
Regression Mode Interval

SUMMARY

In this paper, we extend the concept of the mode type quantile interval of Huang

(2003) for the linear regression model. The population type mode interval for some

distributions are derived and their estimation in parametric and nonparametric ways

are introduced. Simulations for nonparametric estimation and trimmed means based

on this quantile interval are done in comparison with those techniques based on the

traditional symmetric type intervals.

1. Introduction

In the linear regression model

y = x′β + ε,

interval estimation is a very useful technique to monitor the picture of the response

variable y or its distribution. Three types of this interval, popular in application

and theoretical study, include (1) the confidence interval (C.I.) for conditional mean

E(y|x) = x′β, (2) the C.I. for prediction variable y0 given a future covariate vector

x, and (3) estimation of a quantile interval (F−1
y|x(α), F−1

y|x(1 − α)), where Fy|x is the

conditional distribution of y given a vector x. Basically, the first two are aiming mainly

in construction of C.I. for a point, an unknown conditional mean or an unknown future

variable. On the other hand, the third is trying to estimate an unknown parameter

type interval.

The quantile interval has two interesting application aspects. The first is to use

the width, denoted by τ(1 − 2α) = F−1
y|x(1 − α) − F−1

y|x(α), of this interval as a scale-

like parameter. One example is the interquartile range τ(0.5), using a 50% quantile

interval, playing as a robust type scale parameter. On the other hand, suppose that

random variable y represents a quality characteristic for one product. Then the width

of a 99.73% quantile interval, τ(0.9973), is used to represent a measure of the product’s

manufacturing process capability which is a very useful tool in improving product’s

quality.
1
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The second application is to use the quantile interval to classify the data into sets

of good and bad observations. This application means in two aspects. First, the

set of good data is used to construct robust type location estimators such as the

trimmed mean and the Winsorized mean and the scale estimator such as the trimmed

variance,e.g., see Staudte and Sheather (1990) for details. The second aspect is that

when variable y represents, again, a characteristic value for one product, a quantile

interval serves a control chart to investigate if a manufacturing process is out of control.

This is another important tool in engineering quality control.

When we need to use a quantile interval, why should we choose the symmetric one

(F−1
y|x(α), F−1

y|x(1− α))? In fact, the following class

{(F−1
y|x(α0), F−1

y|x(1− 2α + α0)) : 0 ≤ α0 < 1− 2α} (1.1)

provides all possible interval with the same coverage probability 1 − 2α. There must

have some reasons for us to choose one from this interval class. Two criteria may be

applied to evaluate the suitability as reasons for a quantile interval. (a). A quantile

interval actually serves an interval type location parameter. Then we may expect

that it fullfills several desirable equivariant properties for any location parameter. Not

every version in the class in (1.1) fullfills this expectation. However, the symmetric

one does. The second criterion will encourage us to search an alternative one. (b).

Among all choices in (1.1), is there one that has evidence of advantages from the point

of statistical inferences? We may evaluate this through two aspects. (b.1). From the

view of point estimation, can the trimmed mean induced from one quantile interval be

with efficiency relatively higher than those induced from the other quantile intervals?

(b.2). When the quantile interval serves a control chart, can we find one that its power

in observing the fact that a process is out of control is larger than the symmetric one

with the same coverage probability when the process is in control?

Section 2 introduces the population type regression mode interval and Section 3

provides it under several examples of distributions. In Section 4, a data analysis

of some real examples is introduced and in Section 5, we introduce a technique for

nonparametric estimation of the regression mode interval. Finally, in Section 6, we

apply this mode interval to construct a robust trimmed mean for estimation of the

regression parameters and a simulation for measuring its efficiency has been done.
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2. Population Type Regression Mode Interval

Let’s introduce a γ mode interval in the following definition.

Definition 2.1. The γ-mode interval for linear regression model is defined as Cmod(γ) =

(F−1
y|x(α∗), F−1

y|x(γ + α∗)) with

α∗ = arg min
0≤α≤1−γ

[F−1
y|x(γ + α)− F−1

y|x(α)],

The γ-mode interval may be represented as Cmod(γ) = x′β+(F−1
ε (α∗), F−1

ε (γ+α∗))

with

α∗ = arg min
0≤α≤1−γ

(F−1
ε (γ + α)− F−1

ε (α)),

where we let Fε be the distribution function of error variable ε. If we let x be a

p × 1 covariate vector with the first component 1, the γ-mode interval may also be

represented as

Cmod(γ) = x′(β(α∗), β(γ + α∗)),

where p-vector β(δ) = β +
(

F−1
ε (δ)
0p−1

)
for 0 < δ < 1 and 0p−1 denotes the (p− 1)× 1

vector (0, . . . , 0)
′
.

The reason that we call it a mode interval is that a γ mode interval shrinks to a

single set of mode point when γ approaches to zero. On the other hand, the symmetric

interval x′β + (F−1
ε (α), F−1

ε (1 − α)) will shrink to a set of single median point when

α approaches to 0.5. We then call it the median interval and denote it by Cmed.

Moreover, when the regression model has an intercept term, the median interval may

be represented as Cmed = x′(β(α), β(1− α)).

As that we treat a quantile interval as an interval type location parameter, we may

expect that it satisfies some usual desired properties of equivariance. Let’s now define

these conditions that are extended from those for location parameter in Staudte and

Sheather (1990). Let A be a set of real numbers. We denote addition and multiplication

of set A with a real number b by A + b = {x + b : x ∈ A} and bA = {bx : x ∈ A}. We

also say that A ≥ b if x ≥ b for x ∈ A.

Definition 2.2. Let X be a random variable. A measure of coverage set, with

confidence coefficient γ, is a set D(X) with P (X ∈ D(X)) = γ that satisfies the

following conditions:
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(1). D(X + b) = D(X) + b for b ∈ R.

(2). D(aX) = aD(X) for a ∈ R.

(3). X ≥ 0 implies D(X) ≥ 0.

We now show that the mode interval does satisfy the conditions of a measure of

coverage set.

Theorem 2.3. The γ mode interval is a measure of coverage set with confidence

coefficient γ.

Proof. Redenote the γ mode interval by C(γ, y) and α∗ by α∗(y). We note that the

population quantile F−1
ε|x satisfies F−1

ε+b|x(α) = F−1
ε|x (α) + b for b ∈ R and F−1

aε|x(α) =

aF−1
ε|x (α) if a > 0 and = aF−1

ε|x (1 − α) if a < 0. With these and the fact that y +

b = x′β + (ε + b) and ay = a(x′β) + aε, we see that F−1
y+b|x(α) = F−1

y|x(α) + b and

F−1
ay|x(α) = aF−1

y|x(α) if a > 0 and = aF−1
y|x(1− α) if a < 0.

Consider condition (1). Since F−1
y+b|x(α) = F−1

y|x(α) + b,

α∗(y + b) = arg min
0≤α≤1−γ

[F−1
y+b|x(α + γ)− F−1

y+b|x(α)]

= arg min
0≤α≤1−γ

[F−1
y|x(α + γ)− F−1

y|x(α)]

= α∗(y).

Then

C(γ, y + b) = (F−1
y+b|x(α∗(y + b)), F−1

y+b|x(γ + α∗(y + b)))

= (F−1
y+b|x(α∗(y)), F−1

y+b|x(γ + α∗(y)))

= (F−1
y|x(α∗(y)), F−1

y|x(γ + α∗(y))) + b

= C(γ, y) + b.

Next, consider condition (2) with a > 0. Since F−1
ay|x(α) = aF−1

y|x(α),

α∗(ay) = arg min
0≤α≤1−γ

[F−1
ay|x(α + γ)− F−1

ay|x(α)]

= arg min
0≤α≤1−γ

a[F−1
y|x(α + γ)− F−1

y|x(α)]

= α∗(y).

Then

C(γ, ay) = (F−1
ay|x(α∗(ay)), F−1

ay|x(γ + α∗(ay)))

= (F−1
ay|x(α∗(y)), F−1

ay|x(γ + α∗(y))) = a(F−1
y|x(α∗(y)), F−1

y|x(γ + α∗(y)))

= aC(γ, y).
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Now, consider condition (2) with a < 0.

α∗(ay) = arg min
0≤α≤1−γ

[F−1
ay|x(α + γ)− F−1

ay|x(α)]

= arg min
0≤α≤1−γ

[F−1
aε|x(α + γ)− F−1

aε|x(α)]

= arg min
0≤α≤1−γ

a[F−1
ε|x (1− (α + γ))− F−1

ε|x (1− α)]

= arg min
0≤α≤1−γ

[F−1
ε|x (1− α)− F−1

ε|x (1− (α + γ))]

= arg min
0≤δ≤1−γ

[F−1
ε|x (δ + γ)− F−1

ε|x (δ)]

= arg min
0≤δ≤1−γ

[F−1
y|x(δ + γ)− F−1

y|x(δ)]

with δ = 1 − (α + γ). Then α∗(y) = 1 − [α∗(ay) + γ] or α∗(ay) = 1 − [α∗(y) + γ].

Furthermore,

C(γ, ay) = (F−1
ay|x(α∗(ay)), F−1

ay|x(γ + α∗(ay)))

= (F−1
ay|x(1− [α∗(y) + γ]), F−1

ay|x(1− [α∗(y) + γ] + γ))

= (aF−1
y|x(α∗(y) + γ), aF−1

y|x(α∗(y)))

= a(F−1
y|x(α∗(y)), F−1

y|x(α∗(y) + γ))

= aC(γ, y). ¤

How can we estimate the regression mode interval (x′β + F−1
ε|x (α∗), x′β + F−1

ε|x (γ +

α∗))? Basically, there are two directions we may consider. The first one is a two

steps method. It consists of estimating the regression parameters β, denoted by β̂, for

the first step and then using the residuals ei = yi − x′iβ̂ to estimate error quantiles

F−1
ε|x (α∗) and F−1

ε|x (γ + α∗) for the second step. The second one is, when the model

has the intercept term, that we may estimate β(α∗) and β(γ + α∗) in one step. In

this paper, we consider only through the first direction; however, parametric and

nonparametric estimation techniques are also discussed. Computing β(α) with known

α has been introduced by Koenker and d’Orey (1987) where this parameter vector was

called the regression quantile and introduced by Koenker and Bassett (1978). However,

one stage to estimate the mode type quantile vector with unknown α∗ needs further

investigation. In the following section, we consider the parametric formulation of the

mode interval that may be estimated by parametric estimation.
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3. Parametric Formulation of Regression Mode Interval

The mode interval may be more explicitly formulated when the distribution function

F is known, although it may involve unknown parameter θ in its ends. In this section,

we will consider this parametric type mode interval and also display its point estimation

whereas the case of nonparametric study will be introduced in subsequent sections.

One interesting question for the parametric distribution is that whether or not there

is a parametric family of distributions for r.v. X so that the mode interval has an

explicit formula which makes the statistical inference easier to perform. The following

theorem indicates that the location-scale family is the interesting one.

Theorem 3.1. If the linear regression model has error variable with distribution in the

family of continuous location-scale distributions with p.d.f. of the form f(ε; θ1, θ2) =
1
θ2

f0(
ε−a(θ1,θ2)

θ2
) for θ1 ∈ R and θ2 > 0, then the regression median and mode type

intervals are, respectively,

x′β + a(θ1, θ2) + θ2(F−1
0 (α), F−1

0 (1− α))

and

x′β + a(θ1, θ2) + θ2(F−1
0 (α∗), F−1

0 (γ + α∗)),

where

α∗ = arg min
0≤α≤1−γ

[F−1
0 (α + γ)− F−1

0 (α)]

and F0 is the distribution function of p.d.f. f0.

Proof. The proof is obvious from the fact that F−1(α) = a(θ1, θ2) + θ2F
−1
0 (α).

The benefit of the location-scale family is that the mode interval is explicitly displayed

in terms of α∗ and parameter θ and then we may easily develop the estimator of

the coverage interval through the existing theorems for the statistical inference of

parameter θ. The picture of median and mode type intervals are displayed in Figure

1 in the appendix.

Normal error: Suppose that we have the linear regression model

y = x′β + ε,

where ε is independent of x and has the normal distribution N(0, σ2) for some σ > 0.

The symmetric error distribution indicates the identity of the median type and mode
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type intervals, i.e.,

Cmed(1− 2α) = Cmod(1− 2α) = x′β + σ(−zα, zα),

where zα satisfies P (Z > zα) = α and Z ∼ N(0, 1).

Exponential error: Suppose that we have the linear regression model

y = x′β + ε,

where ε is independent of x and has the exponential distribution with p.d.f. f(ε) =
1
θ e−

ε+θ
θ , ε ≥ −θ, for some θ > 0. We see that the conditional quantile is F−1

y|x(α) =

x′β − θ[1 + ln(1− α)]. Then we further have

Cmed(1− 2α) = x′β − θ − θ(ln(α), ln(1− α))

and

Cmod(1− 2α) = x′β − θ − θ(ln(2α), 0).

On the other hand, one distribution highly asymmetric and skewed to the left has the

form

f(ε) =
1
θ
e

ε−θ
θ I(ε < θ).

Then

Cmed(1− 2α) = x′β + θ + θ(ln(α), ln(1− α))

and

Cmod(1− 2α) = x′β + θ + θ(ln(2α), 0).

Gamma error: Suppose that the linear regression error is independent of x and

follows the Gamma distribution with p.d.f. f(ε) = 1

Γ( k
2 )θ

k
2
(ε+ k

2 θ)
k
2−1e−

ε+ k
2 θ

θ , ε ≥ −k
2 θ,

for some k ∈ N and θ > 0. The conditional quantile is F−1
y|x(α) = x′β− k

2 θ + θ
2F−1

0 (α).

Then we have

Cmed(1− 2α) = x′β − k

2
θ +

θ

2
(F−1

0 (α), F−1
0 (1− α))

and

Cmod(γ) = x′β − k

2
θ +

θ

2
(F−1

0 (α∗), F−1
0 (γ + α∗)),
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where α∗ = arg min0≤α≤1−γ [F−1
0 (α + γ) − F−1

0 (α)] and F0 denotes the distribution

function of χ2(k).

Basically, we may choose the regression mode and median intervals, for example,

Cmod(1 − 2α) and Cmed(1 − 2α), to have the same coverage probability for random

variable y based on conditional distribution. Then why should we choose the mode

type one?

In some statistical problems such as the quality control, we have a historical record of

observations that we can compute the mode intervals for the ideal process for random

variable y. For simplicity of interpretation, let’s restrict this to the problem of the

statistical process control. The computed quantile interval is then used as a control

chart with two ends of the interval as the control limits. A new observation of variable y

falling outside the limits may induce the conclusion that the process is out of control.

Since the median type interval is the traditional way as the control chart, we then

consider if a control chart based on mode type interval may improve the process

control in some way. Consider the case where the two quantile intervals have the

same coverage probabilities under the ideal process. Then these two have the same

probability of making the wrong conclusion that the process is out of control when the

process is still in control. A reasonable comparison is to see which one has larger power

of concluding that the process is out of control when the process is out of control.

As an example, consider the case where y is the control variable and the process

may be changed only through the error variable which has right skewed exponential

distribution with θ = 1 as the standard process. We compute the powers, for the two

quantile intervals, of observation y falling outside the interval when the true parameter

value is θ = θ1:

πmed(θ1) = Pθ1({y 6∈ Cmed(1− 2α)}),
πmod(θ1) = Pθ1({y 6∈ Cmod(1− 2α)}).
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Table 1. Powers for quantile intervals as control charts

θ1 πmed πmod πmed πmod

2α = 0.1 2α = 0.05
2 0.544 0.584 0.496 0.528
3 0.684 0.724 0.641 0.675
4 0.757 0.792 0.718 0.750
5 0.802 0.833 0.767 0.797
6 0.832 0.861 0.802 0.828
7 0.855 0.880 0.827 0.851
8 0.872 0.895 0.847 0.869
9 0.885 0.907 0.862 0.883
10 0.896 0.916 0.875 0.894

We have several conclusions drawn from the table above:

(a). For both quantile intervals, the power is increasing in θ1 when the process is out

of control with θ = θ1 > 1. This means that both quantile intervals are appropriate

to be used to construct control charts since larger value of θ1(> 1) indicates that the

process is out of control in a more serious situation.

(b). The powers of mode type intervals are uniformly larger than the corresponding

ones of median type intervals. This suggests us to use the mode interval as the control

chart when the underlying distribution is asymmetric.

4. Data Analysis

A company that sells and repairs small computers concerns the number of service

engineers that will be required to serve the customers over the next few years. An

important element to forecast this number is an analysis of the length of service calls

which depends on the number of electronic components in the computer that must be

repaired or replaced. Chatterjee and Price (1991) provided a data set of size n = 24

observations and studied this relationship by the following linear regression model

y = β0 + β1x + ε,

where y and x represent the minutes served and the number of units, respectively.

They found that the least squares estimate of regression parameters are β̂0 = 37.213

and β̂1 = 9.969, respectively, and the coefficient of determination is R2 = 0.900. The

high value of R2 indicates a strong linear relationship between servicing time and the

number of units repaired during a service call. However, they further observed that
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the residuals computed from the least squares estimate are not randomly distributed

about zero and in fact these residuals move systematically from negative to positive

and move back to negative as x increases. This problem happening in regression

analysis was usually conquered by either variables transformation or selecting a new

regression model such as polynomial regression or nonlinear regression models. It has

been very scarcely developing a model with error variable which has distribution other

than normality.

Based on the residuals computed from the least squares estimate, we consider the χ2

goodness-of-fit test if the error variable follows an exponential distribution or Gamma

distribution. In partition of the residuals into groups of numbers 4 and 5, the p-values

are 0.2231 and 0.0534 respectively that both accept the null hypothesis of exponential

distribution. We further found that the p-value for the Kolmogorov-Smirnov (K-S) test

is 0.076 which also accepts the null hypothesis of choosing the exponential distribution.

Let’s denote a0(x) = x′
(

37.21
9.969

)
. The following table display the estimated regres-

sion median and mode type intervals.

Table 2. Estimated regression median and mode type intervals for the computer

repairing data

1− 2α Ĉmed(1− 2α) Ĉmod(1− 2α)
0.6 a0(x) + (−24.85, 19.50) a0(x) + (−32.00,−2.678)
0.7 a0(x) + (−26.79, 28.70) a0(x) + (−32.00, 6.527)
0.8 a0(x) + (−28.62, 41.68) a0(x) + (−32.00, 19.50)
0.9 a0(x) + (−30.35, 63.86) a0(x) + (−32.00, 41.68)
0.95 a0(x) + (−31.18, 86.04) a0(x) + (−32.00, 63.86)

We draw a graph of 1− 2α = 0.7 in Figure 2.

How can we apply the results in this table in helping make decision for this company?

We now let 1− 2α = 0.9, considering the 90% estimates of these two intervals and list

the corresponding interval estimates for y given x
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Table 3. Estimated regression median and mode type intervals of 90% for the com-

puter repairing data

# of units
x

Ĉmed(0.9) Ĉmod(0.9)

2 (26.79, 121.0) (25.14, 98.82)
4 (46.73, 140.9) (45.08, 118.7)
6 (66.67, 160.8) (65.02, 138.7)
8 (86.61, 180.8) (84.96, 158.64)
10 (106.5, 200.7) (104.9, 178.5)
12 (126.4, 220.6) (124.8, 198.5)
14 (146.4, 240.6) (144.7, 218.4)
16 (166.3, 260.5) (164.7, 238.3)

Consider the example of x = 4 to explain. Median interval and mode interval tech-

niqes estimated that with 90% confidence the computer engineers may spend 46.73 to

140.9 minutes and 45.08 to 118.7 minutes, respectively. The wider range of interval

estimate by the median interval technique makes the company more difficult in pre-

dicting the number of engineers for servicing the customers. This result reveals the

fact very significant in the contribution of mode interval in estimating an interval for

conditional random variable y given covariate x with some fixed confidence coefficient

1− 2α.

As the second example, we consider the analysis of a cloud point of a liquid data.

The cloud point is a measure of the degree of crystallization in a stock and can be

measured by the refractive index and the percentage of I-8 in the base stock can be

used as a predictor for the cloud point. There is a data of sample size 19 containing

variables of percentage of I-8 and cloud point in Draper and Smith (1981) and has

been analyzed by linear regression by Rousseuw and Leroy (1987).

Rousseuw and Leroy considered the simple linear regression model

y = β0 + β1x + ε,

where x and y represent, respectively, the variables of percentage of I-8 and cloud point

and the least squares estimate is (β̂0, β̂1) = (23.35, 1.05) and R2 is 0.955. However,

they also observed that the residuals based on least squares estimate revealing sys-

tematically in the way that larger-valued residuals are relatively more densely spread

whereas those with smaller-valued residuals are not. They argued the nonrandom dis-

play of residuals and further studied the data with multiple linear regression model by
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adding this linear regression model a quadratic term of x.

High value of R2 already revealed that the simple linear regression model is satisfied

in sense of fitting this data set and then adding an extra term to enlarge a bit for the

R2 may not be a correct direction to deal with this problem. We still treat this a

simple linear regression model, however, we want to observe if there is more suitable

distribution for error variable ε.

Based on the least squares residuals and considering the exponential distribution

for the null hypothesis, we compute the p-values for groups of 3, 4 and 5 that are,

respectively, 0.3907, 0.2613 and 0.7379. We also compute the K-S goodness-of-fit test

that is 0.6034. All are completely not significant to reject the null hypothesis. More-

over, we also test several hypotheses with some Gamma distributions , however, the

p-values revealed significant to reject the null hypotheses.

Let’s denote a1(x) = x′
(

23.35
1.05

)
. The following table display the estimated regres-

sion median and mode type intervals.

Table 4. Estimated regression median and mode type intervals for the liquid data

1− 2α Ĉmed(1− 2α) Ĉmod(1− 2α)
0.6 a1(x) + (−0.609, 0.777) a1(x) + (0.083, 1.000)
0.7 a1(x) + (−0.897, 0.837) a1(x) + (−0.204, 1.000)
0.8 a1(x) + (−1.303, 0.895) a1(x) + (−0.609, 1.000)
0.9 a1(x) + (−1.996, 0.949) a1(x) + (−1.303, 1.000)
0.95 a1(x) + (−2.690, 0.975) a1(x) + (−1.996, 1.000)

A graph of these conditional quantile estimate of 1 − 2α = 0.7 is displayed in Figure

3.

Suppose that we let 1 − 2α = 0.95 and x = 8. We find that the median interval

estimate is (29.06, 32.72) and the mode interval technique estimate is (29.75, 32.75).

We may say that with 95% confidence when the percentage of I-8 is 8 the cloud point

of a liquid is between 29.75 and 32.75 when we use the mode interval technique.

5. Nonparametric Study and Monte Carlo Simulation

In the previous work in this paper, the observations were assumed to come from some

underlying distribution, whose general form is assumed known. If these assumptions

about the shape of the distribution are not made, then a nonparametric method to

estimate the mode interval Cmod = (x′β +F−1(α∗), x′β +F−1(γ +α∗)) must be used.



13

Consider again the linear regression model

yi = x′iβ + εi, i = 1, ..., n. (5.1)

Let β̂ be the least squares estimator for the linear regression model (5.1) and e(1), e(2),

..., e(n) be the order statistics of the residuals ei = yi − x′iβ̂, i = 1, ..., n, based on the

least squares estimator. By letting k = [n(1−2α)], where [n(1−2α)] denotes the largest

integer less than or equal to n(1−2α), we define `∗ = argmini{hi = e(k+i−1)−e(i), i =

1, ..., n − k + 1}. This means that h`∗ = e(k+`∗−1) − e(`∗) is the shortest width of k

order statistics interval [e(i), e(k+i−1)]. The nonparametric estimator of the regression

mode interval is

Ĉmod = x′β̂ + (e(`∗), e(k+`∗−1)). (5.2)

For comparison, we here also define the nonparametric estimator of the symmetric

interval Cmed. Let k1 = [nα] and k2 = [n(1− α)]. We define

Ĉmed = x′β̂ + (e(k1), e(k2)). (5.3)

For a simulation study in comparison of the two nonparametric estimators, we

consider the simple linear regression model

yi = β0 + β1xi + εi, i = 1, ..., n.

For all cases, we consider sample size n = 30 and the sample of xi are constant i

plus an error drawn from N(0, 1). Also, the replication is set to be N = 10, 000. In

each replication, we compute the estimates, denoted by Ĉmod(1 − 2α) = (β̂0 + β̂1x +

e(`∗), β̂0 + β̂1x+ e(k+`∗−1))) and Ĉmed(1− 2α) = (β̂0 + β̂1x+ e(k1), β̂0 + β̂1x+ e(k2)), of

mode type interval and median type interval. We define the following mean squares

errors

MSEmed =
1

10, 000

10,000∑

j=1

{ 1
n

n∑

i=1

([β̂0 + β̂1xi + e(k1) − (β0 + β1xi + F−1(α))]2,

[β̂0 + β̂1xi + e(k2) − (β0 + β1xi + F−1(1− α))]2)}

and

MSEmod =
1

10, 000

10,000∑

j=1

{ 1
n

n∑

i=1

([β̂0 + β̂1xi + e(`∗) − (β0 + β1xi + F−1(α∗))]2,

[β̂0 + β̂1xi + e(k+`∗−1) − (β0 + β1xi + F−1(1− 2α + α∗))]2)}.
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With these nonparametric methods to estimate the two regression quantile intervals,

it is then interesting to compare their performance in estimating their corresponding

quantile intervals. Two factors may affect the performance of estimation of these

two quantile intervals. First, the population mode interval is estimated by the non-

parametric shortest width technique and the median quantile interval is estimated by

the empirical distribution technique. Various techniques may induce different effects.

Second, the mode interval itself is a parameter located at points with densities sub-

stantially high and the median interval is a parameter located at points one with high

density value and one possibly relatively small density value. This fact also affect the

performance of their estimation.

We consider several error distributions to compare their MSE’s. In the first case,

we consider that error variable ε follows the exponential distribution which is skewed

to the right.

Table 5. MSE’s with exponential error distributions

1− 2α Ĉmed(1− 2α) Ĉmod(1− 2α)
λ = 4
0.6 0.7926, 3.1157 0.3489, 0.3264
0.7 0.8517, 2.6810 0.7544, 0.7216
0.8 0.6001, 3.7193 0.3858, 0.4919
0.9 0.2880.3.6290 0.2467, 0.7205

λ = 6
0.6 0.3995, 1.8410 0.3626, 0.3056
0.7 0.5916, 2.5211 0.4664, 0.4386
0.8 0.8708, 4.2557 0.6127, 0.7312
0.9 0.7070, 5.3088 0.5824, 1.2413

λ = 8
0.6 0.4968, 2.2954 0.3034, 0.2601
0.7 0.3500, 1.9597 0.3217, 0.2777
0.8 0.3493, 2.4464 0.3029, 0.3422
0.9 0.6109, 4.8872 0.5081, 1.1224

λ = 10
0.6 0.5049, 2.4783 0.2319, 0.1988
0.7 0.4884, 2.6502 0.3045, 0.2815
0.8 0.4647, 3.2728 0.2989, 0.3800
0.9 0.4885, 3.3567 0.4762, 0.8637

In this simulation result, the MSE’s for mode type interval are relatively smaller than

the corresponding one’s for median type interval. We have two conclusions drawn from



15

the results in Table 5:

(a). The location of the mode interval seems to be an important factor for efficiency of

the interval estimation. Especially the second elements of the MSE’s for mode interval

are extremely smaller than those performed for median interval since the right ends of

median intervals are too far from their corresponding mode points.

(b). The smaller values of the left elements of the MSE’s for mode interval than those

of median intervals indicates that the technique of shortest width does more efficient

than the technique by empirical distribution.

Since the exponential distribution is a very skewed distribution, we here display the

simulation results for a lightly skewed gamma distribution (Gamma(a, b), a 6= 1).

Table 6. MSE’s with gamma error distributions Gamma(a, b)

1− 2α Ĉmed(1− 2α) Ĉmod(1− 2α)
(a, b) = (2, 5)

0.6 0.2218, 0.8877 0.1979, 0.1349
0.7 0.2104, 1.0493 0.1503, 0.1419
0.8 0.7127, 2.1316 0.2846, 0.5398
0.9 0.3597, 2.1710 0.2195, 0.6256

(a, b) = (2, 9)
0.6 0.3216, 1.0816 0.2297, 0.2123
0.7 0.4000, 1.3547 0.2522, 0.2986
0.8 0.1844, 1.2082 0.1286, 0.1842
0.9 0.6519, 3.0653 0.3305, 0.9976

(a, b) = (4, 2)
0.6 0.1785, 0.4250 0.1754, 0.1678
0.7 0.1149, 0.4399 0.0882, 0.1183
0.8 0.1688, 0.4877 0.1870, 0.1925
0.9 0.2231, 1.1495 0.0973, 0.4836

(a, b) = (4, 8)
0.6 0.4693, 0.9646 0.2842, 0.4598
0.7 0.0904, 0.1885 0.2063, 0.0759
0.8 0.1914, 0.7077 0.1119, 0.2554
0.9 0.1311, 0.6452 0.1503, 0.2487

Two conclusions drawn from the Table 6:

(a). Since the second elements of MSE’s for mode interval are relatively smaller than

those for median interval, this does verify the effect of location in the way that the

right ends of mode intervals are relatively closer than those of median intervals to

mode points.
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(b). For comparing the left elements of MSE’s for Ĉmed and Ĉmod, the effect of

technique seems does exist but not strong enough to cover the effect of location.

In case the error random variable obeys a symmetric distribution, the regression

mode interval coincides the symmetric interval, i.e. Cmod = Cmed. It is then interesting

to see if the shortest width method in the nonparametric estimation can gain any

advantage in estimation of the parameter. In the next table, we display the result

induced from a simulation with a normal error variable.

Table 7. MSE’s with normal error distributions

1− 2α Ĉmed(1− 2α) Ĉmod(1− 2α)
0.6 0.1496, 0.3328 0.1402, 0.3240
0.7 0.2017, 0.2758 0.1431, 0.2902
0.8 0.2330, 0.1799 0.1303, 0.1632
0.9 0.3231, 0.1138 0.2170, 0.1612

In this symmetric distribution, there is no location effect for either one interval. Then

the simulation results revealed that the shortest width to estimate a quantile interval

does a bit more efficient than the empirical quantile technique in estimation of a

quantile interval.

6. Trimmed Means based on Regression Mode Interval

The most popular technique in estimating the regression parameter vector β is the

least squares estimation. Although this estimator has some interesting theoretical

properties from both the parametric and nonparametric points of view. However, it is

sensitive to departures from the normality and to the presence of outliers. Hence, we

need to consider robust estimation.

Among many robust estimators proposed as alternatives to the least squares esti-

mator, the trimmed mean has the advantages of simple computation and efficiency (see

Ruppert and Carroll (1980) and Bickel (1973)). Basically, the trimmed mean in re-

gression is the least squares estimator based on those observations lying in the sample

median type interval Ĉmed = (x′β̂(α), x′β̂(1 − α)). With the efficiency of a relatively

smaller MSE of the mode type interval for nonparametric estimation than that of the

median type interval, it is then interesting in seeing if the regression parameters may

be more efficiently estimated by the trimmed mean for those observations lying in the

sample mode type interval Ĉmod.

For the linear regression model of (5.1), we inherit the notations of LSE (β̂), mode
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interval estimate (Ĉmod) and median interval estimate (Ĉmed),etc. Denote the matrices

y = (y1, ..., yn)′ and X =




x′1
x′2
...

x′n


. The mode type trimmed mean is defined as

β̂mod = (X ′AX)−1X ′Ay,

where A = diag {IĈmod
(e1), . . . , IĈmod

(en)}. On the other hand, the median type

trimmed mean is defined as

β̂med = (X ′BX)−1X ′By,

where B = diag {IĈmed
(e1), . . . , IĈmed

(en)}.
For simplicity, we consider the simple linear regression and assume that the true

regression parameter is (1, 1)′. With sample size n = 30, we randomly generate error

variable ε from the following mixed gamma distribution

(1− δ)[
1√
ab

Gamma(a, b)−√a] + δ[
σ√
ab

Gamma(a, b)− σ
√

a].

The covariates xi are randomly generated from i + N(0, 1), i = 1, ..., n, and we let

replication number m = 10, 000. For the jth replication, we denote the corresponding

estimates of mode and median types as, respectively, β̂j
mod and β̂j

med. Finally we

compute the following MSE’s:

MSEmod =
1

2m

m∑

j=1

(β̂j
mod − β)′(β̂j

mod − β)

and

MSEmed =
1

2m

m∑

j=1

(β̂j
med − β)′(β̂j

med − β).

In Tables 8 and 9, we, respectively, list the MSE’s for the mixed gamma distribu-

tion with (a, b) = (4, 1) and (4, 5), where (a, b) = (4, 1) represents a lightly skewed

distribution and (a, b) = (4, 5) represents a heavily skewed distribution.

Two conclusions may be drawn from Tables 8 and 9:

(a). Under these heavy-tailed distributions, trimmed means based on median and

mode type intervals are with MSE’s uniformly more smaller than those of the LSE’s.

This indicates that these two trimmed means are robust estimators.
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(b). Besides cases of 1 − 2α = 0.8, δ = 0.1, and σ = 5 for both Gamma(4, 1) and

Gamma(4, 5), the trimmed means based on mode type intervals are with MSE’s smaller

than those of trimmed means based on median intervals. This shows that the mode

interval is relatively more efficient than the median interval for constructing trimmed

means when asymmetric errors exist.
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Table 8. MSE’s for trimmed means and LSE under Gamma distribution ((a, b) =

(4, 1))

1− 2α LSE β̂med(1− 2α) β̂mod(1− 2α)
(δ, σ) = (0.1, 5)

0.8 0.2348 0.1107 0.1240
0.9 0.1919 0.1069
0.95 0.1795 0.1218

(δ, σ) = (0.1, 10)
0.8 0.7744 0.1593 0.1395
0.9 0.5355 0.1475
0.95 0.5067 0.2342

(δ, σ) = (0.1, 25)
0.8 4.3547 0.5082 0.2077
0.9 2.9722 0.4557
0.95 2.7246 0.9244

(δ, σ) = (0.2, 5)
0.8 0.4098 0.1865 0.1580
0.9 0.3334 0.2071
0.95 0.3135 0.2470

(δ, σ) = (0.2, 10)
0.8 1.4608 0.4266 0.2225
0.9 1.0733 0.5269
0.95 1.0284 0.7300

(δ, σ) = (0.2, 25)
0.8 8.7924 2.0073 0.6712
0.9 6.3253 2.7722
0.95 5.9835 4.1939

(δ, σ) = (0.3, 5)
0.8 0.5790 0.3087 0.2497
0.9 0.4870 0.3814
0.95 0.4692 0.4238

(δ, σ) = (0.3, 10)
0.8 2.0762 0.8989 0.5793
0.9 1.7003 1.2455
0.95 1.7221 1.4967

(δ, σ) = (0.3, 25)
0.8 13.160 5.2867 3.0413
0.9 10.491 7.5763
0.95 10.169 9.2311
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Table 9. MSE’s for trimmed means and LSE under Gamma distribution ((a, b) =

(4, 5))

1− 2α LSE β̂med(1− 2α) β̂mod(1− 2α)
(δ, σ) = (0.1, 5)

0.8 0.2384 0.1155 0.1242
0.9 0.1926 0.1064
0.95 0.1786 0.1187

(δ, σ) = (0.1, 10)
0.8 0.7771 0.1659 0.1391
0.9 0.5557 0.1501
0.95 0.5069 0.2202

(δ, σ) = (0.1, 25)
0.8 4.4530 0.4475 0.1976
0.9 2.8180 0.4432
0.95 2.7492 1.0001

(δ, σ) = (0.2, 5)
0.8 0.4075 0.1848 0.1552
0.9 0.3439 0.2056
0.95 0.3148 0.2511

(δ, σ) = (0.2, 10)
0.8 1.4219 0.4203 0.2194
0.9 1.0999 0.5257
0.95 1.0345 0.7351

(δ, σ) = (0.2, 25)
0.8 8.6749 2.1516 0.6554
0.9 6.5789 2.8726
0.95 6.3160 4.3402

(δ, σ) = (0.3, 5)
0.8 0.5612 0.2995 0.2504
0.9 0.4745 0.3766
0.95 0.4477 0.4145

(δ, σ) = (0.3, 10)
0.8 2.1589 0.8969 0.5820
0.9 1.7102 1.2248
0.95 1.7013 1.5330

(δ, σ) = (0.3, 25)
0.8 13.079 5.0684 2.8441
0.9 10.239 7.3694
0.95 10.154 9.4117


