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中 文 摘 要 
 

 

 

在微陣列資料分析中使用變異數分析時殘差通常是一個稀疏的分配. 因此, 

我們嘗試對微陣列資料使用混合的變異數分析來做模型的建立, 希望使模型中

的實驗因子更單純並且讓殘差更有彈性. 在混合模型中的參數使用 EM 演算法來

估計具有較低的複雜度和單調收斂的性質. 在混合模型中, 分群的組數是用貝

氏資訊法則並且利用主因子分析來選擇組數的初始值. 然後基因在被分組之後, 

基因在每一組中的表現可以對多維常態分配的殘差使用簡單的變異數分析來建

立模型. 因此, 對分群後的基因統計的估計和推論可以使用傳統的變異數分析, 

包含最小平方估計法和 F 檢定. 在提出利用混合模型對微陣列資料做分群變異

數分析這個新的建議之後, 基因可以透過簡單的變異數分析更有彈性的被分群. 

在實證研究中也驗證了在各種不同的微陣列資料中 CANOVAM 是可行的. 
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Abstract 

Fitted residuals of ANOVA models for microarray data typically follow a sparse 

distribution.   Hence, we are motivated to model microarray data by ANOVA with 

mixtures to have model simplicity for experimental factors and flexibility for residual 

sparsely.   The parameters in mixtures are estimated by the generalized EM 

algorithms with low complexity and monotonic convergence.   The number of 

clusters in mixtures is determined by the Bayesian information criterion and the initial 

estimate is generated by the projection to principal components.   Then, genes are 

clustered so that the expressions of genes in every cluster can be modeled by a simple 

ANOVA model with a multivariate Gaussian distribution of residuals.   Hence, 

statistical estimation and inference for every cluster of genes will be performed as the 

classical ANOVA, including least square estimation and F tests.   By this new 

approach of clustered ANOVA with mixtures (CANOVAM), genes are clustered by 

simple ANOVA models with flexibility.   Empirical studies are also investigated, 

which confirm the practical feasibility of CANOVAM for microarray data in various 

experiments. 
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Chapter 1.  Introduction 

 

Microarray is a high-throughput and powerful technique for revealing the 

patterns of coordinately regulated genes (Brown and Botstein, 1999).  However, 

microarray data are also notorious for their noises like experimental errors, biological 

variations, and instrumental offsets.  In addition, the number of RNA samples 

assayed is typically small in comparison to the large number of genes in an array.  

Therefore, statistical methods are necessary to model uncertainty in microarray data. 

Analysis of variance (ANOVA) is a procedure for constructing statistical tests by 

partitioning the total variance into different sources.  ANOVA has been applied for 

microarray data in a series of studies (Kerr et al., 2000, Kerr et al., 2002, Kerr et al., 

2002 Chi and Churchill, 2003, Dudoit et al., 2003 ).  A recent review of ANOVA 

methods for testing differential expression of genes in microarray experiments is 

reported in Cui and Churchilll (2003).  After background correction, they proposed 

the ANOVA model in two stages.  The first stage uses the following model that does 

not involve the effects related to gene-specific effects: 

,)( ijgrijjiijgr rADDAy ++++= µ            (1.1) 

where yijgr is the logarithm of signal intensity.  The indices represent array (i), dye(j), 

gene (g) and measurement (r).  The notation µ is the overall mean expression level; 

(A) is the effect of the array on the measured intensity; (D) is the effect of the dye on 

the measured intensity; (AD) is a term accounting for effects of the interaction 

between the array and the dye; and (γijgr) is the residual.  The constraints are that the 

sum of every effect is zero to avoid the problem of identification similar to those in 

Appendix 2.  In the second stage, gene-specific effects are modeled in terms of the 

residuals (γijgr) of the first stage model of (1.1).  The gene-specific model is: 
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.)()()(. ijrijijijr AGDGVGGr ε++++=           (1.2) 

In this stage, (G) is the average intensity associated with a particular gene; (AG)i is the 

effect of the array on that gene; and (DG)j is the effect of the dye on that gene.  The 

error term (εijr) is assumed to be independently and identically distributed with mean 0 

and a common variance.  The variety-by-gene effect (VG) is the term that is of 

primary interest in microarray analysis.  This two-stage specification of the model 

was proposed by Wolfinger et al. (2001).  For Affymetrix data, the model will be 

different.  In particular, there are no dye effects and there are probe sets with perfect 

matched and mismatched pairs for Affymetrix data. 

For fixed-effects ANOVA, hypothesis testing involves the comparison of two 

models under the null and alternative hypotheses.  In this setting we consider a null 

hypothesis of non-differential expression (H0: all (VG) values are equal to zero) and 

an alternative hypothesis with differential expression among treatment conditions (H1: 

at least one (VG) value is not equal to zero).  We can compute F statistics via 

gene-by-gene basis from the residual sum of squares (RSS): 

11

1010

/
)/()(

dfrss
dfdfrssrss

F
−−

= .              (1.3) 

Where rss0 and df0 are the residual sum of squares and degrees of freedom for the null 

model (or hypothesis) respectively.  Similarly, rss1 and df1, are the residual sum of 

squares and degree of freedom for the alternative model (or hypothesis) respectively.   

But this F statistic may not follow a standard F distribution because the distributional 

assumptions of normality may fail in practice.  Hence, it is necessary to establish the 

inference of F statistic by nonparametric approaches, like permutation and bootstrap 

tests.  However, permutation tests will have computational difficulty for a large 

number of disturbances and bootstrap tests will involve more computational costs 

(Efron and Tibshirani, 1993, Good, 2000). 
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In this study, we observe that residuals of the first-stage ANOVA models may not 

come from a simple distribution.  On the contrary, it may come from a mixture 

distribution, like a normal mixture with different means and variances.  So we 

cluster the residuals by a mixture model with parameters estimated from the 

microarray data automatically.  After clustering, we use the second-stage ANOVA 

models to estimate gene-specific effects and treatment-by-gene interactions.  

Consequently, gene selection is made by hypothesis tests with the cluster ANOVA 

with mixture (CANOVAM).  We can use traditional F tests when the normality 

assumption holds.  Otherwise, permutation and bootstrap tests can be applied.   

This approach can be combined with linear models in literature or new linear models. 

By CANOVAM, we can have more convenient and fast approaches with traditional 

statistic tools. 

In simulation studies, we simulate a simple dye-swap experiment to identify 

genes with differential expression by CANOVAM under different situations.  In 

empirical studies, we use microarray data from the microarray core laboratory of Dr. 

YS Lee in the CGM Hospital.  There are 24 arrays in a double loop design and we 

cluster the differentially expressed genes by CANOVAM.  In addition, our 

methodology of CANOVAM can be applied to all different microarray experiment 

designs, including common reference designs,  loop designs (Kerr et al., 2000), 

split-plot designs (Tsai and Lee, 2004), and other designs.  When the microarray data 

contain the Affymetrix array or other types of microarray data, we can integrate 

different models to perform CANOVAM.  Once the residuals of fitting models have 

the same character as sparse distributions, we also apply CANOVAM to cluster genes 

and then select differentially expressed genes by hypothesis tests within every cluster.            
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Chapter 2. Methodologies 

 

When the ANOVA model is used to estimate the gene effect, treatment-by-gene 

interaction and other effects in the analysis of microarray, it is often that the residuals 

do not fit into a single normal distribution.  In particular, the residuals have a sparse 

distribution with a high peak and two long tails in both sides.  Hence, we are 

motivated to develop a new method that clusters the data with finite mixtures for the 

residuals.  Then, an accurate estimate of variance in every cluster will be obtained 

and statistical inferences will be made precisely. 

Other approaches to model sparse distributions are possible.  For instance, the t 

distribution, the double exponential distribution, Box-Cox transformation, a mixture 

of a normal distribution and a point mass at zero, and others are proposed in literature 

(Li et al., 2001, Smyth, 2002, Qiu and Hwang, 2003).  However, the estimation and 

inference procedures become complicated and intractable for high dimensional data.  

Therefore, we will consider the multivariate normal mixture with the simple EM 

algorithm for microarray data in high dimension.  Consequently, the large amount of 

genes will be grouped into clusters.  The residuals in every cluster have similar 

variances and they are different between clusters.  For every cluster of genes, a 

simple normal distribution will be used and the statistical inference becomes tractable.  

In addition, the clustering structure of genes provides biological insights for 

verification and discovery. 

In this chapter, we will use the EM-algorithm to estimate the parameters of 

multivariate normal distribution for residuals (McLachlan, Bean, and Peel, 2000).  

The cluster size will be determined by the Bayesian information criterion (BIC).  

Then, the maximum discriminate rule is used to classify the genes.  The flowchart 
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for the cluster ANOVA with mixture (CANOVAM) is illustrated in Figure 2.1.  

 

Figure 2.1: The flow chart of CANOVAM is displayed. 
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2.1 The EM Algorithm 
The EM algorithm is applied to the mixture model by treating the cluster label of 

every gene (z) as missing data.  The procedure has two steps, E (Expectation) and M 

(Maximization) steps.  Let the observed incomplete data be x and the complete data 

be y = (x, z).  Then the joint density function of complete data y is P(y; Ψ) = P(z | x; 

Ψ) P(x; Ψ). 

Let Ψ(k) be the old value specified for Ψ.  In the E-step, one can evaluate the 

conditional expectation of the log likelihood of the complete data, , 

given the observed x and Ψ

));(log( xL Ψ

(k).  Then the conditional expectation of L(Ψ) is denoted 
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as  

].|)([log);( )(
)( xLEQ k

k Ψ=ΨΨ
Ψ

                   (2.1.1) 

In the M-step, one can maximize  with respect to Ψ over the 

parameter space to obtain the updated estimate of Ψ

);( )(kQ ΨΨ

(k+1) such that  

).;(maxarg )()1( k

Ψ

k Q ΨΨ=Ψ +                    (2.1.2) 

The E-step and M-step is repeated until convergence.  It is proven that each 

iteration will increase the log-likelihood of the incomplete data and the EM algorithm 

will converge to a local maximum monotonically under regular conditions (Dempster, 

Laird, and Rubin, 1977, Wu, 1983). 

 

2.2 Finite Mixtures 
We consider microarray data X={x1, …, xN} as a set of multi-dimensional data. 

Each xj corresponds to the expression in a variety of arrays for the jth gene. The 

mixture model for M clusters is defined as 

                (2.2.1) ),;();(
1

mm

M

m
m xPxp θπ∑

=

=Ψ

  cluster, th  theof proportion mixing  theis  where mmπ  

 ,10 << mπ                          

and 

.1 
1
∑
=

=
M

m
mπ                           (2.2.2) 

The probability density function Pm(x; θm) in the mth cluster has the parameter vector 

θm and the entire parameter vector is ).,...,,,...,( 11 MM θθππ=Ψ    

The log-likelihood of incomplete data becomes 

∑ ∑
= =

=Ψ
N

j

M

m
mjmm xPxL

1 1
));(log())|(log( θπ .           (2.2.3)

The maximum likelihood estimate needs to solve the system of partial differential 
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equations of , which is intractable because the complicated 

structure of summation inside the log function.  Hence, one can introduce the 

unobserved variable of the cluster label for the observed data x

0/))|(log( =Ψ∂Ψ∂ xL

j as follows: 

 

⎩
⎨
⎧

=
.

;
,0
,1

otherwise
 usterhe m-th cl is from tx     when 

Z j
jm               (2.2.4) 

Then, the complete data log likelihood for xj becomes 

.));(log(log              

));((log              

));(log()(log

1 1

1 1

1

∑∑

∑∑

∑

= =

= =

=

+=

=

=Ψ

N

j

M

m
mjmmim

N

j

M

m
mjmmim

N

j
mjmm

xPz

xPz

xPL
ii

θπ

θπ

θπ

            (2.2.5) 

E – Step 

In E-step, the mixing parameter πm can be thought as the prior probability of 

each mixture component.  By the Bayes Rule, the posterior probability that xj 

belongs to the mth cluster of the mixture becomes 

.
);(

); (
                        

);Pr(
); ,Pr(

);|(

)(
m1

)(
m

)(

)(
)(

k
jm

M

m m

k
jmm

k
j

k
jk

j

xP

xP

x
mx

xmP

θπ

θπ

∑ =

=

Ψ
Ψ

=Ψ

                  (2.2.6) 

Also, the conditional expectation of logL(Ψ)|x is   

             ].));(log(log);|(                      

]));(log](log|[                     

]|));(log(log[                      

]|)([log     );(

1 1

)(

1 1

1 1

)(

)(

)(

)(

∑∑

∑∑

∑∑

= =

= =
Ψ

= =
Ψ

Ψ

+Ψ=

+=

+=

Ψ=ΨΨ

N

j
mjmm

M

m

k
j

N

j
mjmm

M

m
jm

N

j
mjmm

M

m
jm

k

xPxmP

xPxzE 

xxPzE

xLEQ

K

K

K

θπ

θπ

θπ

   (2.2.7) 

M-Step 
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In M-step, one can maximize Q(Ψ;Ψ(k)) in (2.2.7).  To estimate πm, with the 

constraint that , one can differentiate this function and the constraint as 

follows: 

1
1

=∑ =

M

m mπ

),1();();(
1

)()( −+ΨΨ=ΨΨ ∑
=

M

m
m

kk QQ πλλ               (2.2.8) 

where λ is a Lagrange multiplier.  Therefore, the estimates of the mixture 

proportions turn out to be 

∑
=

Ψ=
N

j

k
jm xmP

N 1

)( ).;|(1π                            (2.2.9) 

To estimate Ψ for the new update of Ψ(k+1), one can solve the following equation: 

.0
);(loglog

);|(
1 1

)( =
Ψ∂

+∂
Ψ∑∑

= =

N

j

M

m

mjmmk
j

xP
xmP

θπ
          (2.2.10) 

By writing down with each proportion in (3.2.9), one can derive the estimate of the 

parameter Ψ and obtain the new estimate of Ψ(k+1) by solving the (2.2.10) equation. 

 

2.3 Multivariate Normal Mixtures 

In the normal mixture, the d-dimensional normal distribution density function 

and its log transform become  

)],()(
2
1exp[||)2(),; ( 12/12/

mm
T

m
d

mmm xxxP µµπµ −Σ−−Σ=Σ −−−      (2.3.1) 

)()(
2
1|)log(|

2
1)2log(

2
),; (log 1

mm
T

mmmm xxdxP µµπµ −Σ−−Σ−−=Σ − ,   (2.3.2) 

where   We sort the means by the 

increasing order in each coordinate to avoid the identifiability problem and the 

equality rarely happens for numerical values of mean estimates.  Let Z

.,...,2,1,),...,,( )()2()1( MmTd
mmmm == µµµµ

jm be 

unobserved data by (2.2.4), then the complete log-likelihood in (2.2.5) can be 

formulated.   

In E-step, one can write down the posterior probability that xj belongs to the mth 
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cluster of the normal mixture by Bayes Rule, 

,
),; (

),; (
  );|(

1
)()()(
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m
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m
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k
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                   (2.3.3) 

and the conditional expectation of logL(Ψ)|x becomes   

           ].)),; (log(log);|(     );(
1

)()()(

1

)()( ∑∑
= =

Σ+Ψ=ΨΨ
N

j

k
m

k
mjm

k
m
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m

k
i

k xPxmPQ µπ (2.3.4) 

In M-step, the mixture proportion turns out to be 

∑
=

+ Ψ=
N

j

k
j

k
m xmP

N 1

)()1( ).;|(1π                        (2.3.5) 

Also, the estimate for the mean µm is  

,
); |(

); |(

1
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1
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∑
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Ψ
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µ                      (2.3.6) 

and the variance-covariance matrix ∑m is 

.
);|(

))(();|(
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1j
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)1()1(N

1j
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)1(

∑
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=

++
=+

Ψ
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m
xmP

xxxmP µµ
             (2.3.7) 

We iterate the E-step and M-step until  for a 

positive tolerance ε. 

ε<Ψ−Ψ + xLxL kk |)(log|)(log )()1(

 

2.4 Maximum Likelihood Discriminant Rule 
We assume that the expressions of genes come from different clusters and every 

cluster has the same character of distribution but different parameters.  The next 

question is how should we allocate N genes to M clusters?  By the model of finite 

normal mixtures, we will use the EM algorithm to estimate the parameters in each 

cluster.  The likelihood function for every cluster provides the discrimination 

function to cluster genes.  If the expression of one gene has the largest likelihood in 

a particular cluster, then this gene shall be clustered into that cluster.  We consider 
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),;();(
1

mm

M

m
m xPxp θπ∑

=

=Ψ and πm is the mixture proportion of mth cluster.  

We allocate the data xj to the mth cluster if  

M.1,...,    ),;|( max);|*( =Ψ=Ψ mxmPxmP jmj              (2.4.1) 

After clustering, we can use classical ANOVA model and F test to select genes in 

every cluster.  After clustering, we assume the residuals in each cluster follow a 

normal distribution with mean 0 and variance σ.  Under the null hypothesis that the 

gene g is not differentially expressed across the treatment conditions and the 

normality holds, the test statistics of  follow an F distribution. 

The term of MST

mg MSEMSTF /* =

g denotes the mean square for treatment conditions and that of 

MSEm denotes the variance of the error term in the mth cluster.  Besides, we can 

also fit each cluster with new ANOVA models.  In this situation, it is assumed that 

different gene in the same array has the same array effect and dye effect.  Otherwise, 

we can also re-estimate the ANOVA model of each gene after clustering to rectify 

the system offsets. 

 

2.5 How Many Clusters?  
We now investigate the determination of cluster size.  Firstly, is it necessary to 

cluster the genes?  After the first-stage of ANOVA, we can test the normality of 

residuals by Kolmogorov-Smirnov tests or other tests.  If the normality test is passed, 

then it is not necessary to perform cluster ANOVA.  In most cases, the normality test 

of the residuals after the first-stage ANOVA fails.  Then, we need to consider the 

approach of CANOVAM.  We can use the Bayesian information criterion (BIC, 

Schwartz, 1978) to choose a cluster number.   

For a specific cluster size, the likelihood of the maximum likelihood estimates of 

parameters measures the goodness-of-fit for the residuals.  This goodness-of-fit will 
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increase as the number of parameters increases.  In order to avoid the problem of 

over-fitting, a penalty for model complexity related to the number of parameters shall 

be included to balance these two factors in a criterion.  Then, a suitable model with a 

proper number of parameters can be selected based on the criterion. 

 Both the Akaike information criterion (AIC) and Bayesian Information criterion 

(BIC) are common used for model selection in literature (Burnham and 

Anderson,1998).  With a minus sign, the maximization of the penalized likelihood is 

equivalent to the minimization of AIC and BIC as follows:  

 ,2)log(2 aML KLAIC +−=
                  (2.5.1) 

               (2.5.2) 
,log)log(2 NKLBIC aML +−=

where N is the total number of observations, and Ka is the total number of free 

parameters in the finite mixture model. 

For pair-wise comparisons of two nested models, AIC and BIC are equivalent to 

the likelihood–ratio test (Akaike, 1973).  That is, we consider the null and alternative 

hypotheses as follows: H0: a small model of M1 is sufficient vs. H1: a large model of 

M2 that contains M1 is sufficient.  The significance level of BIC, P(accept M2 | M1 is 

true), is approaching 0 as N→∞.  But the significance level of AIC does not 

approach 0 asymptotically.  Therefore, BIC is a better method asymptotically.  

When the sample size is small (N=7.389), AIC and BIC are the same.  In microarray 

data analysis, large sample size is very large because of a large number of genes is 

used.  Then, the penalty of BIC is larger than that of AIC.  Hence, model selection 

by BIC for microarray data will select a simpler model that by AIC. 
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Chapter 3. Simulation and Empirical Studies 

 
3.1 Simulation Studies 

In this chapter, we simulate that the residuals of microarray data have two 

possible kinds of distributions.  Firstly, we use CANOVAM to perform the gene 

selection when the residuals follow a normal mixture model.  We will investigate the 

improvements of CANOVAM in comparison to those of ANOVA. Secondly, we 

simulate the cases that the residuals follow a heavy distribution like the t distribution.  

We will study the performance of CANOVAM in this situation.  

 

3.1.1 Residuals with Normal Mixture Distributions 
A simple dye-swap experiment is illustrated in Figure 3.1.1.  Every arrow in the 

figure represents a microarray chip.  The variety in the dotted side of an array is 

labeled as Cy3 or G and the variety in the arrowhead side of an array is labeled as Cy5 

or R.  A simple ANOVA model is used for the gene expressions of 1000 genes, g = 

1, …, 1000, with samples coming from two treatments, k = 1, 2, and two dyes, j =1, 2, 

on two arrays, i = 1, 2, as follows: 

ijkgkggijjiijkg VGGADDAy εµ ++++++= .                (3.1.1) 

The constraints are that the sum of every effect is zero to avoid the problem of 

identification as in Appendix 2.  Here, the treatment effects are replaced by the array 

and dye interaction terms (Wolfinger et al., 2001) as the simulated values in Table 

3.1.1 of the Appendix 1.   
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Figure 3.1.1: A simple dye-swap experiment is illustrated. 

Array 1 

Array 2 

Variety 2Variety 1 
 

 Firstly, we simulate the case that the residuals follow a standard normal 

distribution with mean 0 and variance 1.  The BIC will select the cluster size of 1 

and the CANOVAM is equivalent to the classical ANOVA.  Then, we will simulate 

the case that the residual ε comes from a distribution of two normal mixtures: 

),N(),N()|( 2
222

2
111 σµπσµπε +=Ψf .            (3.1.2) 

That is, we assume that the residuals have three clusters with small and large 

variations which mimic the sparse distribution for microarray data in practice.  The 

simulated values of parameters are reported in Table 3.1.2 of the Appendix 1.   

Moreover, we will simulate the case that the residual ε comes from a distribution 

of three normal mixtures: 

),N(),N(),N()|( 2
333

2
222

2
111 σµπσµπσµπε ++=Ψf .    (3.1.3) 

That is, we assume that the residuals have three clusters with small, medium, and 

large variations which mimic the sparse distribution for microarray data in practice.  

The simulated values of parameters are reported in Table 3.1.4 of the Appendix 1.  

We demonstrate the difference in density plots of the three normal mixture and a 

normal distribution with the same mean and variance in Figure 3.1.2.  From the 

density plots, the mixture distribution has a sparse distribution with a high peak in the 

middle and two long tails in both sides that mimics the distribution of ANOVA 

residuals for microarray data.  The density plots of three normal distributions in the 
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normal mixtures in Table 3.1.4 are illustrated in Figure 3.1.3 of the Appendix 1. 

The simulation studies generate different data sets with various percentages of 

significant genes.  If there are only a few or a half of genes are significant, we can 

simulate these cases with only 5% or 50% significant genes respectively.  Then we 

can use different statistics to select significant genes by ANOVA or CANOVAM.  

The match percentages of the selected genes are evaluated for comparison studies. 

In the process of gene selection, we consider the classic F statistic and F-like 

statistics (Cui X et al., 2003).  For split plot designs, we also consider the 

interquartile range method for gene selection (Tsai and Lee, 2004).  The following 

notations will be used. 

Let MSTg denote the mean squares of relative expression levels of one gene in 

multiple samples.  Variance components  in  are estimated form the 

expressions of one gene.   and  statistics are proposed by Cui and Churchill 

(2003).  The statistics  uses the pooled variance estimator, , for each 

variance component and  uses the average of   and  for each 

component.  The statistics  uses the shrinkage estimator based on 

2ˆ gσ 1F

2F 3F

3F 2ˆ poolσ

2F 2ˆ poolσ 2ˆ gσ

SF 2~
gσ .  The 

statistics  is based on interquartile range method in Tsai and Lee (2004).  Under 

the null hypothesis that gene g is not differentially expressed among the treatment 

conditions, this statistics should be distributed approximately as chi-square 

distribution with df

gC

T and dfT denoted the degrees of freedom.  Let Median(MST) 

denoted the median of the MSTg values.  Then, the statistics are defined as: 
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                  (3.1.3) 

In Table 3.1.3 and 3.1.5, the results of ANOVA and CANOVAM with five 

different statistics are reported.  In this table, the match number represents the 

number of truly significant genes that are selected.  If the match number is bigger, 

then the correctness of gene selection is higher.  We will consider the top 5%, 10% 

and 50% selected genes which are chosen by the five statistics with ANOVA or 

CANOVAM to evaluate the correctness of these approaches. 

It is noted that the F1 statistics has no any difference before and after clustering. 

Hence, we evaluate the capability of the other four statistics only for CANOVAM.  

From the results of Table 3.1.3 and 3.1.5, it is found that the correctness of these four 

statistics increases under the condition of choosing the same amount of genes in 

CANOVAM with the correct cluster size when compared with the results of ANOVA. 

We have to decide the number of clusters by BIC before clustering.  If we select 

a wrong cluster number, then the selected number of clusters may be more or less than 

the correct size.  Under this situation, can we get better results by CANOVAM than 

ANOVA?  In stead of the correct three clusters, we use the number of clusters of two 

clusters and four clusters in Table 3.1.6. The results of matched genes in CANOVAM 

with incorrect cluster sizes are still better than those of ANOVA without clustering in 

these studies.  That is, the estimate of variances from a group of genes from 

neighboring clusters can still improve the statistical inferences by borrowing the 

strength from the expressions of similar genes. 
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3.1.2 Residuals with t Distributions 

When the distributions of residuals are other types of distributions that are not 

mixture distributions, we will investigate the performances of CANOVAM in these 

situations by simulation studies.  In simulations, we will assume the residuals come 

from a student’s t distribution with df = 5.  We use the BIC to choose the number of 

cluster and select two clusters as a result.  Then, we separate genes into two clusters 

by means of CANOVAM.  In Table 3.1.7, the results of CANOVAM are reported.  

The performances of CANOVAM are better than those by ANOVA in this case, which 

indicates the robustness of CANOVAM when the distributions of residuals are not 

normal mixtures. 

 

3.2 Empirical Studies with Spike Genes 

In empirical studies, we use the microarray data with spike genes generated in the 

microarray core laboratory by Dr. Yu-Shien Lee at the CGM Hospital in Taiwan.  

This is a reference design which contains three arrays and three treatments as 

displayed in Figure 3.2.1. 

 

Figure 3.2.1: The reference design with 3 arrays and 3 treatments is displayed. 

R 

     
 

M31 P31 CB31 

 

In this experiment, there are 256 spike genes in a total of 14924 genes.  
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Diffe

Table 3.2.1: The spotted ratios of spike genes are reported. 

Gene name Cy5/Cy3 Ratio 

Spike 1 Spike 2 10:1 

Spike 3 Spike 4 5:1 

Spike 5 Spike 6 2.5:1 

Spike 7 Spike 8 1:1 

 

Firstly, we use the log transform of expressions and the following ANOVA 

mod

i 

yijg) = µ + Ai + ADij +Dj + Gg + (VG)ijg +εijg .               (3.2.1) 

In this class

εijg ~

 

rent spike genes have different spotted ratios of Cy5/Cy3 in every array.  In 

Table 3.2.1, there are 8 kinds of spike genes and each kind has 32 replications in an 

array.  The spotted ratios have four levels as summarized in Table 3.2.1. 

 

el for the gene expressions of 14924 genes, g = 1, …, 14924, with samples 

coming from three treatments, k = 1, 2, 3, and two dyes, j =1, 2, on three arrays 

= 1, 2, 3, as follows: 

log(

ical ANOVA, we assume that residuals follow a normal distribution, 

 N(0, σ2).  The least square estimate of (VG) effect is derived in Appendix 2, 

which is also the maximum likelihood estimate under the assumption of normality. 

We can check the normality assumption of residuals in the data by normality tests like 

the Kolmogorov-Smirnov test or the chi-square tests (Ross 1997).  The null 

hypothesis is H0: residuals have the normal distribution; whereas the alterative 
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hypothesis is the opposite of the null hypothesis.  The p-value of the 

Kolmogorov-Smirnov for the residuals of ANOVA in this data is very close to 0 and 

the null hypothesis is rejected.  Therefore, the normality assumption of residuals is 

rejected in this data and we will also analysis this data by CANOVAM for 

comparison. 

In Figure 3.2.2, it is observed the BIC value of normal mixtures for the residuals 

in th

igure 3.2.2: The BIC values of normal mixtures for the residuals in this data are 

is data has the smallest value when the cluster number is 4.  Hence, we cluster 

the genes into four clusters according the model of normal mixture in this study.   

 

F

plotted against the cluster number. 

2 3 4 5 6 7 8
Cluster.number

-2400

-2300

-2200

-2100

-2000

B
IC

 
 

After clustering, we can check the no mality of residuals in four clusters by the 

dens

 

r

ity plots and normal QQ plots in Figure 3.2.3.  The residuals in cluster 1, 3, and 

4 in Figure 3.2.3 can be fitted by normal distributions with different parameters.  The 

residuals in cluster 2 have a longer tails in both sides than a normal distribution. 

Normality tests like Kolmogorov-Smirnov tests can be applied to confirm these 

observations.  We can either cluster the genes in cluster 2 to more small sub-clusters 

or increase the size of clusters from four to more so that the residuals in every cluster 

follow a normal distribution.  For instance, we can use twelve clusters for this data 
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and the residuals in every cluster follow a normal distribution.  But, we will need to 

estimate more parameters and the model complexity increase.  Hence, we will 

consider four clusters suggested by BIC to balance the effects of model fitting and 

complexity.  Finally, we can check whether the variances in four clusters are the 

same or not.  The result of Bartlett test (Snedecor and Cochran, 1983) is reported in 

Table 3.2.2.  As the p-value of Bartlett test is very small, we can reject the null 

hypothesis that the variances in four clusters are the same.  Hence, we do not merge 

these four clusters into smaller sizes of clusters.  More robust tests, like the Levene 

tests (Levene 1960), can be applied to test the equality of variances.  
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Figure3.2.3:  The density plots and normal QQ plots for normality checking in four 

  

Table 3.2.2: The results of Bartlett test for four clusters are summarized. 

clusters are displayed. 
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Bartlett test  

s1 0.057844 N1 27042 

s2 0.101582 N2 29490 

s3 0.12412 N3 22416 

s4 0.669071 N4 10848 

s lpoo 0.16259 N 89796 

T 32519.48 P- e valu 0 

 

ow, we investigate the performances of ANOVA and CANOVAM in spike 

gene

match numbers and percentages of spike genes for ANOVA and CANOVAM 

are r

3.3 Empirical Studies with 24 Microarrays 
to demonstrate the flexibility of 

N

s.  By Table 3.2.1, there are two kinds of spike genes, Spike 7 and 8, has the 

spotted ratios of 1:1 and they are designed to represent the non-differential expressed 

(or insignificant) genes.  The other six kinds of spike genes have spotted ratios that 

are different from 1:1, which represents the differential expressed (or significant) 

genes.  

The 

eported in the Appendix 1.  In Table 3.2.3, it is observed that the match numbers 

and percentages for significant and insignificant genes in spike genes are both higher 

in CANOVAM than those in ANOVA. 

 

 One double loop design is shown in Figure 3.3.1 

CANOVAM for complicated designs.  There are 12 varieties and 24 arrays in this 

experiment.  The capitals of “OVCAR3,” “KLE,” …, and ”SKOV3” denote the 

types of varieties.  The graphic display of arrow is the same as that in Figure 3.3.1. 
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Figure 3.3.1: The experiment design of one double loop microarray experiment is 

displayed. 

 

Firstly, we use the log transform of expressions and the following ANOVA 

model for the gene expressions of 7334 genes, g = 1, …, 7334, with samples 

coming from 12 treatments, k = 1, …, 12, and two dyes, j =1, 2, on 24 arrays i = 

1, …, 24, as follows:  

log( yijkg ) = µ + Ai + Dj + ADij + Gg + (AG)ig +(DG)ig + (VG)kg +eijkg. 

(3.4.1) 

In Figure 3.3.2, the histogram in the center is plotted from the fitted 

residuals and the smooth curve is the density plot with a simple normal 

distribution with the same mean and variance.  It is clear that the residuals have 

a sparse distribution and we will consider the analysis of CANOVAM.  The 

normal QQ plot of residuals in Figure 3.3.3 confirms this phenomenon as well. 
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Figure 3.3.2: The histogram and a fitted normal distribution of residuals are plotted. 
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Figure 3.3.3: The normal QQ plot of residuals is displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

The BIC values for normal mixtures of these residuals are reported in Table 3.3.1.  

The minimum of BIC occurs at the cluster size of 15 in this study.  

 

 

 

Table 3.3.1: The BIC values for the residuals of 24 microarrays are reported. 
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cluster log(L) BIC 

6 1182224 -1179667

7 1190841 -1187819

… … … 

14 1268331 -1262052

15 1269584 -1262840

16 1270008 -1262799

 

For every gene, there are expressions in 24 arrays with 12treatment and 2 dyes in 

this case.  As a result, the dimension of residuals for every gene is 48.  For this kind 

of high dimensional data, dimension reduction techniques are useful to reduce the 

dimension to search for a start cluster size of normal mixtures by BIC.  Principal 

component analysis (PCA) is a dimension reduction tool that transforms a set of 

correlated response variable into a small set of uncorrelated variables, which are 

called principal components (Hotelling, Harold, 1933).   

In this study, PCA can transfer the dimension of residuals from 24 to 2 in this 

study that can explain the most part of variations between varieties and dyes.  In 

Figure 3.3.4, one finds the first principal component explains 66.2% of total variation 

and the first two principle components explain 77% of total variance.  Since the 

including of the third principal component does not improve too much percentage in 

explaining total variation, we use the first two principal components to search for a 

start cluster size of normal mixtures by BIC.  
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Figure 3.3.4: Relative importance of principal components for 24 microarrays is 

displayed. 
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The BIC values for normal mixtures of the first two principal components in 

these 24 microarrays are listed in Table 3.3.2.  The minimum value of BIC occurs at 

the cluster size of 8 in this study.  Because the variation explained by the leading 

principal components is smaller than 100%, the cluster size selected by the minimum 

of BIC with the leading principal components is usually smaller than that selected by 

BIC with the entire data that include all principal components.  However, the cluster 

size selected BIC with PCA provides a good initial start point.  We can search the 

minimum of BIC values for the original data with a high dimension by increasing the 

cluster size from the start point.  Because the computation cost of BIC is less by 

PCA in low dimension, PCA can be used to provide a good start point for BIC with 

fast computation time when the original data in high dimensional. 

 

 24



Table 3.3.2: The BIC values for normal mixtures of the first two principal 

components in 24 microarrays are listed. 

 

cluster 

log(L) BIC 

6 5362.739 -5281.19

7 5399.468 -5303.53

8 5423.552 -5313.23

9 5432.17 -5307.46

10 5422.666 -5283.56

11 5427.42 -5273.93

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4. Conclusion and Discussion 
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Because of many sources of experiment errors, the residuals of ANOVA models 

are usually sparse for microarray data.  We have proposed the CANOVAM to cluster 

the residuals of ANOVA by normal mixtures so that the expressions of genes in every 

cluster can be modeled with a simple ANOVA model with a normal distribution.  

The selection of significant genes and statistical inferences become tractable with 

CANOVAM. 

The BIC is used to select the cluster size of normal mixtures for residuals.  

Even the cluster size is selected incorrectly by the BIC, the CANOVAM still 

outperforms the ANOVA in simulation and empiric studies because the information of 

similar gene expressions are polled together.   

When the residuals is high dimensional for experiments with many arrays, PCA 

can be applied to reduce the dimension and the computation cost.  The computation 

cost of the normal mixtures with the EM algorithm can be further reduced by the fast 

versions of generalized EM algorithms that improve the convergence rate of the EM 

algorithm (Demester, Laird, Rubin 1977 ). 

 Other methods of clustering besides normal mixtures can be applied to the model 

of cluster ANOVA as well.  Integration of cluster ANOVA with different 

normalization methods is also feasible.  In addition, we are highly interesting in 

applying CANOVAM to Affymetrix microarrays in future studies. 

 

 

 

 

Appendix 1 

 

 26



Table 3.1.1: Simulated values of array and dye effects in the ANOVA model are listed. 

 High level Low level 

Array effect 1 -1 

Dye effect 0.5 -0.5 

AD1 effect 1 0 

AD2 effect 0 -1 

 

 

Table 3.1.2: Simulated values of two normal mixtures are reported. 

Parameter Cluster 1  Cluster 2 

Mixture 

proportion 

0.5 0.5 

Mean 0 0 

Variance 1 100 

 

 

 

 

 

 

 

 

Table 3.1.3: Simulation results of ANOVA and CANOVAM for two normal mixtures 

with the correct cluster size are reported.  Here, 2
2

2
1/|| σσ +−= jgig VGVGCV .  

The number of differentially expressed (or significant) genes is 5% of all 1000 genes 
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in simulations.  The match number of significant genes in the top 5%, 10%, and 50% 

selected genes by different statistics of F1, F2, F3, Fs, and Cg.  Note that the results 

of F1 are the same for ANOVA and CANOVAM since the individual variance for 

every gene remains the same after clustering. 

Significant genes: 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 13 23 23 18 23

Match percentage (%) 26.00% 46.00% 46.00% 36.00% 46.00%

Match number in top 10% 29 27 25 23 25

Match percentage (%) 58.00% 54.00% 50.00% 46.00% 50.00%

Match number in top 50% 49 49 49 45 49

Match percentage (%) 98.00% 98.00% 98.00% 90.00% 98.00%  

Significant genes = 5% CANOVAM (Cluster size = 2)

CV=2 F2 F3 Fs Cg

Significant gnens (5%) 34 34 30 33

Percentage (%) 68.00% 68.00% 60.00% 66.00%

Significant genes (10%) 45 43 41 45

Percentage (%) 90.00% 86.00% 82.00% 90.00%

Significant genes (50%) 50 50 50 50

Percentage (%) 100.00% 100.00% 100.00% 100.00%  

 

Table 3.1.4: Simulated values of three normal mixtures are reported. 

Parameter Cluster 1  Cluster 2 Cluster 3 

Mixture 

proportion 

0.5 0.25 0.25 

Mean 0 0 0 

Variance 1 25 100 

 

Figure 3.1.2: The density plot of a sparse distribution by three normal mixtures with 

the simulated values in Table 3.1.2 and a normal distribution with the same mean as 

well as variance are displayed for comparison. 
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Figure 3.1.3: Density plots of three normal distributions in a normal mixture are 

illustrated with the simulated values in Table 3.1.4. 
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Table 3.1.5: Simulation results of ANOVA and CANOVAM for three normal mixtures 

with the correct cluster size are reported.  The number of differentially expressed (or 

significant) genes is 5% or 50% of all 1000 genes in simulations. 
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(a) Significant genes: 5% 

Significant genes = 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 18 22 22 19 22

Match percentage (%) 36.00% 44.00% 44.00% 38.00% 44.00%

Match number in top 10% 24 25 24 20 24

Match percentage (%) 48.00% 50.00% 48.00% 40.00% 48.00%

Match number in top 50% 50 50 50 43 50

Match percentage (%) 100.00% 100.00% 100.00% 86.00% 100.00%  

Significant genes = 5%  CANOVAM (Cluster size = 3)

CV=2 F2 F3 Fs Cg

Match number in top 5% 26 27 22 27

Match percentage (%) 52.00% 54.00% 44.00% 54.00%

Match number in top 10% 42 43 39 43

Match percentage (%) 84.00% 86.00% 78.00% 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) 100.00% 100.00% 100.00% 100.00%  

(b) Significant genes: 50% 

Significant genes = 50% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 29 38 44 47 44

Match percentage (%) 5.80% 7.60% 8.80% 9.40% 8.80%

Match number in top 10% 65 70 79 80 79

Match percentage (%) 13.00% 14.00% 15.80% 16.00% 15.80%

Match number in top 50% 337 319 301 268 301

Match percentage (%) 67.40% 63.80% 60.20% 53.60% 60.20%  
Significant genes = 50%  CANOVAM (Cluster size = 3)

CV=2 F2 F3 Fs Cg

Match number in top 5% 44 44 50 45

Match percentage (%) 8.80% 8.80% 10.00% 9.00%

Match number in top 10% 92 90 100 91

Match percentage (%) 18.40% 18.00% 20.00% 18.20%

Match number in top 50% 456 457 347 457

Match percentage (%) 91.20% 91.40% 69.40% 91.40%  
Table 3.1.6: Simulation results of ANOVA and CANOVAM for thr al mixtures ee norm

with incorrect cluster sizes are reported. 

(a) Significant genes: 5% 
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Significant genes = 5% ANOVA

CV=1 F1 F2 F3 Fs Cg

Match number in top 5% 5 11 10 10 10

Match percentage (%) 10.00% 22.00% 20.00% 20.00% 20.00%

Match number in top 10% 11 16 15 14 15

Match percentage (%) 22.00% 32.00% 30.00% 28.00% 30.00%

Match number in top 50% 42 44 42 34 42

Match percentage (%) 84.00% 88.00% 84.00% 68.00% 84.00%  
Significant genes = 5% CANOVAM (Cluster size = 2)

CV=1 F2 F3 Fs Cg

Match number in top 5% 21 20 23 22

Match percentage (%) 42.00% 40.00% 46.00% 44.00%

Match number in top 10% 41 42 25 43

Match percentage (%) 82.00% 84.00% 50.00% 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) 100.00% 100.00% 100.00% 100.00%  
Significant genes = 5% CANOVAM (Cluster size = 4)

CV=1 F2 F3 Fs Cg

Match number in top 5% 20 19 25 23

Match percentage (%) 40.00% 38.00% 50.00% 46.00%

Match number in top 10% 39 40 29 43

Match percentage (%) 78.00% 80.00% 58.00% 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) 100.00% 100.00% 100.00% 100.00%  
(b) Significant genes: 50% 

Significant genes = 50% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 47 50 50 50 50

Match percentage (%) 9.40% 10.00% 10.00% 10.00% 10.00%

Match number in top 10% 91 100 100 98 99

Match percentage (%) 18.20% 20.00% 20.00% 19.60% 19.80%

Match number in top 50% 403 433 369 361 428

Match percentage (%) 80.60% 86.60% 73.80% 72.20% 85.60%  
Significant genes = 50% CANOVAM (Cluster size = 2)

CV=2 F2 F3 Fs Cg

Match number in top 5% 44 44 50 45

Match percentage (%) 8.80% 8.80% 10.00% 9.00%

Match number in top 10% 92 90 100 91

Match percentage (%) 18.40% 18.00% 20.00% 18.20%

Match number in top 50% 458 457 397 457

Match percentage (%) 91.60% 91.40% 79.40% 91.40%  
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Significant genes = 50% CANOVAM (Cluster size = 4)

CV=2 F2 F3 Fs Cg

Match number in top 5% 40 38 50 45

Match percentage (%) 8.00% 7.60% 10.00% 9.00%

Match number in top 10% 91 85 100 83

Match percentage (%) 18.20% 17.00% 20.00% 16.60%

Match number in top 50% 442 407 402 446

Match percentage (%) 88.40% 81.40% 80.40% 89.20%  
 

 

Table 3.1.7: Simulation results of ANOVA and CANOVAM for a t distribution are 

reported. 

Significant genes = 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

atch number in top 5% 23 43 42 30 42

atch percentage (%) 46.00% 86.00% 84.00% 60.00% 84.00%

Match percentage (%) 72.00% 92.00% 96.00% 82.00% 90.00%

ber in top 50% 49 49 49 49 49

Match percentage (%) 98.00% 98.00% 98.00% 98.00% 98.00%

M

M
Match number in top 10% 36 46 48 41 45

Match num

 
Significant genes = 5% CANOVAM (Cluster size = 2)

CV=2 F2 F3 Fs Cg

Match number in top 5% 43 43 41 43

Match percentage (%) 86.00% 86.00% 82.00% 86.00%

Match number in top 10% 46 48 46 48

Match percentage (%) 92.00% 96.00% 92.00% 96.00%

Match number in top 50% 49 49 49 49

Match percentage (%) 98.00% 98.00% 98.00% 98.00%  
 

 

Table 3.2.3: The results for spike genes are reported.  The number of differentially 

expressed (i.e., significant or unexpressed) genes is 192 and that of non-differentially 

expressed (i.e., insignificant or unexpressed) genes is 64.  The hypotheses are H0: 

insignificant or unexpressed) vs. H1: differentially 

 The top 192 genes with highest ranks of 

non-differential expressed (i.e., 

expressed (i.e., significant or unexpressed). 
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F statistics are selected as significant genes.  The correctly classification and 

misclassification numbers are reported.  The percentages are the number divided by 

the total number of 256. 

ANOVA    

Significant gene=192  Test declaration: Number of genes 

  Unexpressed Expressed   

Unexpressed H0 13(5.08%) 51(19.92%) 64  

Expressed H1 51(19.92%) 141(55.08%) 192  

Total  64 192   

 

CANOVAM  

  (Cluster size = 4)  

Significant gene=192  Num f genes Test declaration: ber o

  Unexpressed Expressed   

Unexpressed H0 19(7.42%) 45(17.58%) 64  

Expressed H1 45(17.58%) 147(57.42%) 192  

Total  64 192   

 

 

 

 

CANOVAM 

(Cluster size = 12)    

Significant gene=192  Test declaration: Number of genes 

  Unexpressed Expressed   
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Unexpressed H0 13(5.08%) 51(19.92%) 64  

Expressed H1 51(19.92%) 141(55.08%) 192  

Total  64 192   

 

Figure 3.3.5: The histogram and  o istribution with the same 

and variance of all residuals in 24 microarrays  in par  The density 

plot in every cluster is illustrated in pa ) and (c)
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Figure 3.3.6: The normal QQ plot of residuals of 24 microarrays in every cluster is 

illustrated. 
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Appendix 2 

A2.1 Least Square Estimators for Reference Designs 

Assume there are variety Vk, k = 1, …, v, and a common reference variety V0 in a 

reference design without dye swap.  Then the ANOVA model becomes  
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c
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with linear constraints that 
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                (A2.2) 

In the reference design without dye swap, there will be no dye effect used in the 

ANOVA model because the dye effect is completely confounded with the variety 

effect. 

Let θ=( µ, Ai, Dj, Vk, Gg, AGig, VGkg ).  Then, we can take partial derivatives of 

RSS with respect to the parameters θ for ANOVA models in (A2.1) and (A2.2), where  
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With the constraints in (A2.2), the LSEs of main effects turn out to be: 
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and the LSEs of the interaction terms of array-by-gene and variety-by-gene effects 

become 
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A2.2 Bartlett Test 

The Bartlett test is designed to test the equality of variances with the following 

hypotheses for multiple normal distributions of : Miii ,...,1),,N( 2 =σµ
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The Bartlett test statistics is 

∑
∑
=

=

−
−

−
+

−−−
=

M

i
i

M

i iipool

MNNM

sNsMN
T

1

1
22

)1)1)((
)1(3

1(1

ln)1(ln)(
,              (A2.13) 

where si
2 is the variance of the ith group, N is the total sample size, Ni is the sample 

size of the ith cluster, M is the number of cluster, and sp
2 is the pooled variance.  The 

pooled variance is a weighted average of the group variances that is defined as 

∑=
−−=

M
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If , then the null hypothesis is rejected, where  is the upper 

critical value of the chi-square distribution with M-1 degrees of freedom and a 

significance level α. 
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A2.3 Levene Test 

Levene test is an alternative to the Bartlett’s test.  The Levene test is less 

sensitive than the Bartlett test to departures from normality.  The Levene test 

statistics is defined as 

∑ ∑
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where Zij can have one of the following three definitions: 

1. || iIJij YYZ −= , where iY  is the mean of the ith subgroup.  

2. |~| iIJij YYZ −= , where iY~  is the median of the ith subgroup.  

3. |~| iIJij YYZ ′−= , where iY ′~  is the 10% trimmed mean of the ith subgroup.  

Note that •iZ is the group mean of  and ijZ ••Z  is the overall mean of .  The 

Levene test rejects the hypothesis that the variances are equal if , 

where  is the upper critical value of the F distribution with k-1 and N-k 

degrees of freedom at a significance level of α. 
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