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摘  要 

生物晶片的實驗能在短暫的時間內提供我們數以千計的基因資料；此

時，如何從中找出重要的基因成為大家關心的問題。在 2003 年，Lee et al. 

提出一個層級性的貝氏模型來選取基因，他們採用潛在變數來建立迴歸模

型，然後用混合的貝氏先驗分配來執行基因選取的動作，MCMC 中的 Gibbs 

sampling 是他們模擬參數的方法。在此篇論文中，我們修正了他們在基因

選取與作預測的演算法，並且，我們也成功的把它運用在俱有遺傳性的乳

癌資料上面，主要是區別在 BRCA1 和 BRCA2 二種腫瘤上的突變基因。 
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ABSTRACT 
 

DNA micro-array experiments provide us thousands of genes data at once. How to 

identify the responsible genes is an important problem. Lee et al. (2003) propose a 

hierarchical Bayesian model for gene selection. They use latent variables to specialize the 

model as a regression setting, and then use a Bayesian mixture prior to perform the gene 

selection. The method they use to simulate parameters is Gibbs sampling, one kind of MCMC 

method. We modify their algorithm of gene selection and prediction in this paper. The method 

is applied successfully to hereditary breast cancer data to classify tumors with BRCA1 and 

BRCA2 mutations. 
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1. Introduction

DNA micro-array technology has made expression measurements for thousands of genes

in a single experiment possible. One challenge is to find the genes most likely differentially

expressed among different classes. Then, these informative genes can be used to classify a

new observation.

Lee et al.(2003) propose a hierarchical Bayesian model for gene selection. They employ

latent variables Z to specialize the model to a regression setting and use a Bayesian mixture

prior to perform the gene selection, where the unknowns are β and γ. By assigning a prior

distribution π over the dimension of the model, they can control the size of model (number

of significant genes). Owing to the posterior distributions of the parameters, Z, β and γ

are not in explicit form, they use a combination of truncated sampling and Markov Chain

Monte Carlo (MCMC) based computation techniques, specifically Gibbs sampling (Gelfand

and Smith, 1990), to simulate the parameters from the posterior distribution. This model is

very flexible to find significant genes as well as to perform future predictions.

As using the Gibbs sampler, we have to take samples from the stationary distribution.

From the model of Lee et al. (2003), γ, β and Z, which are correlated with each other,

are our unknowns. Typically, we first find their marginal conditional distribution, and then

iterate f(γt+1|βt, Zt), f(βt+1|γt+1, Zt) and f(Zt+1|γt+1,βt+1), until getting the samples we

want.

∫

Zt

∫

βt

∫

γt
f(γt,βt,Zt)f(γt+1|βt, Zt)f(βt+1|γt+1,Zt)f(Zt+1|γt+1,βt+1)dγtdβtdZt

= f(γt+1,βt+1,Zt+1), (1)

where (γt,βt,Zt) is the sample obtained in the tth iteration. The left-hand side of (1) gives

the marginal distribution of (γt+1,βt+1, Zt+1) under assumption that (γt,βt,Zt) is from
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f(γ,β,Z). Hence, (1) means that if (γt,βt,Zt) is from f(γ, β,Z), then (γt+1,βt+1,Zt+1)

is also from f(γ,β,Z).

The computation scheme is to iterate f(γt+1|Zt), f(βt+1|γt+1, Zt) and f(Zt+1|γt+1,βt+1)

in Lee et el. (2003). This process satisfies the stationary property. But they iterate f(γt+1|Zt)

, f(Zt+1|γt+1,βt) and f(βt+1|γt+1,Zt+1) in the part of their algorithm, which does not sat-

isfy the stationary property. Hence, there is a contradiction. Unlike Lee et al. (2003), we

divide the model of gene selection into two parts: one is gene selection over all genes, where

we integrate β out to get f(γ|Z) and f(Z|γ); and the other is to check the model adequacy

by leave-one-out cross validation for more significant genes from the first part by the model

of Albert and Chib (1993), where our unknowns are just β and Z. We simulate the samples

from f(Z|β) and f(β|Z). It could also be used to make future prediction. Finally, we apply

the model to hereditary breast cancer data (22 samples and 3226 genes). The results are

also different from theirs.

In the next section we illustrate the Gibbs sampler. Section 3 draws the model for gene

selection. The computation algorithm that we modify for gene selection and prediction is in

Section 4. Section 5 is the application to Hereditary breast cancer data. Finally, we give a

conclusion and some future work in Section 6.

2. Illustrating the Gibbs Sampler

The Gibbs sampler is one kind of Markov Chain Monte Carlo (MCMC) method. One

can refer to Gilks et al. (1996) for more detail. Here is just an abstract from Casella and

George (1992).

The Gibbs sampler is a technique for generating random variables from a (marginal) dis-

tribution indirectly without having to calculate the density. For example, if we are interested

2



in obtaining mean or variance of the marginal density

f(x) =
∫
· · ·

∫
f(x,y1,···,yp)dy1 · · · dyp. (2)

Perhaps the most natural and straightforward approach would be calculating f(x) and using

it to obtain the mean or variance. However, it may be possible that the integration in (2)

is extremely difficult to perform, either analytically or numerically. Another case is that if

(γ1,γ2,···γp) are the unknowns that we are interested in. Unfortunately, the explicit form of

the joint distribution of (γ1,γ2,···γp) is very difficult to get or even if we obtain it, it is still

difficult to simulate samples directly. In such cases, the Gibbs sampling method provides an

alternative method.

The Gibbs sampler allows us effectively to generate samples X1, · · · , Xm from f(x) or

(γ1
1 ,···,γ

1
p), · · · , (γm

1 ,···,γ
m
p ) from f(γ1,···,γp) without the exact form of f(x) or f(γ1,···,γp). After

suitable burn-in period, we can obtain the samples as we want. And the mean and the

variance of f(x) can be calculated to the desired degree of accuracy by simulating a large

enough sample.

To understand the Gibbs sampler, we explore it as the following case. Starting with a set

of random variables (γ1,···,γp), the Gibbs sampler generates samples from f(γ1,···,γp) by sam-

pling instead from the conditional distributions f( γ1 | γ2,···,γp), f( γ2 | γ1,γ3,···,γp), · · · , f( γp | γ1

,···,γp−1), which are often known in statistical models or easy to simulate. This is done by

generating a ”Gibbs sequence” of random variables

(γ
(0)
1 ,···,γ

(0)
p ), (γ

(1)
1 ,···,γ

(1)
p ), (γ

(2)
1 ,···,γ

(2)
p ), · · · , (γ(k)

1 ,···,γ
(k)
p ). (3)

The initial value (γ
(0)
1 ,···,γ

(0)
p ) is specified, and the rest of (3) is obtained iteratively by alter-

nately generating values from

γ
(j+1)
1 ∼ f(γ1|(γ(j)

2 ,···,γ
(j)
p ))
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γ
(j+1)
2 ∼ f(γ2|(γ(j+1)

1 , γ
(j)
3 , ···, γ(j)

p ))

...

γ
(j+1)
p−1 ∼ f(γp−1|(γ(j+1)

1 , ···, γ
(j+1)
p−2 , γ(j)

p ))

γ(j+1)
p ∼ f(γp|(γ(j+1)

1 , ···, γ
(j+1)
p−1 )). (4)

We refer to this generation method, (3), as Gibbs sampling. The distribution of (γ
(k)
1 ,···,γ

(k)
p )

converges to the true joint distribution f(γ1,···,γp). Thus, for k large enough, the final obser-

vation in (3), namely (γ
(k)
1 ,···,γ

(k)
p ), is effectively a sample point from f(γ1,···,γp).

The convergence (in distribution) of Gibbs sequence (3) can be exploited in a variety

of ways to obtain an approximate sample from f(γ1,···,γp). For example, Gelfand and

Smith (1990) suggest generating m independent Gibbs sequences of length k, and then

using the final value of (γ
(k)
1 ,···,γ

(k)
p ) from each sequence. Another way is to generate one

long Gibbs sequence and then extract every r observations, that is to take the set of
{
(γ

(k)
1 ,···,γ

(k)
p ), (γ

(k+r)
1 ,···,γ

(k+r)
p ), (γ

(k+2r)
1 ,···,γ

(k+2r)
p ), · · ·

}
(see Geyer, 1991). We can also take

(γ
(j)
1 ,···,γ

(j)
p ) as j ≥ k, a less wasteful approach. For k and r large enough, the samples which

we take would yield approximate samples from f(γ1,···,γp) in all cases.

Gibbs sampling can be used to estimate the density itself by averaging the final condi-

tional densities from m Gibbs sequences. For each sequence from (3), we take ( γ
(k)
1 ,···,γ

(k)
p )

as a realization of γ1,···,γp from f(γ1,···,γp). Hence, we have totally m samples from f(γ1,···,γp).

Moreover, the average of the conditional densities f(γi|γ1,···,γi−1,γi+1,···,γp) will closely ap-

proximate to f(γi), and f(γi) can be estimated as

f̂(γi) =
1

m

m

Σ
t=1

f(γi|γt
1,···,γ

t
i−1,

γt
i+1,···,γ

t
p), (5)

where (γt
1, · · · , γt

j−1, γ
t
j+1, · · · , γt

p), t = 1, · · · ,m, is the sequence of realized values taken from

Gibbs sequences. The theory behind the calculation in (5) is that the expected value of the
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conditional density is

E[f(γi|γ1,···,γi−1,γi+1,···,γp)]

=
∫

γ1

· · ·
∫

γi−1

∫

γi+1

· · ·
∫

γp

f(γi|γ1,···,γi−1,γi+1,···,γp)

×f(γ1,···,γi−1,γi+1,···,γp) dγ1 · · · dγi−1dγi+1 · · · dγp = f(γi), (6)

a calculation mimicked by (5), since (γ1
1 ,···,γ

1
i−1,

γ1
i+1,···,γ

1
p), · · · , (γm

1 ,···,γ
m
i−1,

γm
i+1,···,γ

m
p ) approxi-

mate a sample from f(γ1,···,γi−1,γi+1,···,γp).

3. Model for Gene Selection

Suppose there are n independent sample. For each sample i, x′i = (xi1,···,xip) is the

data of gene expression levels, and Y i is a binary response (normal or tissue), distributed

Bernoulli with probability of success pi. Then, we define the binary regression model as

pi = H (x′iβ), i = 1, · · · , n., where β is a p × 1 vector of regression parameters and H is a

known cdf linking the probabilities pi with the linear structure x′iβ.

In order to compute the exact posterior distribution of β, Albert and Chib (1993)

introduce a simulation-based approach. Let the link function H be the standard Gaussian

cdf, then we can write the model as pi = Pr(Y i = 1|β) = Φ(x′iβ), i = 1, · · · , n. The key idea

is to employ n independent latent variables Z1, · · · , Zn, where Zi is distributed N(x′iβ, 1),

and define Y i = 1 if Zi > 0 and Y i = 0 otherwise. Also, the latent variables has a normal

linear model Z = Xβ +ε, where X = (x′1,···,x
′
n)′ and ε is distributed Nn(0, I). If we choose

a multivariate prior for β, then we can find the posterior distribution of β conditional on Z

and the distribution of Z conditional on β. It is therefore easy to simulate from both the

marginal posterior distributions by Gibbs sampling algorithm.

As performing gene selection, an indicator variable γ ′ = (γ1,···,γp) is needed. We select
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the ith gene if γi =1 (βi 6= 0); otherwise, it is not selected (βi = 0). Given γ, βγ is a q × 1

vector, consisting of all nonzero elements of β, and Xγ is a n× q matrix with the columns

of X corresponding to those γi = 1, where q =
p

Σ
i=1

γi. Moreover, we make the following prior

assumptions:

1. The ith gene has a prior probability πi being selected, where 0 ≤ πi ≤ 1, i = 1, · · · , p.

We can control the number of genes in the model by choosing different values of πi. Also, if

we have known that some genes are more important than others, we can assign larger values

of π to it. Here we only consider the case that all πi, i = 1, · · · , p, are equal and there is no

correlation between γi, i = 1, · · · , p, which means whether the ith gene is selected or not, it

does not effect the jth gene being selected, j 6= i. Let m be the total number of genes and

π be the prior probability, the number of selected genes will be m× π on average.

2. Given γ, the prior for βγ is Nq(0, c(X ′
γXγ)

−1), where c is a positive scale factor

specified by the user. Smith and Kohn (1996) found that the choice of c works well and the

results are insensitive to values of c in the range 10 ≤ c ≤ 100. We want to choose a value

of c such that the prior of βγ, given γ, contains very little information about βγ compared

to the likelihood. Therefore, we can take c = 100.

Moreover, there are two things we need to note. One is that making β diffuse by taking

c infinite is impossible. Since it will lead to p(γi = 1|Z, γj 6=i) = 0 for all i; see equation

(B.8) in appendix B. The other is that we have to normalize X with mean zero for each

column (each gene). This procedure will lead to the covariance matrix of the prior for βγ

is proportional to the inverse of the covariance of the data Xγ. Then, if any two genes are

highly correlated, one of their regression coefficients would be larger, and the other would be

smaller. Otherwise, their regression coefficients would be independent. We also normalize

X with variance one for each column (each gene).
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4. Computation

In the above model, (γ,β, Z) are the unknowns. Since the posterior distribution is

difficult to get, we use the Gibbs sampling to generate these parameters from the posterior

distribution.

It is impossible to simulate (γ, β,Z) directly from the complete posterior distribution

(see appendix A). Therefore, we integrate β (βγ) out (see appendix B.), and then we draw γ

and Z from the marginal distribution. So, our computation process is to draw (γ(t+1),Z(t+1))

from γ(t+1)|Z(t) and Z(t+1)|γ(t+1). We divide the model of gene section into two parts : gene

selection over all genes and leave-one-out cross validation. The advantage of our model is

that we can take c = 100, which can not be infinity (see section 3), in the former part;

and we take c = ∞ in the latter part since we have change the model by getting rid of

γ. But Lee et al. (2003) draw (γ(t+1),β(t+1),Z(t+1)) from γ(t+1)|Z(t), β(t+1)|γ(t+1),Z(t) and

Z(t+1)|γ(t+1),β(t+1). Unlike our model, they take c = 100 always.

4.1 Gene Selection

After integrating the βγ out, we get the marginal distribution of (Z,γ). The computation

scheme is as follows:

1. Draw Z from its marginal conditional distribution given γ.

p(Z|γ) ∝ p(Y |Z)×
∫

p(Z|βγ)p(βγ)dβγ

∝ exp
{
−1

2
Z ′(I − c

1 + c
Xγ(X

′
γXγ)

−1Xγ)Z
}
× p(Y |Z), (7)

where p(Y |Z) = 1 if Yi = 1 and Zi > 0 or Yi = 0 and Zi < 0 for all i = 1, · · · , n; otherwise,

it is equal to zero. Hence, the distribution of Z given γ is a multivariate normal distribution

Nn(0, (I− c
1+c

Xγ(X
′
γXγ)

−1X ′
γ)
−1) restricted to a subset R of Rn, where R = (R1×R2×···×Rn)

and Ri = ( 0,∞) if Yi = 1; otherwise, Ri = (−∞, 0 ), for i = 1, · · · , n.
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To generate the truncated multivariate normal samples, there are two ways. One is

following Robert’s (1995) method: using Gibbs sampling to get converging multivariate

samples and the optimal exponential accept-reject algorithm to get each Zi conditional on

Zj, i 6= j for i, j = 1, · · · , n. The other is using Metropolis-Hastings algorithm (Chib and

Greenberg 1995), which was developed by Metropolis, Rosenbluth, Rosenbluth, Teller, and

Teller (1953). This method is also one kind of Markov chain Monte Carlo methods. Moreover,

it gives rise to the Gibbs sampler as a special case. We use the Gibbs sampling method in

Section 5, and the burn-in period is 500.

2. Draw γ from Z.

p(γ|Z) ∝ p(Z|γ)p(γ)

∝ (1 + c)−qγ/2 exp
{
−1

2
S(γ)

}
p

Π
i=1

πγi
i (1− πi)

1−γi , (8)

where qγ =
∑

γi and S(γ) = Z ′Z − c
1+c

Z ′Xγ(X
′
γXγ)

−1X ′
γZ. We can draw γ component-

wise from p(γi|Z, γj 6=i). Then,

p(γi|Z, γj 6=i) ∝ p(Z|γ)p(γi)

∝ πγi
i (1− πi)

1−γi(1 + c)−qγ/2 exp
{
−1

2
S(γ)

}
. (9)

After suitable burn-in period (10,000 or 100,000 in section 5.1), we obtain the samples at

the tth iteration:
{
Zt,γt, t = 1, · · · ,m

}
. Then, calculate the total number appeared in the

sample for each gene. We can make prediction by those genes with higher frequency.

4.2 Prediction

After getting the posterior frequency of each gene, we can select q genes with higher

frequency, where q ≤ p. Let Xq = (x′1,···,x
′
n)′, a n × q matrix, be the columns of X

corresponding to those q genes, where xi is a q× 1 vector, for i = 1, · · · , n, and let βq be the
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regression parameters. Then we use probit regression model with n latent variables (Z1,···,Zn)

to make prediction (Albert and Chib 1993). The computation schemes are as follows:

1. Given βq and Y , draw Zi, i = 1, · · · , n, from the following distribution,

Zi|Yi,βq ∼ N(xi
′βq, 1) truncated at the left by 0 if Yi = 1

Zi|Yi,βq ∼ N(xi
′βq, 1) truncated at the right by 0 if Yi = 0

where βq, the regression parameters of Xq, is a q × 1 vector. It is a truncated normal

distribution, so we can use Robert’s (1995) optimal exponential accept-reject algorithm to

generate Zi.

2. Draw βq conditional on Y and Z. The prior for βq is Nq(0, c(X ′
qXq)

−1), where

c is a positive scale factor specified by the user. We obtain that βq|Y ,Z is distributed

Nq(V X ′
qZ, V ), where V = c

1+c
(X ′

qXq)
−1. If the prior distribution of βq is diffuse (taking

c = ∞), then βq|Y ,Z is a multivariate normal distribution with mean (X ′
qXq)

−1(X ′
qZ)

and covariance matrix (X ′
qXq)

−1.

The starting value of βq, β(0)
q may be taken to be the least squares (LS) estimate

(X ′
qXq)

−1X ′
qY . After suitable burn-in period (k = 200 in Section 5.2 ), we obtain the

samples :
{
Zt,βt

q, t = 1, · · · , m
}
. Then , we can estimate the posterior mean of βq with

1
m

m

Σ
t=1

βt
q. As coming with a new observation Ynew, whose gene expression levels x is a p × 1

vector, we can predict it based on the probit model. Let xq be the elements of x corre-

sponding to the q genes we selected, then the probability of Ynew = 1 conditional on x

is

P (Ynew = 1|x) = Φ(x′qβq) (10)

5. Application to Hereditary Breast Cancer Data

We apply the above model to a published data set (Hedenfalk et al., 2001). There are

totally 22 tumor samples (n = 22) from 21 breast cancer patients : 7 tumors with BRCA1 mu-
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tations, 8 tumors with BRCA2 mutations and 7 sporadic tumors. For each sample, the gene

size is 3226 (p = 3226). Here we give each sample a number as the collum order of the orig-

inal data, 1, · · · , 22, obtained in http : //research.nhgri.nih.gov/microarray/selected publ

ications.html .

Some pathological features help us to distinguish these tumors. For tumors with BRCA1

mutations, there are higher mitotic index, pushing tumor margins and lymphocytic infil-

trate. Moreover, BRCA1 tumors are generally negative for both estrogen and progesterone

receptors, but tumors with BRCA2 mutations are positive for these hormone receptors and

heterogeneous with substantially less tubule formation. These features imply different but

overlapping functions for BRCA1 and BRCA2 tumors.

Now, we want to use the scheme we propose to classify BRCA1 (Y = 1) versus the others

(BRCA2 and sporadic : Y = 0). First, we have to select some significant genes, and then to

make prediction.

5.1 Gene selection

We control the size of selected genes to be about 10 on average by fixing πi = 0.003,

for i = 1, · · · , 3226, and take c = 100. Before we run the Gibbs sampler, the data has

to be normalized with mean zero and variance one for each gene. To be sure that the

result of gene selection would be convergent, we generate two different Gibbs sequences

with two starting values of γ. One is to select 10 genes, which are in the 253th, 555th,

556th, 585th, 806th, 1068th, 1443th, 1999th, 3009th and 3013th rows of the original data,

by the weight of support vector machines (SVMs) (Hastie et al., 2001), whose image cloneID

number are 28469, 548957, 212198, 293104, 46182, 840702, 566887, 247818, 366647 and

375922 respectively. For another starting values, we select arbitrarily 10 genes in the 8th,

19th, 22th, 23th, 44th, 50th, 56th, 60th, 70th and 100th rows of the original data, which

10



have small correlation coefficients with the above 10 genes. Their image cloneID number are

25584, 30272, 31169, 32875, 42059, 43231, 44180, 45233, 51293 and 36393 respectively. We

describe only the genes as their row numbers of the original data in the following. Table 1

gives the correlation coefficients of these 20 genes.

After a 10,000 burn-in period, we collect 330,000 samples of γ(t) for both starting values.

Among these 330,000 samples, the sizes of selected genes at each iteration are 7.29 (the

first starting value) and 7.31 (the second starting value) on average . Table3 lists 10 most

significant genes with the highest frequencies. Besides the result of collecting 330,000 γ(t),

we also delete the first 90,000 of 330,000 samples to collect the latest 240,000 samples. The

results of the first starting value are shown in Table3. Similarly, Table4 is the result of the

second starting value. Among these 240,000 samples of γ(t), 7.28 and 7.32 are the averaged

size of selected genes in each iteration for both starting values respectively. We found that

the result of gene selection is almost the same regardless of the starting values and the size

of samples being deleted. Table2 lists the description of these genes.

5.2 Leave-One-Out Cross Validation

After the above process, some significant genes which can differentiate the two classes are

obtained. From Table3 and Table4, the frequency of gene 1068 is higher than others clearly.

Therefore, we select it to the model. As for the other genes, the first four genes except gene

1068 are considered, which are gene 3009, 2734, 1999 and 2761.

Since there are 22 samples in total, we use the method of leave-one-out cross validation

to check the adequacy. As leaving the ith sample out as test data, i = 1, · · · , 22, we first find

the mean and variance of the other 21 samples, and then normalize these 22 samples.

We can not iterate too many times since the round-off error would become larger as

the number of iteration increases in our programs. But iterating too few times would not
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converge. Therefore, we take k = 200 (burn-in period) and m = 500 after monitoring the

convergence of several different Gibbs sequences. Then, there are 500 samples in each Gibbs

sequence. We simulate totally 20 Gibbs sequences to obtain 10,000 samples. To get the

posterior mean of β, we average these samples. Repeat this process until we collect 40

averaged βs and get 40 probabilities of Yi = 1, for all i. We list their mean and standard

deviation in Table5 to Table8.

To make prediction, we consider the five selected genes and all combinations of 2 genes

and 3 genes among them, where gene 1068 has to be contained. If the selected genes are

1068 and 2761, the leave-one-out error is 0. Table5 lists the detail for its mean and standard

deviation of 40 probabilities that Yi is equal to 1. All of the other combinations of 2 genes

have 1 leave-one-out error. Selection of 1068 & 1999 classifies sample16 to the wrong class,

and the combination of 1068 & 2734 classify sample5 wrong. Gene 1068 & 3009 classify

sample 1 wrong, too. Moreover, these samples have also error when they are being training

data. For 3 genes, we describe the result of all combinations in Table6. Although there

are 3 kinds of combinations which have both 0 error in test and training data, only the

combination, 1068, 2761 and 3009, does not have any problem in all samples. Thus, we

think it as the best fit, and list its detail in Table7. Finally, using all of the 5 genes gives us

that the leave-one-out error is also 0. Table8 lists the detailed result of 5 genes.

Of course, we obtain a better fit on training set as the size of selected genes increasing.

But what we care about is to classify samples to the right class by fewer genes. We therefore

select genes whose size are no more than five to make prediction.

6. Conclusion and Future Work

Lee et el. (2003) proposed a Bayesian model for gene selection with binary data, and then

used a hierarchical probit model and MCMC based stochastic search techniques to obtain
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the posterior samples. We modify their algorithm in gene selection and prediction, and avoid

the disadvantage of taking c = ∞ always. The results of gene selection are different from

their result, but its adequacy is still good. One drawback of our method is that we have to

iterate much more times than theirs since our method is to deal with a multivariate case.

Sha (2002) had extended two categories of events to multi-category data. Here we as-

sumed that the probability of each genes being selected is independent with each other. As

Lee et el. suggested, we can extend it to dependent case. For example, we know that the jth

gene will be expressed if the ith gene is expressed. Then we can change the prior distribution

of γ and use a Markov model whose transition matrices will be defined as p(γj = 1|γi = 1)

or so.

Lee et al. (2003) also suggested to extend the model with fixed π value by allowing π to

be an unknown model parameter and assigning a conjugate beta prior to it. If we have prior

knowledge that the ith gene is more important than others , it is possible to assign larger

values of πi in a scale of importance from 0 to 1.

We can also consider other kind of linking function in our model, for example, the logit

linking function,

log(
pi

1− pi

) = x′iβ. (11)

Finally, we can find some ways to avoid the computational round-off error in the algorithm

of prediction.
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Appendix

A The Reason to Integrate βγ Out

From the model for gene selection, we obtain the joint distribution of β, γ and Z, which

is

p(β, γ,Z) ∝ p(γ)p(β|γ,X)p(Z|β,X)p(Y |Z), (A.1)

where p(Y |Z) = 1 if Yi = 1 and Zi > 0 or Yi = 0 and Zi < 0 for all i = 1, · · · , n; otherwise,

it is equal to zero. In order to draw the samples (β,γ, Z), we use Gibbs sampling. The

computation scheme will be as follows:

(i) Draw γ|β,Z: the conditional distribution is

p(γ|β, Z) ∝ p(γ)p(β|γ, X) = p(γ)p(βγ)

∝ p

Π
i=1

πγi
i (1− πi)

1−γi
1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
− 1

2c
β′γ(X

′
γXγ)βγ

}
. (A.2)

We can draw it componentwise from p(γi|β,Z, γj 6=i) which is

p(γi|β,Z, γj 6=i) ∝ p(γi)p(βγ)

∝ πγi
i (1− π)1−γi

1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
− 1

2c
β′γ(X

′
γXγ)βγ

}
. (A.3)

(ii) Draw Z|β, γ: the conditional distribution is

p(Z|β, γ) ∝ p(Z|β,X)p(Y |Z) =
n

Π
i=1

p(Zi|β, xi)p(Yi|Zi)
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Hence, the full conditional distribution of Zi is as follows:

{
Zi|β, Yi = 1 ∝ N(x′iβ, 1) truncated at the left by 0
Zi|β, Yi = 0 ∝ N(x′iβ, 1) truncated at the right by 0

(A.4)

(iii) Draw β|γ, Z, which is equivalent to draw βγ|Z : the conditional distribution is the

same as (B.9).

Since the model we have is γi = 0 if βi = 0 and γi = 1 if βi 6= 0, we always get γ
(new)
i = 0

if β
(old)
i = 0 and γ

(new)
i = 1 if β

(old)
i 6= 0 in step (i). Then, we can not implement the gene

selection scheme. Therefore, if we integrate β (βγ) out in step (i) and (ii), we can solve the

problem.

B Derivation of the Marginal Conditional Distributions

Since Zi ∼ N(x′iβ, 1), i = 1, 2, · · · , n, are independent, the distribution of Z given γ, βγ

and Xγ is Nn(Xγβγ, I). Also, the prior for βγ is Nq(0, c(X ′
γXγ)

−1), where q =
p

Σ
i=1

γi. By

(A.1), the marginal conditional distribution of β and Z given γ is

p(β,Z|γ) ∝ p(β|γ, X)p(Z|β,X)p(Y |Z) = p(βγ)p(Z|βγ)p(Y |Z),

where p(Y |Z) = 1 if Yi = 1 and Zi > 0 or Yi = 0 and Zi < 0 for all i = 1, · · · , n; otherwise,

it is equal to zero. Now, we derive p(Z|βγ)p(βγ).

p(Z|βγ)p(βγ) ∝ exp
{
−1

2
(Z −Xγβγ)

′(Z −Xγβγ)
}

× 1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
− 1

2c
β′γ(X

′
γXγ)βγ

}

=
1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
−1

2
(1 + c−1)β′γ(X

′
γXγ)βγ + Z ′Xγβγ

}
exp

{
−1

2
Z ′Z

}
, (B.1)
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where qγ =
∑

γi. If we let V γ = (1 + c−1)−1(X ′
γXγ)

−1 and β0 = V γX
′
γZ = (1 +

c−1)−1(X ′
γXγ)

−1 X ′
γZ. then (B.1) can be rewritten as

p(Z|βγ)p(βγ) ∝ exp
{
−1

2
β′γV

−1
γ βγ + β′0V

−1
γ βγ −

1

2
β′0V

−1
γ β0

}

× 1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
−1

2
Z ′Z +

1

2
β′0V

−1
γ β0

}

= exp
{
−1

2
(βγ − β0)

′V −1
γ (βγ − β0)

}
1

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
−1

2
Z ′Z +

1

2
β′0V

−1
γ β0

}

∝ exp
{
−1

2
(βγ − β0)

′V −1
γ (βγ − β0)

} |V γ|1/2

cqγ/2
∣∣∣X ′

γXγ

∣∣∣
−1/2

exp
{
−1

2
Z ′Z +

1

2
β′0V

−1
γ β0

}

= exp
{
−1

2
(βγ − β0)

′V −1
γ (βγ − β0)

}
(1 + c)−qγ/2 exp

{
−1

2
Z ′Z +

1

2
β′0V

−1
γ β0

}
, (B.2)

where Z ′Xγβγ = β′0V
−1
γ βγ, and

|V γ|1/2

cqγ/2

∣∣∣X ′
γXγ

∣∣∣
−1/2 = (1 + c)−qγ/2.

To integrate β (βγ) out, we obtain

p(Z|γ) ∝ p(Y |Z)×
∫

p(Z|βγ)p(βγ)dβγ

∝ (1 + c)−qγ/2 exp
{
−1

2
S(γ)

}
× p(Y |Z)

∝ exp
{
−1

2
Z ′(I − c

1 + c
Xγ(X

′
γXγ)

−1Xγ)Z
}
× p(Y |Z), (B.3)

where S(γ) = Z ′Z − β′0V
−1
γ β0 = Z ′Z − c

1+c
Z ′Xγ(X

′
γXγ)

−1X ′
γZ.

The distribution of γ|Z is

p(γ|Z) ∝ p(Z|γ)p(γ)
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∝ (1 + c)−qγ/2 exp
{
−1

2
S(γ)

}
p

Π
i=1

πγi
i (1− πi)

1−γi . (B.4)

Then,

p(γi|Z, γj 6=i) ∝ p(Z|γ)p(γi)

∝ πγi
i (1− πi)

1−γi(1 + c)−qγ/2 exp
{
−1

2
S(γ)

}
. (B.5)

Since

p(γi = 1|Z, γj 6=i) ∝ πi(1 + c)−qγ1/2 exp
{
−1

2
S(γ1)

}
(B.6)

p(γi = 0|Z, γj 6=i) ∝ πi(1 + c)−qγ0/2 exp
{
−1

2
S(γ0)

}
, (B.7)

where γ1 = (γ1, · · · , γi = 1, · · · , γp) and γ0 = (γ1, · · · , γi = 0, · · · , γp),

p(γi = 1|Z, γj 6=i) =
1

1 + (B.7)
(B.6)

=
1

1 + 1−πi

πi
(1 + c)1/2 exp

{
−1

2
[S(γ0)− S(γ1)]

} (B.8)

Since p(βγ|Z) ∝ p(Z|βγ)p(βγ), by (B.2) , we have

p(βγ|Z) ∝ exp
{
−1

2
(βγ − β0)

′V −1
γ (βγ − β0)

}
. (B.9)

Hence, the posterior distribution of βγ is βγ|Z ∼ Nq(β0,V γ).
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Table1. The correlation coefficients of the genes between the two starting values of γ  

( : the first starting value ; : the second starting value) → ↓
 

p 253 555 556 585 806 1068 1443 1999 3009 3013 

8 0.0333 -0.2633 -0.1320 0.3481 -0.1951 -0.2192 0.0058 0.1036 -0.1150 -0.1580

19 -0.2782 0.1747 -0.0900 -0.3780 -0.1280 -0.0058 0.2356 0.0266 0.2147 0.2317

22 0.2481 -0.2492 0.2954 0.1030 -0.2415 -0.2333 -0.1464 -0.1928 -0.0687 0.0855

23 0.3492 -0.0368 0.3180 0.0491 -0.2392 -0.1310 -0.3713 -0.3935 0.0199 0.0089

44 -0.0451 -0.1533 -0.1760 -0.2278 0.1723 -0.4236 0.2843 -0.1925 -0.0488 0.1380

50 -0.1264 -0.6029 0.0471 0.0960 -0.1734 -0.0264 0.4177 0.0690 -0.1326 0.3199

56 -0.1000 -0.3118 -0.1860 -0.0529 0.2447 0.2735 0.2909 0.3084 0.3310 -0.1850

60 0.0355 -0.1657 -0.0040 0.0585 -0.1753 -0.0977 0.2585 -0.144 0.1034 0.0978

70 -0.0170 -0.2002 -0.0960 0.1952 -0.0245 -0.2882 0.2914 0.1384 0.1532 -0.3010

100 0.0487 0.3566 0.0799 -0.0827 -0.0669 0.0092 -0.2858 0.0040 0.3823 -0.1960

 
 
 
 

Table2. The description of the 10 most significant genes 
 

# row   Clone ID  Gene descreption 

963  897646  splicing factor, arginine/serine-rich 4 

1068  840702  
SELENOPHOSPHATE SYNTHETASE ; Human selenium donor 
protein 

1277  73531  nitrogen fixation cluster-like 
1620  137638  ESTs 
1859  307843  ESTs; eukaryotic translation initiation factor 2C, 2* 
1999  247818  ESTs; Homo sapiens cDNA FLJ13495 fis, clone PLACE1004425*
2423  26082  very low density lipoprotein receptor 
2734  46019  minichromosome maintenance deficient (S. cerevisiae) 7 

2761  47884  
macrophage migration inhibitory factor (glycosylation-inhibiting 
factor) 

3009  366647  butyrate response factor 1 (EGF-response factor 1) 

* the descriptions in Kim et al. (2002) 
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Table3. 10 most significant genes with the first starting value of γ  

 
delete 10,000; collect 330,000 delete 100,000; collect 240,000 

# row  Frequency* (%) # row Frequency* (%) 
1068  6.487575758   1068 6.100000000 
3009  4.249090909   3009 4.406666667 
2734  3.983939394   2734 4.367500000 
1999  3.872424242   1999 3.806250000 
2761  3.175151515   2423 3.163333333 
2423  2.887575758   2761 2.950000000 
1620  2.517575758   1859 2.697083333 
1859  2.498181818   963 2.582916667 
963  2.474848485   1620 2.579583333 

1277  1.993636364   1277 1.861250000 
*Percentage of times the genes appeared in the samples 
 
 
 
Table4. 10 most significant genes with the first starting value of γ  
 
delete 10,000; collect 330,000 delete 100,000; collect 240,000 

# row  Frequency (%) # row Frequency (%) 
1068  7.296666667   1068 7.695000000 
3009  4.317878788   3009 4.322916667 
2734  3.408181818   2734 3.793750000 
1999  3.306969697   1999 3.183750000 
2761  2.932727273   2761 2.957500000 
2423  2.570909091   1859 2.420000000 
1859  2.468787879   2423 2.392916667 
1277  2.226666667   1277 2.194583333 
963  2.084242424   963 2.128333333 

1620  2.070000000   1620 1.939166667 
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Table5. The mean and standard deviation of 40 probabilities (  = 1) for 2 genes, 
which are 1068 and 2761. 

iY

 
real Y 1 0 0 0 

sample 
# 

1 7 8 10 

leave # 
out 

mean (std.) mean (std.) mean (std.) mean (std.) 

1 0.99993 (0.00015) 0.000094 (0.00019) 0.0780 (0.0239) 0.00004 (0.000090) 

2 0.99999 (0.00001)  0.000118 (0.00010) 0.1386 (0.0239) 0.00005 (0.000047) 

3 1.00000 ( 0 ) 0.000868 (0.00064) 0.4873 (0.0260) 0.00041 (0.000376) 

4 1.00000 (0.00001)  0.000120 (0.00013) 0.1617 (0.0298) 0.00006 (0.000073) 

5 0.99999 (0.00002)  0.000155 (0.00016) 0.1143 (0.0270) 0.00006 (0.000064) 

6 1.00000 ( 0 )  0.000419 (0.00033) 0.3703 (0.0244) 0.00024 (0.000205) 

7 0.99981 (0.00013)  0.000012 (0.00001) 0.0299 (0.0113) 0* (0.000005) 

8 0.99984 (0.00022)  0.000044 (0.00008) 0.0580 (0.0191) 0.00002 (0.000046) 

9 0.99904 (0.00147)  0.000016 (0.00008) 0.0112 (0.0086) 0.00001 (0.000032) 

10 0.99977 (0.00023)  0.000013 (0.00002) 0.0239 (0.0104) 0* (0.000010) 

11 0.99964 (0.00040)  0.000006 (0.00001) 0.0138 (0.0084) 0* (0.000004) 

12 0.99977 (0.00017)  0.000021 (0.00002) 0.0333 (0.0102) 0* (0.000007) 

13 0.99947 (0.00045)  0.000005 (0.00001) 0.0121 (0.0065) 0* (0.000003) 

14 0.99941 (0.00055)  0.000006 (0.00001) 0.0115 (0.0056) 0* (0.000002) 

15 0.99952 (0.00037)  0.000005 (0.00001) 0.0123 (0.0049) 0 ( 0 )  

16 0.99976 (0.00029)  0.000048 (0.00008) 0.0371 (0.0146) 0.00001 (0.000027) 

17 0.99976 (0.00025)  0.000036 (0.00005) 0.0364 (0.0141) 0.00001 (0.000015) 

18 0.99996 (0.00004)  0.000054 (0.00006) 0.1398 (0.0275) 0.00004 (0.000049) 

19 0.99927 (0.00055)  0.000002 (0.00001) 0.0082 (0.0048) 0* (0.000002) 

20 0.99978 (0.00015)  0.000019 (0.00002) 0.0256 (0.0093) 0* (0.000005) 

21 0.99964 (0.00028)  0.000006 (0.00001) 0.0164 (0.0091) 0* (0.000003) 

22 0.99972 (0.00036)  0.000010 (0.00002) 0.0197 (0.0095) 0* (0.000008) 

 
0* means that its value is less than . 510−

If we leave 1 out as test data, the first element of its row is 1. The other samples are as 
the set of training data. Thus, all probabilities of this row are training probability 
except the probability which has a line under it. 

All samples which we do not list here have perfect fit regardless of being training or 
test, whose probabilities are either 0 or 1 corresponding to their real responses. 
Moreover, their variance is zero.  
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Table5. (Continued) The mean and standard deviation of 40 probabilities (  = 1) for 
2 genes, which are 1068 and 2761. 

iY

 
real Y 0 0 0 1 0 

sample 

# 
12 16 17 18 20 

Leave 

# out 
mean (std.) mean (std.) mean (std.) mean (std.) mean (std.) 

1 0.0008 (0.0011) 0.109 (0.023) 0.014 (0.008) 0.998 (0.0023) 0.002 (0.003) 

2 0.0011 (0.0007) 0.144 (0.020) 0.019 (0.006) 0.998 (0.0012) 0.003 (0.002) 

3 0.0078 (0.0034) 0.460 (0.014) 0.094 (0.014) 1.000 (0*)  0.013 (0.005) 

4 0.0011 (0.0008) 0.140 (0.016) 0.016 (0.006) 0.998 (0.0016) 0.002 (0.001) 

5 0.0015 (0.0011) 0.174 (0.020) 0.026 (0.009) 0.999 (0.0006) 0.005 (0.003) 

6 0.0033 (0.0018) 0.265 (0.022) 0.039 (0.011) 1.000 (0.0002) 0.003 (0.002) 

7 0.0002 (0.0001) 0.063 (0.012) 0.006 (0.002) 0.996 (0.0029) 0.001 (0.001) 

8 0.0004 (0.0005) 0.072 (0.014) 0.008 (0.004) 0.993 (0.0054) 0.001 (0.001) 

9 0.0002 (0.0004) 0.046 (0.015) 0.005 (0.004) 0.995 (0.0056) 0.001 (0.002) 

10 0.0002 (0.0002) 0.067 (0.016) 0.007 (0.004) 0.997 (0.0029) 0.002 (0.001) 

11 0.0001 (0.0002) 0.054 (0.015) 0.005 (0.003) 0.998 (0.0029) 0.001 (0.001) 

12 0.0003 
(0.0002) 

0.073 (0.013) 0.008 (0.003) 0.997 (0.0021) 0.002 (0.001) 

13 0.0001 (0.0001) 0.048 (0.014) 0.005 (0.003) 0.997 (0.0029) 0.001 (0.001) 

14 0.0001 (0.0001) 0.049 (0.016) 0.005 (0.003) 0.997 (0.0025) 0.002 (0.001) 

15 0.0001 (0.0001) 0.044 (0.013) 0.004 (0.002) 0.996 (0.0023) 0.001 (0.001) 

16 0.0006 (0.0006) 0 097 . (0.021) 0.013 (0.007) 0.998 (0.0022) 0.004 (0.003) 

17 0.0004 (0.0004) 0.083 (0.020) 0 010 . (0.005) 0.997 (0.0026) 0.003 (0.002) 

18 0.0004 (0.0003) 0.059 (0.014) 0.005 (0.002) 0.977 (0.0137) 0.000 (0.000) 

19 0.0001 (0.0001) 0.042 (0.012) 0.004 (0.002) 0.997 (0.0028) 0.001 (0.001) 

20 0.0003 (0.0002) 0.092 (0.023) 0.012 (0.006) 0.999 (0.0014) 0 004 . (0.004) 

21 0.0001 (0.0001) 0.053 (0.013) 0.005 (0.003) 0.996 (0.0037) 0.001 (0.001) 

22 0.0001 (0.0002) 0.054 (0.014) 0.005 (0.003) 0.997 (0.0031) 0.001 (0.001) 

 

0* means that its value is less than . 410−
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Table6. The result of all combinations for 3 genes. 
 

3 
genes 

leave-one-out test error train error 

1068 
2761 
3009 

 
0 ; all probabilities are almost 0 or 1, 
and their std. are almost 0. Except 
sample8,11, 14,16,17,20,21, the others 
have perfect fits. 
 

0 ; all probabilities are almost 0 or 1, and 
their std. are almost 0. Except sample6,8, 
11,14,16,17,20,21, the others have perfect 
fits. 

1068 
2734 
3009 

 
 

1 ; sample 5 is .0176(. 0166), which is 
classified wrong; sample1 is .7082
(.1084) and sample14 is .4537(.1896), 
which are both bad prediction. The 
others are almost perfect. 
    

0 ; all probabilities are close to 0 or 1, and 
their std. are close to 0. Sample2~4,6,8,9,
11~13,18,19,22 have perfect fits. 
 
 
 

1068 
1999 
3009 

 

0 ; sample5 is .8341(.1636); sample16 
is .3184(.0907).The others are perfect 
both in mean and std. except sample7
and 15, which are very close to 0. 
 

0 ; All samples have perfect fits except 
sample7,12,14~17,20,21. Especially, the 
prob. of sample16 is between .0287 
and .3282 with std. smaller than .0448.  
 

1068 
2734 
2761 
 

0 ; sample1 is .9381(.0388); sample18 
is .986(.0124). Except that sample1, 
7~10, 16~18, 20 are close to 0 or 1 with 
std. close to 0 , the others are perfect. 
 

0 ; Except sample1,7,8,10,16~18,20 are 
close to 0 or 1 with std. close to 0, the 
others have perfect fits. 
 
 

1068 
1999 
2761 
 

0 ; sample16 is .3533(.0807), which is a 
bad prediction. Except that sample6, 7, 
9, 12, 16 ~18 are close to 0 or 1 with 
std. close to 0, the others are almost 
perfect. 
 

1 ; Except sample1,6, 7, 9, 12, 16, 17,20 
close to 0 or 1 with std. close to 0, the 
others have perfect fits. The prob. of 
sample16 is between .0633 and .5653 
with std. smaller than .0342. 
 

1068 
1999 
2734 
 

1 ; The error occurred in sample1 with 
prob. .4283 (.0634). Sample7 is .4049 
(.01435), a bad training. As for the 
others, all are either 0 or 1 with std. 
zero except sample7,10,15~17 are close 

0 ; Except sample1 and sample7, the 
others are very close to 0 or 1. The prob. 
of sample1 is between .5921 and .9229 
with std. smaller than .03995. Sample7 is 
between .0129 and .0801 with std. smaller 
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to 0 in both prob. and std than .0276. 
Table7. The mean and standard deviation of 40 probabilities (  = 1) for gene 1068, 

2761, and 3009. 
iY

 
real Y 1 0 0 0 

sample 
# 

6 8 11 14 

leave  
# out 

mean (std.) mean (std.) 
mean

( )710−×

(std.) 

( )610−×

mean 

( ) 710−×

(std.) 

( )610−×
1 1 ( 0 ) 0.00069 (0.00094) 32.5 (12.90) 0 ( 0 ) 

2 1 ( 0 ) 0.00066 (0.00068) 42.5 (11.50) 2.5 (1.60) 

3 1 ( 0 ) 0.00100 (0.00103) 12.5 (5.200) 0 ( 0 ) 

4 1 ( 0 ) 0.00121 (0.00149) 72.5 (23.90) 2.5 (1.60) 

5 0.9781 (0.064) 0 ( 0 )  0 ( 0 ) 35.0 (11.7) 

6 1 ( 0 ) 0.00126 (0.00230) 70.0 (28.80) 2.5 (1.60) 

7 1 ( 0 ) 0.00016 (0.00022) 7.5 (2.600) 0 ( 0 ) 

8 1 ( 0 ) 0.00046 (0.00061) 35.0 (10.20) 0 ( 0 ) 

9 1 ( 0 ) 0.00003 (0.00004) 12.5 (7.900) 0 ( 0 ) 

10 1 ( 0 ) 0.00009 (0.00014) 52.5 (28.60) 0 ( 0 ) 

11 1 ( 0 ) 0.00064 (0.00062) 3190.0 (983.1) 0 ( 0 ) 

12 1 ( 0 ) 0.00006 (0.00006) 10.0 (3.800) 0 ( 0 ) 

13 1 ( 0 ) 0.00005 (0.00007) 10.0 (4.400) 0 ( 0 ) 

14 1 ( 0 ) 0.00011 (0.00018) 30.0 (12.20) 2.5 (1.60)

15 1 ( 0 ) 0.00016 (0.00026) 7.5 (3.500) 0 ( 0 ) 

16 1 ( 0 ) 0.00024 (0.00028) 7.5 (2.700) 0 ( 0 ) 

17 1 ( 0 ) 0.00018 (0.00022) 25.0 (7.800) 0 ( 0 ) 

18 1 ( 0 )  0.00183 (0.00188) 10.0 (3.800) 0 ( 0 ) 

19 1 ( 0 ) 0.00004 (0.00006) 0 ( 0 ) 0 ( 0 ) 

20 1 ( 0 ) 0.00015 (0.00019) 25.0 (9.300) 0 ( 0 ) 

21 1 ( 0 ) 0.00011 (0.00015) 2.5 (1.600) 0 ( 0 ) 

22 1 ( 0 ) 0.00009 (0.00009) 32.5 (12.30) 0 ( 0 ) 
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Table7. (Continued) The mean and standard deviation of 40 probabilities (  = 1) for 

gene 1068, 2761, and 3009. 
iY

 
real Y 0 0 0 0 

sample 
# 

16 17 20 21 

leave  
# out 

mean (std.) 
mean

( )610−×

(std.) 

( )610−×

mean

( )610−×

(std.) 

( )610−×

mean 

( ) 610−×

(std.) 

( )610−×
1 0.00236 (0.0018)  72.8 (90.80) 0 (0) 4.3 (11.30) 

2 0.00198 (0.0014)  48.3 (61.00) 0 (0) 6.5 (18.60) 

3 0.00912 (0.0074)  173.0 (309.0) 0.3 (1.58) 34.3 (41.00) 

4 0.00241 (0.0021)  70.5 (94.10) 0 (0) 12.3 (22.80) 

5 0.00237 (0.0016)  159.3 (161.0) 13.3 (33.4) 123.0 (147.6) 

6 0.00359 (0.0017)  78.0 (61.30) 0 (0) 19.0 (25.40) 

7 0.00024 (0.0003)  4.3 (10.70) 0 (0) 1.0 (3.700) 

8 0.00044 (0.0004)  8.0 (14.90) 0 (0) 0.5 (2.200) 

9 0.00007 (0.0001) 0.5 (2.200) 0 (0) 0 (0) 

10 0.00014 (0.0002)  2.0 (7.200) 0 (0) 0.3 (1.600) 

11 0.00008 (0.0001)  0.5 (2.200) 0 (0) 1.8 (4.500) 

12 0.00008 (0.0001)  0 (0) 0 (0) 0.3 (1.600) 

13 0.00004 (0.0000)  0 (0) 0 (0) 0 (0) 

14 0.00033 (0.0006)  8.5 (26.40) 0 (0) 2.8 (8.500) 

15 0.00022 (0.0004)  3.8 (13.70) 0 (0) 0.3 (1.600) 

16 0.00047 (0.0005) 11.0 (20.00) 0 (0) 1.0 (3.000) 

17 0.00027 (0.0003)  4.0 (9.800) 0 (0) 1.8 (4.500) 

18 0.00272 (0.0021)  68.0 (76.50) 0 (0) 0 (0) 

19 0.00008 (0.0001)  0.8 (2.700) 0 (0) 0 (0) 

20 0.00018 (0.0003)  3.0 (14.40) 0 (0) 0.5 (2.200) 

21 0.00031 (0.0004)  7.0 (17.40) 0 (0) 0.3 (1.600)

22 0.00011 (0.0001)  0.3 (1.600) 0 (0) 0.5 (2.200) 
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Table8. The mean and standard deviation of 40 probabilities (  = 1) for 5 genes, 

which are 1068, 1999, 2734, 2761 and 3009. 
iY

 
real Y 0 0 0 0 

sample 
# 

7 14 15 16 

leave 
# out 

mean (std.) mean (std.) mean (std.) mean (std.) 

1 0.000510 (0.000921)  0 (0.000002) 0 ( 0 ) 0.000058 (0.000072) 

2 0.000069 (0.000166)  0 ( 0 ) 0* (0.000002) 0.000287 (0.000614) 

3 0.000017 (0.000028)  0.000001 (0.000003) 0 ( 0 ) 0.000361 (0.000549) 

4 0.000161 (0.000294)  0.000001 (0.000003) 0 ( 0 ) 0.000115 (0.000177) 

5 0.000002 (0.000005)  0.000007 (0.000023) 0* (0.000002) 0.000059 (0.000090) 

6 0.000120 (0.000187)  0.000001 (0.000004) 0 ( 0 ) 0.000098 (0.000137) 

7 0.001257 (0.002861) 0 ( 0 ) 0 ( 0 ) 0.000028 (0.000071) 

8 0.000025 (0.000044)  0 ( 0 ) 0 ( 0 ) 0.000023 (0.000040) 

9 0.000007 (0.000018)  0 ( 0 ) 0 ( 0 ) 0.000002 (0.000006) 

10 0.000022 (0.000083)  0 ( 0 ) 0 ( 0 ) 0.000006 (0.000015) 

11 0.000009 (0.000017)  0 ( 0 ) 0 ( 0 ) 0.000004 (0.000009) 

12 0.000012 (0.000020)  0 ( 0 ) 0 ( 0 ) 0.000004 (0.000012) 

13 0.000008 (0.000017)  0 ( 0 ) 0 ( 0 ) 0.000003 (0.000009) 

14 0.000021 (0.000064)  0.000006 (0.000029) 0 ( 0 ) 0.000004 (0.000011) 

15 0.000056 (0.000133)  0 ( 0 ) 0* (0.000002) 0.000016 (0.000026) 

16 0.000080 (0.000113)  0 ( 0 ) 0 ( 0 ) 
0.000349 (0.000515) 

17 0.000023 (0.000039)  0 ( 0 ) 0 ( 0 ) 0.000001 (0.000003) 

18 0.000023 (0.000036)  0 ( 0 ) 0 ( 0 ) 0.000046 (0.000052) 

19 0.000013 (0.000024)  0 ( 0 ) 0 ( 0 ) 0.000013 (0.000050) 

20 0.000013 (0.000023)  0 ( 0 ) 0 ( 0 ) 0.000001 (0.000002) 

21 0.000043 (0.000082)  0 ( 0 ) 0 ( 0 ) 0.000021 (0.000045) 

22 0.000020 (0.000060)  0 ( 0 ) 0 ( 0 ) 0.000004 (0.000013) 

 
0* means that its value is less than . 610−
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