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摘  要 

此篇論文的重點在於對台指的選擇權來做評價，利用

Barndorff-Nielsen 在 1997 年提出的 Normal Inverse Gaussian 的

分配再加上變異數服從 GARCH 的過程形成 GARCH-NIG 的模型。 

利用最大概似估計法來估計模型中之參數，再利用 Monte Carlo

的方法來預測選擇權價格。接著與 Black-Schole 模型預測出的價格

做比較。  
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ABSTRACT 
 

In this paper，we focus on pricing option of TAIEX using GARCH-NIG model 

formed by Normal Inverse Gaussian(NIG) distribution proposed by Barndorff-Nielsen 

in 1997 combined with the variance of  NIG distribution following GARCH process. 

Using maximum likelihood estimation method to estimate parameters within 

model . After that, we forecast option price using Monte Carlo method and compare 

the option price forecasted by Black-Schole model.   
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Introduction: 

Numerous recent studies on option pricing have acknowledged the fact 

that volatility changes overtime in time series of asset returns as well as in the 

empirical variances implied from option prices through the Black & Scholes (1973) 

model. Many of these studies focused on modeling the asset return dynamics 

through stochastic volatility (SV) models. Due to analytically intractable likelihood 

functions and hence the lack of available efficient estimation procedures, SV 

models were until recently viewed as an unattractive class of stochastic process 

compared to other time-varying volatility processes, such as ARCH/GARCH 

models. Moreover, to calculate option prices based on SV models we need, 

besides parameter estimates, a representation of the unobserved historical 

volatility, which is again far from being straightforward to obtain. Therefore, while 

the SV generalization of option pricing has, thanks to advances in econometric 

estimation techniques, recently been shown to improve over the Black-Scholes 

model in terms of the explanatory power for asset-return dynamics, its empirical 

implications on option pricing itself have not yet been adequately tested due to 

the aforementioned lack of a representation of the unobserved volatility. Can the 

SV generalization of the option pricing model help resolve the well-known 

systematic empirical biases associated with the Black-Scholes model, such as 

the volatility “smile” (e.g. Rubinstein (1985)), asymmetry of such “smile” or “smirk” 

(e.g. Stein (1989))? How substantial is the gain, if any, from such generalization 

compared to relatively simpler models? The purpose of this thesis is to answer 

the above questions by studying the empirical performance of SV models in 

pricing options on the TAIEX, and investigating the respective effect of stochastic 

interest rates, stochastic volatility, and asymmetric asset returns on option prices 
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in a multivariate SV model framework. 

 

The NIG (Normal Inverse Gaussian) distribution is well-known in financial 

field. So, in this thesis we use NIG model to model returns. Using daily data from 

Taiwan’s market, we would like to show that NIG model is a good model for stock 

returns compared with other option pricing models. For more details about 

Normal Inverse Gaussian (NIG), see Barndorff-Nielsen (1997).  

  

The seminal ARCH paper by Engle (1982) triggered one of the most active 

and fruitful areas of research in econometrics over the past two decades. The 

success of the ARCH/GARCH class of models at capturing volatility clustering in 

financial markets is well documented (see, for example, Bollerslev, Chou and 

Kroner, 1992). Meanwhile, the inability of the ARCH/GARCH models coupled with 

the auxiliary assumption of conditionally normally distributed errors to fully 

account for all of the mass in the tails of the distributions of say, daily returns, is 

also well recognized. Indeed, several alternative error distributions were proposed 

in the early ARCH literature to better account for the deviation from the normality 

in the conditional distributions of the returns, including the t-distribution of 

Bollerslev (1987), the General Error Distribution (GED) of Nelson (1991), and 

more recently, the Normal Inverse Gaussian (NIG) distribution of Barndorff - 

Nielsen (1997), Anderson (2001) and Jensen and Lunde (2001). The motivation 

behind these alternative error distributions has been almost exclusively empirical 

and pragmatic in nature. In the present thesis, building on the Mixture of 

Distribution Hypothesis (MDH) (Clark, 1973) along with the recent idea of realized 

volatility (RV), we provide a sound empirical foundation for the distributional 

assumptions underlying the GARCH-NIG model.  
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Be consistent with the absence of arbitrage and a time-changing Brownian 

motion, the MDH postulates that the distribution of returns is normal, but with a 

stochastic variance. In the original formulation in Clark (1973), the variance is 

assumed to be i.i.d. lognormally distributed, resulting in a lognormal-normal 

mixture distribution for the returns. Importantly, to explicitly account for the 

volatility clustering effect Taylor(1982, 1986)proposed an extension of the MDH 

setup by making the latent logarithmic variance to follow a Gaussian 

autoregression, resulting in the lognormal Stochastic Volatility(SV) model; see 

also Anderson(1996). Since the joint distribution of the returns in the SV model is 

not known in closed form, both estimation and inference for these types of models 

are considerably more complicated than for the ARCH/GARCH class of models. 

In contrast to the existing SV literature, which treats the mixing variable as 

latent, we have shown that by measuring the daily variance by the corresponding 

realized volatility constructed from the sum of intraday high-frequency returns, the 

daily return standardized by the realized volatility is approximately normally 

distributed. Therefore, even though the realized volatilities are subject to 

measurement error vis-à-vis the true daily latent volatilities, the normality of the 

standardized returns is consistent with the basic tenets of the MDH and the use of 

the realized volatility as the underlying mixing variable. Moreover, we find that the 

distribution of the realized volatility conditional on the past squared daily returns 

(as well as the unconditional distribution of the realized volatility) is closely 

approximated by an Inverse Gaussian (IG) distribution. Taken together, these 

results imply that in practical modeling situations where the high-frequency data 

are not actually available, the daily returns should be well described by a NIG 

model.                    

    Section 1 describes the Normal Inverse Gaussian distribution and 
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GARCH-NIG option pricing model. In section 2, we introduce the method to 

estimate parameters in GARCH-NIG option pricing model. In section 3, we 

describe empirical analysis, including market description and data description. 

Section 4 presents the results and some discussions. Section 5 concludes. 
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1. The Model  

1.1 Normal Inverse Gaussian distribution  

 

The Mixture-of-Distributions Hypothesis (MDH) starts from the premise that 

the distribution of discretely sampled returns, conditional on some latent 

information arrival process, is Gaussian. This assumption is justified theoretically 

if the underlying price process follows continuous sample path diffusion (see, for 

instance, the discussion in Andersen et al., 2002, and Barndorff- Nielsen and 

Shephard, 2001). However, the integrated volatility process that serves as the 

mixture variable in this situation is not directly observable. As noted above, this 

has spurred numerous empirical investigations into the use of alternative volatility 

proxies and/or mixture variables. Meanwhile, in the diffusion setting the integrated 

volatility may, in theory, be estimated arbitrarily well by the summation of finely 

sampled squared high-frequency returns, or so-called realized volatilities. This 

suggests the following empirically testable starting point for the MDH, 

),0(~| ttt RVNRVr   ,           (1) 

where  refers to the discretely sampled one-period returns from time t -1 to t, 

and denotes the corresponding realized volatility proxy measured over the 

same time interval. 

tr

tRV

(2) ),(~ αhIGRVt  ,   

where the density function for the IG distribution may be expressed in 

standardized form as, 
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Now, combining the distributional assumptions in (1) and (2) the implied 

unconditional distribution for the returns should be Normal Inverse Gaussian 

(NIG), 

),0,0,()()|()(
0
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with the following closed-form density function, 
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where 21)( xxq +=  and  denotes the modified Bessel function of 

third kind and order one. The NIG distribution was first used for modeling 

speculative returns in Barndorff-Nielsen (1997). It may be viewed as a special 

case of the Generalized Hyperbolic Distribution in Barndorff- Nielsen (1978). 

)(1 zK

 

Although the NIG distribution in equation (3) may adequately capture the 

fat-tailed unconditional return distributions, it does not account for the 

well-documented volatility clustering, or ARCH, effects. In order to incorporate 

conditional heteroscedasticity in the return process within the MDH framework, 

define the  information set generated by the past daily returns, 1−tI

.....},,{ 211 −−− = ttt rrhI , 

),()|( 1 αttt hIGIRVf =− , 

where  depends exclusively on the coarser  information set. Specifically, th
1−tI
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for the results reported below, the conditional mean in the IG distribution is 

assumed to follow the recursive GARCH(1,1) like structure, 

11
2

110 −− ++= ttt hrh βαα . (5) 

The GARCH(1,1)-NIG model now arises naturally by combining equation (1) 

augmented with the information set,  with the 

conditional distribution for  in equations (4) and (5), 

1−tI ),0(~,| 11 −− tttt RVNIRVr

tRV

),0,0,()|(),|()|(
0

111 αttttttttt hNIGdRVIRVfIRVrfIrf == ∫
∞

−−− . (6) 

 

1.2 The GARCH-NIG option pricing model 

Consider a discrete-time economy and let  be the asset price at time t. 

Its one-period log rate of return is assumed to be conditionally normal inverse 

Gaussian distributed under probability measure P. That is,  

tX

ttt
t

t hhr
X
X ελ +−+=

− 2
1ln

1

, (7) 

where tε  has mean zero and conditional variance  under measure P; r is 

the constant one-period risk-free rate of return and 

th

λ  the constant unit risk 

premium. We further assume that tε  follows a GARCH (1,1) process of 

Bollerslev (1986) under measure P. Formally, ),0,0,(~| 1 ttt hNIG αφε −  under 

measure P, 

11
2

110 −− ++= ttt hh βεαα                    (8) 

where tφ  is the information set of all information up to and including time; 

0,0,0;1 11011 ≥≥≥<+ βααβα . In other words, the conditional variance is 

 - 7 -



a linear function of the past squared disturbances and the past conditional 

variances. 

 

Definition : A pricing measure Q is said to satisfy the locally risk-neutral valuation 

relationship(LRNVR) if measure is mutually absolute continuous with respect to 

measure P, )|ln( 1
1

−
−

t
t

t

X
X φ  follows Normal Inverse Gaussian distribution(under 

Q), 
r

t
t

tQ eX
XE =−

−
)|( 1

1
φ  

where r stands for interest rate, 

and, 

)|)(ln()|)(ln( 1
1

1
1

−
−

−
−

= t
t

tp
t

t

tQ

X
XVarX

XVar φφ  

almost surely with respect to measure P. 

 

Theorem: The LRNVR implies that, under pricing measure Q, 

tt
t

t hr
X
X ξ+−=

− 2
1)ln(

1 , 

where  

),0,0,(~| 1 ttt hNIG αφξ −  

and   

11
2

1110 )( −−− +−+= tttt hhh βλξαα . 

Pricing contingent payoff s requires temporally aggregating one-period asset 

returns to arrive at a random terminal asset price at some future point in time. The 

terminal asset price is derived in the following corollary: 
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Corollary: 
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From above corollary, we get the following time-t value of the European call 

option with exercise price k maturing at time T, 
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2. Estimation of the model  

Estimation of the parameters of the different models is straightforward using 

the maximum likelihood method. The log likelihood of the sample for the 

GARCH-NIG models is given by  

  

∑∑ ∑∑
== ==
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where n is the number of observations and  is given by the model chosen.  th
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3. Empirical analysis 

The empirical analysis starts with a description of the options data. It 

proceeds to estimate the GARCH-NIG model with time series data on index 

returns and with options data. 

 

3.1 Market description  

TSEC, Taiwan Stock Exchange Corporation, maintains stock price indices, 

to allow investors to grab both overall market movement and different industrial 

sectors' performances conveniently. The indices may be grouped into market 

value indices and price average indices. The former are similar to the Standard & 

Poor's Index, weighted by the number of outstanding shares, and the latter are 

similar to the Dow Jones Industrial Average and the Nikkei Stock Average. The 

Taiwan Stock Exchange Capitalization Weighted Stock Index ("TAIEX") is the 

most widely quoted of all TSEC indices. The base year value as of 1966 was set 

at 100. TAIEX is adjusted in the event of new listing, de-listing and new shares 

offering to offset the influence on TAIEX owing to non-trading activities. We 

summarize other details and rule of TAIEX and TXO into the following table. 

Table 3.1.1 

Item Description 

Underlying Index 
Taiwan Stock Exchange Capitalization Weighted 

Stock Index (TAIEX) 

Ticker Symbol TXO 

Exercise Style European 
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Multiplier NT$ 50 (per index point) 

Expiration Months 

Spot month, the next two calendar months followed 

by two additional months from the March quarterly 

Cycle (March, June, September, and December) 

Strike Price 

Interval 

100 index points in spot month, the next two 

calendar months 

200 index points in the additional two months from 

the March quarterly Cycle 

Strike (Exercise) 

Price 

When listing series of new expiration months, one 

series with at-the-money strike price is listed based 

on the previous day's closing price of the underlying 

index rounded down to the nearest multiples of 100.  

1. For the spot month and the next two calendar 

months: fifth other series each with in-the-money 

and out-of-the-money strike prices with price 

interval of 100 points are listed. 

2. For the next two quarter-months: Three other 

series each with in-the-money and 

out-of-the-money strike prices with price interval of 

200 points are listed. 

Up to the 5th business days before expiration, 

1. For the spot month, and the next two calendar 

months: additional series are added when the 

underlying trades through the fifth highest or 
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lowest strike price available, to maintain at least 5 

in- and 5 out-of-the-money strike prices 

2. For the next two quarter-months: additional series 

are added when the underlying trades through 

the  third highest or lowest strike price available, 

to maintain at least3 in-and 3 out-of-the-money 

strike prices  

Premium 

Quotation 

< 10 points: 0.1 point (NT$5) 

>=10 points,<50 points: 0.5 point (NT$ 25) 

>=50 points, <500 points: 1 point (NT$ 50) 

>=500 points, <1,000 points: 5 point (NT$ 250) 

>=1,000 points: 10 point (NT$ 500) 

Daily Price Limit 
+/- 7% of previous day's closing price of the 

underlying index 

Position Limit 

Individuals: 8,000contracts on either side of the 

market. 

Institutional Investors: 16,000 contracts on either 

side of the market. 

Institutional investors may apply for an exemption 

from the above limit on trading accounts for hedging 

purpose. 

Exemptions are allowed for Future Proprietary 

Firms. 
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Trading Hours 

08:45AM - 1:45 PM Taiwan time Monday through 

Friday of the regular Taiwan Stock Exchange 

business days 

Last Trading Day The third Wednesday of the delivery month 

Expiration Date The first business day following the last trading day 

Final Settlement 

Price 

The final settlement price for each contract is 

computed from the first fifteen-minute 

volume-weighted average of each component 

stock's prices in that index on the final settlement 

day. For those component stocks that are not traded 

during the beginning fifteen-minute interval on the 

final settlement day, their last closing prices would 

be applied instead 

Settlement 

Cash settlement. An option that is in-the-money and 

has not been liquidated or exercised on the 

expiration day shall, in the absence of contrary 

instructions delivered to the Exchange by the 

Clearing Member representing the option buyer, be 

exercised automatically 

 

3.2 Description of data 

We use daily data on TAIEX from January 1 ,2002 to March 20, 2003 to 

estimate GARCH-NIG parameters. Then we use GARCH (1,1)-NIG option pricing 

model to forecast option price form March 21 to April 10. Each day, we chose 
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different strike prices from 4000 to 5100 and select one contract with the highest 

volume of trade for each strike price on that day to do call option pricing. We 

exclude the option data from 9:00 to 9:30 and the data after 13:25, as well. 

Moreover, we eliminate all transactions taking place during the last week before 

expiration (to avoid the expiration-related price effects). We summarize all the 

data we chose into the following table, respectively. The patterns of TAIEX and 

returns are shown in Figures 3.2.1 and 3.2.2 and results of estimation are given in 

Table 3.2.1. 

Table 3.2.1. Estimation results. 
^

0α  
^

1α  
^

1β  ^

α  
^

λ  Loglikelihood 

0.0000005 0.017708 0.96425 6.0901 0.2085 3750.09 

 

Table 3.2.2. Data summaries. 

 Moneyness 
(K/S) 

Average 
price Std Number of 

observations 
In the money <0.95 372.59 96.92 29 

At the money 0.95~1.05 121.28 63.15 57 

Out of the money >1.05 18.33 13.38 46 

All calls  143.64 146.30 132 
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Figure 3.2.1 The price pattern of TAIEX. 
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Figure 3.2.2 The log return of TAIEX. 
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3.3 Comparison with other option pricing models 

In this subsection, we compare the Black-Scholes with GARCH (1,1)-NIG 

option pricing model. Since the GARCH (1, 1) model is the most commonly used 

GARCH process, our discussion for the reminder of this thesis will be restricted to 

the GARCH (1,1)-NIG model. We have introduced GARCH (1,1)-NIG option 

pricing model, so now we review Black-Scholes option pricing models.  

The Black-Scholes option pricing model is presented as follows. 

The call option price formula can be written as, 

)()( 2
)(

1 dNkedNXc tTr
t

−−−= , 

where 
)(

))(2()ln(
2

1 tT

tTrk
X

d
t

−

−++
=

σ

σ
, 

      )(
)(

))(2()ln(
1

2

2 tTd
tT

tTrk
X

d
t

−−=
−

−−+
= σ

σ

σ
  ,  

)(xN  is a cumulative standard normal distribution,  is a spot price,  is 

the strike price, 

tX k

)( tT −  is time to mature,  stands for interest rate, and r σ  

represents the volatility of return. 
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4. Numerical results and discussion   

Monte Carlo simulation is used in the computation of the GARCH-NIG 

option price. The Monte Carlo method can be traced back to Boyle (1977). It is a 

convenient method for the GARCH-NIG option pricing model because the 

distribution for the temporally aggregated asset return cannot be derived 

analytically. 

The general characteristics of the GARCH-NIG option pricing model 

compared with Black-Scholes formula are presented below for discussion. We 

divide our results into four parts, overall, in-the-money, at-the-money, and 

out-of-the-money. 

 

Table 4. The relative absolute errors of GARCH-NIG and B-S model. 

Model 

Relative  

absolute errors 

GARCH-NIG B-S 

Overall 23.87 28.72 

In the money 1.38 1.40 

At the money 3.40 4.13 

Out of the money 18.99 23.06 

 

Overall: 

From Table 4 and Figure 4.1, we can see that the relative absolute errors of 

call option price of GARCH-NIG model is smaller than the B-S model. So the 

performance of GARCH-NIG model is better than the B-S model. We also see 

that the higher option price we have, the larger error we get.  
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In the money: 

We pick up the samples by s
k  <0.95, where is a strike price and  is 

index. Then we sum all the relative absolute errors of the samples we select and 

get the following table. From table 4 and figure 4.2, we see that the dispersion of 

the errors of GARCH-NIG is larger than B-S, but the relative absolute errors of 

GARCH-NIG is smaller than B-S. So even the “in-the-money” case, the 

performance of GARCH-NIG is better than B-S, but there are no significant 

differences. 

k s

 

Figure 4.1. Errors of option price on GARCH-NIG compared with the B-S model. 

The errors of GARCH-NIG are drawn by square dots and triangular dots 

represent the errors of B-S model. 
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Figure 4.2. Errors of option price on GARCH-NIG compared with B-S model. The 

errors of GARCH-NIG are drawn by square dots and triangular dots represent the 

errors of B-S model. 
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At the money: 

We select the samples by 0.95 <≤ s
k 1.05, then sum all the relative 

absolute errors. The results are also shown in Table 4 and Figure 4.3. 

 

Out of the money: 

We select the samples by 1.05 s
k≤ , then sum all the relative absolute 

errors. The results are shown in Table 4 and Figure 4.4. 
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Figure 4.3. Errors of option price on GARCH-NIG compared with B-S model. The 

errors of GARCH-NIG are drawn by square dots and triangular dots represent the 

errors of B-S model. 
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Figure 4.4. Errors of option price on GARCH-NIG compared with B-S model. The 

errors of GARCH-NIG are drawn by square dots and triangular dots represent the 

errors of B-S model. 
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Figure 4.5. The relative absolute errors in different situations. 
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From above figures and tables, we can see that there are no significant 

differences in “in-the-money” situation. But in other situations, like “at-the-money” 

or “out-of-the-money”, the GARCH-NIG model makes significant improvement in 

option pricing .Also from Figure 4.5 we can see the relative absolute errors of the 

BS are higher than GARCH-NIG in different situations. Hence, according to this 
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research, GARCH-NIG model gets better prediction than B-S model. It means 

that if we regard the volatility of the return as a constant like B-S model, we may 

get worse prediction. In other words, if we consider the volatility of the return as a 

time-variant value, then the error of estimation can be reduced. 
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5. Conclusions 

This paper presents empirical analysis for the price of European call option 

on the TAIEX using GARCH-NIG model. The GARCH-NIG option pricing model 

has a number of desirable features and presents a real possibility of correcting 

the pricing biases associated with the Black-Scholes model.  
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Appendices: 

 

1. Derive the log likelihood function of GARCH-NIG model.  

 

The probability density function of NIG distribution is given by, 
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2. Simulation of normal inverse Gaussian random variables. 

 

We give a way of simulating NIG random variables using the fact that the 

distribution can be written as a normal variance-mean mixture with mixing 

function IG. The algorithm looks like this: 

      (1)Sample  from tRV ),( 222 βαδ −IG  and let tRV=2σ , 

      (2)Sample Y from )1,0(N  , 

      (3)Return YZ σβσµ ++= 2  . 

The remaining problem is to simulate inverse Gaussian variables. If we write the 

inverse Gaussian density function as 
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