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ABSTRACT

A microarray dataset contains thousands of.genes but only tens of subjects in general.
This so-called “large p (gene);small n_(subject)” feature brings about some difficulties to
statistical analysis. Gene selection’is.a typical approach to deal with this problem. There are
two conventional gene selection methods, filters and wrappers. Filters judge whether a gene
should be selected based on a ranking criterion; therefore, they are very fast in computation
but might select highly correlated genes that give rise to redundancy. On the other hand,
wrappers usually select a small set of non-redundant genes but require extensive computation.
A combination of these two methods is adopted in this study. We first filter out irrelevant
genes according a ranking criterion and then group the rest to avoid redundancy via K-means
clustering algorithm. Then, the SVM-RFE gene selection method proposed by Guyon et al.
(2002) is applied to a list of candidate genes selected from each cluster. Three popular cancer
data sets are analyzed by means of the proposed method. The results show that the proposed
method performs better than three filter methods under study when the number of selected

genes is small.
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1. Introduction

Cancer classification is an important issue in medical community. The development of
microarray technology enables biologists to observe the expression levels of thousands of
genes simultaneously in a single array. Microarray technigues take the clinical diagnosis from

morphology to molecular biology. Several microarray datasets on a variety of cancers are

publicly available on the Internet. Typically, the dataset is organized as a matrix X where

n
the element x; represents the expression level of the ith gene of the jth subject. Subjects

are classified into classes such as normal tissues versus cancer tissues, or different types of a
certain disease. The challenge we are confronted here is how to distinguish cancer tissues
from normal tissues when tremendousmeasurements of gene expression levels are given for
these tissues.

Several statistical issues have been‘encountered in gene expression data analysis,
including image analysis, experimental design, data’ preprocessing, clustering, classification,
gene (feature) selection and so on (Nadon and Shoemaker (2002); Sebastiani et al. (2003)).
Many statistical methods used in analyzing microarray data are based on machine learning
methodologies. Supervised learning and unsupervised learning are frequently used in machine
learning. Basically, supervised learning is to predict an outcome (response) y based on a set
of features of an object. More specifically, we use the outcomes and feature measurements of
samples in a set of training data to build a prediction model (or “learner”), e.g., by least
squares methods. Support Vector Machines (SVMs) is also a popular method in recent years,
especially in classification. It is called “supervised” because the outcomes in training data are
used to guide the learning process. On the other hand, unsupervised learning (or “learning
without a teacher”) observes only feature measurements and has no outcome measurements.

Its task is to gain some understanding of data. For example, clustering is a typical



unsupervised learning technigue.

In this study, we only discuss the two-class classification problem in which classes are

labeled as {+—-} or {+1,-1}. That is, each subject x; is accompanied by a

corresponding outcome (response) y; e{+1,—1}. With these class-labeled data as a training

set, an unknown-class subject can be classified by means of statistical methods described
above. Unfortunately, a microarray dataset usually contains thousands of genes but only tens
of subjects in general. This so-called “large p, small n” feature brings about some
difficulties to statistical analysis. More specifically, we have too many genes relative to the
number of subjects. It means that we have to deal with a statistical problem with a large
number of variables (genes) and a small number of observations (subjects). Under such
circumstances, we may get an overfitting 'solution, that is, a decision function that performs
well for training data but poorly for test-data. It is-probably because the great part of the
variables (genes) is irrelevant or-even becomes noise to the problem. This overfitting problem
is well known in machine learning.. The typical approach to overcome this problem is to
reduce the dimensionality of the feature space.

Feature (gene) selection is a commonly used method for dimension reduction in
classification problems. By means of gene selection, we not only improve the accuracy of
classification by reducing the dimensionality but also reduce the computational cost.
Furthermore, it is believed that there are only a handful of genes that dominate a certain
disease. Feature (gene) selection grubs up a list of candidate genes that is interpretable enough
to help identify, say, cancer tissues from normal tissues. The main objective of this study is to
pick some crucial genes to help classification, or even disease detection, cure, and prevention.

There are two general approaches to feature (gene) selection: filters and wrappers. Filters
judge whether a feature (gene) should be selected based on its discriminating power, while

wrappers select features (genes) according to the accuracy of the learning method. If we



choose filters to select genes, we might get highly correlated genes that give rise to
redundancy. This redundancy is useless to the advance of classification accuracy and may
skew the results or even lead to misclassifications. On the other hand, wrapper methods can
often obtain a small set of non-redundant features (genes) but require extensive computation
to search for an adequate set of features (genes).

We will address gene selection problem by combining the two approaches described
above. First, filter out features (genes) with little or no effects in classification. Then cluster
similar genes and select discriminative genes from each cluster to avoid redundancy. Finally,
select a set of informative features (genes) contributed to classification via a wrapper method.
We compare this combined method with some filter and wrapper methods.

The rest of this paper is organized as follows. Section 2 gives a literature review on
related works. Section 3 reviews two learning methods used in our approach, K-means and
Support Vector Machines (SVMs), and describes the gene selection scheme we propose in this
study. The proposed method is applied to-three popular real data sets. Section 4 presents the
results of the data analysis. Section5 cencludes the paper with a brief summary, discussions,

and some future research directions.



2. Literature Review

In this section, we review some relevant research works related to gene expression data
analysis, including clustering, classification, and gene selection.

Cluster analysis is a way to group a collection of objects into subsets or “clusters” such
that the objects within the same cluster are similar to each other and the objects in different
clusters are quite distinct. It is by virtue of this feature that clustering can be used in
displaying the patterns of gene expression data. Moreover, we can gain different information
according to the items (subjects or genes) we cluster. To cluster subjects according to their
gene expression levels is an unsupervised classification method, which is also helpful to class
discovery (Golub et al., 1999). On the other hand, gene-clustering reveals the patterns of the
gene expression levels. Alon et al. (1999) used a two-way clustering method in analyzing
colon cancer data. As a result, the clustering algorithm reveals broad patterns coherent of
genes whose expression levels-are correlated, suggesting a high degree of organization
underlying gene expression in these" tissues. There are many researchers who devote
themselves to finding a better clustering algorithm, e.g., Tseng and Wong (2003) proposed a
tight clustering algorithm that is a resampling-based approach to identify stable and tight
patterns in data by using K-means clustering as an intermediate clustering engine.

Unlike clustering subjects, many researchers utilized supervised learning methods to deal
with classification problem. The basic concept is using a training data set to build a decision
function, D(X). New observation (test data) x then can be classified according to the sign

of D(x), i.e.,

D(x) > 0= x e class{+},
D(x) < 0= x e class{-},
D(x) = 0= x e decision boundary.

In the linear case,

D(X)=w-Xx+b, 1)



which is a weighted sum of the gene expression levels plus bias. A data set is said to be
“linearly separable” if the subjects can be separated into two classes by a linear decision
function.

Golub et al. (1999) created a class predictor based on weighted votes of a set of
informative genes for the famous leukemia data. Those informative genes are selected by the

following ranking criterion:

W = Hi (+)_:ui (_) (2)
L o) +o(r)

where g and o, are the mean and standard deviation of gene expression values of gene i
for all samples of class (+) or class (=), i=1,...,p. Large positive w, values indicate
strong correlation with class (+) whereas large negative w. values indicate strong
correlation with class (-). Originally, Golub et al. selected an equal number of genes from
positive and negative values of wi. Thisygene selection method is a filter method. Other
ranking criteria have also been:used. Furey et al. (2000) used the absolute value of (2).

Pavlidis et al. (2000) used
o D) Em )

o)+

3)
as the ranking criterion, which is similar to Fisher’s discriminant criterion. Dudoit et al. (2002)
performed a preliminary selection of genes based on the ratio of their between-group to
within-group sums of squares to compare several different discrimination methods, including
Fisher linear discriminant analysis, maximum likelihood discriminant rules, nearsest-neighbor
classifiers, classification trees, and aggregating classifiers: bagging and boosting. For each

gene i, this ratio is

>3y, =K, ~%)
zkzj I (yj = k)(Xij _Yik)z ’

where I(-) is the indicator function and X and X, denote, respectively, the average

BW (i) = (4)

expression levels of gene i across all subjects and across the subjects belonging to class k



only.

Guyon et al. (2002) proposed a gene selection scheme called Recursive Feature
Elimination (RFE), which is a typical wrapper method. They utilized Support \Vector
Machines (SVMs) as the classifier and took the squared weights of genes in the decision
function constructed by the classifier as the ranking criterion in linear case. The intuition
behind this ranking criterion is that features with larger weights in the decision function may
be more informative. The procedure eliminates genes one by one with the following steps in
each iteration:

1. Train the classifier.

2. Compute the ranking criterion for all features.

3. Remove the feature with the smallest ranking criterion.

Leukemia data and colon cancer data were used in Guyon et al. (2002) to demonstrate that
genes selected by RFE yield better classification performance and are biologically relevant to
cancer.

Filter methods select informative genes by evaluating individual discriminability, which
may result in picking up a set of highly correlated genes. This can be understood intuitively
that ranking criterion would give close values to highly correlated genes. In view of this,
Jeager et al. (2003) utilized the fuzzy K-means clustering algorithm to cluster similar genes to
avoid redundancy and selected discriminative genes from each cluster depending on five
different statistics. The main idea is that a cluster might represent a pathway. They used a
fuzzy clustering algorithm because it assigns for each gene a membership probability to each
of the clusters and may therefore capture the fact that some genes are involved in several
pathways. The size and quality of a cluster play a part in deciding how many genes are
selected. If a cluster is very tight and dense it means that those members are very similar. On
the other hand, if a cluster has wide dispersion, the members of the cluster are more
heterogeneous. To capture the biggest possible variety of genes, it would therefore be

6



favorable to take more genes from a cluster of bad quality than from a cluster with good
quality. To determine the cluster quality for the fuzzy clustering algorithm, they used the
membership probabilities of a gene. A gene belongs to the cluster to which it has the highest
membership probability. The cluster quality is then assessed by looking at the average
membership probability of its elements. A high cluster quality means low dispersion, and the
closer the quality is to zero the more scattered the cluster becomes. To counteract the problem
that a cluster is totally unrelated to the discrimination, they also implemented “masked out
clustering” to mask out and exclude clusters that have an average bad test statistic p-value.
They varied the number of clusters between 1 and 30 and the number of selected features
between 2 and 100. Finally, a ROC (receiver operator curves) scores (i.e., the area under the
ROC graph) is used to assess the performances.

Also, Ding and Peng (2003) .proposed a minimum redundancy — maximum relevance
(MRMR) method to select a feature set by minimizing redundancy in the set and maximizing
relevance to the target classification.problem. They used two criteria to represent the
redundancy and relevance in a feature set, respectively. MRMR criterion function is the
combination of the two criteria. For example, in the two-class classification problem, Pearson
correlation coefficient and t-statistic can be chosen as the score of minimum redundancy and
maximum relevance, respectively, for continuous variables. Hence, for the feature set S, the

minimum redundancy condition can be written as:

minW, (S), WJQZ&_Z e, J),

where c(i, j) is the Pearson correlation coefficient of feature i and feature j. And the

maximum relevance condition can be written as:

mSaXVt (S), Vi(S5)= |%Zt(i),

where t(i) is the t-statistic of feature i. The MRMR optimization criterion function can be



mgx(vt(S)—Wc(S)) or mgx(vt(S)/WC(S)). Euclidean distance is another score of

minimum redundancy for continuous variables besides Pearson correlation coefficient. For the
multi-class classification problem, they used F-statistic as the score of maximum relevance.
They also proposed two MRMR optimization criterion functions for categorical (discrete)
variables in a similar way.

We follow the idea of Jeager et al. (2003) in this study, but filter out genes with little or
no effects in classification before clustering to avoid selecting irrelevant genes. After selecting
a list of candidate genes from each cluster, RFE is used to decide final gene set of an expected

size.



3. Methodology — A Combined Gene Selection Scheme

In this section, we first review two well-known learning methods, K-means and Support
\ector Machines (SVMs), as the tools of clustering and classification, respectively. After that,

we will propose our gene selection scheme and illustrate the procedures of data analysis.

3.1 K-means
The K-means algorithm is a commonly used clustering method. The advantages of
K-means are simplicity and efficiency.

In general, each object X, consists of n measurements. Most clustering algorithm is
implemented based on a dissimilarity (or similarity) measure between objects, such as squared

Euclidean distance, angle, correlation;etc. Wetake the squared Euclidean distance of R" as

the dissimilarity measure between objeets-n this'study, that is, d(x;,X;) :Hxi —xjHZ, where

d(x;,x;) represents dissimilarity between--and X;. If objects are first standardized, then

it can be easily showed that Hxi _X1H2 = 2(1—,o(xi,xj)), where p(x;,x;) is the correlation
coefficient of object i and object j. Hence clustering based on squared Euclidean distance
is equivalent to that based on correlation.

The goal of the K-means algorithm is to minimize the total within-cluster deviations of

the objects to the cluster centers:

W(K)zizuxi [ (5)

j=1 i€j

where c;, j=1,...,K, are the centers of the K clusters. It can be implemented by the

following procedure:

1. Guess the initial cluster centers c,,---,c, for a given number of clusters K.

2. Assign each object to the cluster with the closest center.



3. For each cluster, replace the cluster center by the coordinatewise average of all
objects in that cluster.
4. lterate Steps 2 and 3 until the assignments do not change any more.
As the result of the K-means clustering depending on the initial values of the cluster
centers, we repeat the algorithm ten times with different sets of initial values and return the

best solution that gives the smallest value of (5).

3.2 Support Vector Machines

Support Vector Machines is a supervised learning system and has become very popular
in recent years since it outperforms most of other learning systems in classification and
regression, especially when dealing with the nonlinear case by means of enlarging the feature
space implicitly. We will take this powerful method as our classifier, but limit ourselves with
the linear kernel because of the data used in this study are linearly separable. Without loss of
generality, the basic idea of SVMs. can_be _explained well using the linear two-class
classification problem.

The following review is written based on Hastie et al. (2001).

The core of SVMs for classification is to construct an optimal separating hyperplane in

feature space, which separates the two classes as far as possible. Consider the training data
consisting of n pairs (x.,y,),(X,,¥,)....(X,, ¥,), with x;eRP and vy, e{+1-1}.

Define a hyperplane by

{x: f(x)=w-x+b=0}, (6)
where x,weRP, beR, and W isa unit vector: |w|=1. A classification rule induced by
f(x) is

D(x) = sign(f (x)). (7)

10



f ()

Figure 1: Separable case.

First, consider two perfectly separated classes (see Figure 1). Since the classes are
separable, we can find a function f(x)=w-x+b with y,-f(x;)>0forall j. Hence we

can find the hyperplane that maximizes the margin-between the training points for class {+1}

and {-1}. The following optimization problem captures this concept.

max_C
Wb [w]=1 (8)
subject to y;(w-x; +b)>C, j=1,...,n.

The band in Figure 1 is C units away from the hyperplane on either side, hence 2C units
wide. We can rephrase this problem more conveniently by dropping the norm constraint on

w and defining C =1/|jw|.

min|o o

subjectto y;(w-x; +b) =1, j=1,...,n.

-X+b
|W X | is the distance from x to the hyperplane.) The expression in (9) is

[wi

the usual way of writing the support vector criterion.

(Recall that

11



Figure 2: Non-separable case.

Suppose now the classes overlap in feature space. One way to deal with the overlap is to
still maximize C, but allow for some points to-be on the wrong side of the margin (see
Figure 2). Define the slack variables & =(&;;¢,,:.+,&,). We modify the constraint in (8) by:

max_C
Wb |wij=1 (10)
subject toy;(w -x; +b)=C(1-¢;), j=1,...,n,

where &, >0 forall j, and Z';:lcfj < constant . The points labeled &} in Figure 2 are on the
wrong side of their margin by an amount & =C¢&;; points on the correct side have &; =0.

Misclassifications occur when &, >1, hence by the constraint Z?zlajj < constant, we bound

the total number of training misclassification. As in (8), we can rephrase (9) in the equivalent

form
min w]
y;(w-x; +b)=1-¢;, j=1...,n (11)

subject to
{gj >0, Z?zlgj < constant

By the nature of the criterion (11), we see that points well inside their class boundary do

not play a crucial role in shaping the boundary.

12



The problem (11) can be solved using Lagrange multipliers with the following equivalent

form:
N T 3
min>wl+72.¢;
, =
subjectto &; 20,y;(w-x; +b)>21-&;, j=1,...,n,

where y replaces the constant in (11); the separable case correspondsto y =o.

The generalized Lagrange (primal) function is
l 2 n n n
Lp :E”W” +7§§j +§aj |:(1_§j)_ yj(W'Xj +b):|+§ﬂj(_§j)l
which we minimize w.r.t. w;,b, &; . Setting the respective derivatives to zero, we get
UEDICANSE
j=1
0= )Yy,
j=k

27 =7_ﬂj’vj

(12)

(13)

(14)

(15)

(16)

as well as the positivity constraints ‘e, B,7&,>0,V). Classical Lagrangian duality enables

the primal problem to be transformed to its dual problem, which is easier to solve. By

substituting (14)-(16) into (13), we obtain the Lagrangian dual objective function

n 1 n n
Ly = JZ_;“J —gjzzajaryjyj-Xij-v

=1 j'=1

(17)

which gives a lower bound on the objective function (12) for any feasible point. We maximize

L, subject to O0<a;<y and Zocjyj =0. In addition to (14)-(16), the Kuhn-tucker
j=1

conditions include the constraints
a; [(l_fj)_yj(w'xj +b)}=0,Vj,
ﬂj(_é:j)zolvja

A-&)-y;(w-x; +b) <0,vj,

13

(18)

(19)

(20)



Together these equations (14)-(20) uniquely characterize the solution to the primal and dual
problem.

From (14), the solution of w is of the form
W=>"a,yx, (21)
j=1
with nonzero coefficients o?j only for those observations for which the constraints in (20)

are exactly met (due to (18)). These observations are called support vectors, since W is

represented in terms of them alone. From (18) we can see that any of these margin points

(0<o?j,¢§j =0) can be used to solve for b, and we typically use an average of all the

solutions for numerical stability.
Given the solutions W and b, the decision function can be written as
f)(x):sign[f (x)]zsign[\iv-x+b]. (22)
The tuning parameter of this procedure IS %. In general, the classification problem is fairly
insensitive to y. We let y =oo;. which corresponds to the linear separable case, in this

study.

3.3 The Proposed Gene Selection Scheme

It takes four steps to implement our gene selection scheme. First, in order to avoid
selecting irrelevant genes after clustering and to reduce the computational cost, we filter out
genes with no or little effect to classification according to a ranking criterion, say, the absolute
values of (2), (3), or (4). However, it is rather difficult to have a general principle concerning
the amount of genes we should filter for each application. For convenience, we filter out 90%
of genes. It seems a plausible number when we start with thousands of genes. Second, we

cluster the rest 10% genes via K-means algorithm for a given number of clusters, K, to

avoid redundancy. Third, a preliminary selection procedure is performed by selecting some

14



informative genes from each cluster according to the same ranking criterion used in the first
step. Tens of genes are often considered to build a predictor in the literature. Golub et al.
(1999) selected 50 genes for leukemia data according to (2). Dudoit et al. (2002) selected 50
genes with the largest values of (4) for the lymphoma dataset, 40 genes for the leukemia
dataset, and 30 genes for the NCI60 dataset. Nevertheless, some datasets can be well
separated by merely several genes, e.g., leukemia data (Xiong et al. (2001); Guyon et al.
(2002)). Here, candidate genes, ranging from 50 to 100 in number, are selected proportionally
from each cluster. Fourth, SVM-RFE, in which RFE is performed based on SVM classifier, is
used to decide one final gene subset of targeted size from the candidate genes selected by the
preceding step. The complete process of data analysis is schemed in Figure 3. Steps 1 and 3
require a ranking criterion. In this study, we consider the following three ranking criteria:
absolute values of (2), (3), and (4) and call themranking method (2), (3), (4), respectively. We
remark that data preprocessing is still an open-issue.-In this study, we only standardize each

gene such that the mean is 0 and ‘standard.deviation is-1 across subjects here.

15



Input
Training Data

A 4

Data Preprocessing

Filtering

h 4

Cluster Genes
(K-means)

\ 4

Preliminary Selection

v
Select Final Gene Subset of Targeted Size
(SVM-RFE)

Classification
(Test Data)

Figure 3: Flowchart of data analysis. The dashed-line box is our gene selection scheme. The

steps marked with gray background are implemented with a ranking criterion.
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4. Data Analysis

We apply the proposed gene selection scheme to three popular microarray datasets in the
literature, the leukemia data (Golub et al., 1999), colon cancer data (Alon et al., 1999), and
breast cancer data (Hedenfalk et al., 2001). Combinations of each of the three ranking
methods described before with RFE (Guyon et al., 2002) are considered in this study. For
convenience, we call these combinations Scheme , ,and , respectively. Furthermore,
we compare our gene selection scheme with the corresponding ranking method and the RFE.

In the absence of test data in the colon cancer data and breast cancer data, leave-one-out
cross validation (LOOCYV) is adopted to evaluate the performance of the methods in this study.
More specifically, for each subject, remove it from the original dataset, train the rest of data to
build a classifier, and then test the_classifieron the removed subject. The three publicly
available datasets have been processed :in, many different ways by analysts, including
experimental design, normalization, outlier elimination, etc. Most of these preprocessing
works were beyond our control, especially the variation removal between chips (subjects).
Without transforming the data to attain the consistency, we merely standardize each gene of
the training set such that the mean is 0 and standard deviation is 1 across subjects to ensure
comparability with each other.

We filter out 90% of genes and cluster the rest genes into K =1~30 clusters. In addition,
we use the cumulative frequency plot of the values of each ranking criterion as an auxiliary to

judge whether it is adequate to cluster only 10% of genes.

4.1 Leukemia Data
The gene expression levels of the leukemia data (Golub et al., 1999) were produced by
Affymetrix high-density oligonucleotide microarrays. The data contain two subsets: a training

data set used to select genes and create the classifier, and an independent test data set used to

17



assess the performance of the classifier. The training set consists of 38 bone marrow subjects

(27 ALL (acute lymphoblastic leukemia), 11 AML (acute myeloid leukemia)) obtained from

acute leukemia patients at the time of diagnosis. The test set has 34 leukemia subjects (20

ALL, 14 AML), including 24 bone marrow and 10 peripheral blood subjects, and data are

from different reference laboratories that used different subject preparation protocols. Each

dataset contains 7,129 genes. The problem of interest is to distinguish between two types of

leukemia, ALL and AML. We pool two datasets, training set and test set, together and

implement LOOCYV on it. The following are some results:

Figure 4 displays the leave-one-out error rates of RFE and the three ranking
methods. RFE is obviously better than all three ranking methods when the number
of selected genes is small, and the results of all three ranking methods are similar.
Figures 5-7 give, respectively, the cumulative frequency plots of the three different
ranking values of all subjects. It is-noted that filtering out 90% of genes seems
plausible because of those 90% genes-have smaller ranking values relatively.

After clustering, we select about 10% -genes from each cluster to form a set of
candidate genes of size around 70. SVM-RFE is applied to this set. Figures 8-10
show the leave-one-out error rate only for 1-50 selected genes, for each K in a
subplot, of schemes -  (solid line), respectively. In addition to the results of our
gene selection scheme, we also plot the leave-one-out error rates of RFE (undertone

solid line) and the corresponding ranking method (dashed line) in each subplot.

We note that when the number of genes reduces to 1, the error rate is always the largest

in our three schemes. However, our schemes indeed perform better than the three ranking

methods. Among three schemes, scheme  performs the best and almost as good as RFE.

4.2 Colon Cancer Data

The colon cancer data (Alon et al.,, 1999) were also produced by Affymetrix
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oligonucleotide arrays. After pre-processing, the data set contains the expression of the 2,000
genes with highest minimal intensity across the 62 tissues. The 62 tissues include 22 normal
and 40 colon cancer tissues.

e Figure 11 displays the leave-one-out error rates of RFE and the three ranking
methods. Although all curves are fairly flat about the value 0.2, it still can be seen
that all three ranking methods all perform better than RFE.

® Figures 12-14 give, respectively, the cumulative frequency plots of the three
different ranking values of all subjects. These ranking values are obviously smaller
than that of the leukemia data. Filtering out 90% of genes also seems acceptable.
However, in order to avoid leaving out informative genes, we take 300 top-ranked
genes for clustering in the three schemes.

e After that, we select 20%:genes from each cluster such that the size of the gene set
will be around 60 in number. The leave-one-out error rates of schemes -  (solid
line) on this subset for.different K __are plotted in Figures 15-17, respectively. Each
subplot accompanies the results..of- RFE (undertone solid line) and the
corresponding ranking method (dashed line).

The curve of our method for each K is still flat but slightly higher than the other two
methods for all three schemes. This is probably due to that ranking methods in themselves
perform better than RFE. And it is notable that all curves are fairly flat in the number of
selected genes for this dataset, that is, we can not get better result even if we increase the

number of selected genes.

4.3 Breast Cancer Data

The breast cancer data (Hedenfalk et al., 2001) were produced by cDNA mircorarray
technique that is different from the Affymetrix oligonucleotide microarrays. This technique is
much cheaper and easier, but the data are noisier. There are total of 3,226 genes and 22 tissues
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in this dataset. Each tissue corresponds to one of three mutations of breast cancer, that is,
BRCA1, BRCA2, and Sporadic. There are 7 BRCAL, 8 BRCAZ2, and 7 Sporadic. We let
BRCAL as one class and pool BRCA2 and Sporadic as another class.

e Figure 18 displays the leave-one-out error rates of RFE and the three ranking
methods. We observe that RFE is better than the ranking methods, especially when
the number of the selected genes is less than 20.

® Figures 19-21 give, respectively, the cumulative frequency plots of the three
different ranking values of all subjects. Filtering out 90% of genes is still
acceptable.

e After clustering, we select 20% genes from each cluster so that the size of the gene
set is around 60 in number. Apply SVM-RFE to this gene set. Figures 22-24 show
the plots of leave-one-out error rate for.schemes -  (solid line), respectively.
Each subplot accompanies the results: of- RFE (undertone solid line) and the
corresponding ranking methed (dashed line):

It is obvious that our method“has.a smaller error rate than that of the corresponding
ranking method when the number of genes is less than 20 for all three schemes. However, our
three schemes perform poorly when the number of genes is larger than 20. Scheme  (Figure
24) performs slightly better than others (Figures 22-23).

We repeat the experiment but select around 100 candidate genes from clusters.
SVM-RFE is applied to this new subset, and the results are shown in Figures 25-27. These
results are better than the preceding case. When the number of genes is larger than 20, scheme

(Figure 27) performs better than three ranking methods. When the number of the selected

genes is between 15 and 20, our schemes always perform better than RFE.
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5. Conclusions and Future Research

We propose a gene selection scheme by combining two conventional gene selection
methods, ranking methods and RFE, in this study. Ranking methods are fast in computation
but might select highly correlated genes that give rise to redundancy to the classification
problem, while RFE can select a set of non-redundant genes but requires extensive
computation. The K-means clustering algorithm is used to reduce redundancy that arises from
the ranking criterion. Before clustering, we filter out 90% of genes to avoid selecting
irrelevant genes. A set of candidate genes are selected with the same proportion from each
cluster. After that, SVM-RFE is applied to this subset to get a final gene subset of an expected
size. The proposed gene selection scheme is applied to three popular microarray data sets. In
general, ranking methods usually perform-poorly when compared with RFE. Under this
situation, our method can reduce error rate effectively when the size of gene subset is less
than 20 and but may not always be as ,good as RFE. Nevertheless, our method is faster than
RFE in computation. There are some issues not addressed in this study:

® The choice of K

We use K =1~30 in our experiments. Our combined method does not perform very
well when K is small or fairly large, so K =5~20 is suggested. We also conduct a
preliminary study on the choice of K. Two criteria are used to choose the correct
number of clusters, but they always choose the smallest K. The first criterion was

proposed by Calinski and Harabasz (1974):

B(k) /(k 1)

mEGCH(k), CH (k) :W(k)/(n—k) ,

where B(k) and W (k) are the between and within cluster sums of squares with
k clusters, respectively. CH(1) is not defined. Milligan and Cooper (1985)
conducted a comprehensive simulation comparison of 30 different procedures.
Among the global methods, this criterion performs the best. Another criterion is the
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gap statistic proposed by Tibshirani et al. (2001):
max Gap, (k), Gap, (k) = E; (log(W, )) - log(W,).

One direction for future work is to try other clustering methods, e.g., model based
clustering, then AIC or BIC criterion can be used to choose K.

Threshold of filtering

In this study, we filter out 90% of genes before clustering. And the cumulative
frequency plot of the values of the ranking criterion is used as an auxiliary to see if
90% filtering is acceptable. This is an acceptable number from the results of data
analysis. Other explicit methods can also be tried.

How to select candidate genes from each cluster?

Only the size of each cluster plays a part in selecting candidate genes in our study.
However, it is possiblesthat selecting only one genes from a cluster with fewer
genes when K is large. In order to avoid information loss, we suggest that
selecting 2~3 genes from each cluster at least. In view of the results of the breast
cancer data, we also suggest that the number of genes in the final step of our scheme,
SVM-RFE, is 100 for general cases.

How many genes should be selected in the end?

This question can only be answered by biologists. They can make a decision
according to how much time they can invest in examining these genes further and

how much loss they can risk.

Guyon et al. (2002) observed in real experiments that a slight change in the feature set

often results in a completely different RFE ordering. Therefore, other combinations of filters

and wrappers can be tried. In addition, the datasets used in this study were produced several

years ago and microarray techniques are in progress. We hope that the proposed method can

be applied to some new datasets.
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Figure 4: The leave-one-out error rates of RFE and the three ranking methods for leukemia
data.
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Figure 5: The cumulative frequency plot of the absolute values of (2) for leukemia data.
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Figure 6: The cumulative frequency;plot.of the values of (3) for leukemia data.
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Figure 7: The cumulative frequency plot of the values of (4) for leukemia data.
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Figure 9: Scheme
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Figure 11: The leave-one-out error rate:of REE and the three ranking methods for colon
cancer data.
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Figure 13: The cumulative frequency:-plot-of the, values of (3) for colon cancer data.
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Figure 14: The cumulative frequency plot of the values of (4) for colon cancer data.
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Figure 18: The leave-one-out error ratesof REE and the three ranking methods for breast
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Figure 19: The cumulative frequency plot of the absolute values of (2) for breast cancer data.
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Figure 20: The cumulative frequencysplot.of the values of (3) for breast cancer data.
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Figure 21: The cumulative frequency plot of the values of (4) for breast cancer data.
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Figure 23: Scheme
(Breast Cancer Data)
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