
Quantile Mean: Statistical Inferences and Applications

SUMMARY

The quantile mean being the average of a pair of symmetric type quantiles, F−1(α)

and F−1(1 − α), is a robust type location parameter playing an alternative to the

population mean. We extend this quantile mean to a pair of quantiles where this

correponding quantile interval is the one with smallest width among all choices of 1−
2α quantile intervals. Parametric statistical inferences and nonparametric estimation

techniques are all addressed. Moreover, an extension of the quantile mean to a new

general L-estimation has also been provided.

1. Introduction

The most popular technique for estimating a location parameter is the least squares

estimator. Its popularity mainly reflects its advantages in the theoretical property from

the parametric point of view that it is uniformly minimum variance unbiased estimator

when the variable follows a normal distribution. However, the least squares estimator

is sensitive to departures from normality and to the presence of outliers. Hence, we

need to consider robust estimators.

Among the hundreds or more robust estimators for location parameter investigated

in the last three decades, the L-estimators, defined in terms of ordinary quantiles,

have been an important class (see Hogg (1974) and Huber (1981)). The benefits of

using an estimator that is based on quantiles include its easiness in computation and

asymptotic efficiency shown in the literature (see Hogg (1974), Jureckova and Sen

(1996), and Chen and Chiang (1996)).

Let F−1 be the population quantile function. The class of of ordinary L-estimators

is the sample version of the following quantile means as

∫ 1

0

δ(α)F−1(α)dα (1.1)

for some nonnegative function δ which provides a rich class of quantities very popular

and interesting in applications and the theoretical study for measuring the center of

the underlying distribution. There are many versions of quantile means in terms of
1
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function δ and chosen percentages α. However, they are all constructed in a symmetric

way in the sense that δ is symmetric at 0.5 and both F−1(1−α) and F−1(α) correspond

to the same value of δ. Let’s consider the simplest quantile mean defined as

1
2
[F−1(α) + F−1(1− α)]. (1.2)

Our concern is why we should choose the symmetric ones, α and 1 − α, for use.

Among all choices of defining a location quantity as an average of two quantiles with

coverage probability 1− 2α of the form

cF−1(α1) + dF−1(1− 2α + α1), 0 ≤ α1 ≤ 2α, c, d ∈ R. (1.3)

Two criteria may be appropriate settings to determine a quantile mean from the class

in (1.2). First, as a location paramter, we may expect that it satisfies several desir-

able equivariant properties. It is known (see Staudte and Sheather (1990)) that the

symmetric quantile mean in (1.2) does fulfill this condition. In statistical inferences of

constructing a random interval, for example, the confidence interval or the tolerance

interval, we often propose the one with shortest width for applications when the con-

fidence coefficient is fixed. In fact, a quantile mean uses two quantiles that represent

the two ends of a population interval which covers the random variable with a fixed

coverage probability. Then the second criterion for a quantile mean may be set to have

width of its corresponding quantile interval as small as possible.

When the distribution of the random varaible is symmetric and has a single mode,

the symmetric quantile interval minimizes the width among all available quantile in-

tervals with the same coverage probability. There is a problem raised from this fact.

Can we propose a new quantile mean that its corresponding quantile interval does

achieve the minimum width. If yes, this quantile interval then coincides with the

symmetric quantile interval when the underlying distribution is symmetric. Actually

we expect that this proposed quantile mean gains some statistical efficiency such as

smaller (asymptotic) variance.

2. Mode Type Quantile Mean

Before defining a more general quantile mean, we consider a set of desired equivari-

ant conditions for the location parameter. The following condition expected for the

location parameter to fulfill may be seen in Staudte and Sheather (1990).
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Definition 2.1. We say that µ, a real function of r.v. X, is a measure of location if

it satisfies

(a). µ(X + b) = µ(X) + b for b ∈ R;

(b). µ(ax) = aµ(x) for a > 0;

(c). µ(−X) = −µ(X);

(d). if X ≥ 0, then µ(X) ≥ 0.

Intuitively, any member in the following family of quantile means

{cF−1(γ + α) + dF−1(α) : 0 < α < 1− γ}

may serve a γ quantile mean for the distribution. However, not every one in the

family satisfies the preceding condition for a measure of location and we know that

the symmetric type quantile mean, τ = 1
2 [F−1(α) + F−1(1 − α)], 0 < α < 0.5, is a

measure of location. We are interested in a measure of location that is a quantile mean

of the following form

µ = cF−1(α∗) + dF−1(γ + α∗), (2.1)

where

α∗ = argαinf0≤α<1−γ{F−1(α + γ)− F−1(α)}, (2.2)

with c, d ∈ R. The setting in (2.2) gurantees that (F−1(α∗), F−1(γ + α∗)) is the one

minimizes the width among all intervals (F−1(α), F−1(γ + α)), 0 ≤ α ≤ 1 − γ. The

following theorem provides the condition that the quantile mean in (2.1) is a measure

of location.

Theorem 2.1. For given c, d ∈ R, µ in (2.1) is a measure of location if c = d = 1
2 .

Proof. Let’s redenote µ = µ(X, γ), F−1
x (α) = F−1(α), and α∗ = α∗(X). We know that

the quantile function F−1 satisfies F−1
X+b(α) = F−1

X (α) + b for b ∈ R and F−1
aX (α) =

aF−1
X (α) if a > 0 and aF−1

X (1− α) if a ≤ 0.

(a). Let b ∈ R. It is easy to see that α∗(X + b) = α∗(X). Then

µ(X + b, γ) = cF−1
X+b(α

∗(X + b)) + dF−1
X+b(γ + α∗(X + b))

= cF−1
X+b(α

∗(X)) + dF−1
X+b(γ + α∗(X)) + (c + d)b

= cF−1
X (α∗(X)) + dF−1

X (γ + α∗(X)) + (c + d)b.

= µ(X, γ) + (c + d)b.
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Therefore, c + d = 1.

(b). Let a > 0. We also see that α∗(aX) = argαinf0≤α≤1−γ{a[F−1
X (γ+α)−F−1

X (α)]} =

α∗(X). Then we have

µ(aX, γ) = cF−1
aX (α∗(aX)) + (1− c)F−1

aX (γ + α∗(aX))

= cF−1
aX (α∗(X)) + (1− c)F−1

aX (γ + α∗(X))

= a{cF−1
X (α∗(X)) + (1− c)F−1

X (γ + α∗(X))}
= aµ(X, γ).

(c). Consider the transformation of multiplying X by negative value −1. We see that

α∗(−X) = argαinf0≤α≤1−γ{F−1
−X(γ + α)− F−1

−X(α)}
= argαinf0≤α≤1−γ{−F−1

X (1− (γ + α)) + F−1
X (1− α)}

= argαinf0≤α≤1−γ{F−1
X (1− α)− F−1

X (1− (γ + α))}
= argαinf0≤1−(α+γ)≤1−γ{F−1

X (γ + (1− (α + γ)))− F−1
X (1− (γ + α))}

= argαinf0≤β≤1−γ{F−1
X (γ + β)− F−1

X (β)}.

This implies that 1 − [γ + α∗(−X)] = α∗(X) and the we derive α∗(−X) = 1 − [γ +

α∗(X)]. Now we have

µ(−X, γ) = cF−1
−X(α∗(−X)) + (1− c)F−1

−X(γ + α∗(−X))

= cF−1
−X(1− (γ + α∗(X))) + (1− c)F−1

−X(1− α∗(X))

= −[cF−1
X (γ + α∗(X)) + (1− c)F−1

X (α∗(X)].

Since −µ(X, γ) = −[cF−1
X (α∗(X))+(1−c)F−1

X (γ+α∗(X))] , we know that µ(−X, γ) =

−µ(X, γ) if c = 1
2 . That is µ(X, γ) = 1

2{F−1
X (α∗(X)) + F−1

X (γ + α∗(X))}.
(d). We also see that µ(X, γ) = 1

2 [F−1
X (α∗(X)) + F−1

X (γ + α∗(X))] ≥ 0 if x ≥ 0. ¤

We note that the interval (F−1(α∗), F−1(γ + α∗)) converges to the single mode

point when γ converges to zero. We combine this fact and the result in the preceding

theorem to define a general quantile mean that its corresponding quatile interval plays

a generalization of the mode point to the interval.

Definition 2.2. For 0 < γ < 1, we define the γ-mode type quantile mean as τmod =
1
2 [F−1(α∗) + F−1(γ + α∗)].
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On the other hand, the symmetric quantile interval (F−1(α), F−1(1 − α)) shrink to

the median point when percentage α approaches to 0.5. We then recall the symmetric

quantile mean τ the median type quantile mean by denoting τmed = 0.5[F−1(α) +

F−1(1− α)].

In the following, we provide the mode type quantile mean for several distributions.

(a). Let X be a random variable having a p.d.f. ∼of the form f(x; θ) = exp[−(x −
θ)]I(θ < x < ∞) with parameter space R. We see that F−1(α) = θ − ln(1 − α) and

for any γ, α∗ equals to 0. Then τmod = θ − 1
2 ln(1 − γ) which depends on unkwown

parameter θ. Not every distribution has an explicit form for α∗ in terms of parameter

θ.

(b). Let X be the r.v.∼ with the Weibull distribution having the p.d.f.∼ f(x, θ1, θ2) =

θ1θ2x
θ2−1exp(−θ1x

θ2), x > 0 and θ1,θ2 > 0. We can see that F−1(α) = θ
−1/θ2
1 [−ln(1−

α)]
1

θ2 and τmod = 1
2θ
−1/θ2
1 {[−ln(1− γ − α∗)]

1
θ2 + [−ln(1− α∗)]

1
θ2 }, where α∗ = argα

inf0≤α≤1−γ{[−ln(1− (γ +α))]1/θ2− [−ln(1−α)]1/θ2}. In this example, α∗ is implicitly

formulated in terms of θ.

(c). Consider an example of a discrete distribution. Let X be a discrete r.v.∼ with

p.m.f.∼ f(x) = 3−|x−3|
9 , x=1, 2, 3, 4, 5. By denoting the corresponding mode type

interval as Cmod(γ), we see that there are multiple choices of γ and α∗ that have the

same mode type quantile interval and then the same mode quantile mean. This would

happen in the same way for the median quantile mean. We display the Cmod(γ) and

τmod and their corresponding γ and α∗ in the following table.

Table 1 Mode Type quantile interval and mean for a discrete distribution



6

Cmod(γ) γ α∗ τmod

{1} (0, 1
9 ) (0, 1

9 − γ] 1
{2} (0, 2

9 ) ( 1
9 , 3

9 − γ] 2
{3} (0, 3

9 ) ( 3
9 , 6

9 − γ] 3
{4} (0, 2

9 ) ( 6
9 , 8

9 − γ] 4
{5} (0, 1

9 ) ( 8
9 , 1− γ] 5

{2, 3} [ 39 , 5
9 ) ( 1

9 , 6
9 − γ] 2.5

{3, 4} [ 39 , 5
9 ) ( 3

9 , 8
9 − γ] 3.5

{1, 3} [ 59 , 6
9 ) (0, 6

9 − γ] 2
{2, 4} [ 59 , 7

9 ) ( 1
9 , 8

9 − γ] 3
{3, 5} [ 59 , 6

9 ) ( 3
9 , 1− γ] 4

{1, 4} [ 79 , 8
9 ) (0, 8

9 − γ] 2.5
{2, 5} [ 79 , 8

9 ) ( 1
9 , 1− γ] 3.5

{1, 5} [ 89 , 1) (0, 1− γ] 3

For interpretation, for γ in each category and setting α∗ being any value in its cor-

responding interval, they correspond to the same mode quantile interval and quantile

mean. For example, let 0 < γ < 1
9 . There are five choices of Cmod(γ), any one of

{i}, i = 1, ..., 5. If we choose Cmod(γ) = {3}, there are multiple choices of α∗ which

must be in ( 3
9 , 6

9 − γ]. The resulted mode quantile mean is τmod = 3.

Why should we use the mode type quantiles to construct the quantile mean? Here

we interprete one point from the view of quality control. A control chart consider a

statistic T , a function of a random sample X1, ..., Xn, and set the control limits as the

two ends of the median interval (F−1
T (α), F−1

T (1 − α)) for some coverage probability

1 − 2α. In practice, the control limits are replaced by the one with two quantiles

replaced by their sample versions and when a new observation of T falls outside the

limits, the manaufacturing process may be considered in an out-of-control situation.

The mode interval suggests using the two ends of the interval (F−1
T (α∗), F−1

T (1 −
2α + α∗)) as the control limits. These two control charts are with the same coverage

probability so that the chance making the error of concluding out of control when

the process is in control. It is then interesting to see which one has higher chance of

concluding out of control when the process is indeed out of control. Let the random

sample X1, ..., Xn be drawn from the expontial distribution with p.d.f. f(x; θ) =
1
θ e−

x
θ , x > 0. Consider the statistic T =

∑n
i=1 Xi. we may see that the median

interval is Cmed(θ) = θ
2 (F−1

Y (α), F−1
Y (1 − α)) and the mode interval is Cmod(θ) =

θ
2 (F−1

Y (α∗), F−1
Y (1 − 2α + α∗)) where Y =

2
∑n

i=1
Xi

θ ∼ χ2(2n). Assume that θ = 1.5
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is the case where the process is in control. We compute the following probabilities

indicating the abilities of observing out of control when it does be out of control:

πmod(θ) = Pθ(
n∑

i=1

Xi 6∈ Cmod(1.5))

= 1− Pθ(
n∑

i=1

Xi ∈ Cmod(1.5))

= 1− Pθ(
1.5
2

F−1
Y (α∗) ≤

n∑

i=1

Xi ≤ 1.5
2

F−1
Y (1− 2α + α∗))

= 1− Pθ(
1.5
θ

F−1
Y (α∗) ≤ 2

∑n
i=1 Xi

θ
≤ 1.5

θ
F−1

Y (1− 2α + α∗))

= 1− P (
1.5
θ

F−1
Y (α∗) ≤ Y ≤ 1

θ
F−1

Y (1− 2α + α∗)),

πmed(θ) = 1− P (
1.5
θ

F−1
Y (α) ≤ Y ≤ 1.5

θ
F−1

Y (1− α)).

The following table provides the results of powers when n = 2 and some θ’s.

Table 2 Powers control charts based on median and mode intervals

θ πmed πmod πmed πmod

2α = 0.05 2α = 0.01
2 0.095 0.130 0.030 0.043
3 0.243 0.315 0.125 0.162
4 0.390 0.469 0.247 0.297
5 0.508 0.584 0.363 0.416
6 0.599 0.667 0.461 0.514
7 0.669 0.729 0.542 0.591
8 0.723 0.776 0.607 0.653
9 0.765 0.812 0.661 0.703
10 0.799 0.840 0.705 0.743

As long as we fixed the probability of the type I error for two quantile intervals, we

found that the mode interval generates the control chart with a smaller probability of

the type II error (i.e., a larger power when the underlying distribution has been shifted

the the right for θ > 1). With more chance in detecting a process change can keep the

manufacturing process in control condition. This application provides one evidence in

using the mode type interval. We will provide the evidence in its use in the quantile

mean.

3. Estimation for Mode Type Quantile Mean
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It is assumed that the distribution function F is known which has a p.d.f. ∼
f(x; θ), where parameter θ is unknown. In case that τmod is a function of the unknown

parameter, the criterion established in the statistical inference leads us to develop

the m.l.e.∼ or uniformly minimum variance unbiased estimator (UMVUE). Is there

any interesting family of distributions that makes the mode type quantile mean easily

to display? We show that the continuous type location-scale distributions lead to a

simpler form for representing the quantile means which helps us for making statistical

inferences.

Theorem 3.1. The family of continuous location-scale distributions with p.d.f.∼ of

the form f(x; θ1, θ2) = 1
θ2

f0(x−θ1
θ2

), θ1 ∈ R and θ2 > 0, has

τmod = θ1 + θ2τm0,

where τm0 is the mode quantile mean of the distribution with p.d.f. ∼ f0.

Proof. It is seen that F−1(α) = θ1 + θ2F
−1
0 (α). Then

τmod = θ1 +
θ2

2
{F−1

0 (γ + α∗) + F−1
0 (α∗)}

= θ1 + θ2τm(
X − θ1

θ2
, γ)

= θ1 + θ2τm0.

Suppose now that we have a random sample X1, X2, · · · , Xn drawn from a distribution

with p.d.f. ∼ f(x, θ). Our aim is to estimate the mode quantile mean in (2.1).

The mode quantile mean for a location-scale distribution is nothing related to its

corresponding location parameter. Consider the mode quantile mean and examples

for several distributions.

Normal distribution

Consider the case where the random sample is drawn from the normal distribution

N(µ, σ2) with unknown parameters µ ∈ R and σ > 0. We also denote the r.v.∼ with

standard normal distribution N(0, 1) by Z. Then we can easily see that F−1(α) =

µ + σz1−α with 1 − α = P (Z ≥ z1−α). And since the p.d.f.∼ is symmetric, we have

α∗ = 1−γ
2 and τmod = µ, the population mean.

Example 1
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Consider a mechanical engineer who was on the staff of a physical therapy research

team made a sampling study to evaluate his new design for an exerciser. The device is

intended to strengthen the muscles in persons suffering from chronic lower back pain.

The availability of only one test device limited the number of the test subjects that

could be accommodated. A random sample of 12 patients is in Lawrence L. Lapin

(1997, p.306). The following recovery times (days) were obtained : 15, 23, 32, 18, 16,

22, 41, 29, 25, 27, 30, 18. The mean recovery time is X̄ = µ̂ = 24.7 days for any γ.

Exponential distribution

Consider the random sample that is drawn from a right skewed exponential distribution

with p.d.f.

f(x) =
1
θ
e−

x−k
θ I(k < x < ∞),

where k is a known constant and θ is an unknown parameter. Since the p.d.f.∼ is

strictly monotone decreasing which implies α∗ = 0 with quantile function F−1(α) =

k − θln(1− α), we have the mode quantile mean

µ0(X) =
1
2
{F−1(γ) + F−1(0)}

= k − θ

2
ln(1− γ).

For this right skewed exponential distribution, with the fact that E(X) = k + θ, the

UMVUE of the mode quantile mean is τ̂mod = k + 1
2 (k − X̄)ln(1− γ).

For comparison, with the fact that F−1(α) = k − θln(1 − α), a 1 − 2α median

quantile mean is τmed = 1
2 [F−1(α) + F−1(1 − α)] = k − θ

2 [ln(α) + ln(1 − α)]. Its

UMVUE is τ̂med = k − X̄
2 [ln(α) + ln(1− α)].

Example 2. Consider the 1980 revenues of states of sample size 50 in the United

States in tens of billions of US dollars. The data set is in Siegel (1988, p.∼46) and

its stem-and-leaf plot shows that the underlying distribution is most likely to be the

right skewed exponential distribution with k = 0. We have x̄ = 0.396 and here we list

the estimates of the γ median and mode type quantile means in the following table.

Table 3 Estimates for γ = 1− 2α median and mode type quantile means for revenue

data
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γ τ̂med(γ) τ̂mod(γ)
0.5 0.33 0.14
0.6 0.36 0.18
0.7 0.41 0.24
0.8 0.48 0.32
0.9 0.60 0.46

0.9973 1.31 1.17

We have a conclusion drawn from the preceding table: The estimates of the mode

quantile mean are significantly smaller than their corresponding estimates of the me-

dian quantile mean.

On the other hand, one exponential distribution highly skewed to the left has p.d.f.

of the form

f(x) =
1
θ
e

x−k
θ I(−∞ < x < k). (2.3)

We have F−1(α) = k + θln(α) and α∗ = 1− γ. Then

τmod =
1
2
[F−1(1) + F−1(1− γ)]

= k +
θ

2
ln(1− γ).

Its UMVUE is τ̂mod = k + X̄
2 ln(1− γ).

A 1− 2α median quantile mean is τmed = k + θ
2 [lnα + ln(1− α)] with its UMVUE

τ̂med = k + X̄
2 [lnα + ln(1− α)].

Example 3. A sample size n = 44 data of midterm examination scores, displayed

also in Siegel (1988, p.∼47), showed skewed toward low values indicating that the

underlying distribution is more likely to be the left skewed exponential distribution

with k = 100 .We have X̄ = 88.56. We also list the estimates of median and mode

type quantile means for this data set in the following table.

Table 4. Estimates for γ median and mode type quantile means for examination score

data

γ τ̂med(γ) τ̂mod(γ)
0.5 25.92 96.04
0.6 18.90 94.76
0.7 8.86 93.11
0.8 −6.53 90.79
0.9 −34.74 86.83

0.9973 −186.5 65.25
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For this midterm examination example having variable with a left skewed distribu-

tion, the γ measure of location provides the fact that the top 90% students are with

scores average 86.83. Lower the value of γ mode quantile mean estimate indicates the

worse performance showing by the top student group.

We provide two more distributions that UMVUEs for γ mode quantile mean exist.

Uniform distribution

If the random variable X has the uniform distribution U(0, θ) with parameter space

(0,∞). Any value α in (0, 1 − γ) is a choice of α∗. This is the case where multiple

solutions for α∗ exist when the random variable X has a continuous distribution.

Gamma distribution

Consider the random variable X from Gamma(k
2 , θ). We denote the distribution

function of χ2(k) by G. Then F−1
X (α) = θ

2G−1(α) and α∗ = argαinf0≤α<≤1−γ{G−1(γ+

α)−G−1(α)}. Hence

τmod =
θ

4
{G−1(γ + α∗) + G−1(α∗)}.

Suppose that we have a random sample X1, ..., Xn drawn from this gamma distribution.

Since the UMVUE of θ is 2X̄
k , we have the UMVUE of τmod is X̄

2k [G−1(γ + α∗) +

G−1(α∗)].

4. Confidence Interval and Hypothesis Testing for Mode Type Quantile

Mean

Confidence interval (C.I.) is another useful tool in applications for an unknown

parameter. We will develop this for the mode quantile mean τmod. Basically, we may

interprete a 100(1− 2α)% C.I. for τmod by saying that with 100(1− 2α)% confidence

the measure of location lies between two ends of the C.I. Three types of C.I. for τmod,

two-sided {τmod : T1 ≤ τmod ≤ T2}, right-hand-sided {τmod : τmod ≥ T}, and left-

hand-sided {τmod : τmod ≤ T} for some statistics T1, T2, and T , are the most popular

choices for C.I. However, the decision for making a choice is determined by the problem

we may concern.

C.I. for Normal distribution

For the normal case, a 100(1− 2α)% C.I. of τmod = µ is

(X̄ − S
tα√
n

, X̄ + S
tα√
n

),
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where α = P (T ≥ tα) with T ∼ t(n− 1). For this symmetric distribution, the 1− 2α

C.I. for the median quantile mean τmed coincides with the preceding random interval.

Example 3. Consider the muscle strengthening exerciser data. With sample standard

deviation S = 7.6 , the 95% C.I. of τmod is (20.4, 29) for any γ ≥ 0.

C.I. for exponential distribution

Let X1, X2, · · · , Xn be a random sample from the right skewed distribution with p.d.f.

∼ f(x) = 1
θ e−

x−k
θ I(x > k). Then 100(1 − 2α)% left-hand-sided C.I. for τmod is

(k, k −
∑n

i=1
(Xi−k)

χ2
1−2α

ln(1− γ)) and the two-sided C.I. is (k −
∑n

i=1
(Xi−k)

χ2
α

ln(1− γ), k −∑n

i=1
(Xi−k)

χ2
1−α

ln(1− γ)).

Proof. Since
2
∑n

i=1
(Xi−k)

θ ∼ χ2(2n), then

1− 2α = P (χ2
1−2α ≤

2
∑n

i=1(Xi − k)
θ

< ∞)

= P (0 <
θ

2
∑n

i=1(Xi − k)
<

1
χ2

1−2α)
)

= P (0 < θ ≤ 2
∑n

i=1(Xi − k)
χ2

1−2α

)

By letting τmod = k − θ
2 ln(1− γ), we have

1− 2α = P (k < τmod ≤ k −
∑n

i=1(Xi − k)
χ2

1−2α

ln(1− γ))

For γ median quantile mean τmed = k − θ
2 (ln( 1−γ

2 ) + ln( 1+γ
2 )), we may also see that

a 100(1− 2α)% left sided C.I. for τmed is (k, k−
∑n

i=1
(Xi−k)

χ2
1−2α

(ln( 1−γ
2 ) + ln( 1+γ

2 ))) and

the two sided C.I. is (k −
∑n

i=1
(Xi−k)

χ2
α

(ln( 1−γ
2 ) + ln( 1+γ

2 )), k −
∑n

i=1
(Xi−k)

χ2
1−α

(ln( 1−γ
2 ) +

ln(1+γ
2 ))).

On the other hand, let X1, X2, · · · , Xn be a random sample from the left skewed dis-

tribution with p.d.f. f(x) = 1
θ e

x−k
θ I(−∞ < x < k). From the fact that− 2

∑n

i=1
(Xi−k)

θ ∼
χ2(2n), a 100(1−2α)% right sided C.I. for τmod = k+ θ

2 ln(1−γ) is (k−
∑n

i=1
(Xi−k)

χ2
1−2α

ln(1−

γ), k) and a two sided C.I. is (k −
∑n

i=1
(Xi−k)

χ2
1−α

ln(1 − γ), k −
∑n

i=1
(Xi−k)

χ2
α

ln(1 − γ)).

For γ median quantile τmed = k + θ
2 (ln( 1−γ

2 ) + ln( 1+γ
2 )), a 100(1 − 2α)% a right

sided C.I. for it is (k −
∑n

i=1
(Xi−k)

χ2
1−2α

(ln(1−γ
2 ) + ln(1+γ

2 )), k) and a two sided C.I. is

(k −
∑n

i=1
(Xi−k)

χ2
1−α

(ln( 1−γ
2 ) + ln( 1+γ

2 )), k −
∑n

i=1
(Xi−k)

χ2
α

(ln( 1−γ
2 ) + ln( 1+γ

2 ))).
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Example 4. (a). Consider the revenues data. The 95% one sided C.I. for τmod

with γ = 0.9973 and γ = 0.9 respectively are (0, 0.942) and (0, 0.367). With 95%

confidence, among the 99.73% higher-incomed people , the sum of the highest and the

lowest revenue is 1.884 tens billions of dollars. And among the 90% higher-incomed

people, the sum of the highest and the lowest revenue is 0.734 tens of billions of

dollars. The fact that the former is 2.56 times of the later is surprising. It means

that the 9.73% lowest among the 99.73% higher-incomed people get astonishingly less

revenue and then affect the C.I. of τmod in a dramatic way. And we find that the 95%

one sided C.I.’s for τmed with γ = 0.9973 and γ = 0.9 are (0, 1.052) and (0, 0.572),

respectively.Obviously, the C.I. of τmed is wider than that of τmod for each γ.

(b).With the midterm data, we have 95% one sided C.I.’s for τmod and τmed are

(98.989, 100) and (93.527, 100), respectively. We may conclude as follows: (i)With

95% confidence, the interval coveraging τmod with probability 0.2 should have the

range with value between 98.989 and 100. It’s a quite narrow interval. (ii)On the

other hand , with the same condifence, the corresponding interval coveraging τmed

wiht probability 95% should have the value between 93.527 and 100. Its width is 6.402

times of the former.

We may say that two observers of evaluating the performance of the class will have

more likely results as basing on τmod than τmed. This statistical inference supports the

use of τmod.

C.I. for Uniform distribution

Consider the uniform distribution U(0, θ) case. As we know that Z = X(n)

θ has a

distribution with p.d.f. nzn−1,0 < z < 1. We may choose a, b that satisfy 1 − 2α =

P (a < z < b) = bn − an. Then we can see that 100(1 − 2α)% C.I. for τmod =
1
2{(γ + α∗)

1
n − (α∗)

1
n } which is independent of parameter θ.

C.I. for Gamma distribution

Consider a random sample X1, X2, · · · , Xn from p.d.f. Gamma(k
2 , θ), and we denote

χ2(k) by G. Then 100(1 − 2α)% C.I. for τmod = θ
4{G−1(γ + α∗) + G−1(α∗)} can be

found form the fact that
2
∑n

i=1
Xi

θ ∼ χ2(nk). Now,

1− 2α = P (χ2
1−α <

2
∑n

i=1 Xi

θ
< χ2

α)

= P (
2

∑n
i=1 Xi

χ2
α

< θ <
2

∑n
i=1 Xi

χ2
1−α

)
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where χ2
δ satisfies P (χ2(nk) ≥ χ2

δ) = δ for 0 < δ < 1. Therefore the C.I. is

(
∑n

i=1
Xi

2χ2
α

(G−1(γ + α∗) + G−1(α∗)),
∑n

i=1
Xi

2χ2
1−α

(G−1(γ + α∗) + G−1(α∗)).

5.Testing Hypothesis for Mode Quantile Mean

Being an unknown parameter, hypothesis testing is also very popular in statistical

inferences. Since the rules for hypothesis testing may be reversely operated as we did

in C.I., we then simply display the testing rules for τmod under several distributions.

Test for Normal Distribution

Table 5 Tests for H0 : τmod = t0 for normal distribution

H1 Critical Region
τmod > t0 X̄ > t0 + t2α

S√
n

τmod < t0 X̄ > t0 − t2α
S√
n

τmod 6= t0 X̄ > t0 + tα
S√
n

or X̄ < t0 − tα
S√
n

Test for Exponential Distribution

Table 6 Tests for H0 : τmod = t for exponential distribution

H1 Distribution Critical Region

τmod > t f(x) = 1
θ e−

x−k
θ I(x ≥ k) k −

∑n

i=1
(xi−k)

χ2
1−2α

ln(1− γ) > t

τmod < t f(x) = 1
θ e

x−k
θ I(x ≤ k) k −

∑n

i=1
(xi−k)

χ2
1−2α

ln(1− γ) < t

a

6. Asymptotic Analysis and Monte Carlo Study for Nonparametric Esti-

mation

In this section, we consider comparing the asymptotic variances of two quantile

means as a large sample analysis. Suppose that we have a random sample from

a distribution with p.d.f. f(x, θ). Assuming that Fn is the empirical distribution

function, we consider nonparametric estimators of the two quantile means as τ̂med =
1
2 (F−1

n (α)+F−1
n (1−α)) and τ̂mod = 1

2 (F−1
n (α∗)+F−1

n (γ+α∗)) where α∗ is determined

through the underlying distribution. With the fact that the empirical quantile has the

following representation

n1/2(F−1
n (α)− F−1(α)) = f−1(F−1(α))n−1/2

n∑

i=1

(α− I(Xi ≤ F−1(α))) + op(1),
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we may see that n1/2(τ̂med − τmed) has an asymptotic normal distribution with zero

mean and variance as

1
4
α(1− α)[f−2(F−1(α)) + f−2(F−1(1− α))] +

α2

2
f−1(F−1(α))f−1(F−1(1− α))

and n1/2(τ̂m−τm) has an asymptotic normal distribution with zero mean and variance

as

1
4
[α∗(1− α∗)f−2(F−1(α∗)) + (γ + α∗)(1− (γ + α∗))f−2(F−1(γ + α∗))

+
1
2
(α∗)2f−1(F−1(γ + α∗))f−1(F−1(α∗)).

For comparison, we let γ = 1− 2α.

Table 7 Asymptotic variance anayses for distribution Gamma(3.5, β) with β = 0.3

and 1.0

γ τmed τmod τmed τmod

β = 0.3 β = 1.0
0.95 1.751 1.144 19.44 5.076
0.9 0.976 0.694 10.85 2.899
0.85 0.711 0.535 7.906 2.144
0.8 0.578 0.454 6.431 1.760
0.75 0.500 0.405 5.560 1.529
0.7 0.450 0.373 5.000 1.376
0.65 0.416 0.351 4.622 1.270
0.6 0.392 0.336 4.364 1.194
0.55 0.377 0.325 4.189 1.138
0.5 0.366 0.318 4.075 1.098
0.45 0.360 0.313 4.009 1.070
0.4 0.358 0.310 3.983 1.051
0.35 0.359 0.309 3.992 1.040
0.3 0.362 0.310 4.031 1.036
0.25 0.369 0.312 4.100 1.038
0.2 0.377 0.315 4.197 1.046
0.15 0.389 0.320 4.323 1.061
0.1 0.403 0.326 4.480 1.081
0.05 0.420 0.333 4.669 1.108

The asymptotic variances for estimator of τmod are uniformly smaller than those of

τmed. For larger values of β in gamma distribution, such as β = 1, the discrepancies
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are even large. Although we employ the nonparametric sample quantile function F−1
n

for estimating F−1, however, the parameter α∗ is computed from known distribution.

It is then worth to propose a purely nonparametric method to estimate the quantile

means. Here we introduce one.

Let X(1), ..., X(n) be the order statistics of a random sample X1, ..., Xn drawn from

a distribution F . By letting h = [nγ] + 1, we denote

h∗ = argh,h+1,...,nmin{X(h) −X(1), X(h+1) −X(2), ..., X(n) −X(n−h+1)}.

Then we define a nonparametric estimator of mode type quantile mean as the width

of the shortest γ sample as

τ̂mod =
X(h∗−(h−1)) + X(h∗)

2
.

Let also denote the symmetric type quantile mean estimate as

τ̂med =
1
2
(X(m1) + X(m2))

where m1 = [n 1−γ
2 ] and m2 = [n 1+γ

2 ]. With replication m = 1000, we randomly

generate a sample of size n = 30 from the underlying distribution F and let τ̂ j
mod and

τ̂ j
med be, respectively, the estimates of mode type and median type quantile means

for the jth random sample. We define the mean squares errors of these two quantile

means as

MSEmod =
1
m

1000∑

j=1

(τ̂ j
mod − τmod)2

s2

and

MSEmed =
1
m

1000∑

j=1

(τ̂ j
med − τmed)2

s2
.

We did a simulation under the exponential distribution and gamma distribution.

The results of MSE’s are listed in the following two tables.

Table 8 MSE’s for right skewed exponential distribution
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Interval γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.9973
θ = 2
τmed 0.0455 0.0679 0.0868 0.1122 0.5336
τmod 0.0008 0.0011 0.0018 0.0044 0.1988
θ = 5
τmed 0.0432 0.0656 0.0894 0.0114 0.5724
τmod 0.0008 0.0011 0.0019 0.0046 0.2136

θ = 25
τmed 0.0441 0.0667 0.0887 0.1137 0.5702
τmod 0.0008 0.0011 0.0020 0.0044 0.2121

Table 9 MSE’s for Gamma(α, β) distribution

Interval γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.9973
α = 2, β = 2

τmed 0.0483 0.0612 0.0796 0.1165 1.5782
τmod 0.0453 0.0351 0.0330 0.0386 0.9316

α = 2, β = 3
τmed 0.0485 0.0616 0.0804 0.1179 1.5907
τmod 0.0453 0.0342 0.0321 0.0386 0.9406

α = 4, β = 3
τmed 0.0398 0.0464 0.0576 0.0829 0.9817
τmod 0.0692 0.0562 0.0484 0.0465 0.5408

In this Monte Carlo study, besides the cases of γ = 0.6 and 0.7, for distribution

Gamma(4, 3), the MSE’s for τmod are all smaller than those corresponding one’s for

τmed. We may conclude that the nonparametric estimator for mode quantile mean is

relatively more efficient than the median quantile mean.

7. Extension of Mode Type Quantile Mean

Although the discussion in the above section dealt all with the mode quantile mean

which is an average of two mode type quantiles, this concept may be extended to the

average of arbitrary number of mode type quantiles which then plays an alternative

choice of the general L-estimator. This generalization is introduced in the following

definition.

Definition 7.1. For δi and γi, i = 1, ..., k, 0 ≤ δi ≤ 0.5, 0 ≤ γi < 1 and
∑k

i=1 δi = 0.5,

the mode type L-estimate is defined as

Lmod =
k∑

i=1

δi(F−1(α∗i ) + F−1(γi + α∗i ))
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where α∗i = argαinf0≤α<1−γi
{F−1(α+γi)−F−1(α)} and, in case that γi = 0, F−1(α∗i )

is the location point of mode.

This generalizes the following ordinary L-estimate, very popular in application and

theoretical study,

Lmed =
k∑

i=1

δi(F−1(αi) + F−1(1− αi))

where 0 ≤ αi ≤ 0.5, i = 1, ..., k. These two L-estimates are identical when the distri-

bution is symmetric and we let αi = 1−γi

2 that implies 1− αi = 1+γi

2 .

For this median type L-estimate, one special case proposed by Gastwirth (1966) is

the one with k = 2, δ1 = 0.3, δ2 = 0.2 and α1 = 0.3, α2 = 0.5, as

LGmed = 0.3F−1(0.3) + 0.4F−1(0.5) + 0.3F−1(0.7).

The mode type Gastwirth L-estimate then may be set as

LGmod = 0.3F−1(α∗.4) + 0.4F−1(α∗.0) + 0.3F−1(α∗.4 + 0.4).

For simulation study, we consider to compare the L-estimayes of the versions using

two and four quantiles. We denote the followings, for γ1 < γ2,

L1
med = 0.5(F−1(

1− γ1

2
) + F−1(

1 + γ1

2
)),

L1
mod = 0.5(F−1(α1) + F−1(α1 + γ1)),

L2
med = 0.25(F−1(

1− γ2

2
) + F−1(

1− γ1

2
) + F−1(

1 + γ1

2
) + F−1(

1 + γ2

2
))

L2
mod = 0.25(F−1(α1) + F−1(α1 + γ1) + F−1(α2) + F−1(α2 + γ2)).

In this simulation, we set the same design, besides the coverage probabilities γ1 and

γ2, as we did before. We display the simulation results of MSE’s under γ1 = 0.65 and

0.8 and several γ2’s in the following table.

Table 10 MSE’s for Gamma(2, 2) distribution
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γ1, γ2 L1
med L1

mod L2
med L2

mod

(γ1 = 0.65)
γ2 = 0.75 0.0559 0.0400 0.0626 0.0274
γ2 = 0.80 0.0641 0.0249
γ2 = 0.85 0.0728 0.0228
γ2 = 0.90 0.0768 0.0235
γ2 = 0.95 0.1084 0.0259

(γ1 = 0.80)
γ2 = 0.85 0.0816 0.0321 0.0910 0.0271
γ2 = 0.90 0.0950 0.0266
γ2 = 0.95 0.1285 0.0290

In this design, we find the evidence that the mode L-estimator may improves the

efficiencies performed by the mode quantile mean τmod.
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