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National Chiao Tung University

ABSTRACT

DNA micro-array experiments provide us-thousands of genes data at once. How to
identify the responsible genes-is an important problem. Lee et al. (2003) propose a
hierarchical Bayesian model for gene selection. They use latent variables to specialize the
model as a regression setting, and then use a Bayesian mixture prior to perform the gene
selection. The method they use to simulate parameters is Gibbs sampling, one kind of MCMC
method. We modify their algorithm of gene selection and prediction in this paper. The method
is applied successfully to hereditary breast cancer data to classify tumors with BRCA1 and

BRCAZ2 mutations.
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1. Introduction

DNA micro-array technology has made expression measurements for thousands of genes
in a single experiment possible. One challenge is to find the genes most likely differentially
expressed among different classes. Then, these informative genes can be used to classify a
new observation.

Lee et al.(2003) propose a hierarchical Bayesian model for gene selection. They employ
latent variables Z to specialize the model to a regression setting and use a Bayesian mixture
prior to perform the gene selection, where the unknowns are 3 and . By assigning a prior
distribution 7 over the dimension of the model, they can control the size of model (number
of significant genes). Owing to the posterior distributions of the parameters, Z, 3 and -~
are not in explicit form, they use a combination of truncated sampling and Markov Chain
Monte Carlo (MCMC) based computation techniques, specifically Gibbs sampling (Gelfand
and Smith, 1990), to simulate the’parametérsfrom the posterior distribution. This model is
very flexible to find significant genes as/well'as to perform future predictions.

As using the Gibbs sampler, weéshave to take samples from the stationary distribution.
From the model of Lee etal. (2003), ~v, B and Z, which are correlated with each other,
are our unknowns. Typically, we first find their marginal conditional distribution, and then
iterate f(y'+1 3", ZY), f(B A, ZY) and f(Z'H A4, B, until getting the samples we

want.
/Zt /;t [yt f(’)’t,ﬁt,zt)f(’)’t+l|/3t, Zt)f(,Bt+1|’}’t+1,Zt)f(Zt+1|’Yt+1,/Bt+1)d’)/td,6tdzt

= f(y"*, 8", 2", (1)

where (v, 3", Z") is the sample obtained in the ¢th iteration. The left-hand side of (1) gives

the marginal distribution of (v, 3!, Z'*) under assumption that (v, 3", Z") is from



f(v,B, Z). Hence, (1) means that if (v, 3", Z") is from f(v,8, Z), then (v'*!, B!, Z'+1)
is also from f(v,8, Z).

The computation scheme is to iterate f(y'+1 Z"), f(8" |y, Z") and f(Z" |y, 811
in Lee et el. (2003). This process satisfies the stationary property. But they iterate f(y!*!|Z")
 f(Z A 35 and f(B'TH 4, Z') in the part of their algorithm, which does not sat-
isfy the stationary property. Hence, there is a contradiction. Unlike Lee et al. (2003), we
divide the model of gene selection into two parts: one is gene selection over all genes, where
we integrate 3 out to get f(vy|Z) and f(Z]|v); and the other is to check the model adequacy
by leave-one-out cross validation for more significant genes from the first part by the model
of Albert and Chib (1993), where our unknowns are just 8 and Z. We simulate the samples
from f(Z|8) and f(B|Z). It could also be used to make future prediction. Finally, we apply
the model to hereditary breast cancer, datea (22 samples and 3226 genes). The results are
also different from theirs.

In the next section we illustrate the Gibbs sampler. Section 3 draws the model for gene
selection. The computation algorithm that we modify for gene selection and prediction is in
Section 4. Section 5 is the application tojHereditary breast cancer data. Finally, we give a

conclusion and some future work in Section 6.

2. Illustrating the Gibbs Sampler

The Gibbs sampler is one kind of Markov Chain Monte Carlo (MCMC) method. One
can refer to Gilks et al. (1996) for more detail. Here is just an abstract from Casella and
George (1992).

The Gibbs sampler is a technique for generating random variables from a (marginal) dis-

tribution indirectly without having to calculate the density. For example, if we are interested



in obtaining mean or variance of the marginal density

f@)= [ [ gy - dy, 2)

Perhaps the most natural and straightforward approach would be calculating f(z) and using
it to obtain the mean or variance. However, it may be possible that the integration in (2)
is extremely difficult to perform, either analytically or numerically. Another case is that if
(71,72,.-77p) are the unknowns that we are interested in. Unfortunately, the explicit form of
the joint distribution of (71 72..7,) is very difficult to get or even if we obtain it, it is still
difficult to simulate samples directly. In such cases, the Gibbs sampling method provides an
alternative method.

The Gibbs sampler allows us effectively to generate samples Xi,---, X,, from f(x) or
(M) (0 ) from f (1. 7,) without the exact form of f(x) or f(y1,..7,). After
suitable burn-in period, we can obtain thegsamples as we want. And the mean and the
variance of f(x) can be calculated to the desired degree of accuracy by simulating a large
enough sample.

To understand the Gibbs sampler; we.exploré it as the following case. Starting with a set
of random variables (71,...7,), the Gibbs sampler generates samples from f(v;....7y,) by sam-
pling instead from the conditional distributions f( 71 | va... Vp)s f (Y2 | 71,73, ), - f(9 | M1
Yp—1), which are often known in statistical models or easy to simulate. This is done by

generating a ” Gibbs sequence” of random variables

k
O D N G ) N O N ) IR G ) ) )

3ty

The initial value (%0)7,,,77}(,0)) is specified, and the rest of (3) is obtained iteratively by alter-

nately generating values from

W~ fn] (). A9))
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WY ~ Fpa | (Y, AT, 400)
; (+1) j+1
AT s f (I, A TE)). (4)

We refer to this generation method, (3), as Gibbs sampling. The distribution of (%k)’n_’vz(,k))
converges to the true joint distribution f(7...7,). Thus, for k large enough, the final obser-

(k) ’y(k)) is effectively a sample point from f(7yy...7,)-

vation in (3), namely (y;

The convergence (in distribution) of Gibbs sequence (3) can be exploited in a variety
of ways to obtain an approximate sample from f(7;..7,). For example, Gelfand and
Smith (1990) suggest generating m independent Gibbs sequences of length k, and then
using the final value of (’y§k)7,,,7’yl(,k)) fronmi eachr sequence. Another way is to generate one

long Gibbs sequence and then extract every n. observations, that is to take the set of

{(%k) _ %gk))’ (%kw) “ ,Y[()k+T))7 (7£k+2r) 71(>k+2r))’ R .}(see Geyer, 1991). We can also take

)7y L] P’

(v%j )’,._77](,3' )) as j > k, a less wasteftl approach.For &-and r large enough, the samples which

we take would yield approximate samples from: f(7;.... 7,) in all cases.

Gibbs sampling can be used to estimate the density itself by averaging the final condi-
tional densities from m Gibbs sequences. For each sequence from (3), we take ( ~A{F) ,v--,Vz()k))
as a realization of 7y ... 7y, from f(71,..7,). Hence, we have totally m samples from f(v1,... 7p)-
Moreover, the average of the conditional densities f(vi|v1,...,%i—1,%i+1,.Vp) Will closely ap-

proximate to f(7;), and f(7;) can be estimated as

. 1 m
fyi) = *Ef(%lvl Vit Vit ) (5)

mi=1

where (71, -, 751,741, *» ), t = 1,---,m, is the sequence of realized values taken from

Gibbs sequences. The theory behind the calculation in (5) is that the expected value of the

4



conditional density is

Ef (il Yie1,Yit 1, 7p)]

:/ / / / J vl Yie1, Vi, )
T i—1 Y Yit1 Tp

X f (V1 Yim1, Vi1, Yp) A1 -+ - dyimdryigr -+ - dryp = f(7), (6)
a calculation mimicked by (5), since (v1 .. %1 ¥ ) (7 Y y") approxi-

mate a sample from f(y1 .. vio1 Yiy1.. Vp)-
3. Model for Gene Selection

Suppose there are n independent sample. For each sample i, @, = (x;1..x;,) is the
data of gene expression levels, and Y'; is a binary response (normal or tissue), distributed
Bernoulli with probability of success p,. Then. we define the binary regression model as
pi = H(x,3),1=1,---,n., wheré 3.is a p X L vector of regression parameters and H is a
known cdf linking the probabilities\p, with“the linear structure 3.

In order to compute the exact: posterior distribution of 8, Albert and Chib (1993)
introduce a simulation-based approach. Let the link function H be the standard Gaussian
cdf, then we can write the model as p, = Pr(Y,; = 1|3) = ®(x/3),i =1, --,n. The key idea
is to employ n independent latent variables Zq,---, Z,, where Z; is distributed N(x3,1),
and define Y; = 1if Z; > 0 and Y; = 0 otherwise. Also, the latent variables has a normal
linear model Z = XB+¢, where X = (x] . x;)" and ¢ is distributed N, (0, I). If we choose
a multivariate prior for 3, then we can find the posterior distribution of B conditional on Z
and the distribution of Z conditional on 3. It is therefore easy to simulate from both the
marginal posterior distributions by Gibbs sampling algorithm.

As performing gene selection, an indicator variable 4 = (v1,...7,) is needed. We select



the ith gene if 7; =1 (f; # 0); otherwise, it is not selected (8; = 0). Given v, B8, is a ¢ x 1
vector, consisting of all nonzero elements of 3, and X, is a n X ¢ matrix with the columns
of X corresponding to those v; = 1, where ¢ = ii%. Moreover, we make the following prior
assumptions:

1. The ith gene has a prior probability 7; being selected, where 0 < m; < 1,7=1,---,p.
We can control the number of genes in the model by choosing different values of ;. Also, if
we have known that some genes are more important than others, we can assign larger values
of m to it. Here we only consider the case that all w;, ¢ = 1,-- -, p, are equal and there is no
correlation between ~;, ¢ = 1,-- -, p, which means whether the ith gene is selected or not, it
does not effect the jth gene being selected, j # i. Let m be the total number of genes and
7 be the prior probability, the number of selected genes will be m x 7 on average.

2. Given =, the prior for B, is Ne(03e(X. X ,)~'), where ¢ is a positive scale factor
specified by the user. Smith and Kohn (1996) found that the choice of ¢ works well and the
results are insensitive to values of c¢'in the range 10 < ¢ < 100. We want to choose a value
of ¢ such that the prior of 3., given v, contains very little information about 3. compared
to the likelihood. Therefore, we can take &="100.

Moreover, there are two things we need to note. One is that making 3 diffuse by taking
c infinite is impossible. Since it will lead to p(y; = 1|Z,~,2) = 0 for all i; see equation
(B.8) in appendix B. The other is that we have to normalize X with mean zero for each
column (each gene). This procedure will lead to the covariance matrix of the prior for 3,
is proportional to the inverse of the covariance of the data X . Then, if any two genes are
highly correlated, one of their regression coefficients would be larger, and the other would be
smaller. Otherwise, their regression coefficients would be independent. We also normalize

X with variance one for each column (each gene).



4. Computation

In the above model, (7,3, Z) are the unknowns. Since the posterior distribution is
difficult to get, we use the Gibbs sampling to generate these parameters from the posterior
distribution.

It is impossible to simulate (7,3, Z) directly from the complete posterior distribution
(see appendix A). Therefore, we integrate 3 (3,) out (see appendix B.), and then we draw
and Z from the marginal distribution. So, our computation process is to draw (’y(t“), Z (Hl))
from 'y(t+1)|Z(t) and Z¢D |v+1Y). We divide the model of gene section into two parts : gene
selection over all genes and leave-one-out cross validation. The advantage of our model is
that we can take ¢ = 100, which can not be infinity (see section 3), in the former part;
and we take ¢ = oo in the latter part since we have change the model by getting rid of
~. But Lee etal. (2003) draw (y(+R3BHD ZE) from ~t+D] 2O g+l |4+ Z® 5pq

ZHD |4+ 30D - Unlike our niodel, they take ¢ =100 always.
4.1 Gene Selection

After integrating the 3. out, we get the marginal distribution of (Z,~). The computation
scheme is as follows:

1. Draw Z from its marginal conditional distribution given ~y.

p(Zly) < p(Y12) x [ p(Z18,)0(8,)d8,

C

1
xexp {21 -1

X,(X,X,) 7 X,) 2} % (Y1 2), (7)
where p(Y|Z)=1ifY;=1and Z; >0or Y; =0and Z; <0 for all i = 1,---,n; otherwise,

it is equal to zero. Hence, the distribution of Z given + is a multivariate normal distribution

N (0, (I—75, X, (X X,)7' X)) restricted to a subset R of R", where R = (R; xRy X... XR,,)

and R; = (0,00) if ¥; = 1; otherwise, R; = (—00,0), for i =1, -+ n.

7



To generate the truncated multivariate normal samples, there are two ways. One is
following Robert’s (1995) method: using Gibbs sampling to get converging multivariate
samples and the optimal exponential accept-reject algorithm to get each Z; conditional on
Z;, i # jfori,j =1,---,n. The other is using Metropolis-Hastings algorithm (Chib and
Greenberg 1995), which was developed by Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953). This method is also one kind of Markov chain Monte Carlo methods. Moreover,
it gives rise to the Gibbs sampler as a special case. We use the Gibbs sampling method in
Section 5, and the burn-in period is 500.

2. Draw ~ from Z.

p(Y|Z) o< p(Z|v)p(v)

x (140" expdre S0 | L (1= m) ', (8)

where ¢, = ¥ v; and S(v) = Z'Z= £ Z'X (X, X3) ' X" Z. We can draw ~ component-

wise from p(y;|Z, v;2). Then,

P(ilZ,vj2i) < p(Z]Y)pl)

s (1= m) (14 )" exp {—ism}- (9)

After suitable burn-in period (10,000 or 100,000 in section 5.1), we obtain the samples at
the tth iteration: {Zt, ~yt=1,--- ,m}. Then, calculate the total number appeared in the

sample for each gene. We can make prediction by those genes with higher frequency.

4.2 Prediction

After getting the posterior frequency of each gene, we can select ¢ genes with higher

/

Y, a n X ¢ matrix, be the columns of X

frequency, where ¢ < p. Let X, = (2| .=

corresponding to those g genes, where x; is a ¢ X 1 vector, for i = 1,---,n, and let 8, be the

8



regression parameters. Then we use probit regression model with n latent variables (Z; ... Z,,)
to make prediction (Albert and Chib 1993). The computation schemes are as follows:

1. Given 8, and Y, draw Z;, ¢ = 1,---,n, from the following distribution,

Zi|Ys, B, ~ N(xi'B,,1) truncated at the left by 0 ifY; =1
Zi|Yi, B, ~ N(zi'B,,1) truncated at the right by 0 if Y; = 0

where 3,, the regression parameters of X,, is a ¢ X 1 vector. It is a truncated normal
distribution, so we can use Robert’s (1995) optimal exponential accept-reject algorithm to
generate Z;.

2. Draw @, conditional on Y and Z. The prior for 8, is Ny(0, (XX )™"), where
c is a positive scale factor specified by the user. We obtain that 8,|Y, Z is distributed
N(VX,Z,V), where V = & (X X,)~". If the prior distribution of 3, is diffuse (taking
¢ = 00), then B,|Y, Z is a multivariate normal distribution with mean (X, X,)~"(X,Z)
and covariance matrix (X, X )"

The starting value of 3, BSIO) may be taken to be the least squares (LS) estimate
(X, X,) ' XY, After suitable hurn-inpériod(k/= 200 in Section 5.2 ), we obtain the
samples : {Zt, Z,t =1, ,m}. Then;; we ¢an estimate the posterior mean of 3, with
%tgjlﬁf]. As coming with a new observation Y,,.,, whose gene expression levels « is a p x 1
vector, we can predict it based on the probit model. Let x, be the elements of x corre-
sponding to the ¢ genes we selected, then the probability of Y., = 1 conditional on x
1s

P(Yew = 1|z) = (a,8,) (10)
5. Application to Hereditary Breast Cancer Data

We apply the above model to a published data set (Hedenfalk et al., 2001). There are

totally 22 tumor samples (n = 22) from 21 breast cancer patients : 7 tumors with BRCA1 mu-



tations, 8 tumors with BRCA2 mutations and 7 sporadic tumors. For each sample, the gene
size is 3226 (p = 3226). Here we give each sample a number as the collum order of the orig-
inal data, 1,---,22, obtained in http : //research.nhgri.nih.gov/microarray/selected_publ
tcations.hitml .

Some pathological features help us to distinguish these tumors. For tumors with BRCA1
mutations, there are higher mitotic index, pushing tumor margins and lymphocytic infil-
trate. Moreover, BRCA1 tumors are generally negative for both estrogen and progesterone
receptors, but tumors with BRCA2 mutations are positive for these hormone receptors and
heterogeneous with substantially less tubule formation. These features imply different but
overlapping functions for BRCA1 and BRCA2 tumors.

Now, we want to use the scheme we propose to classify BRCA1 (Y = 1) versus the others
(BRCA2 and sporadic : Y = 0). First, we have to select some significant genes, and then to

make prediction.

5.1 Gene selection

We control the size of selected genes to be-about 10 on average by fixing m; = 0.003,
for . = 1,---,3226, and take ¢ = 100. Before we run the Gibbs sampler, the data has
to be normalized with mean zero and variance one for each gene. To be sure that the
result of gene selection would be convergent, we generate two different Gibbs sequences
with two starting values of . One is to select 10 genes, which are in the 253th, 555th,
556th, 585th, 806th, 1068th, 1443th, 1999th, 3009th and 3013th rows of the original data,
by the weight of support vector machines (SVMs) (Hastie et al., 2001), whose image cloneID
number are 28469, 548957, 212198, 293104, 46182, 840702, 566887, 247818, 366647 and
375922 respectively. For another starting values, we select arbitrarily 10 genes in the 8th,

19th, 22th, 23th, 44th, 50th, 56th, 60th, 70th and 100th rows of the original data, which

10



have small correlation coefficients with the above 10 genes. Their image clonelD number are
25584, 30272, 31169, 32875, 42059, 43231, 44180, 45233, 51293 and 36393 respectively. We
describe only the genes as their row numbers of the original data in the following. Table 1
gives the correlation coefficients of these 20 genes.

After a 10,000 burn-in period, we collect 330,000 samples of v® for both starting values.
Among these 330,000 samples, the sizes of selected genes at each iteration are 7.29 (the
first starting value) and 7.31 (the second starting value) on average . Table3 lists 10 most
significant genes with the highest frequencies. Besides the result of collecting 330,000 ~®,
we also delete the first 90,000 of 330,000 samples to collect the latest 240,000 samples. The
results of the first starting value are shown in Table3. Similarly, Table4 is the result of the
second starting value. Among these 240,000 samples of v, 7.28 and 7.32 are the averaged
size of selected genes in each iteration_for both starting values respectively. We found that
the result of gene selection is almost the same regardless of the starting values and the size

of samples being deleted. Table2ists the description of these genes.

5.2 Leave-One-Out Cross*“Validation

After the above process, some significant genes which can differentiate the two classes are
obtained. From Table3 and Table4, the frequency of gene 1068 is higher than others clearly.
Therefore, we select it to the model. As for the other genes, the first four genes except gene
1068 are considered, which are gene 3009, 2734, 1999 and 2761.

Since there are 22 samples in total, we use the method of leave-one-out cross validation
to check the adequacy. As leaving the ith sample out as test data, ¢ = 1,---,22, we first find
the mean and variance of the other 21 samples, and then normalize these 22 samples.

We can not iterate too many times since the round-off error would become larger as

the number of iteration increases in our programs. But iterating too few times would not

11



converge. Therefore, we take k = 200 (burn-in period) and m = 500 after monitoring the
convergence of several different Gibbs sequences. Then, there are 500 samples in each Gibbs
sequence. We simulate totally 20 Gibbs sequences to obtain 10,000 samples. To get the
posterior mean of 3, we average these samples. Repeat this process until we collect 40
averaged (Bs and get 40 probabilities of Y; = 1, for all .. We list their mean and standard
deviation in Tableb to TableS.

To make prediction, we consider the five selected genes and all combinations of 2 genes
and 3 genes among them, where gene 1068 has to be contained. If the selected genes are
1068 and 2761, the leave-one-out error is 0. Tableb lists the detail for its mean and standard
deviation of 40 probabilities that Y; is equal to 1. All of the other combinations of 2 genes
have 1 leave-one-out error. Selection of 1068 & 1999 classifies samplel6 to the wrong class,
and the combination of 1068 & 2734 classify sample5 wrong. Gene 1068 & 3009 classify
sample 1 wrong, too. Moreover, these samples have also error when they are being training
data. For 3 genes, we describe the'result of all eombinations in Table6. Although there
are 3 kinds of combinations which have both'0 error in test and training data, only the
combination, 1068, 2761 and 3009, doesinot have any problem in all samples. Thus, we
think it as the best fit, and list its detail in Table7. Finally, using all of the 5 genes gives us
that the leave-one-out error is also 0. Table8 lists the detailed result of 5 genes.

Of course, we obtain a better fit on training set as the size of selected genes increasing.
But what we care about is to classify samples to the right class by fewer genes. We therefore

select genes whose size are no more than five to make prediction.

6. Conclusion and Future Work

Lee et el. (2003) proposed a Bayesian model for gene selection with binary data, and then

used a hierarchical probit model and MCMC based stochastic search techniques to obtain

12



the posterior samples. We modify their algorithm in gene selection and prediction, and avoid
the disadvantage of taking ¢ = oo always. The results of gene selection are different from
their result, but its adequacy is still good. One drawback of our method is that we have to
iterate much more times than theirs since our method is to deal with a multivariate case.

Sha (2002) had extended two categories of events to multi-category data. Here we as-
sumed that the probability of each genes being selected is independent with each other. As
Lee et el. suggested, we can extend it to dependent case. For example, we know that the jth
gene will be expressed if the ¢th gene is expressed. Then we can change the prior distribution
of v and use a Markov model whose transition matrices will be defined as p(y; = 1|y; = 1)
or So.

Lee etal. (2003) also suggested to extend the model with fixed 7 value by allowing 7 to
be an unknown model parameter and assighing-a conjugate beta prior to it. If we have prior
knowledge that the ¢th gene is more important tham others , it is possible to assign larger
values of 7; in a scale of importance from 0 t6 1.

We can also consider other kind ofilinking function in our model, for example, the logit

linking function,

log({+—) = @i (11)
i
Finally, we can find some ways to avoid the computational round-off error in the algorithm

of prediction.

13



Appendix

A The Reason to Integrate B, Out

From the model for gene selection, we obtain the joint distribution of 3, and Z, which

is
p(B,7, Z) o< p(v)p(Blv, X)p(Z|8, X)p(Y'|Z), (A1)
where p(Y|Z)=1ifY;=1and Z; >0or Y; =0and Z; <0 for all i = 1,---,n; otherwise,
it is equal to zero. In order to draw the samples (3,7, Z), we use Gibbs sampling. The

computation scheme will be as follows:

(i) Draw |8, Z: the conditional distribution is

p(Y1B, Z) o< p(v)p(Blv, X) = p(v)p(B.)

We can draw it componentwise from p(vy;|3, Z, ;) which is

p(ilB, Z, i) o< p(vi)p(B,)

1
/2| X! X,|

1

o (1 — )t

(ii) Draw Z|8,~: the conditional distribution is

s

p(Z1B,7) x p(Z|B, X)p(Y|Z) = 11 p(Zi|B, x:)p(Yi|Z;)

1

14



Hence, the full conditional distribution of Z; is as follows:

{ Zi|B,Y; =1 N(x/8,1) truncated at the left by 0 (AA)

Zi|B,Y; =0 x N(x}3,1) truncated at the right by 0

(iii) Draw B|v, Z, which is equivalent to draw 3,|Z : the conditional distribution is the
same as (B.9).

Since the model we have is ; = 0 if 3 = 0 and v; = 1 if 8; # 0, we always get 7" = 0
if ﬁi(dd) = 0 and %(new) =1if @-wld) # 0 in step (i). Then, we can not implement the gene

selection scheme. Therefore, if we integrate 3 (3,) out in step (i) and (ii), we can solve the

problem.

B Derivation of the Marginal Conditional Distributions

Since Z; ~ N(x;3,1),i = 1,2;-- - ,m,are independent, the distribution of Z given ~, B,
and X, is N, (X,8,,TI). Also, the prior for 3. .is Nq(O,c(XfYXW)_l), where ¢ = é}lfyi. By

(A.1), the marginal conditional distribution of 8 and Z given = is

p(B, Zly) o< p(Bly, X)p(Z]8, X)p(Y|Z) = p(B,)p(Z|8,)p(Y|Z),

where p(Y|Z)=1ifY;=1and Z; >0or Y;=0and Z; <0 for all i = 1,---,n; otherwise,

it is equal to zero. Now, we derive p(Z|3,)p(8,)

WZ18.)0(8,) x v {~(Z - X.8.)(Z - X8}

1 1
X , —1/2 exp{_Qcﬁfy(X'/yX’Y)/B'y}
2| X! X |

1 1 1
= — 2exp{—(1—}—(:l)ﬂ;(X’VXV)ﬁW4—Z'XAY['L{}eXp{—Z'Z}, (B.1)
/ / 2 2
cnl?| X! X |

15



where ¢, = Y. If we let V, = (1 +¢ )" (X X,)" and B, = V. X\Z = (1 +

¢ ) HX,X,)"! XL Z. then (B.1) can be rewritten as

W(Z18)0(B,) x exp{~SBVIIB 4 BV, — SV,

1 1 1
X —173 OXP {—QZ/Z + 2,36V71,30}
2| X! X |

1
cnl?| X! X, |

1 1 1
= eXp {—2(,37 - ,80)/V7_1(57 - ﬂo)} 172 XP {—2Z'Z + 256‘/;150}

Vo
L o &

1 1 _
“1/2 &XP {—Z/Z + zﬂévwlﬁo}

1
X exp {_2(ﬁv — ,60)/‘/';1(/87 - Bo)} 2

e {28, - BV B, - B 1+ e (224 a8 (B2)

|V7|1/2

5 = 1+c)7q7/2.
XEX e (

where Z'X,8, = B8,V'3,, and

c‘]'y/2

To integrate 3 (3,) out, we obtain
p(Zly) < p(Y|2) x [ p(Z18,)0(8,)48,

(10 2o {250} x p(Y12)

Cc

me<X§Xv)1X7)Z} x p(Y|2), (B.3)

X exp {—;Z'(I —

where S(y) = Z2'Z - B\V,'B,=2'Z - - Z'X (X X,) ' X Z.

The distribution of 4|Z is

p(Y|Z) o< p(Z|v)p(7)

16



Then,
(il Z, vji) o< p(Z1]y)p(i)
Vi 1—; —qy/2 1
ox (1 —m) 7 (1+¢) " exp —55(7) .
Since
—q 1/2 1 1
P = 1Z,7) o w1+ €)™ P exp | =5 5(7")

_ 1
p(vi = 0|Z, vj2) o< m(1 4+ c) 9,0/2 exp {—25(70)},

Whereﬁyl:<’717"'a7i:17"'77p) andﬁyoz(717"'771':()7"'7")%)7

1 1

p(vi = 1|Z,7j¢i) = o = kit
L+ {7y IF TR0 2 exp {—5(5(1°) - SO}

Since p(8,12)  p(Z18,)p(BJ4 by, (B2 we have
1 ryy—1
p(8,12) o exp {5 @58, V3 (8, - o)}

Hence, the posterior distribution of 3. is B,|Z ~ N,(By, V).

17
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Tablel. The correlation coefficients of the genes between the two starting values of
(—: the first starting value ; | : the second starting value)

253 555 556 585 806 1068 1443 1999 3009 3013

8 0.0333 -0.2633 -0.1320 0.3481 -0.1951 -0.2192 0.0058 0.1036 -0.1150 -0.1580
19 | -0.2782 0.1747 -0.0900 -0.3780 -0.1280 -0.0058 0.2356 0.0266 0.2147 0.2317
22 0.2481 -0.2492 0.2954 0.1030 -0.2415 -0.2333 -0.1464 -0.1928 -0.0687 0.0855
23 0.3492 -0.0368 0.3180 0.0491 -0.2392 -0.1310 -0.3713 -0.3935 0.0199 0.0089
44 | -0.0451 -0.1533 -0.1760 -0.2278 0.1723 -0.4236 0.2843 -0.1925 -0.0488 0.1380
50 | -0.1264 -0.6029 0.0471 0.0960 -0.1734 -0.0264 0.4177 0.0690 -0.1326 0.3199
56 | -0.1000 -0.3118 -0.1860 -0.0529 0.2447 0.2735 0.2909 0.3084 0.3310 -0.1850
60 0.0355 -0.1657 -0.0040 0.0585 -0.1753 -0.0977 0.2585 -0.144 0.1034 0.0978
70 | -0.0170 -0.2002 -0.0960 0.1952 -0.0245 -0.2882 0.2914 0.1384 0.1532 -0.3010
100 | 0.0487 0.3566 0.0799 -0.0827 -0.0669 0.0092 -0.2858 0.0040 0.3823 -0.1960

Table2. The description of'the 10 most significant genes

#row  Clone ID Gene descreption

963 897646  splicing factor, arginine/serine-rich 4

SELENOPHOSPHATE SYNTHETASE ; Human selenium donor
protein

1277 73531  nitrogen fixation cluster-like

1620 137638  ESTs

1859 307843  ESTSs; eukaryotic translation initiation factor 2C, 2*

1999 247818  ESTs; Homo sapiens cDNA FLJ13495 fis, clone PLACE1004425*

2423 26082  very low density lipoprotein receptor

1068 840702

2734 46019  minichromosome maintenance deficient (S. cerevisiae) 7
macrophage migration inhibitory factor (glycosylation-inhibitin

2761 47884 phage mig Y (glycosy J
factor)

3009 366647  butyrate response factor 1 (EGF-response factor 1)

* the descriptions in Kim et al. (2002)
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Table3. 10 most significant genes with the first starting value of »

delete 10,000; collect 330,000 delete 100,000; collect 240,000

# row Frequency™* (%) # row Frequency™ (%)
1068 6.487575758 1068 6.100000000
3009 4.249090909 3009 4.406666667
2734 3.983939394 2734 4.367500000
1999 3.872424242 1999 3.806250000
2761 3.175151515 2423 3.163333333
2423 2.887575758 2761 2.950000000
1620 2.517575758 1859 2.697083333
1859 2.498181818 963 2.582916667
963 2.474848485 1620 2.579583333
1277 1.993636364 1277 1.861250000

*Percentage of times the genes appeared in the samples

Table4. 10 most significant genes with the first starting value of »

delete 10,000; collect 330,000 delete 100,000; collect 240,000

# row Frequency (%) # row Frequency (%)
1068 7.296666667 1068 7.695000000
3009 4.317878788 3009 4.322916667
2734 3.408181818 2734 3.793750000
1999 3.306969697 1999 3.183750000
2761 2.932727273 2761 2.957500000
2423 2.570909091 1859 2.420000000
1859 2.468787879 2423 2.392916667
1277 2.226666667 1277 2.194583333
963 2.084242424 963 2.128333333
1620 2.070000000 1620 1.939166667
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Table5. The mean and standard deviation of 40 probabilities (Y, = 1) for 2 genes,
which are 1068 and 2761.

real Y 1 0 0 0
sample
4 1 7 8 10
leave #
out mean (std.) mean (std.) mean (std.) mean (std.)
1 0.99993 (0.00015) 0.000094 (0.00019)  0.0780 (0.0239)  0.00004 (0.000090)
2 0.99999 (0.00001) 0.000118 (0.00010)  0.1386 (0.0239)  0.00005 (0.000047)
3 1.00000 (0) 0.000868 (0.00064)  0.4873 (0.0260)  0.00041 (0.000376)
4 1.00000 (0.00001) 0.000120 (0.00013)  0.1617 (0.0298)  0.00006 (0.000073)
5 0.99999 (0.00002) 0.000155 (0.00016)  0.1143 (0.0270)  0.00006 (0.000064)
6 1.00000 (0) 0.000419 (0.00033)  0.3703 (0.0244)  0.00024 (0.000205)
7 0.99981 (0.00013) 0.000012 (0.00001)  0.0299 (0.0113) 0* (0.000005)
8 0.99984 (0.00022) 0.000044 (0.00008)  0.0580 (0.0191)  0.00002 (0.000046)
9 0.99904 (0.00147) 0.000016 (0:00008)7 -, 0.0112 (0.0086)  0.00001 (0.000032)
10 0.99977 (0.00023)  0.000013 (0.00002).~ 0.0239 (0.0104) 0* (0.000010)
11 0.99964 (0.00040) 0.000006 (0.00001).. = '0.0138 (0.0084) 0* (0.000004)
12 0.99977 (0.00017) 0.000021(0.00002)  0.0333 (0.0102) 0* (0.000007)
13 0.99947 (0.00045)  0.00Q005(0.00001) - 0:0121 (0.0065) 0* (0.000003)
14 0.99941 (0.00055)  0.000006 (0.00001) .+ 0.0115 (0.0056) 0* (0.000002)
15 0.99952 (0.00037)  0.000005 (0.00001)  0.0123 (0.0049) 0(0)
16 0.99976 (0.00029) 0.000048 (0.00008)  0.0371 (0.0146)  0.00001 (0.000027)
17 0.99976 (0.00025) 0.000036 (0.00005)  0.0364 (0.0141)  0.00001 (0.000015)
18 0.99996 (0.00004) 0.000054 (0.00006)  0.1398 (0.0275)  0.00004 (0.000049)
19 0.99927 (0.00055) 0.000002 (0.00001)  0.0082 (0.0048) 0* (0.000002)
20 0.99978 (0.00015) 0.000019 (0.00002)  0.0256 (0.0093) 0* (0.000005)
21 0.99964 (0.00028) 0.000006 (0.00001)  0.0164 (0.0091) 0* (0.000003)
22 0.99972 (0.00036) 0.000010 (0.00002)  0.0197 (0.0095) 0* (0.000008)

0* means that its value is less than 107°.

If we leave 1 out as test data, the first element of its row is 1. The other samples are as
the set of training data. Thus, all probabilities of this row are training probability
except the probability which has a line under it.

All samples which we do not list here have perfect fit regardless of being training or
test, whose probabilities are either 0 or 1 corresponding to their real responses.
Moreover, their variance is zero.
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Table5. (Continued) The mean and standard deviation of 40 probabilities (Y, = 1) for
2 genes, which are 1068 and 2761.

real Y 0 0 0 1 0

sample
4 12 16 17 18 20

Leave

4 out mean (std.) mean (std.) mean (std.) mean (std.) mean (std.)
1 0.0008 (0.0011)  0.109 (0.023) 0.014 (0.008) 0.998 (0.0023)  0.002 (0.003)
2 0.0011 (0.0007)  0.144 (0.020) 0.019 (0.006) 0.998 (0.0012)  0.003 (0.002)
3 0.0078 (0.0034)  0.460 (0.014) 0.094 (0.014) 1.000 (0*) 0.013 (0.005)
4 0.0011 (0.0008)  0.140 (0.016) 0.016 (0.006) 0.998 (0.0016)  0.002 (0.001)
S5 0.0015 (0.0011)  0.174 (0.020) 0.026 (0.009) 0.999 (0.0006)  0.005 (0.003)
6 0.0033 (0.0018)  0.265 (0.022) 0.039 (0.011) 1.000 (0.0002)  0.003 (0.002)
7 0.0002 (0.0001)  0.063 (0.012) 0.006 (0.002) 0.996 (0.0029)  0.001 (0.001)
8 0.0004 (0.0005)  0.072 (0.014) 0.008 (0.004) 0.993 (0.0054)  0.001 (0.001)
9 0.0002 (0.0004)  0.046 (0.015) 0.005%0.004) 0.995 (0.0056)  0.001 (0.002)
10 0.0002 (0.0002)  0.067 (0.016) 0:007.¢0.004) 0.997 (0.0029)  0.002 (0.001)
11 0.0001 (0.0002)  0.054 (0:015) 0.005 (0.003) 0.998 (0.0029)  0.001 (0.001)
12 00003 Lo 0.073 (0:013) 0.008(0.003) 0.997 (0.0021)  0.002 (0.001)
13 0.0001 (0.0001)  0.048 (0.014) 0.005.(0:003) 0.997 (0.0029)  0.001 (0.001)
14 0.0001 (0.0001)  0.049 (0.016) 0.005 (0.003) 0.997 (0.0025)  0.002 (0.001)
15 0.0001 (0.0001)  0.044 (0.013) 0.004 (0.002) 0.996 (0.0023)  0.001 (0.001)
16 0.0006 (0.0006) 0097 @.0271)  0.013 (0.007) 0.998 (0.0022)  0.004 (0.003)
17 0.0004 (0.0004)  0.083(0.0200 0010 @005 0997 (0.0026)  0.003 (0.002)
18 0.0004 (0.0003)  0.059 (0.014) 0.005(0.002) 0977 @.0137)  0.000 (0.000)
19 0.0001 (0.0001)  0.042 (0.012) 0.004 (0.002) 0.997 (0.0028)  0.001 (0.001)
20 0.0003 (0.0002)  0.092 (0.023) 0.012 (0.006) 0.999 (0.0014) 0004 (©.004)
21 0.0001 (0.0001)  0.053 (0.013) 0.005 (0.003) 0.996 (0.0037)  0.001 (0.001)
22 0.0001 (0.0002)  0.054 (0.014) 0.005 (0.003) 0.997 (0.0031)  0.001 (0.001)

0* means that its value is less than 107*.
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Table6. The result of all combinations for 3 genes.

genes

leave-one-out test error

train error

1068
2761
3009

1068
2734
3009

1068
1999
3009

1068
2734
2761

1068
1999
2761

1068
1999
2734

0 ; all probabilities are almost 0 or 1,
and their std. are almost 0. Except
sample8,11, 14,16,17,20,21, the others
have perfect fits.

1 ; sample 5 is .0176(. 0166), which is
classified wrong; samplel is .7082
(.1084) and samplel4 is .4537(.1896),
which are both bad prediction. The
others are almost perfect.

0 ; sample5 is .8341(.1636); samplel6
is .3184(.0907).The others are perfect
both in mean and std. except sample7
and 15, which are very closeto 0:

0 ; samplel is .9381(.0388); samplel8
is .986(.0124). Except that samplel,
7~10, 16~18, 20 are close to 0 or 1 with
std. close to 0, the others are perfect.

0 ; samplel6 is .3533(.0807), which is a
bad prediction. Except that sample6, 7,
9, 12, 16 ~18 are close to 0 or 1 with
std. close to 0, the others are almost
perfect.

1 ; The error occurred in samplel with
prob. .4283 (.0634). Sample7 is .4049
(.01435), a bad training. As for the
others, all are either 0 or 1 with std.
zero except sample7,10,15~17 are close

0 ; all probabilities are almost 0 or 1, and
their std. are almost 0. Except sample6,8,
11,14,16,17,20,21, the others have perfect
fits.

0 ; all probabilities are close to 0 or 1, and
their std. are close to 0. Sample2~4,6,8,9,
11~13,18,19,22 have perfect fits.

0 ;7All samples have perfect fits except
sample7,12,14~17,20,21. Especially, the
prob. of samplel6 is between .0287
and 13282 with std. smaller than .0448.

0 ; Except samplel,7,8,10,16~18,20 are
close to 0 or 1 with std. close to 0, the
others have perfect fits.

1 ; Except samplel,6, 7, 9, 12, 16, 17,20
close to 0 or 1 with std. close to 0, the
others have perfect fits. The prob. of
samplel6 is between .0633 and .5653
with std. smaller than .0342.

0 ; Except samplel and sample7, the
others are very close to 0 or 1. The prob.
of samplel is between .5921 and .9229
with std. smaller than .03995. Sample7 is
between .0129 and .0801 with std. smaller

24



to 0 in both prob. and std

than .0276.

Table7. The mean and standard deviation of 40 probabilities (Y, = 1) for gene 1068,

2761, and 30009.

real Y 1 0 0 0
sample
4 6 8 11 14
leave mean (std.) mean (std.)
mean (std.) mean (std.)

# out (x1077) (x107%)  (x1077) (x107°)
1 1(0) 0.00069 (0.00094) 32.5(12.90) 0(0)
2 1(0) 0.00066 (0.00068) 42.5 (11.50) 2.5 (1.60)
3 1(0) 0.00100 (0.00103) 12.5 (5.200) 0(0)
4 1(0) 0.00121 (0.00149) 72.5 (23.90) 2.5 (1.60)
5 0.9781 (0.064) 0(0) 0(0) 35.0 (11.7)
6 1(0) 0.00126 (0.00230) 70.0 (28.80) 2.5 (1.60)
7 1(0) 0.00016 (0.00022) 7.5 (2.600) 0(0)
8 1(0) 0.00046 (0:00061) 35.0 (10.20) 0(0)
9 1(0) 0.00003 (0.00004) 12.5 (7.900) 0(0)

10 1(0) 0.00009 (0.00014) 52.5 (28.60) 0(0)

11 1(0) 0.00064 (0.00062) 3190.0 (983.1) 0(0)

12 1(0) 0.00006 (0.00006) 10.0 (3.800) 0(0)

13 1(0) 0.00005 (0.00007) 10.0 (4.400) 0(0)

14 1(0) 0.00011 (0.00018) 30.0 (12.20) 2.5 (1.60)

15 1(0) 0.00016 (0.00026) 7.5 (3.500) 0(0)

16 1(0) 0.00024 (0.00028) 7.5 (2.700) 0(0)

17 1(0) 0.00018 (0.00022) 25.0 (7.800) 0(0)

18 1(0) 0.00183 (0.00188) 10.0 (3.800) 0(0)

19 1(0) 0.00004 (0.00006) 0(0) 0(0)

20 1(0) 0.00015 (0.00019) 25.0 (9.300) 0(0)

21 1(0) 0.00011 (0.00015) 2.5 (1.600) 0(0)

22 1(0) 0.00009 (0.00009) 32.5(12.30) 0(0)
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Table7. (Continued) The mean and standard deviation of 40 probabilities (Y, = 1) for
gene 1068, 2761, and 3009.

real Y 0 0 0 0
sample
4 16 17 20 21

leave mean (std.) mean (std.) mean (std.)

mean (std.)

# out (x107%) (x107%)  (x107%) (x107°%) (x107°)(x10°®)
1 0.00236 (0.0018) 72.8 (90.80) 0 (0) 4.3 (11.30)
2 0.00198 (0.0014) 48.3 (61.00) 0 (0) 6.5 (18.60)
3 0.00912 (0.0074) 173.0 (309.0) 0.3 (1.58) 34.3 (41.00)
4 0.00241 (0.0021) 70.5 (94.10) 0 (0) 12.3 (22.80)
5 0.00237 (0.0016) 159.3 (161.0) 13.3 (33.4) 123.0 (147.6)
6 0.00359 (0.0017) 78.0 (61.30) 0 (0) 19.0 (25.40)
7 0.00024 (0.0003) 4.3 (10.70) 0 (0) 1.0 (3.700)
8 0.00044 (0.0004) 8.0 (14190) 0 (0) 0.5 (2.200)
9 0.00007 (0.0001) 0.5 (2.200) 0 (0) 0 (0)

10 0.00014 (0.0002) 2.0 (7.200) 0 (0) 0.3 (1.600)

11 0.00008 (0.0001) 0.5 (2.200) 0 (0) 1.8 (4.500)

12 0.00008 (0.0001) 0.(0) 0 (0) 0.3 (1.600)

13 0.00004 (0.0000) 0(0) 0 (0) 0 (0)

14 0.00033 (0.0006) 8.5 (26.40) 0 (0) 2.8 (8.500)

15 0.00022 (0.0004) 3.8 (13.70) 0 (0) 0.3 (1.600)

16 0.00047_(0.0005) 11.0 (20.00) 0 (0) 1.0 (3.000)

17 0.00027 (0.0003) 4.0 (9.800) 0 (0) 1.8 (4.500)

18 0.00272 (0.0021) 68.0 (76.50) 0 (0) 0 (0)

19 0.00008 (0.0001) 0.8 (2.700) 0 (0) 0 (0)

20 0.00018 (0.0003) 3.0 (14.40) 0(0) 0.5 (2.200)

21 0.00031 (0.0004) 7.0 (17.40) 0 (0) 0.3 (1.600)

22 0.00011 (0.0001) 0.3 (1.600) 0 (0) 0.5 (2.200)
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Table8. The mean and standard deviation of 40 probabilities (Y, = 1) for 5 genes,
which are 1068, 1999, 2734, 2761 and 3009.

real Y 0 0 0 0
sample
" 7 14 15 16
leave
4 out mean (std.) mean (std.) mean (std.) mean (std.)
1 0.000510 (0.000921) 0 (0.000002) 0(0) 0.000058 (0.000072)
2 0.000069 (0.000166) 0(0) 0* (0.000002) 0.000287 (0.000614)
3 0.000017 (0.000028) 0.000001 (0.000003) 0(0) 0.000361 (0.000549)
4  0.000161 (0.000294) 0.000001 (0.000003) 0(0) 0.000115 (0.000177)
5  0.000002 (0.000005)  0.000007 (0.000023) 0* (0.000002) 0.000059 (0.000090)
6 0.000120 (0.000187) 0.000001 (0.000004) 0(0) 0.000098 (0.000137)
7 0.001257 (0.002861) 0(0) 0(0) 0.000028 (0.000071)
8 0.000025 (0.000044) 0(0) 0(0) 0.000023 (0.000040)
9  0.000007 (0.000018) 0(0) 0(0) 0.000002 (0.000006)
10  0.000022 (0.000083) 0(0) 0(0) 0.000006 (0.000015)
11 0.000009 (0.000017) 0(0) 0(0) 0.000004 (0.000009)
12 0.000012 (0.000020) 0.(0) 0(0) 0.000004 (0.000012)
13 0.000008 (0.000017) 0.(0) 0(0) 0.000003 (0.000009)
14  0.000021 (0.000064) 0.000006 (0.000029) 0(0) 0.000004 (0.000011)
15  0.000056 (0.000133) 0(0) 0* (0.000002) 0.000016 (0.000026)
0.000349 (0.000515)
16  0.000080 (0.000113) 0(0) 0(0)
17  0.000023 (0.000039) 0(0) 0(0) 0.000001 (0.000003)
18  0.000023 (0.000036) 0(0) 0(0) 0.000046 (0.000052)
19  0.000013 (0.000024) 0(0) 0(0) 0.000013 (0.000050)
20  0.000013 (0.000023) 0(0) 0(0) 0.000001 (0.000002)
21  0.000043 (0.000082) 0(0) 0(0) 0.000021 (0.000045)
22 0.000020 (0.000060) 0(0) 0(0) 0.000004 (0.000013)

0* means that its value is less than 107°.
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