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Abstract

Fitted residuals of ANOVA models for microarray data typically follow a sparse
distribution.  Hence, we are motivated to model microarray data by ANOVA with
mixtures to have model simplicity for experimental factors and flexibility for residual
sparsely.  The parameters in mixtures are estimated by the generalized EM
algorithms with low complexity and monotonic convergence. The number of
clusters in mixtures is determined by the Bayesian information criterion and the initial
estimate is generated by the projection to principal components.  Then, genes are
clustered so that the expressions of genes in every cluster can be modeled by a simple
ANOVA model with a multivariate Gaussian distribution of residuals.  Hence,
statistical estimation and inference for every cluster of genes will be performed as the
classical ANOVA, including least square estimation and F tests. By this new
approach of clustered ANOVA ‘with-mixtures-(CANOVAM), genes are clustered by
simple ANOVA models with flexibility. " Empirical studies are also investigated,
which confirm the practical feasibility of CANOVAM for microarray data in various

experiments.
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Chapter 1. Introduction

Microarray is a high-throughput and powerful technique for revealing the
patterns of coordinately regulated genes (Brown and Botstein, 1999). However,
microarray data are also notorious for their noises like experimental errors, biological
variations, and instrumental offsets. In addition, the number of RNA samples
assayed is typically small in comparison to the large number of genes in an array.
Therefore, statistical methods are necessary to model uncertainty in microarray data.

Analysis of variance (ANOVA) is a procedure for constructing statistical tests by
partitioning the total variance into different sources. ANOVA has been applied for
microarray data in a series of studies.(Kerr ef @l., 2000, Kerr et al., 2002, Kerr et al.,
2002 Chi and Churchill, 2003, Dudoit ez al, 2003*). A recent review of ANOVA
methods for testing differential expression of genes in microarray experiments is
reported in Cui and Churchilll (2003). After background correction, they proposed
the ANOVA model in two stages. The first stage uses the following model that does

not involve the effects related to gene-specific effects:

Vig =M+ A, +D; +(A4AD); +1,,, (1.1)

where ;- 1s the logarithm of signal intensity. The indices represent array (i), dye(),
gene (g) and measurement (r). The notation y is the overall mean expression level;
(4) is the effect of the array on the measured intensity; (D) is the effect of the dye on
the measured intensity; (4D) is a term accounting for effects of the interaction
between the array and the dye; and () is the residual. The constraints are that the
sum of every effect is zero to avoid the problem of identification similar to those in
Appendix 2. In the second stage, gene-specific effects are modeled in terms of the

residuals (y;,) of the first stage model of (1.1). The gene-specific model is:
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r.-=G+(G), +(DG),; +(4G), +¢&,,. (1.2)

In this stage, (G) is the average intensity associated with a particular gene; (4G); is the
effect of the array on that gene; and (DG); is the effect of the dye on that gene. The
error term (g;,) is assumed to be independently and identically distributed with mean 0
and a common variance. The variety-by-gene effect (VG) is the term that is of
primary interest in microarray analysis. This two-stage specification of the model
was proposed by Wolfinger et al. (2001). For Affymetrix data, the model will be
different. In particular, there are no dye effects and there are probe sets with perfect
matched and mismatched pairs for Affymetrix data.

For fixed-effects ANOVA, hypothesis testing involves the comparison of two
models under the null and alternative hypotheses. In this setting we consider a null
hypothesis of non-differential expression(Hy: all (KG) values are equal to zero) and
an alternative hypothesis with differential expression among treatment conditions (H;:
at least one (VG) value is not-equal.to-zere). - We can compute F statistics via
gene-by-gene basis from the residual sum of squares (RSS):

_ (rss, —rss,) /(df, —df,)

F . (1.3)
rss, / df,

Where rssy and df are the residual sum of squares and degrees of freedom for the null
model (or hypothesis) respectively. Similarly, rss; and df;, are the residual sum of
squares and degree of freedom for the alternative model (or hypothesis) respectively.
But this F statistic may not follow a standard F distribution because the distributional
assumptions of normality may fail in practice. Hence, it is necessary to establish the
inference of F statistic by nonparametric approaches, like permutation and bootstrap
tests. However, permutation tests will have computational difficulty for a large

number of disturbances and bootstrap tests will involve more computational costs

(Efron and Tibshirani, 1993, Good, 2000).



In this study, we observe that residuals of the first-stage ANOVA models may not
come from a simple distribution. On the contrary, it may come from a mixture
distribution, like a normal mixture with different means and variances. So we
cluster the residuals by a mixture model with parameters estimated from the
microarray data automatically. After clustering, we use the second-stage ANOVA
models to estimate gene-specific effects and treatment-by-gene interactions.
Consequently, gene selection is made by hypothesis tests with the cluster ANOVA
with mixture (CANOVAM). We can use traditional F tests when the normality
assumption holds. Otherwise, permutation and bootstrap tests can be applied.
This approach can be combined with linear models in literature or new linear models.
By CANOVAM, we can have more convenient and fast approaches with traditional
statistic tools.

In simulation studies, we=simulate a simple dye-swap experiment to identify
genes with differential expression by -CANOVAM under different situations. In
empirical studies, we use microarray data from the microarray core laboratory of Dr.
YS Lee in the CGM Hospital. There are 24 arrays in a double loop design and we
cluster the differentially expressed genes by CANOVAM. In addition, our
methodology of CANOVAM can be applied to all different microarray experiment
designs, including common reference designs, loop designs (Kerr et al, 2000),
split-plot designs (Tsai and Lee, 2004), and other designs. When the microarray data
contain the Affymetrix array or other types of microarray data, we can integrate
different models to perform CANOVAM. Once the residuals of fitting models have
the same character as sparse distributions, we also apply CANOVAM to cluster genes

and then select differentially expressed genes by hypothesis tests within every cluster.



Chapter 2. Methodologies

When the ANOVA model is used to estimate the gene effect, treatment-by-gene
interaction and other effects in the analysis of microarray, it is often that the residuals
do not fit into a single normal distribution. In particular, the residuals have a sparse
distribution with a high peak and two long tails in both sides. Hence, we are
motivated to develop a new method that clusters the data with finite mixtures for the
residuals. Then, an accurate estimate of variance in every cluster will be obtained
and statistical inferences will be made precisely.

Other approaches to model sparse distributions are possible. For instance, the t
distribution, the double exponential distribution, Box-Cox transformation, a mixture
of a normal distribution and a point mass'at zeto, and others are proposed in literature
(Li et al., 2001, Smyth, 2002, Qiu-and Hwang, 2003). However, the estimation and
inference procedures become complicated -and intractable for high dimensional data.
Therefore, we will consider the multivariate normal mixture with the simple EM
algorithm for microarray data in high dimension. Consequently, the large amount of
genes will be grouped into clusters. The residuals in every cluster have similar
variances and they are different between clusters. For every cluster of genes, a
simple normal distribution will be used and the statistical inference becomes tractable.
In addition, the clustering structure of genes provides biological insights for
verification and discovery.

In this chapter, we will use the EM-algorithm to estimate the parameters of
multivariate normal distribution for residuals (McLachlan, Bean, and Peel, 2000).
The cluster size will be determined by the Bayesian information criterion (BIC).

Then, the maximum discriminate rule is used to classify the genes. The flowchart



for the cluster ANOVA with mixture (CANOVAM) is illustrated in Figure 2.1.

Figure 2.1: The flow chart of CANOVAM is displayed.
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2.1 The EM Algorithm

The EM algorithm is applied to the mixture model by treating the cluster label of
every gene (z) as missing data. The procedure has two steps, E (Expectation) and M
(Maximization) steps. Let the observed incomplete data be x and the complete data
be y = (x, z). Then the joint density function of complete data y is P(y, ¥) = P(z | x;
V) P(x; V).

Let ¥ be the old value specified for ¥. In the E-step, one can evaluate the
conditional expectation of the log likelihood of the complete data, log(L(V);x),

given the observed x and Y. Then the conditional expectation of L(¥) is denoted
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as
0¥ YY) =E . [log L(P)|x]. 2.1.1)

In the M-step, one can maximize OQ(¥;¥") with respect to ¥ over the
parameter space to obtain the updated estimate of ¥** such that

PED = argmax Q(W; ¥ Y). (2.1.2)
14

The E-step and M-step is repeated until convergence. It is proven that each
iteration will increase the log-likelihood of the incomplete data and the EM algorithm
will converge to a local maximum monotonically under regular conditions (Dempster,

Laird, and Rubin, 1977, Wu, 1983).

2.2 Finite Mixtures
We consider microarray data X={x;; ..., xx} as. a set of multi-dimensional data.
Each x; corresponds to the expression in-a variety ‘of arrays for the jth gene. The

mixture model for M clusters is defined as

M

p(x;¥)=> 7,P,(x;0,), (2.2.1)

m=1

where 7, 1s the mixing proportion of the mth cluster,

O<rxz, <1,
and
M
an =1 (2.2.2)

The probability density function P,(x, 6,) in the mth cluster has the parameter vector

0., and the entire parameter vectoris ¥ = (7 ,,..., 7, ,6,,..., 8, ).

The log-likelihood of incomplete data becomes

log( L(Y¥ | x)) = i log(i 7, P, (x;:0,)) - (2.2.3)

m=1

The maximum likelihood estimate needs to solve the system of partial differential



equations of Olog(L(¥|x))/d¥ =0, which is intractable because the complicated
structure of summation inside the log function. Hence, one can introduce the

unobserved variable of the cluster label for the observed data x; as follows:

1, when x is from the m-th cluster;
Z, = J (2.2.4)
/ 0, otherwise.
Then, the complete data log likelihood for x; becomes
N
Jj=1
N
=22 z,(logz,P,(x,:6,)) (2.2.5)

I
AME T
M= 1D=

z,,(logz, +logP, (x,;6,)).

12

~.
I
3
T

E - Step
In E-step, the mixing parameter @, can-be thought as the prior probability of
each mixture component. By thel Bayes-Rule, the posterior probability that x;

belongs to the mth cluster of the mixture becomes

Pr(x,,m ;)
Pr(xj;‘P(k))

P(m|xj;‘P(k)):

2.2.6
7 P(:6,") =20
Zf::l ”mf)m (xj; em(k)) .
Also, the conditional expectation of logL(¥)|x is
OY; YY) = E,u [log L(W) | x]
N M
= E,0[>.D.z,,(ogx, +log P, (x,:6,))|x]
j=1 m=1
(2.2.7)

I
.MZ

4

I
M- 1
M= iD=

P(m|x,;¥“)(ogz, +log P, (x,36,))].

1

~

I
3
I

M-Step



In M-step, one can maximize O(¥;%¥"*) in (2.2.7). To estimate 7z, with the
constraint that Zzl 7, =1, one can differentiate this function and the constraint as
follows:

M
0,(¥; ¥ =0 (¥ ¥ )+ 20X 7, - 1), (2.2.8)
m=1

where A is a Lagrange multiplier. = Therefore, the estimates of the mixture

proportions turn out to be

ﬁ:P(m EFL 2} (2.2.9)

1
T, =—
NS

To estimate ¥ for the new update of ¥**”, one can solve the following equation:

>

J=1

Ologz +1logP (x.;0
P(m|x.;lP(k)) g m g m( J m)=
. ! oY

M=

0. (2.2.10)

3
I

By writing down with each proportion in,(3.2.9), one can derive the estimate of the

parameter ¥ and obtain the new estimaterof ¥ ” by solving the (2.2.10) equation.

2.3 Multivariate Normal Mixtures
In the normal mixture, the d-dimensional normal distribution density function

and its log transform become
P, (x;p,,2,)=Q2r) 7 |2 GXP[—%(x—ﬂm)TE;l(x—ﬂm)], (2.3.1)
log P, (x344,,%,,) == log(2m) ~log(| )~ (x = 1,) £, (x— 1), (232
where :(umm,ym(z),...,um(d))T,m:1,2,...,M. We sort the means by the

increasing order in each coordinate to avoid the identifiability problem and the
equality rarely happens for numerical values of mean estimates. Let Z;,, be
unobserved data by (2.2.4), then the complete log-likelihood in (2.2.5) can be
formulated.

In E-step, one can write down the posterior probability that x; belongs to the mth



cluster of the normal mixture by Bayes Rule,

(k) ., (B (k)
ﬂ'-m Pm(xjnu ’Zm )

P(m|x;¥%) = - , (2.3.3)
' ,]::1 ﬂ-r(nk)Pm ('xj ;lLll(nk),Zf:))
and the conditional expectation of /ogL(¥)|x becomes
N M
OMW; ™) =3 > Pim|x; ¥ )(logz +log P, (x, 5 3, 20 )], (2.3.4)
Jj=1 m=1
In M-step, the mixture proportion turns out to be
1 N
e =—>" P(m|x,;¥®"). (2.3.5)
N3 ‘
Also, the estimate for the mean p, is
N g (k)
(k+1) _ ZFI Pm|x; 3%, (2.3.6)
"NV op gy "
ijl (m | x./' ? )
and the variance-covariance matrix )iy 18
N gy b) e, Gkt Lo, (k+DNT
o _ D POm | x B = = ) | 037

N
We iterate the E-step and M-step.until log LCFY™)|x —logL(¥")|x<¢ for a

positive tolerance €.

2.4 Maximum L.ikelihood Discriminant Rule

We assume that the expressions of genes come from different clusters and every
cluster has the same character of distribution but different parameters. The next
question is how should we allocate N genes to M clusters? By the model of finite
normal mixtures, we will use the EM algorithm to estimate the parameters in each
cluster. The likelihood function for every cluster provides the discrimination
function to cluster genes. If the expression of one gene has the largest likelihood in

a particular cluster, then this gene shall be clustered into that cluster. We consider



M
p(x;¥) = Z 7, P (x;0,), and my, is the mixture proportion of mth cluster.

m=1

We allocate the data x; to the mth cluster if

P(m*[x;;¥)=max P(m|x;¥), m=1,.,M. (24.1)

After clustering, we can use classical ANOVA model and F test to select genes in
every cluster. After clustering, we assume the residuals in each cluster follow a
normal distribution with mean 0 and variance 6. Under the null hypothesis that the

gene g is not differentially expressed across the treatment conditions and the

normality holds, the test statistics of F~ = MST, ./ MSE, follow an F distribution.

The term of MST, denotes the mean square for treatment conditions and that of
MSE,, denotes the variance of the error term in the mth cluster. Besides, we can
also fit each cluster with new ANOVA models. “.In this situation, it is assumed that
different gene in the same array has the same-array effect and dye effect. Otherwise,
we can also re-estimate the ANOVA model-of each gene after clustering to rectify

the system offsets.

2.5 How Many Clusters?

We now investigate the determination of cluster size. Firstly, is it necessary to
cluster the genes? After the first-stage of ANOVA, we can test the normality of
residuals by Kolmogorov-Smirnov tests or other tests. If the normality test is passed,
then it is not necessary to perform cluster ANOVA. In most cases, the normality test
of the residuals after the first-stage ANOVA fails. Then, we need to consider the
approach of CANOVAM. We can use the Bayesian information criterion (BIC,
Schwartz, 1978) to choose a cluster number.

For a specific cluster size, the likelihood of the maximum likelihood estimates of

parameters measures the goodness-of-fit for the residuals. This goodness-of-fit will
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increase as the number of parameters increases. In order to avoid the problem of
over-fitting, a penalty for model complexity related to the number of parameters shall
be included to balance these two factors in a criterion. Then, a suitable model with a
proper number of parameters can be selected based on the criterion.

Both the Akaike information criterion (AIC) and Bayesian Information criterion
(BIC) are common used for model selection in literature (Burnham and
Anderson,1998). With a minus sign, the maximization of the penalized likelihood is
equivalent to the minimization of AIC and BIC as follows:

AIC = —2log(L,, )+ 2K,
(2.5.1)

BIC = -2log(L,, )+ K logN,

(2.5.2)
where N is the total number of .observations, and K, is the total number of free
parameters in the finite mixture-model.

For pair-wise comparisons-of twonested-models, AIC and BIC are equivalent to
the likelihood-ratio test (Akaike, 1973)... Thatis; we consider the null and alternative
hypotheses as follows: Hy: a small model of M; is sufficient vs. H;: a large model of
M, that contains M; is sufficient. The significance level of BIC, P(accept M> | M; is
true), is approaching 0 as N—oo. But the significance level of AIC does not
approach 0 asymptotically. Therefore, BIC is a better method asymptotically.
When the sample size is small (N=7.389), AIC and BIC are the same. In microarray
data analysis, large sample size is very large because of a large number of genes is

used. Then, the penalty of BIC is larger than that of AIC. Hence, model selection

by BIC for microarray data will select a simpler model that by AIC.
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Chapter 3. Simulation and Empirical Studies

3.1 Simulation Studies

In this chapter, we simulate that the residuals of microarray data have two
possible kinds of distributions. Firstly, we use CANOVAM to perform the gene
selection when the residuals follow a normal mixture model. We will investigate the
improvements of CANOVAM in comparison to those of ANOVA. Secondly, we
simulate the cases that the residuals follow a heavy distribution like the t distribution.

We will study the performance of CANOVAM in this situation.

3.1.1 Residuals with Normal Mixture Distributions

A simple dye-swap experiment is illustrated in Figure 3.1.1. Every arrow in the
figure represents a microarray «<chip’.~The-variety in the dotted side of an array is
labeled as Cy3 or G and the variety in'the arrowhead side of an array is labeled as Cy5
or R. A simple ANOVA model is used for the gene expressions of /000 genes, g =
1, ..., 1000, with samples coming from two treatments, k = /, 2, and two dyes, j =1, 2,
on two arrays, i = I, 2, as follows:

Vigg =M+ A4, +D, +AD; + G, +VG,, +¢ (3.1.1)

ijkg *
The constraints are that the sum of every effect is zero to avoid the problem of
identification as in Appendix 2. Here, the treatment effects are replaced by the array
and dye interaction terms (Wolfinger et al., 2001) as the simulated values in Table

3.1.1 of the Appendix 1.

12



Figure 3.1.1: A simple dye-swap experiment is illustrated.

Array 1
O P
Array 2
< O
Variety 1 Variety 2

Firstly, we simulate the case that the residuals follow a standard normal
distribution with mean 0 and variance 1. The BIC will select the cluster size of 1
and the CANOVAM is equivalent to the classical ANOVA. Then, we will simulate

the case that the residual ¢ comes from a distribution of two normal mixtures:
f(e|¥) =z, N@iai) + 7,N(u,,07) . (3.1.2)

That is, we assume that the fesiduals-have three clusters with small and large

variations which mimic the sparse distribution for microarray data in practice. The

simulated values of parameters are reported in Table 3.1.2 of the Appendix 1.
Moreover, we will simulate the case that the residual ¢ comes from a distribution

of three normal mixtures:
f(e]¥) =N, 07) + 1,N(pt,65) + 2 N(p5,03) . (3.1.3)

That is, we assume that the residuals have three clusters with small, medium, and
large variations which mimic the sparse distribution for microarray data in practice.
The simulated values of parameters are reported in Table 3.1.4 of the Appendix 1.

We demonstrate the difference in density plots of the three normal mixture and a
normal distribution with the same mean and variance in Figure 3.1.2. From the
density plots, the mixture distribution has a sparse distribution with a high peak in the
middle and two long tails in both sides that mimics the distribution of ANOVA

residuals for microarray data. The density plots of three normal distributions in the

13



normal mixtures in Table 3.1.4 are illustrated in Figure 3.1.3 of the Appendix 1.

The simulation studies generate different data sets with various percentages of
significant genes. If there are only a few or a half of genes are significant, we can
simulate these cases with only 5% or 50% significant genes respectively. Then we
can use different statistics to select significant genes by ANOVA or CANOVAM.
The match percentages of the selected genes are evaluated for comparison studies.

In the process of gene selection, we consider the classic F statistic and F-like
statistics (Cui X et al, 2003). For split plot designs, we also consider the
interquartile range method for gene selection (Tsai and Lee, 2004). The following
notations will be used.

Let MST, denote the mean squares of relative expression levels of one gene in
multiple samples.  Variance components &; in F, are estimated form the

expressions of one gene. F, -and F; statistics are proposed by Cui and Churchill

2

o1 » fOT €ach

(2003). The statistics F, uses thepooled variance estimator, &

variance component and F, uses the average of &2

A2
o and o, for each

component. The statistics Fy uses the shrinkage estimator based on 5'g2. The

statistics C, 1s based on interquartile range method in Tsai and Lee (2004). Under

the null hypothesis that gene g is not differentially expressed among the treatment
conditions, this statistics should be distributed approximately as chi-square
distribution with dfy and dfr denoted the degrees of freedom. Let Median(MST)

denoted the median of the MST, values. Then, the statistics are defined as:

14



F, = MST,/ &},
F, = MST, /%(&; +6700)s
F,=MST, /63,

Fy=MST, /&2,

(3.1.3)

¢ _ 05 ML
s = Aar Median(MST)’

In Table 3.1.3 and 3.1.5, the results of ANOVA and CANOVAM with five
different statistics are reported. In this table, the match number represents the
number of truly significant genes that are selected. If the match number is bigger,
then the correctness of gene selection is higher. We will consider the top 5%, 10%
and 50% selected genes which are chosen by the five statistics with ANOVA or
CANOVAM to evaluate the correctness, of these approaches.

It is noted that the F'/ statistics has no any. difference before and after clustering.
Hence, we evaluate the capability of the other four statistics only for CANOVAM.
From the results of Table 3.1.3 and.3.1.5, it-is-found that the correctness of these four
statistics increases under the condition ‘of choosing the same amount of genes in
CANOVAM with the correct cluster size when compared with the results of ANOVA.

We have to decide the number of clusters by BIC before clustering. If we select
a wrong cluster number, then the selected number of clusters may be more or less than
the correct size. Under this situation, can we get better results by CANOVAM than
ANOVA? In stead of the correct three clusters, we use the number of clusters of two
clusters and four clusters in Table 3.1.6. The results of matched genes in CANOVAM
with incorrect cluster sizes are still better than those of ANOVA without clustering in
these studies. That is, the estimate of variances from a group of genes from
neighboring clusters can still improve the statistical inferences by borrowing the

strength from the expressions of similar genes.

15



3.1.2 Residuals with t Distributions

When the distributions of residuals are other types of distributions that are not
mixture distributions, we will investigate the performances of CANOVAM in these
situations by simulation studies. In simulations, we will assume the residuals come
from a student’s ¢ distribution with df = 5. We use the BIC to choose the number of
cluster and select two clusters as a result. Then, we separate genes into two clusters
by means of CANOVAM. In Table 3.1.7, the results of CANOVAM are reported.
The performances of CANOVAM are better than those by ANOVA in this case, which
indicates the robustness of CANOVAM when the distributions of residuals are not

normal mixtures.

3.2 Empirical Studies with Splke Genes by

Elsn
In empirical studies, we use- the micro rra,y data W1th spike genes generated in the

microarray core laboratory by Dr Yinh*ep—Lee .-gt’,t the CGM Hospital in Taiwan.
. “-”'_.:.‘I.- 1_\‘., 1o .-.:“.
. > 3

This is a reference design which' contains three arrays and three treatments as

displayed in Figure 3.2.1.

Figure 3.2.1: The reference design with 3 arrays and 3 treatments is displayed.

In this experiment, there are 256 spike genes in a total of 14924 genes.

16



Different spike genes have different spotted ratios of Cy5/Cy3 in every array. In
Table 3.2.1, there are 8 kinds of spike genes and each kind has 32 replications in an

array. The spotted ratios have four levels as summarized in Table 3.2.1.

Table 3.2.1: The spotted ratios of spike genes are reported.

Gene name Cy5/Cy3 Ratio
Spike 1 Spike 2 10:1
Spike 3 Spike 4 5:1
Spike5  Spike 6 2.5:1
Spike 7 =Spike 8 1:1

Firstly, we use the log transform of'expressions and the following ANOVA
model for the gene expressions of 14924 genes, g = I, ..., 14924, with samples
coming from three treatments, k = /, 2, 3, and two dyes, j =1, 2, on three arrays i
=1, 2, 3, as follows:

log(vig) =u +A;i + ADj +D; + Go + (VG)jjg +eijq. (3.2.1)

In this classical ANOVA, we assume that residuals follow a normal distribution,
&g~ N(0, o°). The least square estimate of (V'G) effect is derived in Appendix 2,
which is also the maximum likelihood estimate under the assumption of normality.
We can check the normality assumption of residuals in the data by normality tests like
the Kolmogorov-Smirnov test or the chi-square tests (Ross 1997). The null

hypothesis is Hj: residuals have the normal distribution; whereas the alterative

17



hypothesis is the opposite of the null hypothesis.  The p-value of the
Kolmogorov-Smirnov for the residuals of ANOVA in this data is very close to 0 and
the null hypothesis is rejected. Therefore, the normality assumption of residuals is
rejected in this data and we will also analysis this data by CANOVAM for
comparison.

In Figure 3.2.2, it is observed the BIC value of normal mixtures for the residuals
in this data has the smallest value when the cluster number is 4. Hence, we cluster

the genes into four clusters according the model of normal mixture in this study.

Figure 3.2.2: The BIC values of normal mixtures for the residuals in this data are

plotted against the cluster number.
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After clustering, we can check the normality of residuals in four clusters by the
density plots and normal QQ plots in Figure 3.2.3. The residuals in cluster 1, 3, and
4 in Figure 3.2.3 can be fitted by normal distributions with different parameters. The
residuals in cluster 2 have a longer tails in both sides than a normal distribution.
Normality tests like Kolmogorov-Smirnov tests can be applied to confirm these
observations. We can either cluster the genes in cluster 2 to more small sub-clusters
or increase the size of clusters from four to more so that the residuals in every cluster

follow a normal distribution. For instance, we can use twelve clusters for this data
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and the residuals in every cluster follow a normal distribution. But, we will need to
estimate more parameters and the model complexity increase. Hence, we will
consider four clusters suggested by BIC to balance the effects of model fitting and
complexity. Finally, we can check whether the variances in four clusters are the
same or not. The result of Bartlett test (Snedecor and Cochran, 1983) is reported in
Table 3.2.2. As the p-value of Bartlett test is very small, we can reject the null
hypothesis that the variances in four clusters are the same. Hence, we do not merge
these four clusters into smaller sizes of clusters. More robust tests, like the Levene

tests (Levene 1960), can be applied to test the equality of variances.

Figure3.2.3: The density plots-and normal QQ plots for normality checking in four

clusters are displayed.
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Table 3.2.2: The results of Bartlett test for four clusters are summarized.
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Bartlett test
S1 0.057844 N, 27042
) 0.101582 N2 29490
S3 0.12412 N3 22416
S4 0.669071 Ny 10848
Spool 0.16259 N 89796
T 32519.48 | P-value 0

Now, we investigate the performances of ANOVA and CANOVAM in spike
genes. By Table 3.2.1, there are two kinds of spike genes, Spike 7 and 8, has the
spotted ratios of 1:1 and they are designed to represent the non-differential expressed
(or insignificant) genes. The other six kinds.of spike genes have spotted ratios that
are different from 1:1, which tepresents thé- differential expressed (or significant)
genes.

The match numbers and percentages-ofspike genes for ANOVA and CANOVAM
are reported in the Appendix 1. In Table 3.2.3, it is observed that the match numbers
and percentages for significant and insignificant genes in spike genes are both higher

in CANOVAM than those in ANOVA.

3.3 Empirical Studies with 24 Microarrays

One double loop design is shown in Figure 3.3.1 to demonstrate the flexibility of
CANOVAM for complicated designs. There are 12 varieties and 24 arrays in this
experiment. The capitals of “OVCAR3,” “KLE,” ..., and "SKOV3” denote the

types of varieties. The graphic display of arrow is the same as that in Figure 3.3.1.
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Figure 3.3.1: The experiment design of one double loop microarray experiment is
displayed.

OVCAR3

SKOV3 , il JKLE

Firstly, we use the log transform of expressions and the following ANOVA
model for the gene expressions of 7334 genes, g = 1, ..., 7334, with samples
coming from 12 treatments, k = /, ..., 12, and two dyes, j =1, 2, on 24 arrays i =
1, ..., 24, as follows:

log(y!./kg) =ut Ai - D/‘ + AD!./ + Gg + (AG)ig +(DG)ig + (VG)kg +eijkg~
(3.4.1)

In Figure 3.3.2, the histogram in the center is plotted from the fitted
residuals and the smooth curve is the density plot with a simple normal
distribution with the same mean and variance. It is clear that the residuals have

a sparse distribution and we will consider the analysis of CANOVAM. The

normal QQ plot of residuals in Figure 3.3.3 confirms this phenomenon as well.
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Figure 3.3.2: The iiduals are plotted.
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Figure 3.3.3: The normal QQ plot of residuals is displayed.
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|
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The BIC values for normal mixtures of these residuals are reported in Table 3.3.1.

The minimum of BIC occurs at the cluster size of 15 in this study.

Table 3.3.1: The BIC values for the residuals of 24 microarrays are reported.
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cluster log(L) BIC

6 1182224 -1179667
7 1190841 -1187819
14 1268331 -1262052
15 1269584 -1262840
16 1270008 -1262799

For every gene, there are expressions in 24 arrays with 12treatment and 2 dyes in
this case. As a result, the dimension of residuals for every gene is 48.  For this kind
of high dimensional data, dimension reduction techniques are useful to reduce the
dimension to search for a start cluster size of mormal mixtures by BIC. Principal
component analysis (PCA) is -a dimension reduction tool that transforms a set of
correlated response variable into atsmall-set.of uncorrelated variables, which are
called principal components (Hotelling; Harold; 1933).

In this study, PCA can transfer the dimension of residuals from 24 to 2 in this
study that can explain the most part of variations between varieties and dyes. In
Figure 3.3.4, one finds the first principal component explains 66.2% of total variation
and the first two principle components explain 77% of total variance. Since the
including of the third principal component does not improve too much percentage in
explaining total variation, we use the first two principal components to search for a

start cluster size of normal mixtures by BIC.
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Figure 3.3.4: Relative importance of principal components for 24 microarrays is
displayed.
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The BIC values for normal imixtures of the.first two principal components in
these 24 microarrays are listed i Table 3:3.2.»~ The minimum value of BIC occurs at
the cluster size of 8 in this study. Because-the variation explained by the leading
principal components is smaller than 100%, the cluster size selected by the minimum
of BIC with the leading principal components is usually smaller than that selected by
BIC with the entire data that include all principal components. However, the cluster
size selected BIC with PCA provides a good initial start point. We can search the
minimum of BIC values for the original data with a high dimension by increasing the
cluster size from the start point. Because the computation cost of BIC is less by
PCA in low dimension, PCA can be used to provide a good start point for BIC with

fast computation time when the original data in high dimensional.
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Table 3.3.2: The BIC values for normal mixtures of the first two principal

components in 24 microarrays are listed.

log(L) BIC

cluster

6 5362.739 -5281.19
7 5399.468 -5303.53
8 5423.552 -5313.23
9 5432.17  -5307.46
10 5422.666 -5283.56
11 5427.42  -5273.93

Chapter 4. Conclusion and Discussion
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Because of many sources of experiment errors, the residuals of ANOVA models
are usually sparse for microarray data. We have proposed the CANOVAM to cluster
the residuals of ANOVA by normal mixtures so that the expressions of genes in every
cluster can be modeled with a simple ANOVA model with a normal distribution.
The selection of significant genes and statistical inferences become tractable with
CANOVAM.

The BIC is used to select the cluster size of normal mixtures for residuals.
Even the cluster size is selected incorrectly by the BIC, the CANOVAM still
outperforms the ANOVA in simulation and empiric studies because the information of
similar gene expressions are polled together.

When the residuals is high dimensional for experiments with many arrays, PCA
can be applied to reduce the dimension and the computation cost. The computation
cost of the normal mixtures with the EM algorithm can be further reduced by the fast
versions of generalized EM algorithins  that.improve the convergence rate of the EM
algorithm (Demester, Laird, Rubin 1977.).

Other methods of clustering besides normal mixtures can be applied to the model
of cluster ANOVA as well. Integration of cluster ANOVA with different
normalization methods is also feasible. In addition, we are highly interesting in

applying CANOVAM to Affymetrix microarrays in future studies.

Appendix 1
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Table 3.1.1: Simulated values of array and dye effects in the ANOVA model are listed.

High level | Low level
Array effect | 1 -1
Dye effect 0.5 -0.5
ADI effect 1 0
AD?2 effect 0 -1

Table 3.1.2: Simulated values of two normal mixtures are reported.

Parameter Cluster 1 Cluster 2
Mixture 0.5 0.5
proportion

Mean 0 0
Variance 1 100

Table 3.1.3: Simulation results of ANOVA and CANOVAM for two normal mixtures
with the correct cluster size are reported. Here, CV =|VG, -VG,, |/4o] +0; .

The number of differentially expressed (or significant) genes is 5% of all 1000 genes
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in simulations. The match number of significant genes in the top 5%, 10%, and 50%

selected genes by different statistics of ¥/, F2, F3, Fs, and Cg. Note that the results

of F1 are the same for ANOVA and CANOVAM since the individual variance for

every gene remains the same after clustering.

Significant genes: 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 13 23 23 18 23
Match percentage (%) 26.00%| 46.00%| 46.00%| 36.00%| 46.00%
Match number in top 10% 29 27 25 23 25
Match percentage (%) 58.00%| 54.00%| 50.00%| 46.00%| 50.00%
Match number in top 50% 49 49 49 45 49
Match percentage (%) 98.00%| 98.00%| 98.00%| 90.00%| 98.00%
Significant genes = 5% CANOVAM (Cluster size = 2)

CV=2 F2 F3 Es Cg

Significant gnens (5%) 34 34 30 33

Percentage (%) 68.00%]  68:00%f:. 60.00%| 66.00%

Significant genes (10%) 45 43 41 45

Percentage (%) 90.00%] " 86.00%| 82.00%| 90.00%

Significant genes (50%) 50 50 50 50

Percentage (%) 100.00%{ .100.00%] 100.00%| 100.00%

Table 3.1.4: Simulated values of three normal mixtures are reported.
Parameter Cluster 1 Cluster 2 Cluster 3
Mixture 0.5 0.25 0.25
proportion
Mean 0 0 0
Variance 1 25 100

Figure 3.1.2: The density plot of a sparse distribution by three normal mixtures with

the simulated values in Table 3.1.2 and a normal distribution with the same mean as

well as variance are displayed for comparison.
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Figure 3.1.3: Density plots of three normal distributions in a normal mixture are
illustrated with the simulated values in Table,3.1.4.
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Table 3.1.5: Simulation results of ANOVA and CANOVAM for three normal mixtures
with the correct cluster size are reported. The number of differentially expressed (or

significant) genes is 5% or 50% of all 1000 genes in simulations.
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(a) Significant genes: 5%

Significant genes = 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 18 22 22 19 22
Match percentage (%) 36.00%| 44.00%| 44.00%| 38.00%| 44.00%
Match number in top 10% 24 25 24 20 24
Match percentage (%) 48.00%| 50.00%| 48.00%| 40.00%| 48.00%
Match number in top 50% 50 50 50 43 50
Match percentage (%) 100.00%| 100.00%| 100.00%| 86.00%| 100.00%
Significant genes = 5% CANOVAM (Cluster size = 3)

CvV=2 F2 F3 Fs Cg

Match number in top 5% 26 27 22 27

Match percentage (%) 52.00%| 54.00%| 44.00%| 54.00%

Match number in top 10% 47 43 39 43

Match percentage (%) 84.00%| 86.00%| 78.00%| 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) 100.00%42 100.00%{, 100.00%| 100.00%
(b) Significant genes: 50%

Significant genes = 50% ANOVA

CV=2 F1 F2 E3 Fs Cg

Match number in top 5% 29 38 44 47 44
Match percentage (%) 5.80% 7.60% 8.80% 9.40% 8.80%
Match number in top 10% 65 70 79 80 79
Match percentage (%) 13.00%| 14.00%| 15.80%| 16.00%| 15.80%
Match number in top 50% 337 319 301 268 301
Match percentage (%) 67.40%| 63.80%| 60.20%| 53.60%| 60.20%
Significant genes = 50% CANOVAM (Cluster size = 3)

CV=2 F2 F3 Fs Cg

Match number in top 5% 44 44 50 45

Match percentage (%) 8.80%|  8.80%| 10.00%[ 9.00%

Match number in top 10% 92 90 100 91

Match percentage (%) 18.40%| 18.00%| 20.00%| 18.20%

Match number in top 50% 456 457 347 457

Match percentage (%) 91.20%] 91.40%| 69.40%| 91.40%

Table 3.1.6: Simulation results of ANOVA and CANOVAM for three normal mixtures

with incorrect cluster sizes are reported.

(a) Significant genes: 5%

30



31

Significant genes = 5% ANOVA

CV=l F1 F2 E3 Fs Cg

Match number in top 5% 5 11 10 10 10
Match percentage (%) 10.00%| 22.00%| 20.00%| 20.00%| 20.00%
Match number in top 10% 11 16 15 14 15
Match percentage (%) 22.00%| 32.00%| 30.00%| 28.00%| 30.00%
Match number in top 50% 42 44 472 34 47
Match percentage (%) 84.00%| 88.00%| 84.00%| 68.00%| 84.00%
Significant genes = 5% CANOVAM (Cluster size = 2)

CV=1 E2 F3 Fs Cg

Match number in top 5% 21 20 23 22

Match percentage (%) 42.00%| 40.00%| 46.00%| 44.00%

Match number in top 10% 41 42 25 43

Match percentage (%) 82.00%| 84.00%] 50.00%| 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) | 100.00%]| 100.00%] 100.00%| 100.00%

Significant genes = 5% CANOVAM (Cluster size = 4)

CV=1 E2 F3 Fs Cg

Match number in top 5% 20 19 25 23

Match percentage (%) 40.00%] [ 38.00%] . :50.00%| 46.00%

Match number in top 10% 39 40 29 43

Match percentage (%) 78.00%| . 80.00%] . 58.00%| 86.00%

Match number in top 50% 50 50 50 50

Match percentage (%) | 100.00%]{.100.00%].100.00%| 100.00%

(b) Significant genes: 50%

Significant genes = 50% ANOVA

CV=2 Fl F2 F3 Es Cg

Match number in top 5% 47 50 50 50 50
Match percentage (%) 9.40%| 10.00%| 10.00%]| 10.00%{ 10.00%
Match number in top 10% 91 100 100 98 99
Match percentage (%) 18.20%| 20.00%] 20.00%| 19.60%] 19.80%
Match number in top 50% 403 433 369 361 428
Match percentage (%) 80.60%| 86.60%| 73.80%| 72.20%| 85.60%
Significant genes = 50% CANOVAM (Cluster size = 2)

CV=2 F2 F3 Fs Cg

Match number in top 5% 44 44 50 45

Match percentage (%) 8.80%| 8.80%| 10.00%| 9.00%

Match number in top 10% 92 90 100 91

Match percentage (%) 18.40%| 18.00%] 20.00%| 18.20%

Match number in top 50% 458 457 397 457

Match percentage (%) 91.60%| 91.40%| 79.40%| 91.40%



Significant genes = 50% CANOVAM (Cluster size = 4)
CV=2 E2 F3 Fs Cg

Match number in top 5% 40 38 50 45
Match percentage (%) 8.00%|  7.60%| 10.00%| 9.00%
Match number in top 10% 91 85 100 83
Match percentage (%) 18.20%| 17.00%| 20.00%| 16.60%
Match number in top 50% 447 407 402 446
Match percentage (%) 88.40%| 81.40%| 80.40%]| &9.20%

Table 3.1.7: Simulation results of ANOVA and CANOVAM for a ¢ distribution are

reported.

Significant genes = 5% ANOVA

CV=2 F1 F2 F3 Fs Cg

Match number in top 5% 23 43 47 30 47
Match percentage (%) 46.00%4+186.00%) 84.00%| 60.00%| 84.00%
Match number in top 10% 36 46 48 41 45
Match percentage (%) 72:00%| — 92.00%{. 96.00%| 82.00%| 90.00%
Match number in top 50% 49 49 49 49 49
Match percentage (%) 98:00%1.-93:00%{ 98.00%| 98.00%| 98.00%
Significant genes = 5% CANOVAM (Cluster size = 2)

CV=2 E2 F3 Fs Cg

Match number in top 5% 43 43 41 43

Match percentage (%) 86.00%| 86.00%| 82.00%| 86.00%

Match number in top 109 46 48 46 48

Match percentage (%) 92.00%| 96.00%| 92.00%| 96.00%

Match number in top 509 49 49 49 49

Match percentage (%) 98.00%| 98.00%]| 98.00%( 98.00%

Table 3.2.3: The results for spike genes are reported. The number of differentially
expressed (i.e., significant or unexpressed) genes is 192 and that of non-differentially
expressed (i.e., insignificant or unexpressed) genes is 64. The hypotheses are HO:
non-differential expressed (i.e., insignificant or unexpressed) vs. HI: differentially

expressed (i.e., significant or unexpressed). The top 192 genes with highest ranks of
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F statistics are selected as significant genes.

misclassification numbers are reported. The percentages are the number divided by

the total number of 256.

The correctly classification and

ANOVA

Significant gene=192

Test declaration:

Number of genes

Unexpressed Expressed

(Cluster size = 4)

Significant gene=192

Test declaration:

Unexpressed HO 13(5.08%) 51(19.92%) 64
Expressed H1 51(19.92%) 141(55.08%) 192
Total 64 192

CANOVAM

Number of genes

Unexpressed-Expressed

(Cluster size = 12)

Significant gene=192

Test declaration:

Unexpressed HO 19(7.:42%) 45(17.58%) 64
Expressed H1 45(17.58%) 147(57.42%) 192
Total 64 192

CANOVAM

Number of genes

Unexpressed Expressed
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Unexpressed HO 13(5.08%) 51(19.92%) 64
Expressed H1 51(19.92%) 141(55.08%) 192

Total 64 192

Figure 3.3.5: The histogram and density plot of a normal distribution with the same
and variance of all residuals in 24 microarrays are displayed in part (a). The density

plot in every cluster is illustrated in part (b) and (c).
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Appendix 2

A2.1 Least Square Estimators for Reference Designs
Assume there are variety Vi, k=1, ..., v, and a common reference variety Vj in a

reference design without dye swap. Then the ANOVA model becomes

Via=p +4, +V, +G, +(4G), +(VG),, + &) (A2.1)

ikg
with linear constraints that
24 =2.G, =D (AG);, =D (VG)y, =vVy +V, 4otV =V(VG),, +
i g g g
VG),, +5-+(VG),, =0.
(A2.2)

In the reference design without dye swap, there will be no dye effect used in the
ANOVA model because the dye.effect is completely confounded with the variety
effect.

Let O=(u, Ai, D;, Vi, Gg, AGjy, ¥Gig)-—Then; we can take partial derivatives of
RSS with respect to the parameters'd for ANOVA models in (A2.1) and (A2.2), where

RSS =" [Vjo—H +4 +V, +G, +(4G), +(VG),T. (A23)

ikg

With the constraints in (A2.2), the LSEs of main effects turn out to be:

Il} = yl..)

— 1 _ _

Ai = E(zyiu - yoOo - ykk. )7

5 () Ve — 1 ifk=0 (A2.5)
Vk :{ — - A . 9

C’\;éC) = yuog _,[l b

and the LSEs of the interaction terms of array-by-gene and variety-by-gene effects

become
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A l . _ R — A
(AG)l.g =5(yl.0g + Vig —2(4 + 4, +Gg)

A

~Vy =V, =(VG),, - (VG),),

(VG)Og :yoog_/& _I}o _éga
R . (A2.6)
(VG)kg = Vikg — R Gg - (AG)kg

:Z(ykkg_ykko—i_.)_/koo_ykog)—i_yoOg_)700.+yoog_.)_/ooo‘

A2.2 Bartlett Test

The Bartlett test is designed to test the equality of variances with the following

hypotheses for multiple normal distributions of N(;, 0'1.2),1' =1,...M :

H,:0,=0,=...=0,;

H, : 0, # o, for at least one pair of (i;/)-

The Bartlett test statistics is

(- M) sty — >, (N~ 1) Ins’

3(M )((Z”N N-M

: (A2.13)

where s is the variance of the ith group, N is the total sample size, ; is the sample
size of the ith cluster, M is the number of cluster, and sz is the pooled variance. The

pooled variance is a weighted average of the group variances that is defined as
2 = D (N, =)s? (N = M) (A2.14)
If 7> ;(fa,M_l), then the null hypothesis is rejected, where ;(fa,M_l) is the upper

critical value of the chi-square distribution with M-1 degrees of freedom and a

significance level a.
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A2.3 Levene Test
Levene test is an alternative to the Bartlett’s test. The Levene test is less
sensitive than the Bartlett test to departures from normality. The Levene test

statistics is defined as

W= (N_M)ZZINi(Zi‘ _Z..)2
M -0 > (2, -7

(A2.15)

where Zj; can have one of the following three definitions:

1. Z,=Y, - Y, |, where Y, is the mean of the ith subgroup.

1

2. Z,4Y, - }71 |, where )71 is the median of the ith subgroup.

3. Z, =Y, - Y|, where Y, is the10% trimmed mean of the ith subgroup.

Note that Z, .. 18 the group mean of ;Z ~and Z.. is the overall mean of Z ;- The
Levene test rejects the hypothesis that the variances are equal if W >F,,  \ .,

where F, .y, Is the upper critical value of the F distribution with k-7 and N-k

degrees of freedom at a significance level of a.
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