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摘  要 

我們提出一個利用統計方法來建構基因網路的方法。我們

將目標分成三個部分。第一部分是先探討兩個變數間是否

有關係存在？如果他們之間確實有關係，第二部分就是探

討他們是如何的相關？激發或是抑制?接著第三步即是去

找出他們相關的方向。在資料分析的部分，利用了蒙地卡

羅模擬分析來展示我們所提出方法的分析效率，並且最後

我們也把提出的方法應用在酵母菌資料上來作個討論。 
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Abstract 
 

We propose a procedure for constructing gene networks using statistical methods. Three 

issues are considered. First, is there a relationship between a pair of genes? Second, how do 

they relate, repress or activate? Third, what is the related direction? By considering the 

relationship of a pair of genes at a time, our method gives not only the relation (activate, 

repress) but also the direction for each pair of genes. We conduct Monte Carlo simulations to 

show the effectiveness of the proposed method. Finally, the method is applied to the 

Sacharomyces cerevisiae gene expression data as an illustrative example. 
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1. Introduction 

In the recent years, a large amount of gene expression data has been collected and 

estimating a gene network has become one of the popular topics in the field of 

bioinformatics. The knowledge of the coding sequences of virtually every gene in an 

organism has enabled the development of technology to simultaneously monitor the 

expression of all the genes. Due to the curse of dimensionality and complexity of the 

expression data, it is not an easy task to find structures, which are buried in noise. 

Several methodologies have been proposed for constructing gene network based on 

gene expression data, such as Boolean networks [1,2,3,4,18,20], differential equations 

[6,9], Bayesian networks [10,11,14,15,16,25,26], nonparametric regression [7,8] and a 

smooth response surface methodology [27]. Some of them will be introduced in reviews. 

To extract the effective information from micro array gene expression data, theory and 

methodology are expected to be developed.  

We use a simple example to introduce the causal and effect relationship. The height 

may cause the weight, but the weight cannot influence the height. We can see that there 

are inspire (active) or depress (repress) between those two variables like the relations 

between genes. The causal and effect relationship has been discussed in many fields, 

such as medicine, industry and society. For example, doctors reason the causes of 

diseases by their accumulated experiences, industrial engineering realize the actual 

breakdown causes using experimental designs. In this study we are interested in finding 

a good method to discover the direction and relation between the genes that actually 

have cause-effect relationship.  

We propose a method to find the relationships between genes using statistical 

methods. We consider the relation of a pair of genes at one time. If there are M genes, 
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then there are 2
MC times need to be done. Our method gives not only the relations 

(active, repress) but also the directions between genes. Our method can be divided into 

two parts by the distributions of the residuals. The second part of our proposed method 

is to discretize data first. Secondly find whether there is a relation between two 

variables or not. And also, find how they connected (active, repress). Third, find the 

directions. Details can be seen from the flowchart latter. The advantages of our method 

are we don’t need strong statistical assumption before using and compute rapidly. 

Especially when the sample size is small, the resulting graph size is still similar to the 

graph size of larger sample size. The shortcoming of our method is not sensitive to 

symmetric functional structures. 

The rest of the paper is organized as follows. Section 2 gives a literature review on 

relate research works. Section 3 decides the proposed methodology. Section 4 presents 

the results of a simulation study and a real data analysis. Section 5 concludes the paper 

with a brief summary and discussion. 
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2. Literature Reviews 

2.1 Causal Effect  

In this section, we review these methodologies for finding the cause-effect 

relationships between variables. A simply causal and effect relationship can be decided 

as follows. 

If X (cause/parent) causes Y (effect/child), then manipulating the value of X affects 

the value of Y. On the other hand, if Y causes X, then manipulating the value of X will 

not affect Y.  Let , 1,...,ix i = n  be the variables under study. A functional causal model 

in general form consists of a set of equations of the form 

 ( , ), 1,....,i i i ix f pa u i n= =                            (2.1) 

where ipa (connoting parents) stands for the set of variables judged to be immediate 

causes of iX ,  represents the errors (or “disturbances”), and is the functional 

relationship between the variables. Equation (1) is a nonlinear, nonparametric 

generalization of the linear structural equation models (SEMs). 

iU ( )f ⋅

, 1,...,i ik k i
k i

x x u i nα
≠

= + =∑                        (2.2) 

In the linear model, corresponds to those variables on the right-hand- side of (2) that 

have nonzero coefficients. 

ipa

A set of equations in the form of (1) and in which each equation represents an 

autonomous mechanism is called structural model; if each mechanism determines the 

value of just one distinct variables (called the dependent variables), then the model is 

called a structural causal model or a causal model for short. To illustrate, Figure 1 

depicts a canonical econometric model relating price and demand through the equations 

1 1 ,q b p d i u1= + +                        (2.3) 
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2 2 ,2p b q d w u= + +                      (2.4) 

where Q is the quantity of household demand for a product A, P is the unit price of the 

product A, I is the household income, W is the wage rate for producing product A, 

and represent error terms-unmodeled factors that affect the quantity and price, 

respectively (Goldberger, 1992). The graph associated with this model is cyclic, and the 

vertices associated with the variables are root nodes, conveying the 

assumption of mutual independence.  

1u 2u

1 2, , ,  and U U I W

The idea of autonomy (Aldrich, 1989), in this context, means that two equations 

represent two loosely coupled segments of the economy, consumers and producers. 

Equation (3) describes how consumers decide what quantity Q to buy and (4) describes 

how manufacturers decide what price P to charge. Like all feedback system, this too 

represents implicit dynamics; today’s prices are determined on the basis of yesterday’s 

demand, and these prices will determine the demand in the next period of transactions. 

The solution to such equations represents a long-term equilibrium under the assumption 

that the background quantities, and , remain constant. [19] 1U
2U

1U  2U  WI

 

               

 

 

Q P

1d 2d

2b

1b

Figure 1: Causal diagram illustrating the relationship between 

price (P), demand (Q), income (I), and wages (W). 
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2.2 Bayesian Network 

A graph consists a set of vertices (or nodes) and a set of edges (or links) that 

connect some pairs of vertices. The vertices of the graphs correspond to variables and 

the edges denote a certain relationship that holds in pair of variables. Two variables 

connected by an edge are celled adjacent. If every edge in a path is an arrow that points 

from the first to the second vertex of the pair, we have a directed path. A graph with 

directed path called is called a directed graph. Directed graphs may include directed 

cycles (e.g., X Y, Y X), representing mutual causation or feedback process, but no 

self-loops (e.g., X X). A graph that contains no directed cycles is called acyclic. A 

graph that is both directed and acyclic is called a directed acyclic graph (DAG). 

Undirected graphs, sometimes called Markov networks (Pearl, 1988b), are used 

primarily to represent symmetrical spatial relationship (Isham, 1981; Cox and Wermuth, 

1996; Lauritzen, 1996). Directed graphs, especially DAGs, have been used to represent 

causal or temporal relationships (Lauritzen, 1982; Wermuth and Lauritzen, 1983; 

Kirveri et al., 1984) and are known as Bayesian networks. Figure 2 is an example of a 

simple Bayesian network structure. This network structure implies several conditional 

independence statements: 

 ( ; ), ( ; | , ), ( ; , , | ), ( ; , , | ),  ( ; , ).I A E I B D A E I C A D E B I D B C E A and I E A D  (2.5) 

The network structure also implies that the joint distribution has the product form  

( , , , , ) ( ) ( | , ) ( | ) ( | ) ( ).P A B C D E P A P B A E P C B P D A P E=       (2.6) 

E A

B

 

 

D

C

Figure 2: An example of Bayesian network 
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A causal network can be interpreted as a Bayesian network when we are willing to 

make the Causal Markov Assumption: given the values of a variable’s immediate causes, 

it is independent of earlier causes. 

 

2.3 Using Bayesian Network and Nonparametric Regression to Analyze the Causal 
Effect between Variables  

A Bayesian network is a graph-based model of joint multivariate probability 

distributions that captures properties of conditional independence between variables. It 

consists two components. The first component, G, is a directed acyclic graph (DAG) 

whose vertices correspond to the random variables 1,..., nX X . The second component,θ , 

describes a conditional distribution for each variable, given its parents in G. Together, 

these two components specify a unique distribution on 1,..., nX X . The graph G 

represents conditional independence assumptions that allow the joint distribution to be 

decomposed, economizing on the number of parameters. The graph G encodes the 

Markov Assumption:  Each variable iX is independent of its non-descendants, given its 

parents in G. 

By applying the chain rule of probabilities and properties of conditional 

independencies, any joint distribution that satisfies the Markov Assumption can be 

composed into the product form 

1
1

( ,..., ) ( | ( )),
n

G
n i

i

P X X P X Pa X
=

=∏ i                   (2.7) 

where is the set of the parents of ( )G
iPa X iX in G. The method of Bayesian network is 

to select a proper graph G with the largest posterior probability after giving the prior 

probability. Imoto et al. (2002) proposed the criterion 

1

( ) 2 log ( | ) ( | )
G

P

i G G G
i

BNRC G f x dπ θ π θ λ θ
=

⎧ ⎫
= − ⎨ ⎬

⎩ ⎭
∏∫                 (2.8) 

where Gπ is the prior probability of the graph G, ( | )Gπ θ λ is the prior probability of 
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Gθ after giving parametric vectorλ , 1( ,..., )T
G

T
nθ θ θ= is the parametric vector in G, 

jθ is the parametric vector of model jf , and 

1

( | ) ( | , )
P

i G j ij ij j
j

f x f x pθ θ
=

=∏                          (2.9) 

2
( ) ( ) ( )

1 12
22

( )
1( | , , ) exp

22

j ijq M
j j j

ij mk mk ik
k m

j ij ij j j
jj

x b p
f x p

γ
γ σ

σπσ

= =

⎡ ⎤⎛ ⎞
⎢ ⎥−⎜ ⎟
⎢ ⎥⎝ ⎠= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑∑
 (2.10) 

where ijx is the ith observation of jth variable, that is, if the number of observation is n 

then the observation of the jth variable jX is 1 ,...,j njx x . We use  to represent 

the parents of

1 ,...,jP Pnj

jX . ijp  is the vector with -dimension, i.e., the jth variable has  

parents at the ith observation, and its kth component is . And use nonparametric 

regression models for capturing the relationship between 

jq jq

( )k
ijp

ijx and  

in the form   

( ) ( )
1( ,..., )

j

j j
ij i iqp p p=

        ( ) ( ) ( )
1 1 2 2( ) ( ) .... ( ) , 1,..., ; 1,..., .

j j

j j j
ij i i q iq ijx m p m p m p i n j pε= + + + + = =   (2.11)   

where ( 1,..., )km k q j= are smooth functions from R to R, and ( ,..., )ij i i nε = depend 

independently and normally on mean 0 and variance 2
jσ . For , it is assumed that km

( ) ( ) ( ) ( )

1
( ) ( ), 1,..., ; 1,..., .

jkM
j j j j

k ik mk mk ik j
m

m p b p i n k qγ
=

= =∑ =   (2.12) 

where{ }( ) ( )
1 ,...,

jk

j
k M kb b j

j

 is a prescribed set of basis functions (such as Fourior series, 

polynomial bases, regression spline bases, B-spline bases, wavelet bases and so on), 

is the unknown coefficients and( ) ( )
1( ,..., )

jk

j
k M kγ γ jkM is the number of basis. Bayesian 

networks are to find G makes BNRC maximized. 

Recently, Imoto et al. (2002) porposed the use of nonparametric additive regression 
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models for capturing not only linear dependencies but also nonlinear structures between 

genes. Imoto et al. (2003) improved this method by using Bayesian networks and the 

nonparametric heteroscedastic regression, which is more resistant to the effect of 

outliers but it needs much time for determining the optimal graph. Tamada et al. (2003) 

proposed a motif detection method to estimate gene networks and combine microarray 

gene expression data and DNA sequences of regulatory regions of genes. It found that 

the motif information is useful for revising some incorrect relations in the network 

estimated by microarray alone. Imoto et al. (2003) proposed a method for estimating a 

gene network based on Bayesian networks from microarray gene expression data 

together with biological knowledge including protein-protein interactions, protein-DNA 

interactions, binding site information, existing literature and so on. Its proposed 

criterion can control the trade-off between microarray information and biological 

knowledge automatically. Kim et al. (2003) proposed a Bayesian network and 

nonparametric regression model for constructing a gene network from time series 

microarray gene data. This method can overcome a shortcoming of the Bayesian 

network model in the sense of the construction of cyclic regulations. 

 

2.4 Using Nonparametric Regression Method to Analyze the Causal Effect between 
Variables 

Different from linear regression analysis, nonparametric regression uses a 

roughness penalty that decreases as the fitting curve gets smoother.  

Consider the n observations },...,1),,{( niyx ii = . Assume that the sample is ordered 

over the interval [a, b] with respect to the predictor values; that is, 

bxxa n ≤≤≤≤ ......1 . To estimate the unknown smooth regression function by 

explicitly trading off fidelity to the data with smoothness of the estimate. For regression, 

the residual sum of squares is a natural measure of fidelity to the data, so the roughness 
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penalty estimator is the minimizer of   

          ∫∑ +−=
=

b

a

n

i
ii dxxgxgy

n
gS 2

1

2 ))("())((1)( λ ,                 (2.13) 

and the resulting cubic smoothing spline estimate belongs to the Sobolev space ĝ

}.integrable square is g" ,continuous absolutely are ' and |{],[2 gggbaW =2     (2.14) 

Where 0>λ is the smoothing parameter.  If 0=λ , the smoothing spline becomes an 

interpolating spline that passes through each of the responses , while if iy

∞→λ , approaches the linear least squares regression line. The smoothing spline ĝ

is a linear estimator, so the vector of fitted values )(ˆˆ ii xgy =  can be written as 

.)(ˆ yAy λ=  The matrix )(λA is called the hat matrix. λ  can be chosen to minimize the 

cross-validation score [17] 

,)](ˆ[1)(
1

2)(∑
=

−=
n

i
i

i
i xgy

n
CV λ                (2.15) 

where is the spline estimate based on all the observations except , evaluated 

at . It can be shown that for linear smoothers,

)()(
i

i xg ix

ix )(λCV can be written as a function of 

the fitted values (Green and Silverman, 1995) [17], 

                ,
)(1
)(ˆ1)(

2

1
∑
=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
n

i ii

ii

A
xgy

n
CV

λ
λ                     (2.16) 

where )(λiiA is the ith diagonal element of the hat matrix . ( )A x )(λiiA is called the 

leverage value at since it measures the potential for the observed response to exert 

influence on the fitted value. 

ix iy

A variation is generalized cross-validation (GCV) [17], which replaces each 

value )(1 λiiA− with their average, . The generalized cross-validation 

selector of , is the minimizer of  

)]([1 1 λAtracen−−

GCVλλ ˆ,

21

2

1

)]}([1{
)](ˆ[

)(
λ

λ
Atracenn
xgy

GCV
n

i ii
−

=

−

−
= ∑ .                   (2.17) 
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Proposition 1. (Shiau, 1985) Let be the smoothing spline estimator. Then  λĝ

               ,                         (2.18) nyAIygS T /))(()ˆ( λλ −=

The following two propositions are given in Cheng (2003). 

Proposition 2. ) , and is the mode of the posterior density after 

giving the prior distribution. 

(minargˆ gSg g=λ

Proposition 3. Assume that X and Y and E(X)=E(Y)=0, Var(X)=Var(Y)=1 , let 

, be n i.i.d. observations. Then  niyx ii ,...,1),,( = .  ,1))ˆ(( ∞→→ nasgSE λ

Cheng (2003) consider only the causal relationship between two variables X and Y. 

If X is the parent (cause) and Y is the child (effect), then denote the cause-effect 

relationship by X Y. more specifically, the causal relationship between X and Y can be 

described by the following causal models: 1( )Y g X ε= + , where is a smoothing 

function and 

1g

ε  is a random error with mean zero and independent of X. If X cannot be 

simultaneously represented as '
2 ( )g Y ε+ with Y independent of an random error 'ε , 

then X Y but not vice versa. 

We shall call the method proposed in Cheng (2003) determing the causal direction 

between two random variables “SCORE” method. SCORE method simultaneously use 

nonparametric method to estimate and . Finally gets two score  and 

(Shiau, 1985), then use decision rules to determine the direction.  

1g 2g )ˆ( 1gS

)ˆ( 2gS

We simplify Chia Yu Cheng et al. (2003) as the following flow chart. 
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Input Gene expression data 
niyx ii ,..,1),,( =  

Normalize data 

Use nonparametric regression to estimate 

smoothing functions. GCVλλ ˆ=  

 

Figure 3: The flowchart of SCORE 

Decision rules are as follows: 

If S then X Y has a larger posterior probability than Y X, i.e., X causes Y. )ˆ()ˆ( gSg 21 <

>If S then Y X has a larger posterior probability than X Y, i.e., Y causes X. )ˆ()ˆ( 21 gSg

If  is close to 1, then )ˆ( λgS YX ⊥  (Cheng (2003) suggested , and Lu (2003) 

suggested ). 

9.0)ˆ( >λgS

ˆ( ) 0.8S gλ >

We call the 0.9 or 0.8 “the threshold score of independence”. 

2.5 Using Smooth Response Surface Methodology to Construct Gene Networks  

A smooth response surface algorithm proposed by Xu et al. (2002) is a 

sophisticated data mining technique for analyzing gene expression data and constructing 

gene networks. It uses a three-dimensional smooth response surface to capture the 

biological relationship between the target and activator-repressor. It also functionally 

)ˆ( 1gS )ˆ( 2gS

ε+= )(1 XgY ε+= )(2 YgX  

Check Decision rules 

Establish Relationship 
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describes triplets of activators, repressors, and targets, and their regulations in gene 

expression data. The diagnostic strategy in the algorithm is to evaluate the scores of the 

triplets so that those with low scores are kept and a regulatory network is constructed 

based on this information and existing biological knowledge. Xu et al. (2002) applied 

the method to two yeast gene expression data sets and reported that the predictions 

based on the identified triplets agree with some experimental data in the literature. This 

method provides a novel model with attractive mathematical and statistical features that 

make the algorithm valuable for mining expression or concentration information, help 

for determining the function of uncharacterized proteins, and can result in a better 

understanding of coherent pathways. 

The smooth response surface method is decided as follows. First, transform the 

raw data over the time points into the interval [0, 1]. Let A be the activator and B be the 

repressor. The definition of the activator-repressor-target model is that a target gene C is 

controlled by both an activator gene A and a repressor gene B. Define a 

three-dimensional smooth response surface as S(A, B), which is a piecewise 

linear-quadratic polynomial on [0, 1] × [0, 1]. The triplets that follow the 

activator-repressor-target relationship should lie closely to the response surface. 

The 3D response surface has the same purpose with a high dimensional decision 

matrix. The function S(A, B) maps two normalized values A and B onto a 3D surface, in 

order to describe a surface response value C .To ease decision-making, it uses some 

heuristic rules: 

A high + B low  C high. 

A low + B high  C low. 

As seen in Figure 3, a triplet (A, B, S(A, B)) represents the biological relationship that 

follows the pattern of a target S(A, B) controlled by an activator A and a repressor B as 

described in the activator-repressor-target model. The response surface captures the 
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biological model with features such as compactness, simplicity and visualization. The 

imputation and gene filtering steps are applied to remove noise from the data.  

For each triplet (A, B, C), is the fitted value of a target C. The 

residual, , should be small, if the activator-repressor-target relationship is strong. 

The residual sum of squares measures the overall variation in C that is not explained in 

the response surface model. Then the lack-of-fit function RT(A, B, C), i.e., the ratio of 

the residual sum of squares and the total sum of squares, describes the proportion of 

variation in C that is not captured by the 3D response surface. A small value of 

lack-of-fit indicates that there is a strong activator-repressor-target relationship among A, 

B, and C. The lack-of-fit formula is defined to filter the triplets in the initial screening. 

To save storage and computation, only those triplets whose lack-of-fit values do not 

exceed a given constant RT are kept. 

),(ˆ BASC =

CC −ˆ

A diagnostic strategy Diag(A, B, C) is applied to check the reliability of the triplets 

after the initial filtering to measure robustness of the fitted model for each triplet (A, B, 

C ). Xu et al. (2002) pointed out that the intensity measurement of gene expression at 

one or two time points may deviate from the model and suggest that the measurement 

may be faulty and should be treated as an outlier. If such a value occurs at the i-th point, 

then , i.e., the lack-of-fit of (A, B, C) when the i-th point (or the i-th 

column) is left out, will differ greatly from RT(A, B, C). Diag(A, B, C) provides a 

summary measure over all time points for a given triplet. The diagnostic method is 

developed to refine the selected triplets and a score, which reflects the strength of the 

triplet interrelationship, is defined to rank the refined triplets. A larger Diag value would 

suggest that the information for the triplet is unreliable and should be removed for 

further consideration. Thus the criteria for selecting triplet candidates 

is:

),,()( CBART i

DiagCBADiagRTCBART ≤≤ ),,( and ),,( , where RT and Diag are constants as 
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specified by users. 

A final score is defined to measure the strength of the triplet interrelationship. 

Score(A, B, C) is a function of the lack-of-fit value and the diagnostic measure, and 

focuses primarily on the RT(A, B, C) value and secondly on the Diag(A, B, C) values. 

Triplets with low values of RT(A, B, C) and Diag(A, B, C) will have low scores, which 

indicate a close relationship among A, B, and C. Finally, a gene regulatory network is 

constructed based on the top scoring triplets. Figure 4 gives the flowchart of the smooth 

response surface algorithm. 

               

 

Fitting Model

[
),,( 1

)(

RT
n

CBADiag
i⎜

⎝=

,,(1 BART
n

⎜
⎛
∑

,,(),,( CBARTCBAScore =
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3. Methodology 

3.1 Motivation 

Xu et al. (2002) proposed the activator-repressor-target model to represent that 

each variable can find its activator and repressor and is controlled by the activator and 

repressor simultaneously.  It is not clear whether there exists such a triplet relationship 

in reality. In this study, we consider pairs of genes instead of triplets. 

Cheng (2003) proposed a score method to determine the relationship between two 

variables. But this method only determines the causal effect direction but no activate (+) 

/ repress (-) information. Also, there is a problem of determining whether two variables 

are independent. Therefore, we use the method in next section to improve Cheng’s 

method. 

3.2 Proposed Methods 

We simplify our goal as finding the relation between two variables. 

If X is the parent (cause) and Y is the child (effect), then we use X Y to represent 

the causal effect relation between them. We assume X and Y have the regression 

relation: , where f is a smoothing function and  is a random variable 

with mean zero and is independent of X. Sometimes, X can be represented as 

with Y being independent of 

Y f (X)= + ε ε

'g(Y) + ε 'ε  at the same time. This will hold when f is a 

linear function. When this happens, we denote the cause/effect reality by X Y . ↔

2RLet and  be the residuals of regressory Y on X and X on Y, respectively. 

The core idea of our method is that, if X Y, then we should have the following result: 

1R

1 2 1 2
ˆ ˆ  R X and R Y,  where R Y f (X) and R X g(Y).⊥ ⊥ = − = −   

On the other hand, if Y X, then 1 2R X and R Y⊥ ⊥ . 

The possible relationships between X and Y are: 
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- + - + -X Y,  X Y,  X Y,  X Y,  X Y,  X Y,  X Y.+⎯⎯→ ⎯⎯→ ←⎯⎯ ←⎯⎯ ←⎯→ ←⎯→ ⊥   

Arrow is the direction. The sign above the arrow represents activate (+) or repress (-).  

Our proposed method is divided into two parts by the patterns of the residuals 

 ,  =1, 2.iR i

We summarize the method by the following flow chart. 

 

The Distribution of the Residual R  

 

We can use a graphical display, QQ plot, to check the normality of the residuals. 

QQ plots are used to assess whether a data set has a particular distribution, or whether 

two datasets have the same distribution. If two distributions are the same, then the plot 

will approximate a straight line. The extreme points have more variability than points 

toward the center. Or we can use Kolmogorov-Smirnov Goodness-of-Fit Test 

Second part

,  i=1,2.i

At least one of the distributions of the 

residuals is normal distribution. 

If the residuals both do not approximate to 

normal or the sample size is small (<30). 

First part 

Pre-process: Transforming R , X and Y to an 
ordinal type data using RANK or RANGE statistics. 

21 , R
Decision rules 

Step one: Relation test using nonparametric correlations 
(Kendall’s Tau, Spearman’s Rho) with Bonferroni correction.

Establish 
Relationship 

Step two: Direction test using chi-square test 
of independence. 

Figure 5: The flow chart of our proposed method 
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(Chakravart, Laha, and Roy, 1967) [5] and Chi square Goodness-of-Fit Test (Snedecor 

and Cochran, 1989) [24] to compare the distribution of the residuals with normal. If the 

sample size is small, we suggest skip this part and go to second part. 

First part: At least one of the distributions of the residuals is normal distribution. 

(We remark that this condition usually does not hold in our study.) 

In this part we use the following Decision rule: 

1. If 1R is approximately normal and 2R isn’t, then X Y. 

2. If 2R is approximately normal and 1R isn’t, then Y X. 

3. If 1R and 2R both are approximately normal, then ↔X Y . 

4. If 1R and 2R both are not approximately normal or the sample size is small, then 

go to second part. 

From our experience, the chance of using the first part of our method is quite 

small. 

Second part: When the residuals both are not approximately normal or the 

sample size is small (<30). 

1 2R  and R

In this part, we divide the target into the following steps: 

Q1.  Is there a relationship between those two variables? 

Q2.  How do they relate? Repress (-) or activate (+)? 

Q3.  What is the related direction if they really have relationship? 

Step one will solve the Q1 and Q2. Step two will give the answer to Q3.  

If we want to know the relationship between two variables, we must confirm 

whether there is relation between two variables first. 

Relationships between variables. To express a relationship between two variables, one 

way is to compute the correlation coefficient between two variables. We discuss the 

correlation between X and Y using nonparametric correlations (Kendall Tau and 

Spearman R). An advantage of nonparametric or rank correlation is that we need not 
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know the probability distribution functions from which the and are drawn. 

However, the slight loss of information in ranking is a small price to pay for a very 

major advantage: when a correlation is demonstrated to be present nonparametrically, 

then it is really there! Nonparametric correlation is more robust than linear correlation, 

more resistant to unplanned defects in the data                                            

sxi ' syi '

Spearman Rank-Order Correlation Coefficient (Siegel & Castellan, 1988 and Siegel, 

1956) [23, 24] 

Suppose we have N data points ( ), ix , iy 1,..., .i N=  Let be the rank of among 

the other x’s, be the rank of among the other y’s, then the rank-order correlation 

coefficient is defined to be the linear correlation coefficient of the ranks, namely, 

iR ix

iS iy

                  
( )( )

( ) ( )∑∑
∑

−−

−−
=

i ii i

i ii
s

SSRR

SSRR
r

22
             (3.1) 

 If N is larger than 10, the significance of a nonzero value of is tested by computing sr

                       21
2

s
s r

Nrt
−
−

= .                      (3.2) 

This statistic is distributed approximately as Student’s t distribution with N -2 degrees 

of freedom. A key point is that this approximation does not depend on the original 

distribution of the 'ix s and ; it is always the same approximation, and always pretty 

good. 

'iy s

iy

Kendall’s Tau (Helsel & Hirsch, 1995) [12] 

Suppose we have N data points ( ). Now consider allix , ( )1
2
1

−NN

),( ii yx ), jy

ji xx − ji yy −

pairs of data 

points, where a data point cannot be paired with itself, and where the points in either 

order count as one pair. Let and be a pair of (bivariate) observations. 

If and have the same sign, we say that pair is concordant. If they have 

opposite signs, we say that the pair is discordant.  

( jx
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Let C be the number of concordant pairs, and D be the number of discordant pairs, 

then Kendall’s Tau is defined as 

                             

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

2
N

DCτ .                      (3.3) 

If , or , or both, the comparison is called a ‘tie’. Ties are not counted 

as concordant or discordant. If the number of ties is large, then Tau has to be replaced 

by 

ji xx = ji yy =

                      

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
=

yx N
N

N
N

DC

22

τ ,                (3.4) 

where be the number of ties involving x and be the number of ties involving y. 

Obviously,

xN yN

11 ≤≤− τ . 

If N is larger than 40, the significance of Kendall's Tau can be tested by calculating 

a test statistic, t, and compares it to the tabular values of Student's t distribution: 

                         
( )

( )19
522
−××
+××

=

NN
N

t τ .                      (3.5) 

We use : 0aH τ ≠  as the alternative hypothesis at the step one of the second part 

of our proposed method. 

Kendall’s Tau is equivalent to Spearman’s Rho (3.1) with regard to the underlying 

assumptions. But they are not equal in magnitude because their underlying logic and 

computational formulae are quite different. They have a relation represented as 

1231 ≤×−×≤− srτ                      (3.6)                              
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In order to use the rank correlation test, we must transform the original data to 

ordinal type data. The following pre-process is necessary. 

Pre-process: Transforming , X, and Y to ordinal type. We use the following 

methods: 

21 , RR

1. RANK: 

Let be continuous data.  is the rank of NXX ,...,1 iR iX . We use ⎥⎦
⎤

⎢⎣
⎡

KN
R

Int i

/
 to 

translate the original continuous data to a discrete ordinal data type with K classes. 

 

2. RANGE: 

Let be continuous data. A= max ( ), B=min ( ). We use NXX ....1 NXX ....1 NXX ....1

K
BA
BXInt i ×⎥⎦

⎤
⎢⎣
⎡ ×+−×

−
− −− 87 105)101( to translate the original continuous data to discrete 

ordinal type data with K classes.  

 

Step one: Relation test. 

We use those two nonparametric correlations (Kendall’s Tau and Spearman’s Rho) 

to perform the rank correlation test. The null hypothesis is that the coefficient (Kendall’s 

Tau or Spearman’s Rho) is zero. We use the signs of those two coefficients to indicate 

the way of connection (repress (-) or activate (+)). Next we use Bonferroni correction to 

combine the above results.  

The rank correlation test is a distribution-free test that determines whether there is 

a monotonic relation between two variables. A monotonic relation exists when any 

increase in one variable is invariably associated with either an increase or a decrease in 

the other variables.  
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Bonferroni Correction (Sidak, 1968, 1971) [21, 22] 

The following is the Bonferroni general inequality:  

11
( ) 1 [

g g

i
ii

P A P A
==

≥ −∑I ],i                        (3.7) 

iAwhere Ai and its complement are any events, g is the number of statements or 

comparisons in the finite set. In particular, if each Ai is the event that a calculated 

confidence interval for a particular linear combination of treatments includes the true 

value of that combination, then the left-hand side of the inequality is the probability that 

all the confidence intervals simultaneously cover their respective true values. The 

right-hand side is one minus the sum of the probabilities of each of the intervals missing 

their true values. Therefore, if simultaneous multiple interval estimates are desired with 

an overall confidence coefficient 1- , one can construct each interval with confidence 

coefficient (1- /g), and the Bonferroni inequality ensures that the overall confidence 

coefficient is at least 1- . 

In our simulations, we use 0.0975 for α . So if we apply a significance level of 

0.05 to each of the two tests, there is now only a 5% chance that any of them will be 

declared significant under the null hypothesis.  

If the Step one rejects the null hypothesis, then we can say that the relations are not 

strong enough to be noted and the two variables are uncorrelated. Otherwise, we must 

go a step further to differentiate what the related direction is. 

 

Step two: Direction test. 

At this step, we only focus on which direction is better, X Y, Y X, or YX ↔ . 

We decide the direction by comparing the strength of independence of and X with that 

of and Y. We use Pearson chi-square test to examine the independence of two 

1R

2R
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variables. 

We can intuitively know that if the smooth regression function fits the data well, 

then the residual should be small and is (almost) independent of the predictor variable. 

Use Pearson chi-square test to examine the dependence of two variables. Note that the 

real value of p-value will miss its essential meaning under some conditions. Its validity 

depends heavily on the assumption that the expected cell counts are at least moderately 

large; a minimum size of five is often quoted as a rule of thumb. Even when cell counts 

are adequate, the chi-square is only a large-sample approximation to the true 

distribution of X-squared under the null hypothesis. We only need to compare the 

magnitudes of the two p-values, or we can use the Pearson's X-squared statistic directly. 

So, even if the sample size is small, we still can use this method. The discriminant rules 

are as follows: 

Let  and 1P 2
1χ  be the P-value and X-squared statistic of the Pearson’s chi-square 

test of 1R  and X,  and 2P 2
2χ  be the P-value and X-squared statistic of the Pearson’s 

chi-square test of 2R  and Y, respectively.  

1. If  is larger than , then and we accept1P 2P X Y→ 2. That means R &Y less 

independence than 1R &X. (i.e. If 2
1χ  is smaller than 2

2χ , than we accept →X Y

1P X→ 1

.) 

2. If  is larger than , then we acceptY . That means 2P R &X less 

independence than 2R &Y. (i.e. If , then we acceptY X .) is larger than2
1χ 2

2χ →

1 2 | 0.00001P P− < 1R3. If , then we accept | ↔X Y . The dependence of &X is 

similar to that of 2R &Y. (i.e., If X Y↔is very close to , then we accept2
1χ 2

2χ .) 

 
 
 
 
 
 

 22



4. Empirical Studies 

4.1 Monte Carlo Simulation 

1. Data generation: ( Imoto et al, 2002) 
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1 4

 

2. Analysis Methods: 

Recall that the Cheng’s method (2003) only can find the causal effect direction but 

not the connected relation (repress or activate). Also, we discovered the threshold score 

of independence needs to be adjusted for different sample sizes. If we still use 0.9 as the 

threshold score, the graph size will be much larger than Figure 6 and there are too many 

7 8

10

Figure 6: True graph 
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extra pathways. Also, the size of the resulting graph will be very large, and the Cheng’s 

method will lose its practicability. When the sample size is less than or equal to 100, we 

choose the threshold score of independence by considering the graph size of Figure 6. 

Therefore, the results of SCORE with the sample size less than 100 are adjusted. Table 

6 is the threshold score of independence discovered in our simulation. (The threshold 

score will be used later in the real data analysis). 

We modify Cheng’s method as described in the following:             

(1) Score evaluation is the same, ˆ( )S gλ in (2.17). 

(2) The threshold score (Table 6) changes with the sample size. 

(3) Using the signs of the nonparametric correlation coefficients (Kendall’s Tau, 

Spearman’s Rho) to indicate the way of connection (repress (-) or activate (+)). 

(4) If one of the smoothing parameters is smaller than , we replace it by 610−

2
)( 21 λλ

λ
+

=new 1, where λ and 2λ  are the smoothing parameters used in X Y 

and Y X, respectively. 

We use “RANK” and “RANGE” to represent our methods with different 

pre-processing. Using “SCORE” represents the method modified Cheng’s method. We 

compare our proposed method (RANK and RANGE) with the modified Cheng’s 

method (SCORE). 

We use different numbers of sample sizes (N) and the classes of ordinal type data 

(K) to see the performance of our methods and Cheng’s method.  

Cheng (2003) has mentioned that if lambda (the smoothing parameter) is too small, 

then the fitting curve will be too rough. If lambda is too small, the influence of penalty 

term will be small. The curve will completely go with the data. This may cause the 

curve undersmooth. She also suggests that if one of the ' sλ  is smaller than10 6− , it 

should be adjusted by a new lambda,
2

)( 21 λλ
λ

+
=new  or 1 2newλ λ λ=  where 1λ and  2λ
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are the smoothing parameters used in X Y and Y X, repectively. We take her idea 

and use 
2

)( 21 λλ
λ

+
=new  as our new lambda when the sample size is less than 100 and 

lambda is smaller then . 610−

3. Simulation Results 

(1) When the sample size (N) is less than 100, the graph size of SCORE is smaller 

than RANK and RANGE. The threshold values of independence of SCORE are 

given in Table 4. ( Figure 28~Figure 34) 

(2) When N is larger than 100, the graph size of SCORE is larger than RANK and 

RANGE. The threshold limits of independence of SCORE we used are 0.9. 

(Figure 22~Figure 27) 

(3) If we check the functions that generate the data, we can see that there are still 

some atavistic relationships between those variables. Figure 6 does not show 

this relation. RANK, RANGE, and SCORE can show some of these atavistic 

relations. We find that RANK and RANGE is more sensitive than SCORE with 

this kind of relation when the sample size is larger than 100. 

 
decreases.

3 6

2 5 9

1 4 10

7 8

Figure 7: Figure 6 with some atavistic relationships 

(4) The graph size of RANK and RANGE decr ize eases as the sample s  

(Figure 25 (D) Figure 28 (C) Figure 29 (C) Figure 31 (C)) The graph size 
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of SCORE increases as the sample size decreases. When the sample size is less 

than 100, the graph size of SCORE grows very quickly as N decreases. (Figure 

22 (A)  Figure 12 (A)  Figure 24 (A)  Figure 25 (A)  Figure 27 (A)  

Figure 28 (B)  Figure 29 (B)  Figure 31 (B)  Figure 33 (B)) 

Check the results of RANGE and RANK. The number of wron

 

(5) g directions 

ber of w sample s

(6) 

when 100N ≤  (Table 4) is larger than that when 100N ≥  (Table 2). That is, 

the num rong directions increases when the ize decreases. 

For both RANK and RANGE methods, when 100N ≤ , the number of extra 

100≥  

(7) E without adjusting lambda, the number of missing 

pathways (Table 4) is smaller than that when N (Table 2). That is, the 

number of extra pathways decreases with the sample size decreases. The result 

of SCORE is opposite. 

For RANK and RANG

pathways when 100N < (Table 4) is not large. 

We find that it is not necessary to adjust lambda(8)  with RANK and RANGE. But 

(9) NK and RANGE 

it is necessary to adjust lambda with SCORE, especially when the sample size 

is less than 100. (Compare Figure 33 (A) with Figure 33 (B)) 

We find that there are still some relations not detected by RA

even if the sample size is large. The reason is that the first-step correlation test 

cannot detect some symmetrical functions. (For example, 2( ) .f x x=  Details 

can be seen in Section 4.2.) Although we may not be ab ct those 

relationships in step one, we can adjust the result by the second step. If the 

functional structure between two variables is symmetrical and we cannot detect 

it from the first step, the p-value of chi-square test of one direction in the 

second step will be very close to zero, (e.g., <0.0001). We give the following 

example: Table 1 (partial result of Table 10) shows that the p-values of the first 

step are larger than 0.0975. Our method indicates that both (5, 6) and (9, 10) 

le to dete
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have no strong relation. But Figure 8 shows that there is a relation between (5, 

6) (Figure 8 (C)) and between (9, 10) (Figure 8 (E)). At the second step, the 

p-value of the chi-square test is about zero in one of the directions. We find that 

this condition indicates that some relations are missed and we must regulate the 

results of the step-one and change the conclusion to 6 5 +⎯⎯→ and9 10+⎯⎯→ . 

K=8. (From Table 2)  N=200, 

e Monte Carlo simulation of N=200 with K=8. Table 1: The partial results of th
Procedure   (5,6) (9,10) 

Bonferroni correction (p-value=0.097 0  5) .4072 0.9984
First step  

sign + + 
The p-value of chi-square test of 1 &R X  <0.0001 0.34 

RANGE 
2 &R Y <0.0001The p-value of chi-square test of  0.85 

The p-value of chi-square test of 1 &R X  <0.0001 0.81 
Second step 

RANK 
&The p-value of chi-square test of 2R Y <0.0001 0.23 
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    (A)  (B)

 

 

 (C)  (D) 

 (F) (E)  (H)  (G)

Figure 8: (A) 5 6 fitting function.  (B) 5 6 true function.   (C) 6 5 fitting function. 
        (D) 6 5 true function.    (E) 9 10 fitting function. (F) 9 10 true function. 
        (G) 10 9 fitting function.  (H)10 9 true function. 
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(10) The discovery of the threshold of SCORE from Table 6:  

reases. 

 we use the 

3. ting lambda is larger than that with 

4.2 A study on Causal Relationships 

,1),
~ (0,1),  ~N(0,0.5).

Functions:
,  ,  ,  ,  sin( ) ,  .

The Sample size ( ) = 1000.

X

N

Y e Y X Y X Y X Y X Y X
N

ε ε

1. The threshold value decreases when the sample size dec

2. The decreasing speed of the threshold value is slow, when

SCORE method with adjusting lambda. 

The graph size of SCORE without adjus

lambda adjusted. 

1. Data generation: 

2(0,1),  X ~ (2X N N

2

1/3 1/3 2
2 2 2 2 2

~

ε ε ε ε ε ε−= + = + = + = + = + = +

 

2. Analysis Methods: RANK, RANGE, and SCORE. 

method can detect the monotone functional structures. But if the 

3. Results: 

(1) Our 

functions are symmetric, like 2( )f X X= , it is not easy to detect. But if we 

detect that there is a relation between those two variables, there is about 90% 

correct rate (see Table 9). We suggest not to use 2 as the number of classes of 

ordinal type data (Table 8 shows the accurate rate may decrease to 

0.340/0.328). 

We find that u(2) sing 4 as the number of classes of the ordinal type data gets a 

(3) n 

better result compared with other number of classes (see Table 7 ~ Table 9). 

We can see that if we only consider two variables, SCORE will be better tha

our methods (Compare Table 8 with Table 10). But if the number of variables 

is more than two and the sample size is small, our method will be better.  
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4.3 Real D

ycle measurements of Spellman et al. (1998) 

ata Analysis 

1. Data source: 

S. cerevisiae cell-c

http://cell-cycle-www.standford.edu 

http://www.molbiolcell.org/ 

We use the data of the experiment CDC28. The data were collected at 17 different time 

alysis Methods: The sample size is very small (N=17), we differentiate the 

3.  show some of the resulting gene network 

(1) Case 1: 

 

points. 

2. An

relations between genes by RANK, RANGE, and SCORE. We use 0.72 (from 

Table 6) as the threshold of SCORE. 

Analysis results: In the following, we
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Figure 9: A partial predicted gene regulatory network for the yeast data (CDC28) 
from Xu et al. (2002). This network is constructed not only by the Smooth 
Response Surface algorithm but also by the exiting biological knowledge. 
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raph size of RANK and RANGE are both 9 and equal to SCORE after being 

adju

 using 

RAN

ith K = 4, without adjusting lambda, it is more similar to Figure 1 

than

 

 

 

 

 

   

The g

sted. Their graph sizes are similar if we use 0.72 as the threshold of SCORE. 

We can see that the difference of adjusting lambda or not is small when

GE. Comparing with Figure 9, it seems that the number of wrong pathways are 

less with K = 2.  

For RANK w

 that with lambda adjusted (See Figure 18 (A) and Figure 18 (C)). But using RANK 

with K = 2 will do better with lambda adjusted (See Figure 18 (E) and Figure 18 (G)). 

This may be due to that the Yates' continuity correction will be applied when the 
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Figure 11: The resulting network constructed by our methods. 

Figure1

Accurate direction 
Wrong direction 

Extra pathway 
Missing pathway

- 
+

0: The resulting ork constructed by SCORE  netw
The threshold of score is 0.72 

(A) RANK with K=4 and without adjusting lambda. 
(B) RANGE with K=4 and without adjusting lambda. 
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expected cell counts of chi-square test are smaller than five. Chi-square test’s validity 

depends heavily on the assumption that the expected cell counts are at least moderately 

large; a minimum size of five is often quoted as a rule of thumb. In both RANK and 

RANGE, the number of two-way pathways is large with K = 2 (See Figure 18). 

 

Case 2: 
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Figure12: dagulator
from Xu et al (2002). This netwrok was not only constructed by Smooth Response 
Surface algorithm but also adjusted by the exiting biological knowledge. 
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Figure 13: The figure of SCORE when lambda adjusted. The threshold of score 
is 0.72 (from the Monte Carlo simulation). 
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In this case we can find that the graph size of SCORE is similar with that of RANK 

and RANGE. But if we use SCORE and do not adjust lambda (Figure 20 (A)), the graph 

size of SCORE will be larger than that of our methods. We find that using RANK and 

K=4 will do better when without adjusting the lambda, RANGE and K=4 will do better 

when lambda adjusted. There is no big difference when K=2 whether adjusting lambda 

or not. Summarizing the above results, RANK with K=4 is closer to Figure 12. 

After checking these two cases, we find that RANK with K=4 and without 

adjusting the lambda is closer to Figure 9 and Figure12. 
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+
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+
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+ + 
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- + +

+ 
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- +
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Figure14: RANK with K=4 without adjusting lambda.

Figure15: RANGE with K=2 and without adjusting lambda. 
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5. Discussions 

The advantages of our method are we don’t need strong statistical assumption before 

using and compute rapidly. Especially when the sample size is small, the resulting graph 

size is still similar to the graph size of larger sample size. We give the following 

conclusions: 

1. The method proposed by Cheng (2003) is not always proper for small sample 

sizes. We find that the threshold of independence need to be adjusted adapt to 

the sample size when sample size is smaller than 100. If we all use 0.9 for the 

threshold score and ignore the effect of the sample size, the graph size will 

grow quickly as the sample size decreases. We suggest that we should find the 

threshold score by simulation before starting the real data analysis. Table 4 

gives the result of the threshold score from our simulation study. 

2. If we only consider two variables, the method proposed by Cheng will be 

better than our method. If we need to identify the relevant connections between 

sets of genes, our method will be better. When the threshold point is not 

adjusted, the graph size of the result using the method proposed by Cheng will 

be a serious problem. 

3. From simulation results, we can see that the resulting graph sizes of our 

method do not change acutely when the sample sizes are different. 

4. There are some particular functional structures that can not be easily detected 

by our methods. For example, 2( )f x x= . The correlation test of the first step 

cannot detect some symmetrical functions. But we can adjust the result by the 

second step. If the functional structure between two variables is symmetrical 

and we cannot detect from the first step, the p-value of the chi-square test for 
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one direction at the second step will be very close to zero (<0.0001). The detail 

is showed in the Table 11. 

5. Cheng (2003) has mentioned that if the lambda is too small, then the fitting 

curve will be too rough. If a lambda is smaller than 610− , it is adjusted to a new 

lambda such as 1 2

2new

λ λλ +
= or 1 2newλ λ λ= . Our methods (RANK and 

RANGE) also use the nonparametric regression to estimate the curve. But we 

find that the magnitude of lambda has no big influence for our methods. If we 

ignore the small value of lambda and do not adjust the lambda, we still can 

discover the relations. Also, without adjusting lambda, we may get a better 

direction. 

We consider the following problems as future works: 

1. How to discretize the continuous data and not miss much of the information. 

2. Use other correlation tests which are sensitive to the unusual points. We use 

two nonparametric rank correlation tests that are both not sensitive to the 

unusual points. That may ignore the effect of influential points. 

3. Our method is not sensitive with symmetric and linear functional structure. 

How to cope with this situation? 
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Tables 

 

Table 2: The summary of larger sample size. i.e., Figures of right below the described 

compared with Figure 6. 

Sample 

size 

K Rank 

Rate/missing/extra/wrong 

Range 

Rate/missing/extra/wrong 

Score 

 

1000 8 77.8~82.2%/2/6/2 

 Figure 22(B)  

80~84.4%/2/6/1 

 Figure 22(C) 

91%/0/2/2 

Figure 22(A) 

1000 8 80~82.2%/1/7/2 

Figure 23(B) 

82.2%~84.4%/1/7/1 

Figure 23(C) 

91%/2/1/1 

Figure 23(A) 

500 8 80%/0/7/2 

Figure 24(B) 

80%/0/7/2 

Figure 24(C) 

91%/0/3/2 

Figure 24(A) 

8 80%/2/7/2 Figure 25(B) 80%/2/7/2 Figure 25(C) 200 

4 84.4%/2/6/0 Figure 25(D) 84.4%/2/6/0 Figure 25(E) 

88.9%/0/3/2 

Figure 25(A) 

8 82.2%/3/4/1 Figure 26(B) 80%/3/4/2 Figure 26(C) 100 

4 80%/3/4/2 Figure 26(D) 75.6%/3/4/4 Figure 26(E) 

86.7%/1/3/2 

S=0.9 

 Figure 26(A) 

65%/1/12/3 

S=0.9 

 Figure 27(A) 

100 8 75.6%/3/6/2 

Figure 27(C) 

77.8%/3/6/1 

Figure 27(D) 

84.4%/1/4/2 

S2=0.73 

Figure 27(B) 

K: the number of class of ordinal data. 

Rate: the similar rate compared with Figure 1. If both the direction and the connected 
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way (repressive or activate) are the same with Fugure 1, then we say that is correct. 

Missing: the number of missing pathways compare with Figure 1. 

Extra: the number of extra pathways compared with Figure 1. 

Wrong: the number of wrong pathway directions compared with Figure 1. 

S= 0.9, the threshold of SCORE. 

S2= the threshold decided by consider Figure 1 ( adjusted by us). 

 

 

Table 3: The summary of larger sample size. The resulting graph compared with 

Figure 7. 

Sample 

size 

K Rank 

Rate/missing/extra/wrong 

Range 

Rate/missing/extra/wrong 

Score 

 

1000 8 71.1%/7/4/2 73.3%/7/4/1 68.9%/13/0/1

1000 8 77.8%/7/1/2 80%/7/1/1 73.3%/11/0/1

500 8 75.6%/7/2/2 75.6%/7/2/2 75.6%/9/0/2

8 75.6%/7/2/2 75.6%/7/2/2 200 

4 80%/7/2/0 80%/7/2/0 

75.6%/9/0/2

8 68.9%/12/1/1 66.7%/12/1/2 100 

4 66.7%/12/1/2 62.2%/12/1/4 

68.9%/11/1/2

S=0.9 

64.4%/8/5/3

S=0.9 

100 8 64.4%/11/3/2 66.7%/11/3/1 

71.1%/10/1/2

S2=0.73 

 

K: the number of class of ordinal data. 
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Rate: the similar rate compared with Figure 7. If both the direction and the connected 

way (repressive or activate) are the same with Fugure 7, then we say that is correct.  

Missing: the number of missing pathways compared with Figure 7. 

Extra: the number of extra pathways compared with Figure 7. 

Wrong: the number of wrong pathway directions compared with Figure 7. 

S= 0.9, the threshold of SCORE. 

S2= the threshold of Table 6 (adjusted by us). 

 

 

Table 4: The summary of smaller sample size. Figures of right below the described 

compared with Figure 6. 

Sample 

size 

K lambda Rank Range Score 

N 80%/2/6/1 

Figure 28(C) 

77.8%/0/5/5 

Figure 28(A) 

4 

Y 82.2%/2/6/0 

 

80%/2/6/1 

Figure 28(D) 

80%/0/4/5 

Figure 28(B) 

N  

100 

2 

Y 

80%/2/6/1 

Figure 28(E) 

75.56%/2/6/3 

Figure 28(F)  

N 80%/3/3/3 

Figure 29(C) 

77.7%/3/3/4 

Figure 29(D) 

82.2%/0/6/2 

Figure 29(A) 

4 

Y 75.6%/3/3/5 

Figure 29(E) 

75.6%/3/3/5 

Figure 29(F) 

86.7%/1/4/1 

Figure 29(B) 

50 

2 N 75.6%/3/3/5 

Figure 30(A) 

75.6%/3/3/5 

Figure 30(B) 
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  Y 73.3%/3/3/6 

Figure 30(C) 

75.6%/3/3/5 

Figure 30(D) 

 

N 84.4%/4/1/2 

Figure 31(C) 

84.4%/4/1/2 

Figure 31(D) 

64%/2/10/4 

Figure 31(A) 

4 

Y 82.2%/4/1/3 

Figure 31(E) 

77.7%/4/1/4 

Figure 31(F) 

71%/0/10/3 

Figure 31(B) 

N 77.7%/4/1/5 

Figure 32(A) 

82.2%/4/1/3 

Figure 32(B) 

 

30 

2 

Y 80%/4/1/4 

Figure 32(C) 

80%/4/1/4 

Figure 32(D) 

 

N 77.8%/5/3/2 

Figure 33(C) 

73.3%/2/7/3 

Figure 33(A) 

4 

Y 80%/4/4/1 

Figure 33(E) 

75.6%5/3/3 

Figure 33(D)(F) 

62.2%/1/12/4 

Figure 33(B) 

N 75.6%/5/3/3 

Figure 34(A) 

 

17 

2 

Y 75.6%/5/3/3 

Figure 34(C) 

73.3%/5/3/4 

Figure 34(B)(D) 

 

 

N: we ignore whether the value of lambda is too small or not. 

Y: If , then we adjust the lambda by 6
2

6
1 10or  10 −− << λλ

2
)( 21 λλ

λ
+

=new . 
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Table 5: The summary of smaller sample size. The resulting graph compared with 

Figure 7. 

Sample 

size 

K lambda Rank Range Score 

N 71.1%/10/2/1 68.8%/8/1/5 4 

Y 74.4%/10/2/0 

71.1%/10/2/1 

66.7%/6/4/5 

N  

100 

2 

Y 

71.1%/10/2/1 

 

71.1%/10/2/1 

 

N 62.2%/13/1/3 60%/13/1/4 68.9%/9/3/2 4 

Y 57.7%/13/1/5 57.7%/13/1/5 71.1%/10/2/1 

N 57.7%/13/1/5 57.7%/13/1/5  

50 

2 

Y 55.6%/13/1/6 57.7%/13/1/5  

N 62.2%/15/0/2 62.2%/15/0/2 68.8%/7/3/4 4 

Y 60%/15/0/3 57.8%/15/0/4 75.6%/6/2/3 

N 55.6%/15/0/5 60%/15/0/3  

30 

2 

Y 57.8%/15/0/4 57.8%/15/0/4  

N 66.7%/13/0/2 55.6%/12/5/3 4 

Y 68.9%/13/0/1 

64.4%13/0/3 

 62.2%/7/6/4 

N 64.4%13/0/3  

17 

2 

Y 64.4%13/0/3 

62.2%/13/0/4 

  

 

N: we ignore whether the value of lambda is too small or not. 

Y: If , then we adjust the lambda by6
2

6
1 10or  10 −− << λλ

2
)( 21 λλ

λ
+

=new . 
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Table 6: The threshold of SCORE of our simulation. 

Sample size lambda threshold  

Larger than 200 Adjust 0.9 

100 Adjust 0.73/0.9 

Adjust 0.76 50 

Without adjusting 0.76 

Adjust 0.76 30 

Without adjusting 0.65 

Adjust 0.72 17 

Without adjusting 0.43 

 

Table 7: The accurate times of 1000 trials. 

 ( / ) num: the number of two-way directions

Step two 

RANK RANGE 
 Step one 

K=8 K=4 K=2 K=8 K=4 K=2 

XY e=  1000 772 815 617/17 387 735 668 

1/3Y X= 2  
1000 763 774 671/42 761 854 620 

1/3Y X −= 2  
1000 851 800 717/65 651 775 678/3 

Y X=  1000 486 478 486/71 409 492 479/2 

2sin( )Y X=  994 861 868 889/19 783 912 843 

2Y X=  609 504 528 340/48 573 592 328 
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Table 8: The accurate rates of our methods (include step one and step two). 

Our methods 

RANK RANGE 
 

K=8 K=4 K=2 K=8 K=4 K=2 

XY e=  0.772 0.815 0.617 0.387 0.735 0.668 

1/3Y X= 2  
0.763 0.774 0.671 0.761 0.854 0.620 

1/3Y X −= 2  
0.851 0.800 0.717 0.651 0.775 0.678 

Y X=  0.486 0.478 0.486 0.409 0.492 0.479 

2sin( )Y X=  0.861 0.868 0.889 0.783 0.912 0.843 

2Y X=  0.504 0.528 0.340 0.573 0.592 0.328 

 

 

Table 9: The accurate rates of only use Step two. 

Step two 

RANK RANGE 
 

K=8 K=4 K=2 K=8 K=4 K=2 

XY e=  0.772 0.815 0.617 0.387 0.735 0.668 

1/3Y X= 2  
0.763 0.774 0.671 0.761 0.854 0.620 

1/3Y X −= 2  
0.851 0.800 0.717 0.651 0.775 0.678 

Y X=  0.486 0.478 0.486 0.409 0.492 0.479 

2sin( )Y X=  0.866 0.873 0.894 0.788 0.918 0.848 

2Y X=  0.828 0.867 0.558 0.941 0.972 0.539 
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Table 10: The accurate times of 1000 trials. 
 
 
 
 

 XY e=  1/3Y X= 2 2 1/3Y X −= Y X= 2sin( )Y X=  2Y X=  

score 997 988 996 467 989 831 

 
 
 
 
Table 11: N=200, K=8 (“0” is “<0.00001”) 

pair 12 13 14 15 16 17

p-value of the rank correlation test (Kendall) 0 0 0.06 0 0.11 0

p-value of the rank correlation test (Spearman) 0 0 0.06 0 0.11 0

Bonferroni correction (p-value=0.0975) 0 0 0.1164 0 0.2079 0

Kendall’s Tau 0.16 0.12 0.06 0.1 -0.05 -0.52

Spearman Rho 0.24 0.18 0.08 0.15 -0.07 -0.7

Step one 

sign + +  +  - 

The p-value of 1 &R X  0 0.54 0.89 0 0.62 0RANK 

The p-value of 2 &R Y  0.78 0.81 0.94 0.77 0.55 0.13

The p-value of 1 &R X  0.43 0.6 0.07 0 0.7 0.01RANGE 

The p-value of 2 &R Y  0.93 0.53 0.13 0.99 0.76 0.35

Lambda1 0.03 5.69 0.25 5.7 5.67 0.02

S(g1) 0.83 0.97 0.99 0.99 0.99 0.49

Lambda2 0.02 0.03 0 0 9.31 11.17

SCORE 

S(g2) 0.72 0.96 0.98 0.82 0.99 0.56
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18 19 110 23 24 25 26 27 28 29 210 

0 0.51 0.69 0 0 0 0.87 0.14 0.08 0.39 0.26

0 0.49 0.69 0 0 0 0.87 0.15 0.08 0.39 0.27

0 0.7501 0.9039 0 0 0 0.9831 0.269 0.1536 0.6279 0.4598

-0.25 0.02 -0.01 0.26 -0.09 0.13 0 0.04 0.05 0.03 0.03

-0.37 0.03 -0.02 0.39 -0.13 0.19 -0.01 0.06 0.08 0.04 0.05

-   + - +      

0.53 0.58 0.56 0.23 0.74 0.54 0.87 0.96 0.14 0.7 0.38

0.08 0.58 0.47 0.78 0.9 0.53 0.92 0.6 0.37 0.36 0.08

0.68 0.78 0.46 0.51 0.13 0.83 0.43 0.95 0.38 0.22 0.29

0.79 0.7 0.75 0.92 0.91 0.05 0.46 0.86 0.36 0.53 0.87

0.02 5.67 0.51 9.07 9.07 9.09 1.29 9.09 0.44 9.07 0.01

0.88 1 1 0.86 0.99 0.97 1 0.99 0.99 1 0.98

0.01 9.65 8.66 0.01 0.07 0.05 9.32 11.18 9.86 9.62 8.64

0.86 1 1 0.83 0.98 0.96 1 0.99 0.99 1 1 

 
 

34 35 36 37 38 39 310 45 46 47 48 

0 0 0.68 0.27 0.13 0.89 0.91 0 0.05 0.03 0 

0 0 0.65 0.28 0.12 0.87 0.95 0 0.06 0.03 0 

0 0 0.888 0.4744 0.2344 0.9857 0.9955 0 0.107 0.0591 0 

-0.15 0.4 0.01 0.03 0.05 0 0 -0.39 -0.06 -0.06 -0.16

-0.23 0.57 0.02 0.05 0.07 -0.01 0 -0.53 -0.08 -0.09 -0.24

- +      -  - - 
0.04 0.78 0.33 0.36 0.72 0.24 0.77 0.994769 0 0.88 0.95

0.86 0.01 0.35 0.72 0.94 0.42 0.89 0.987262 0 0.29 0.18

0.2 0.79 0.49 0.57 0.27 0.21 0.17 0 0 0.38 0.76

0.17 0.43 0.36 0.63 0.16 0.19 0.13 0.6 0.01 0.35 0.11 

0 0.01 9.4 0.53 0 0.49 9.39 0 0 0.04 0 

0.77 0.68 1 0.99 0.94 1 1 0.49 0.9 0.99 0.88

0 0 0.17 7.41 0.01 1.84 0.77 0 0 1.59 9.86

0.91 0.62 0.99 0.99 0.98 1 1 0.1 0.27 1 0.97
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49 410 56 57 58 59 510 67 68 69 610 

0.48 0.86 0.24 0.09 0 0.36 0.53 0.15 0.08 0.07 0.87 

0.51 0.86 0.22 0.09 0 0.38 0.54 0.16 0.09 0.06 0.87 

0.7452 0.9804 0.4072 0.1719 0 0.6032 0.7838 0.286 0.1628 0.1258 0.9831

0.02 -0.01 0.03 0.05 0.09 -0.03 -0.02 0.04 0.05 -0.05 0 

0.03 -0.01 0.05 0.08 0.13 -0.04 -0.03 0.06 0.08 -0.08 -0.01

  +  -       

0.73 0.59 0 0.62 0.95 0.15 0.92 0.91 0.57 0.77 0.26 

0.14 0.74 0.85 0.64 0.62 0.01 0.87 0.47 0.5 0.91 0.62 

0.48 1 0 0.14 0.73 0.65 0.87 0.82 0.9 0.13 0.27 

0.28 0.98 0.23 0.46 0.16 0.6 0.98 0.34 0.93 0.6 0.29 

0.1 0.1 0 0.09 0.01 0.15 0.58 9.29 0.14 0.03 9.28 

0.99 1 0.97 0.99 0.96 0.99 1 0.99 0.99 0.99 1 

0.06 0.61 0.01 11.21 9.83 0.01 8.64 1.23 0.16 9.63 0 

0.99 1 0.5 0.99 0.98 0.98 1 0.99 0.99 0.99 0.99 

 
78 79 710 89 810 910 

0 0.73 0.78 0.87 0.69 0.96 

0 0.72 0.75 0.87 0.69 0.96 

0 0.9244 0.945 0.9831 0.9039 0.9984

0.42 -0.01 0.01 0 -0.01 0 

0.61 -0.02 0.01 -0.01 -0.02 0 

0.2 0.87 0.63 0.82 0.93 0.34 

0.78 0.89 0.72 0.95 0.8 0 

0.12 0.53 0.58 0.75 0.62 0.81 

0.78 0.81 0.82 0.55 0.85 0 

0.04 0.77 11.21 0.05 9.83 0.02 

0.67 1 1 0.99 1 0.77 

0.01 9.65 8.64 9.64 8.67 0.6 

0.62 1 1 1 1 1 

+     + 
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Figure 16: A partial predicted gene regulatory network for the 
yeast data (CDC28) from Xu et al. (2002). This netwrok is 
constructed not only by the Smooth Response Surface algorithm 
also the exiting biological knowledge. 
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Figure 17: The resulting network constructed by SCORE 
(A) Without adjusting lambda. The threshold score is 0.45. 
(B) When adjusting lambda. The threshold score is 0.72 
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Figure 18: The resulting network constructed by our methods. (A) RANK with K=4 and 
without adjusting lambda. (B) RANGE with K=4 and without adjusting 
lambda. (C) RANK with K=4 when adjusting lambda. (D) RANGE with K=4 
when adjusting lambda. (E) RANK with K=2 and without adjusting lambda. 
(F) RANGE with K=2 and without adjusting lambda. (G) RANK with K=2 
when adjusting lambda. (H) RANGE with k=2 when adjusting lambda. 
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Figure19: A partial predicted gene regulatory network for the yeast data 
(CDC28) from Xu et al. (2002). This network not only constructed by Smooth 
Response Surface algorithm but also adjusted by the exiting biological 
knowledge. 
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Figure 20: The resulting network constructed by SCORE 
(C) Without adjusting lambda. The threshold score is 0.45. 
(D) When adjusting lambda. The threshold score is 0.72 
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Figure 21: The resulting network constructed by our methods.  
(A) RANK with K=4 and without adjusting lambda.  
(B) RANGE with K=4 and without adjusting lambda.  
(C) RANK with K=4 when adjusting lambda.  
(D) RANGE with K=4 when adjusting lambda.  
(E) RANK with K=2 without adjusting lambda.  
(F) RANGE with K=2 without adjusting lambda.  
(G) RANK with K=2 when adjusting lambda.  
(H) RANGE with k=2 when adjusting lambda. 
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Figure 22: N=1000, K=8 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9)  
(B) The result of RANK.  
(C) The result of RANGE. 
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Figure 23: N=1000, K=8 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9)  
(B) The result of RANK.  
(C) The result of RANGE. 
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Figure 24: N=500, K=8 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9)  
(B) The result of RANK.  
(C) The result of RANGE. 
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Figure 25: N=200 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9) 
(B) The result of RANK with K=8.  
(C) The result of RANGE with K=8. 
(D) The result of RANK with K=4.  
(E) The result of RANGE with K=4. 
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Figure 26: N=100 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9)  
(B) The result of RANK with K=8.  
(C) The result of RANGE with K=8. 
(D) The result of RANK with K=4.  
(E) The result of RANGE with K=4. 
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Figure 27: N=100 (Table 2) 
(A) The result of SCORE. (The threshold score = 0.9)  
(B) The result of SCORE. (The threshold score = 0.73)  
(C) The result of RANK with K=8.  
(D) The result of RANGE with K=8. 
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Figure 28: N=100 (Table 4) 
(A) The result of SCORE without adjusting lambda. (The threshold score = 0.74) 
(B) The result of SCORE when adjusting lambda. (The threshold score = 0.74)  
(C) The result of RANK with K=4.  
(D) The result of RANGE with K=4. 
(E) The result of RANK with K=2.  
(F) The result of RANGE with K=2. 
58



 

 
 

   

   
 
 
 
 
 
 
 
 
 

3 6

2 5

1

9

7

4

8

10

+

+
+

+

+

+

+

- 

- 

- 

- 
- 

- 

- 

(B)

3 6

2 5

1

9

7

4

8

10

- 
+ 

+ + 
- 

- 
+ - - 

+ 
+ 

- 
- - 

- 
+ (A) 

3 6

2 5

1

9

7

4

8

10

+
+

+ 

+

+

+

+
- 

- 
- 

- 

- 

- 

(F) 

3 6

2 5

1

9

7

4

8

10

+ 
+ 

+ 

+ 

+ 

+ 

+ 
- 

- 
- 

- 

- 

- 

(E) 

3 6

2 5

1

9

7

4

8

10

+
+

+ 

+

+

+

+
- 

- 
- 

- 

- 

- 

(D)

3 6

2 5

1

9

7

4

8

10

- 
+ 

+ 
+ - 

+ 
- - 

+ + 

- 
- 

+ (C) 

Figure 29: N=50 (Table 4) 
(A) The result of SCORE without adjusting lambda. (The threshold score = 0.76)  
(B) The result of SCORE when adjusting lambda. (The threshold score = 0.76)  
(C) The result of RANK and K=4 without adjusting lambda.  
(D) The result of RANGE and K=4 without adjusting lambda. 
(E) The result of RANK and K=4 when adjusting lambda.  
(F) The result of RANGE with K=4 when adjusting lambda. 
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Figure 30: N=50 (Table 4) 
(A) The result of RANK and K=2 without adjusting lambda.  
(B) The result of RANGE and K=2 without adjusting lambda. 
(C) The result of RANK and K=2 when adjusting lambda.  
(D) The result of RANGE with K=2 when adjusting lambda. 
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Figure 31: N=30 (Table 4) 
(A) The result of SCORE without adjusting lambda. (The threshold score = 0.76)  
(B) The result of SCORE when adjusting lambda. (The threshold score = 0.65)  
(C) The result of RANK and K=4 without adjusting lambda.  
(D) The result of RANGE and K=4 without adjusting lambda. 
(E) The result of RANK and K=4 when adjusting lambda.  
(F) The result of RANGE and K=4 when adjusting lambda. 
The graph size of SCORE becomes very large compare with our methods. 
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Figure 32: N=30 (Table 4) 
(A) The result of RANK and K=2 without adjusting lambda. 
(B) The result of RANGE and K=2 without adjusting lambda.
(C) The result of RANK and K=2 when adjusting lambda.  
(D) The result of RANGE with K=2 when adjusting lambda. 
62



3 6 

 

   

   
 
 
f 
 
 
 
 
 
 

2 5

1

9 

7

4 

8 

10

+
+ - 

+ + 
+ + 3 6

- 

+
+

+ 

- - 

- 

+

+
+

+ 
- 

- 
- 

- 

(B) 

2 5

1

9

7

4

8

10

+ + 
+ - 

+ + 
- 

- 
+ +

+ +
+

- 
- + 

(A) + 

3 6 3 6

3 6

2 5

1

9

7

4

8

10

+

++

+

+ 

+ 
- - 

- 

- - 

- 
- 

(F) 

3 6

2 5

1

9

7

4

8

10

+

+ + 

+ 

+ 

+ 
- 

- 

- 

- 
- 

- 
- 

(E) 

2 5

1

9

7

4

8

10

+
+

+
+

+ 

+ 
- 

- 

- 

- 

- 

- 
- 

(D) 

2 5

1

9

7

4

8

10

+ + 
- 

- - 
+

+ 
+ 

- 
- 

- 
+ 

- 
(C) 

Figure 33: N=17 (Table 4) 
(A) The result of SCORE without adjusting lambda. (The threshold score = 0.72)  
(B) The result of SCORE when adjusting lambda. (The threshold score = 0.43)  
(C) The result of RANK and K=4 without adjusting lambda.  
(D) The result of RANGE and K=4 without adjusting lambda. 
(E) The result of RANK and K=4 when adjusting lambda.  
(F) The result of RANGE with K=4 when adjusting lambda. 
The graph size of SCORE becomes very large compare with our methods. 
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Figure 34: N=17 (Table 4) 
(A) The result of RANK and K=2 without adjusting lambda. 
(B) The result of RANGE and K=2 without adjusting lambda.
(C) The result of RANK and K=2 when adjusting lambda.  
(D) The result of RANGE with K=2 when adjusting lambda. 
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