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摘  要 

  微陣列資料集通常包含數千個基因，但只有數十個樣本。這種所謂“大

p (基因)，小 n (樣本)＂的特性會為統計分析帶來一些困難。基因選取是處

理這類問題的一種典型方法。其中，Filters 和 wrappers 是兩種常用的基因

選取方法。Filters 利用一個排序準則來判斷一個基因是否被選取；因此，這

種方法在計算上非常快速，但可能選到高度相關的基因而造成冗贅。另一

方面，wrappers 通常能夠選取一個不冗贅的基因子集但卻需要龐大的運算

量。這篇研究中採用上述二種方法的組合。我們先根據一個排序準則過濾

掉對分類無益的基因，再利用 K-means 分群演算法對其餘基因分群以避免

冗贅。然後，應用 Guyon et al. (2002) 所提出的 SVM-RFE基因選取方法於

自每群選出的候選基因。最後，我們利用所提出的方法來分析三個常見的

癌症資料集。其結果顯示，當選出的基因數目少時，我們的方法表現地比

所討論的三種 filters好。 
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ABSTRACT 
 

A microarray dataset contains thousands of genes but only tens of subjects in general. 

This so-called “large  (gene), small  (subject)” feature brings about some difficulties to 

statistical analysis. Gene selection is a typical approach to deal with this problem. There are 

two conventional gene selection methods, filters and wrappers. Filters judge whether a gene 

should be selected based on a ranking criterion; therefore, they are very fast in computation 

but might select highly correlated genes that give rise to redundancy. On the other hand, 

wrappers usually select a small set of non-redundant genes but require extensive computation. 

A combination of these two methods is adopted in this study. We first filter out irrelevant 

genes according a ranking criterion and then group the rest to avoid redundancy via K-means 

clustering algorithm. Then, the SVM-RFE gene selection method proposed by Guyon et al. 

(2002) is applied to a list of candidate genes selected from each cluster. Three popular cancer 

data sets are analyzed by means of the proposed method. The results show that the proposed 

method performs better than three filter methods under study when the number of selected 

genes is small.  

p n
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1. Introduction 

Cancer classification is an important issue in medical community. The development of 

microarray technology enables biologists to observe the expression levels of thousands of 

genes simultaneously in a single array. Microarray techniques take the clinical diagnosis from 

morphology to molecular biology. Several microarray datasets on a variety of cancers are 

publicly available on the Internet. Typically, the dataset is organized as a matrix p n×X  where 

the element ijx  represents the expression level of the th gene of the th subject. Subjects 

are classified into classes such as normal tissues versus cancer tissues, or different types of a 

certain disease. The challenge we are confronted here is how to distinguish cancer tissues 

from normal tissues when tremendous measurements of gene expression levels are given for 

these tissues. 

i j

Several statistical issues have been encountered in gene expression data analysis, 

including image analysis, experimental design, data preprocessing, clustering, classification, 

gene (feature) selection and so on (Nadon and Shoemaker (2002); Sebastiani et al. (2003)). 

Many statistical methods used in analyzing microarray data are based on machine learning 

methodologies. Supervised learning and unsupervised learning are frequently used in machine 

learning. Basically, supervised learning is to predict an outcome (response)  based on a set 

of features of an object. More specifically, we use the outcomes and feature measurements of 

samples in a set of training data to build a prediction model (or “learner”), e.g., by least 

squares methods. Support Vector Machines (SVMs) is also a popular method in recent years, 

especially in classification. It is called “supervised” because the outcomes in training data are 

used to guide the learning process. On the other hand, unsupervised learning (or “learning 

without a teacher”) observes only feature measurements and has no outcome measurements. 

Its task is to gain some understanding of data. For example, clustering is a typical 

y
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unsupervised learning technique. 

In this study, we only discuss the two-class classification problem in which classes are 

labeled as { ,   or  That is, each subject }+ − { 1, 1}.+ − jx  is accompanied by a 

corresponding outcome (response) { 1, 1}.jy ∈ + −  With these class-labeled data as a training 

set, an unknown-class subject can be classified by means of statistical methods described 

above. Unfortunately, a microarray dataset usually contains thousands of genes but only tens 

of subjects in general. This so-called “large  small ” feature brings about some 

difficulties to statistical analysis. More specifically, we have too many genes relative to the 

number of subjects. It means that we have to deal with a statistical problem with a large 

number of variables (genes) and a small number of observations (subjects). Under such 

circumstances, we may get an overfitting solution, that is, a decision function that performs 

well for training data but poorly for test data. It is probably because the great part of the 

variables (genes) is irrelevant or even becomes noise to the problem. This overfitting problem 

is well known in machine learning. The typical approach to overcome this problem is to 

reduce the dimensionality of the feature space. 

,p n

Feature (gene) selection is a commonly used method for dimension reduction in 

classification problems. By means of gene selection, we not only improve the accuracy of 

classification by reducing the dimensionality but also reduce the computational cost. 

Furthermore, it is believed that there are only a handful of genes that dominate a certain 

disease. Feature (gene) selection grubs up a list of candidate genes that is interpretable enough 

to help identify, say, cancer tissues from normal tissues. The main objective of this study is to 

pick some crucial genes to help classification, or even disease detection, cure, and prevention. 

There are two general approaches to feature (gene) selection: filters and wrappers. Filters 

judge whether a feature (gene) should be selected based on its discriminating power, while 

wrappers select features (genes) according to the accuracy of the learning method. If we 
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choose filters to select genes, we might get highly correlated genes that give rise to 

redundancy. This redundancy is useless to the advance of classification accuracy and may 

skew the results or even lead to misclassifications. On the other hand, wrapper methods can 

often obtain a small set of non-redundant features (genes) but require extensive computation 

to search for an adequate set of features (genes). 

We will address gene selection problem by combining the two approaches described 

above. First, filter out features (genes) with little or no effects in classification. Then cluster 

similar genes and select discriminative genes from each cluster to avoid redundancy. Finally, 

select a set of informative features (genes) contributed to classification via a wrapper method. 

We compare this combined method with some filter and wrapper methods. 

    The rest of this paper is organized as follows. Section 2 gives a literature review on 

related works. Section 3 reviews two learning methods used in our approach, K-means and 

Support Vector Machines (SVMs), and describes the gene selection scheme we propose in this 

study. The proposed method is applied to three popular real data sets. Section 4 presents the 

results of the data analysis. Section 5 concludes the paper with a brief summary, discussions, 

and some future research directions. 
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2. Literature Review 

In this section, we review some relevant research works related to gene expression data 

analysis, including clustering, classification, and gene selection.  

    Cluster analysis is a way to group a collection of objects into subsets or “clusters” such 

that the objects within the same cluster are similar to each other and the objects in different 

clusters are quite distinct. It is by virtue of this feature that clustering can be used in 

displaying the patterns of gene expression data. Moreover, we can gain different information 

according to the items (subjects or genes) we cluster. To cluster subjects according to their 

gene expression levels is an unsupervised classification method, which is also helpful to class 

discovery (Golub et al., 1999). On the other hand, gene-clustering reveals the patterns of the 

gene expression levels. Alon et al. (1999) used a two-way clustering method in analyzing 

colon cancer data. As a result, the clustering algorithm reveals broad patterns coherent of 

genes whose expression levels are correlated, suggesting a high degree of organization 

underlying gene expression in these tissues. There are many researchers who devote 

themselves to finding a better clustering algorithm, e.g., Tseng and Wong (2003) proposed a 

tight clustering algorithm that is a resampling-based approach to identify stable and tight 

patterns in data by using K-means clustering as an intermediate clustering engine. 

Unlike clustering subjects, many researchers utilized supervised learning methods to deal 

with classification problem. The basic concept is using a training data set to build a decision 

function,  New observation (test data)  then can be classified according to the sign 

of  i.e., 

( ).D x x

( ),D x

( ) 0 { },
( ) 0 { },
( ) 0 decision boundary.

D class
D class
D

> ⇒ ∈ +
< ⇒ ∈ −
= ⇒ ∈

x x
x x
x x

 

In the linear case,  

( ) ,D b= ⋅ +x w x                                (1) 
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which is a weighted sum of the gene expression levels plus bias. A data set is said to be 

“linearly separable” if the subjects can be separated into two classes by a linear decision 

function.  

Golub et al. (1999) created a class predictor based on weighted votes of a set of 

informative genes for the famous leukemia data. Those informative genes are selected by the 

following ranking criterion: 

   ( ) ( ) ,
( ) ( )

i i
i

i i

w µ µ
σ σ

+ − −
=

+ + −
                             (2) 

where iµ  and iσ  are the mean and standard deviation of gene expression values of gene  

for all samples of class  or class (

i

( )+ )− , 1, ,i p= … . Large positive  values indicate 

strong correlation with class (

iw

)+  whereas large negative  values indicate strong 

correlation with class  Originally, Golub et al. selected an equal number of genes from 

positive and negative values of  This gene selection method is a filter method. Other 

ranking criteria have also been used. Furey et al. (2000) used the absolute value of (2). 

Pavlidis et al. (2000) used 

iw

( ).−

.iw

 
2

2

( ( ) ( )) ,
( ) ( )
i i

i
i i

w µ µ
σ σ

+ − −
= 2+ + −

                           (3) 

as the ranking criterion, which is similar to Fisher’s discriminant criterion. Dudoit et al. (2002) 

performed a preliminary selection of genes based on the ratio of their between-group to 

within-group sums of squares to compare several different discrimination methods, including 

Fisher linear discriminant analysis, maximum likelihood discriminant rules, nearsest-neighbor 

classifiers, classification trees, and aggregating classifiers: bagging and boosting. For each 

gene , this ratio is i

2

2

( )( )
( ) ,

( )( )
j ik ik j

j ij ikk j

I y k x x
BW i

I y k x x
⋅= −

=
= −

∑ ∑
∑ ∑

                  (4) 

where ( )I ⋅  is the indicator function and ix ⋅  and ikx  denote, respectively, the average 

expression levels of gene  across all subjects and across the subjects belonging to class  i k
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only. 

    Guyon et al. (2002) proposed a gene selection scheme called Recursive Feature 

Elimination (RFE), which is a typical wrapper method. They utilized Support Vector 

Machines (SVMs) as the classifier and took the squared weights of genes in the decision 

function constructed by the classifier as the ranking criterion in linear case. The intuition 

behind this ranking criterion is that features with larger weights in the decision function may 

be more informative. The procedure eliminates genes one by one with the following steps in 

each iteration: 

1. Train the classifier. 

2. Compute the ranking criterion for all features. 

3. Remove the feature with the smallest ranking criterion. 

Leukemia data and colon cancer data were used in Guyon et al. (2002) to demonstrate that 

genes selected by RFE yield better classification performance and are biologically relevant to 

cancer. 

Filter methods select informative genes by evaluating individual discriminability, which 

may result in picking up a set of highly correlated genes. This can be understood intuitively 

that ranking criterion would give close values to highly correlated genes. In view of this, 

Jeager et al. (2003) utilized the fuzzy K-means clustering algorithm to cluster similar genes to 

avoid redundancy and selected discriminative genes from each cluster depending on five 

different statistics. The main idea is that a cluster might represent a pathway. They used a 

fuzzy clustering algorithm because it assigns for each gene a membership probability to each 

of the clusters and may therefore capture the fact that some genes are involved in several 

pathways. The size and quality of a cluster play a part in deciding how many genes are 

selected. If a cluster is very tight and dense it means that those members are very similar. On 

the other hand, if a cluster has wide dispersion, the members of the cluster are more 

heterogeneous. To capture the biggest possible variety of genes, it would therefore be 
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favorable to take more genes from a cluster of bad quality than from a cluster with good 

quality. To determine the cluster quality for the fuzzy clustering algorithm, they used the 

membership probabilities of a gene. A gene belongs to the cluster to which it has the highest 

membership probability. The cluster quality is then assessed by looking at the average 

membership probability of its elements. A high cluster quality means low dispersion, and the 

closer the quality is to zero the more scattered the cluster becomes. To counteract the problem 

that a cluster is totally unrelated to the discrimination, they also implemented “masked out 

clustering” to mask out and exclude clusters that have an average bad test statistic p-value. 

They varied the number of clusters between 1 and 30 and the number of selected features 

between 2 and 100. Finally, a ROC (receiver operator curves) scores (i.e., the area under the 

ROC graph) is used to assess the performances. 

Also, Ding and Peng (2003) proposed a minimum redundancy – maximum relevance 

(MRMR) method to select a feature set by minimizing redundancy in the set and maximizing 

relevance to the target classification problem. They used two criteria to represent the 

redundancy and relevance in a feature set, respectively. MRMR criterion function is the 

combination of the two criteria. For example, in the two-class classification problem, Pearson 

correlation coefficient and t-statistic can be chosen as the score of minimum redundancy and 

maximum relevance, respectively, for continuous variables. Hence, for the feature set  the 

minimum redundancy condition can be written as: 

,S

2
,

1min ( ), ( ) ( , ) ,c cS i j S
W S W S c i j

S ∈

= ∑  

where  is the Pearson correlation coefficient of feature  and feature . And the 

maximum relevance condition can be written as: 

( , )c i j i j

1max ( ), ( ) ( ),t tS i S
V S V S t i

S ∈

= ∑  

where  is the t-statistic of feature  The MRMR optimization criterion function can be ( )t i .i
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( )max ( ) ( )t cS
V S W S−  or  Euclidean distance is another score of 

minimum redundancy for continuous variables besides Pearson correlation coefficient. For the 

multi-class classification problem, they used F-statistic as the score of maximum relevance. 

They also proposed two MRMR optimization criterion functions for categorical (discrete) 

variables in a similar way. 

(max ( ) / ( ) .t cS
V S W S )

We follow the idea of Jeager et al. (2003) in this study, but filter out genes with little or 

no effects in classification before clustering to avoid selecting irrelevant genes. After selecting 

a list of candidate genes from each cluster, RFE is used to decide final gene set of an expected 

size. 
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3. Methodology – A Combined Gene Selection Scheme 

    In this section, we first review two well-known learning methods, K-means and Support 

Vector Machines (SVMs), as the tools of clustering and classification, respectively. After that, 

we will propose our gene selection scheme and illustrate the procedures of data analysis. 

 

3.1 K-means 

    The K-means algorithm is a commonly used clustering method. The advantages of 

K-means are simplicity and efficiency. 

In general, each object  consists of  measurements. Most clustering algorithm is 

implemented based on a dissimilarity (or similarity) measure between objects, such as squared 

Euclidean distance, angle, correlation, etc. We take the squared Euclidean distance of  as 

the dissimilarity measure between objects in this study, that is, 

ix n

n\

2
( , ) ,i j i jd = −x x x x  where 

 represents dissimilarity between  and ( , )i jd x x ix .jx  If objects are first standardized, then 

it can be easily showed that ( )2
2 1 ( , ) ,i j i jρ− = −x x x x  where ( , )i jρ x x  is the correlation 

coefficient of object  and object  Hence clustering based on squared Euclidean distance 

is equivalent to that based on correlation. 

i .j

The goal of the K-means algorithm is to minimize the total within-cluster deviations of 

the objects to the cluster centers: 

           
2

1

( ) ,
K

i j
j i j

W K
= ∈

= −∑∑ x c                          (5) 

where  are the centers of the , 1, ,j j =c … ,K K  clusters. It can be implemented by the 

following procedure: 

1. Guess the initial cluster centers 1, , Kc c"  for a given number of clusters  .K

2. Assign each object to the cluster with the closest center. 

 9



3. For each cluster, replace the cluster center by the coordinatewise average of all 

objects in that cluster. 

4. Iterate Steps 2 and 3 until the assignments do not change any more. 

    As the result of the K-means clustering depending on the initial values of the cluster 

centers, we repeat the algorithm ten times with different sets of initial values and return the 

best solution that gives the smallest value of (5). 

 

3.2 Support Vector Machines 

    Support Vector Machines is a supervised learning system and has become very popular 

in recent years since it outperforms most of other learning systems in classification and 

regression, especially when dealing with the nonlinear case by means of enlarging the feature 

space implicitly. We will take this powerful method as our classifier, but limit ourselves with 

the linear kernel because of the data used in this study are linearly separable. Without loss of 

generality, the basic idea of SVMs can be explained well using the linear two-class 

classification problem.  

    The following review is written based on Hastie et al. (2001). 

The core of SVMs for classification is to construct an optimal separating hyperplane in 

feature space, which separates the two classes as far as possible. Consider the training data 

consisting of  pairs  with  and  

Define a hyperplane by 

n 1 1 2 2( , ), ( , ), , ( , ),n ny y yx x x… p
j ∈x \ { 1, 1}.jy ∈ + −

{ : ( ) 0},f b= ⋅ + =x x w x                           (6) 

where   and  is a unit vector: , ,p∈x w \ ,b∈\ w w =1. A classification rule induced by 

 is ( )f x

( ) ( ( )).D sign f=x x                            (7) 
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Figure 1: Separable case. 

 

 separated classes (see Figure 1). Since the classes are 

separable, we can find a function 

First, consider two perfectly

( )f b= ⋅ +x w x  with .( ) 0 for allj jy f j⋅ >x  Hence we 

can find the hyperplane that maximizes the margin between the training points for class {+1} 

and {-1}. The following optimization problem captures this concept. 

, , 1
max C

( ) , 1, , .
b

j jsubject to y b C j n
=

⋅ + ≥ =
w w

w x …
                    (8) 

The band in Figure 1 is units away from the hyperplane on either side, hence 2  units 

 and defining 

C  C

wide. We can rephrase this problem more conveniently by dropping the norm constraint on 

w 1C = w . 

,
min

( ) 1, 1,
b

j jsubject to y b j n⋅ + ≥ =
w

w

w x …, .
                    (9) 

(Recall that 
b⋅ +w x

w
 is the distance from to the hyperplane.) The expression in (9) is 

the usual way of writing the support vector criterion. 

x  

 

C
C

margin

( )f x  
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Figure 2: Non-separable case. 

 

   Suppose now the classes overlap in feature space. One way to deal with the overlap is to  

still maximize ,C  but allow for some points to be on the wrong side of the margin (see 

Figure 2). Define the slack variables 1 2( , , , ).nξ ξ ξ ξ= …  We modify the constraint in (8) by: 

, , 1
max

( ) (1 ), 1,
b

j j j

C

subject to y b C j nξ
=

⋅ + ≥ − =
w w

w x …, ,
              (10) 

where . The points labeled 
1

0 for all , and constantn
j jj

jξ ξ
=

≥ ≤∑ jξ
∗  in Figure 2 are on the 

wrong side of their margin by an amount j jCξ ξ∗ = ; points on the correct side have 0.jξ =  

Misclassifications occur when 1jξ > , hence by the constraint 
1

constantn
jj

ξ
=

≤∑ , we bound 

the total number of training misclassification. As in (8), we can rephrase (9) in the equivalent 

form  

,

1

min

( ) 1 , 1,
.

0, constant

b

j j j

n
j jj

y b j
subject to

ξ

ξ ξ
=

⋅ + ≥ − =⎧⎪
⎨

≥ ≤⎪⎩ ∑

w
w

w x …, n                 (11) 

    By the nature of the criterion (11), we see that points well inside their class boundary do 

not play a crucial role in shaping the boundary. 

C
C

margin 

2ξ
∗

4ξ
∗3ξ

∗

1ξ
∗

( )f x  
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    The problem (11) can be solved using Lagrange multipliers with the following equivalent 

form: 

2

, 1

1min
2

0, ( ) 1 , 1, , ,

n

jb j

j j j jsubject to y b j n

γ ξ

ξ ξ
=

+

≥ ⋅ + ≥ − =

∑w
w

w x …
             (12) 

where γ  replaces the constant in (11); the separable case corresponds to γ = ∞ . 

    The generalized Lagrange (primal) function is 

 21 (1 )
n n

p j j jL
1 1 1

( ) ( ),
2

n

j j j j
j j j

y bγ ξ α ξ⎡= + + −⎣∑ ∑w β ξ
= = =

⎤− ⋅ + + −⎦ ∑w x       (13) 

which we minimize w.r.t. , , jb ξw . Setting the respective derivatives to zero, we get 

j j j
j=

14) 

                                 (

1

,
n

yα=∑w x                                (

1

0 ,
n

j j
j

yα
=

=∑ 15) 

,i j jα γ β= − ∀                                 (16) 

, , 0, .j j j jα β ξ ≥ ∀  Classical Lagrangian duality enables as well as the positivity constraints 

the primal problem to be transforme roblem, which is easier to solve. By 

substituting (14)-(16) into (13), we obtain the Lagrangian dual objective function 

d to its dual p

' ' '
1 ,

n n n
T

1 1 ' 12D j j j j j j jL y yα α α= −∑ ∑∑ x x               
j j j= = =

      (17) 

which gives a lower bound on the objective function (12) for any feasible point. We maximize 

DL  subject to 0 jα γ≤ ≤  and 0.
n

j jyα
1j=

=∑  In addition to (14)-(16), the Kuhn-tucker 

ditions includ traints 

(1jα ⎡

con e the cons

j j jy b jξ ⎤) ( ) 0, ,− − ⋅ + = ∀⎦w x                      (18) 

     

⎣

( ) 0, ,j j jβ ξ− = ∀                      (19) 

(1 ) ( ) 0, ,j j jy b jξ− − w x                      (20) ⋅ + ≤ ∀
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Together these equations (14)-(20) uniquely characterize the s

 (14), the solution of is of the form 

21) 

with nonzero coefficients 

olution to the primal and dual 

problem. 

    From w  

1

ˆˆ j j j
j

yα
=

=∑w x                                 (
n

ˆ jα  only for those ob

lutions for n

, the decision function can be written as 

servations for which the constraints in (20) 

are exactly met (due to (18)). These observations are called support vectors, since ŵ  is 

represented in terms of them alone. From (18) we can see that any of these margin points 

( ˆˆ0 , 0j jα ξ< = ) can be used to solve for b̂ , and we typically use an average of all the 

so umerical stability. 

    Given the solutions ŵ  and b̂

[ ]ˆˆ ˆ( ) ( ) .D sign f sign b⎡ ⎤= = ⋅ +⎣ ⎦x x w x                     (22) 

The tuning parameter of this procedure is .γ  In general, the classification problem is fairly 

insensitive to .γ  We let ,γ = ∞  which corresponds to the linear separable case, in this 

study. 

 

3.3 The Proposed Gene Selection Scheme 

lection scheme. First, in order to avoid 

selec

It takes four steps to implement our gene se

ting irrelevant genes after clustering and to reduce the computational cost, we filter out 

genes with no or little effect to classification according to a ranking criterion, say, the absolute 

values of (2), (3), or (4). However, it is rather difficult to have a general principle concerning 

the amount of genes we should filter for each application. For convenience, we filter out 90% 

of genes. It seems a plausible number when we start with thousands of genes. Second, we 

cluster the rest 10% genes via K-means algorithm for a given number of clusters, ,K  to 

avoid redundancy. Third, a preliminary selection procedure is performed by selecting some 
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informative genes from each cluster according to the same ranking criterion used in the first 

step. Tens of genes are often considered to build a predictor in the literature. Golub et al. 

(1999) selected 50 genes for leukemia data according to (2). Dudoit et al. (2002) selected 50 

genes with the largest values of (4) for the lymphoma dataset, 40 genes for the leukemia 

dataset, and 30 genes for the NCI60 dataset. Nevertheless, some datasets can be well 

separated by merely several genes, e.g., leukemia data (Xiong et al. (2001); Guyon et al. 

(2002)). Here, candidate genes, ranging from 50 to 100 in number, are selected proportionally 

from each cluster. Fourth, SVM-RFE, in which RFE is performed based on SVM classifier, is 

used to decide one final gene subset of targeted size from the candidate genes selected by the 

preceding step. The complete process of data analysis is schemed in Figure 3. Steps 1 and 3 

require a ranking criterion. In this study, we consider the following three ranking criteria: 

absolute values of (2), (3), and (4) and call them ranking method (2), (3), (4), respectively. We 

remark that data preprocessing is still an open issue. In this study, we only standardize each 

gene such that the mean is 0 and standard deviation is 1 across subjects here. 
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Figure 3: Flowchart of data analysis. The dashed-line box is our gene selection scheme. The 

 

steps marked with gray background are implemented with a ranking criterion. 
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4. Data Analysis 

We apply the proposed gene selection scheme to three popular microarray datasets in the 

literature, the leukemia data (Golub et al., 1999), colon cancer data (Alon et al., 1999), and 

breast cancer data (Hedenfalk et al., 2001). Combinations of each of the three ranking 

methods described before with RFE (Guyon et al., 2002) are considered in this study. For 

convenience, we call these combinations Scheme Ⅰ, Ⅱ, and Ⅲ, respectively. Furthermore, 

we compare our gene selection scheme with the corresponding ranking method and the RFE. 

In the absence of test data in the colon cancer data and breast cancer data, leave-one-out 

cross validation (LOOCV) is adopted to evaluate the performance of the methods in this study. 

More specifically, for each subject, remove it from the original dataset, train the rest of data to 

build a classifier, and then test the classifier on the removed subject. The three publicly 

available datasets have been processed in many different ways by analysts, including 

experimental design, normalization, outlier elimination, etc. Most of these preprocessing 

works were beyond our control, especially the variation removal between chips (subjects). 

Without transforming the data to attain the consistency, we merely standardize each gene of 

the training set such that the mean is 0 and standard deviation is 1 across subjects to ensure 

comparability with each other.  

We filter out 90% of genes and cluster the rest genes into =1~30 clusters. In addition, 

we use the cumulative frequency plot of the values of each ranking criterion as an auxiliary to 

judge whether it is adequate to cluster only 10% of genes. 

K

  

4.1 Leukemia Data 

    The gene expression levels of the leukemia data (Golub et al., 1999) were produced by 

Affymetrix high-density oligonucleotide microarrays. The data contain two subsets: a training 

data set used to select genes and create the classifier, and an independent test data set used to 
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assess the performance of the classifier. The training set consists of 38 bone marrow subjects 

(27 ALL (acute lymphoblastic leukemia), 11 AML (acute myeloid leukemia)) obtained from 

acute leukemia patients at the time of diagnosis. The test set has 34 leukemia subjects (20 

ALL, 14 AML), including 24 bone marrow and 10 peripheral blood subjects, and data are 

from different reference laboratories that used different subject preparation protocols. Each 

dataset contains 7,129 genes. The problem of interest is to distinguish between two types of 

leukemia, ALL and AML. We pool two datasets, training set and test set, together and 

implement LOOCV on it. The following are some results: 

● Figure 4 displays the leave-one-out error rates of RFE and the three ranking 

methods. RFE is obviously better than all three ranking methods when the number 

of selected genes is small, and the results of all three ranking methods are similar.  

● Figures 5-7 give, respectively, the cumulative frequency plots of the three different 

ranking values of all subjects. It is noted that filtering out 90% of genes seems 

plausible because of those 90% genes have smaller ranking values relatively.  

● After clustering, we select about 10% genes from each cluster to form a set of 

candidate genes of size around 70. SVM-RFE is applied to this set. Figures 8-10 

show the leave-one-out error rate only for 1-50 selected genes, for each  in a 

subplot, of schemes Ⅰ-Ⅲ (solid line), respectively. In addition to the results of our 

gene selection scheme, we also plot the leave-one-out error rates of RFE (undertone 

solid line) and the corresponding ranking method (dashed line) in each subplot.  

K

We note that when the number of genes reduces to 1, the error rate is always the largest 

in our three schemes. However, our schemes indeed perform better than the three ranking 

methods. Among three schemes, scheme Ⅱ performs the best and almost as good as RFE.  

 

4.2 Colon Cancer Data 

    The colon cancer data (Alon et al., 1999) were also produced by Affymetrix 
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oligonucleotide arrays. After pre-processing, the data set contains the expression of the 2,000 

genes with highest minimal intensity across the 62 tissues. The 62 tissues include 22 normal 

and 40 colon cancer tissues. 

● Figure 11 displays the leave-one-out error rates of RFE and the three ranking 

methods. Although all curves are fairly flat about the value 0.2, it still can be seen 

that all three ranking methods all perform better than RFE.  

● Figures 12-14 give, respectively, the cumulative frequency plots of the three 

different ranking values of all subjects. These ranking values are obviously smaller 

than that of the leukemia data. Filtering out 90% of genes also seems acceptable. 

However, in order to avoid leaving out informative genes, we take 300 top-ranked 

genes for clustering in the three schemes.  

● After that, we select 20% genes from each cluster such that the size of the gene set 

will be around 60 in number. The leave-one-out error rates of schemes Ⅰ-  Ⅲ (solid 

line) on this subset for different  are plotted in Figures 15-17, respectively. Each 

subplot accompanies the results of RFE (undertone solid line) and the 

corresponding ranking method (dashed line). 

K

The curve of our method for each  is still flat but slightly higher than the other two 

methods for all three schemes. This is probably due to that ranking methods in themselves 

perform better than RFE. And it is notable that all curves are fairly flat in the number of 

selected genes for this dataset, that is, we can not get better result even if we increase the 

number of selected genes. 

K

 

4.3 Breast Cancer Data 

    The breast cancer data (Hedenfalk et al., 2001) were produced by cDNA mircorarray 

technique that is different from the Affymetrix oligonucleotide microarrays. This technique is 

much cheaper and easier, but the data are noisier. There are total of 3,226 genes and 22 tissues 
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in this dataset. Each tissue corresponds to one of three mutations of breast cancer, that is, 

BRCA1, BRCA2, and Sporadic. There are 7 BRCA1, 8 BRCA2, and 7 Sporadic. We let 

BRCA1 as one class and pool BRCA2 and Sporadic as another class. 

● Figure 18 displays the leave-one-out error rates of RFE and the three ranking 

methods. We observe that RFE is better than the ranking methods, especially when 

the number of the selected genes is less than 20.  

● Figures 19-21 give, respectively, the cumulative frequency plots of the three 

different ranking values of all subjects. Filtering out 90% of genes is still 

acceptable.   

● After clustering, we select 20% genes from each cluster so that the size of the gene 

set is around 60 in number. Apply SVM-RFE to this gene set. Figures 22-24 show 

the plots of leave-one-out error rate for schemes Ⅰ-Ⅲ (solid line), respectively. 

Each subplot accompanies the results of RFE (undertone solid line) and the 

corresponding ranking method (dashed line).  

It is obvious that our method has a smaller error rate than that of the corresponding 

ranking method when the number of genes is less than 20 for all three schemes. However, our 

three schemes perform poorly when the number of genes is larger than 20. Scheme Ⅲ (Figure 

24) performs slightly better than others (Figures 22-23).  

We repeat the experiment but select around 100 candidate genes from clusters. 

SVM-RFE is applied to this new subset, and the results are shown in Figures 25-27. These 

results are better than the preceding case. When the number of genes is larger than 20, scheme 

Ⅲ (Figure 27) performs better than three ranking methods. When the number of the selected 

genes is between 15 and 20, our schemes always perform better than RFE. 
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5. Conclusions and Future Research 

We propose a gene selection scheme by combining two conventional gene selection 

methods, ranking methods and RFE, in this study. Ranking methods are fast in computation 

but might select highly correlated genes that give rise to redundancy to the classification 

problem, while RFE can select a set of non-redundant genes but requires extensive 

computation. The K-means clustering algorithm is used to reduce redundancy that arises from 

the ranking criterion. Before clustering, we filter out 90% of genes to avoid selecting 

irrelevant genes. A set of candidate genes are selected with the same proportion from each 

cluster. After that, SVM-RFE is applied to this subset to get a final gene subset of an expected 

size. The proposed gene selection scheme is applied to three popular microarray data sets. In 

general, ranking methods usually perform poorly when compared with RFE. Under this 

situation, our method can reduce error rate effectively when the size of gene subset is less 

than 20 and but may not always be as good as RFE. Nevertheless, our method is faster than 

RFE in computation. There are some issues not addressed in this study: 

● The choice of  K

We use =1~30 in our experiments. Our combined method does not perform very 

well when  is small or fairly large, so =5~20 is suggested. We also conduct a 

preliminary study on the choice of  Two criteria are used to choose the correct 

number of clusters, but they always choose the smallest  The first criterion was 

proposed by Calinski and Harabasz (1974):  

K

K K

.K

.K

( ) /( 1)max ( ), ( ) ,
( ) /( )k

B k kCH k CH k
W k n k

−
=

−
 

where ( )B k  and  are the between and within cluster sums of squares with 

 clusters, respectively.  is not defined. Milligan and Cooper (1985) 

conducted a comprehensive simulation comparison of 30 different procedures. 

Among the global methods, this criterion performs the best. Another criterion is the 

( )W k

k (1)CH

 21



gap statistic proposed by Tibshirani et al. (2001): 

*max ( ), ( ) (log( )) log( ).n n n kk
Gap k Gap k E W W= − k  

One direction for future work is to try other clustering methods, e.g., model based 

clustering, then AIC or BIC criterion can be used to choose  .K

● Threshold of filtering 

In this study, we filter out 90% of genes before clustering. And the cumulative 

frequency plot of the values of the ranking criterion is used as an auxiliary to see if 

90% filtering is acceptable. This is an acceptable number from the results of data 

analysis. Other explicit methods can also be tried. 

● How to select candidate genes from each cluster? 

Only the size of each cluster plays a part in selecting candidate genes in our study. 

However, it is possible that selecting only one genes from a cluster with fewer 

genes when  is large. In order to avoid information loss, we suggest that 

selecting 2~3 genes from each cluster at least. In view of the results of the breast 

cancer data, we also suggest that the number of genes in the final step of our scheme, 

SVM-RFE, is 100 for general cases. 

K

● How many genes should be selected in the end? 

This question can only be answered by biologists. They can make a decision 

according to how much time they can invest in examining these genes further and 

how much loss they can risk. 

Guyon et al. (2002) observed in real experiments that a slight change in the feature set 

often results in a completely different RFE ordering. Therefore, other combinations of filters 

and wrappers can be tried. In addition, the datasets used in this study were produced several 

years ago and microarray techniques are in progress. We hope that the proposed method can 

be applied to some new datasets. 
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Figures 
 

 
Figure 4: The leave-one-out error rates of RFE and the three ranking methods for leukemia 

data. 
 

 
Figure 5: The cumulative frequency plot of the absolute values of (2) for leukemia data. 
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Figure 6: The cumulative frequency plot of the values of (3) for leukemia data. 

 
 

 
Figure 7: The cumulative frequency plot of the values of (4) for leukemia data. 
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 27
Figure 8: Scheme Ⅰ.  
(Leukemia Data)
 



 

Figure 9: Scheme Ⅱ.  
(Leukemia Data) 

 28



 

Figure 10: Scheme Ⅲ.  
(Leukemia Data)
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Figure 11: The leave-one-out error rate of RFE and the three ranking methods for colon 

cancer data. 
 

 
Figure 12: The cumulative frequency plot of the absolute values of (2) for colon cancer data. 
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Figure 13: The cumulative frequency plot of the values of (3) for colon cancer data. 

 
 
 

 
Figure 14: The cumulative frequency plot of the values of (4) for colon cancer data. 
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Figure 15: Scheme Ⅰ.  
(Colon Cancer Data) 
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Figure 16: Scheme Ⅱ.  
(Colon Cancer Data)
 



 

Figure 17: Scheme Ⅲ.  
(Colon Cancer Data) 
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Figure 18: The leave-one-out error rate of RFE and the three ranking methods for breast 

cancer data. 
 
 

 
Figure 19: The cumulative frequency plot of the absolute values of (2) for breast cancer data. 
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Figure 20: The cumulative frequency plot of the values of (3) for breast cancer data. 

 
 

 
Figure 21: The cumulative frequency plot of the values of (4) for breast cancer data. 
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Figure 22: Scheme Ⅰ.  
(Breast Cancer Data)
 



 

Figure 23: Scheme Ⅱ.  
(Breast Cancer Data) 
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Figure 24: Scheme Ⅲ.  
(Breast Cancer Data) 
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 40
Figure 25: Scheme Ⅰ with 100 genes 
(Breast Cancer Data) 
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Figure 26: Scheme Ⅱ with 100 genes 
(Breast Cancer Data) 
 



 

Figure 27: Scheme Ⅲ with 100 genes 
(Breast Cancer Data) 
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