-96-2628-M-009-012.

References

Aldous DJ (1991) The continuum random tree II: an overview. In: Barlow NT, Bingham NH (eds) Stochastic
analysis. Cambridge University Press, Cambridge, pp 23–70

Baron G, Drmota M, Mutafchiev L (1996) Predecessors in random mappings. Comb Prob Comput 5:317–
335

Blum M, François O (2005) External branch length and minimal clade size under the neutral coalescent.
Adv Appl Prob 37:647–662

123



Limit theorems for patterns in phylogenetic trees 511

Blum M, Bortolussi N, Durand E, François O (2006a) APTreeshape: statistical analysis of phylogenetic
tree shape. Bioinformatics 22:363–364

Blum M, François O, Janson S (2006b) The mean, variance and limiting distributions of two statistics
sensitive to phylogenetic tree balance. Ann Appl Prob 16:2195–2214

Chern H-H, Fuchs M, Hwang H-K (2007) Phase changes in random point quadtrees. ACM Trans Alg 3:51
Darwin C (1859) The origin of species, reprinted by Penguin Books. London
Drmota M, Hwang H-K (2005) Profile of random trees: correlation and width of random recursive trees

and binary search trees. Adv Appl Prob 37:321–341
Drmota M, Janson S, Neininger R (2008a) A functional limit theorem for the profile of search trees. Ann

Appl Prob 18:288–333
Drmota M, Gittenberger B, Panholzer A, Prodinger H, Ward MD (2008b) On the shape of the fringe of

various types of random trees. Math Math Appl Sci (in press)
Feng Q, Mahmoud H, Panholzer A (2008) Phase changes in subtree varieties in random recursive trees and

binary search trees. SIAM J Discrete Math 22:160–184
Fill JA, Kapur N (2004) Limiting distributions for additive functionals on Catalan trees. Theor Comp Sci

326:69–102
Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge
Flajolet P, Gourdon X, Martinez C (1997) Patterns in random binary search trees. Random Struct Alg

11:223–224
Flajolet P, Sedgewick R (1995) An introduction to the analysis of algorithms. Addison-Wesley Professional,

Reading
Fuchs M (2008) Subtree sizes in recursive trees and binary search trees: Berry–Esseen bound and Poisson

approximation. Comb Prob Comput 17:661–680
Fuchs M, Hwang H-K, Neininger R (2007) Profiles of random trees: limit theorems for random recursive

trees and binary search trees. Algorithmica 46:367–407
Harding EF (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl

Prob 3:44–77
Hwang H-K (2003) Second phase changes in random m-ary search trees and generalized quicksort: con-

vergence rates. Ann Prob 31:609–629
Hwang H-K (2007) Profiles of random trees: plane-oriented recursive trees. Random Struct Alg 30:380–413
Hwang H-K, Neininger R (2002) Phase change of limit laws in the quicksort recurrences under varying toll

functions. SIAM J Comput 31:1687–1722
Hwang H-K, Nicodème P, Park G, Szpankowski W (2008) Profiles of tries. SIAM J Comput 38:1821–1880
Knuth DE (1997) The art of computer programming, vol 1, 3rd edn. In: Fundamental algorithms. Addison-

Wesley, Reading
Knuth DE (1998) The art of computer programming, vol 2, 3rd edn. In: Seminumerical algorithms. Addi-

son-Wesley, Reading
Knuth DE (1998) The art of computer programming, vol. 3, 2nd edn. In: Sorting and searching. Addison-

Wesley, Reading
Loève M (1977) Probability theory. I, 4th edn. Springer, New York
McKenzie A, Steel M (2000) Distribution of cherries for two models of trees. Math Biosci 164:81–92
McKenzie A, Steel M (2001) Properties of phylogenetic trees generated by Yule-type specification models.

Math Biosci 170:91–112
Mooers AO, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Q Rev Biol

72:31–54
Mooers AO, Heard SB (2002) Using tree shape. Syst Biol 51:833–834
Pemantle R (2000) Generating functions with high-order poles are nearly polynomial. In: Mathematics and

computer science (Versailles, 2000). Birkhäuser, Baesl, pp 305–321
Pemantle R, Wilson MC (2002) Asymptotics of multivariate sequences I: smooth points of the singular

variety. J Comb Theory Ser A 97:129–161
Pemantle R, Wilson MC (2004) Asymptotics of multivariate sequences, Part II: multiple points of the

singular variety. Comb Prob Comp 13:735–761
Pemantle R, Wilson MC (2008) Twenty combinatorial examples of asymptotics derived from multivariate

generating functions. SIAM Rev 20:199–272
Petrov VV (1975) Sums of indepedent random variables, Ergebnisse der Mathematik und ihrer Grenzgebi-

ete, Band 82. Springer, New York
Rosenberg NA (2006) The mean and variance of the numbers of r -pronged nodes and r -caterpillars in

Yule-generated genealogical trees. Ann Comb 10:129–146

123



512 H. Chang, M. Fuchs

Semple C, Steel M (2003) Phylogenetics, Oxford University Press, Oxford
Stanley RP (1997) Enumerative combinatorics, vol 1. Cambridge University Press, Cambridge
Stanley RP (1999) Enumerative combinatorics, vol 2. Cambridge University Press, Cambridge
Szpankowski W (2001) Average-case analysis of algorithms on sequences. Wiley, New York
Yule GU (1924) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willies. Philos

Trans R Soc London B 213:21–87

123


	Limit theorems for patterns in phylogenetic trees
	Abstract
	1 Introduction
	2 Yule--Harding model
	2.1 Moments
	2.2 Central limit theorem
	2.3 Poisson approximation

	3 Uniform model
	3.1 Moments
	3.2 Central limit theorem
	3.3 Poisson approximation

	4 Conclusion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


