
1. Introduction

When a product item is tested, we usually have more information than just pass

or fail, e.g., pass or fail low or fail high. When the measurement of each tested product

item is recorded as exactly one element in some known set consisting of k+1 elements,

the data are called either binary for k = 1 or polytomous for k = 2, 3, 4, . . .. In the

paper, categorical data denote either binary data or polytomous data. See, e.g.,

Agresti (2002) for the categorical data analysis.

In the Bayesian framework, it is assumed that the prior distribution of the un-

known random parameter vector is known. In practice, it is usually a non-trivial task

to find an appropriate prior distribution for the unknown random parameter vector.

Thus, an empirical Bayes (EB) approach is commonly used instead of a Bayesian

approach in the literature. In contrast with the Bayesian inference, the EB inference

utilizes the observed data to estimate the unknown hyperparameter vector in the

prior distribution and then proceeds to do the standard Bayesian inference as if the

estimated prior distribution were the true prior one.

Using an EB approach to monitoring a manufacturing process is not entirely new.

For example, utilizing the estimated posterior distributions of the random parameters

given the data, Yousry et al. (1991) used the beta-binomial model for manufacturing

binary data to judge whether a manufacturing process was in control or not. Recently,

to judge wether a manufacturing process was in control or not, Shiau et al. (2004)

used the Dirichlet-multinomial model for manufacturing polytomous data utilizing the
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estimated marginal distributions of the data, and Chen et al. (2004) used the beta-

binomial or Dirichlet-multinomial model for manufacturing categorical data utilizing

the likelihood ratio (LR) method.

To proceed the discussion, first of all, we briefly introduce the Bayesian infer-

ence as follows. In the Bayesian framework, it is assumed that the unknown random

parameter vector θ has the known prior probability density function (p.d.f.) or prob-

ability mass function (p.m.f.) π(θ) with the known parameter space Θ and that the

observed response vector y given θ has the known conditional p.d.f. or p.m.f. f(y|θ).

Then the Bayesian inference is based on the posterior p.d.f. or p.m.f.,

p(θ|y) =
f(y|θ) π(θ)∫

Θ
f(y|θ∗) π(θ∗) dθ∗

or
f(y|θ) π(θ)∑

θ∗∈Θ f(y|θ∗) π(θ∗)
,

of θ given y. When the posterior mean,

E(θ|y) =

∫
Θ

θ f(y|θ) π(θ) dθ∫
Θ

f(y|θ) π(θ) dθ
or

∑
θ∈Θ θ f(y|θ) π(θ)∑
θ∈Θ f(y|θ) π(θ)

,

of θ given y exists, it minimizes E((θ̃ − θ)′(θ̃ − θ)|y) among all estimates θ̃. In the

literature, it is common practice to estimate θ by either E(θ|y) or the posterior mode,

mode(θ|y), of θ given y. See, e.g., Gelman et al. (2003) for the Bayesian data analysis.

Next, we briefly introduce the EB inference as follows. In the EB framework, it

is assumed that the unknown random parameter vector θ has the prior p.d.f. or p.m.f.

π(θ; α), a known function of both θ and an unknown hyperparameter vector α, with

the known parameter space Θ and that the observed response vector y given θ has

the known conditional p.d.f. or p.m.f. f(y|θ). Then the EB inference is based on the

2



estimated posterior p.d.f. or p.m.f., p(θ|y; α)|α=α̂ (≡ p(θ|y; α̂)), of θ given y, where

α̂ is some estimate of α. In practice, it is frequent to estimate α by either the

maximum likelihood (ML) method or the method of moments. In the literature it is

common practice to estimate θ by either the estimated posterior mean, E(θ|y; α)|α=α̂

(≡ E(θ|y; α̂)), of θ given y or the estimated posterior mode, mode(θ|y; α)|α=α̂ (≡

mode(θ|y; α̂)), of θ given y. See, e.g., Carlin and Louis (2000) for the EB data

analysis.

The remaining of the paper is organized as follows. In Section 2, using the

normal-binomial or -multinomial model rather than the beta-binomial or Dirichlet-

multinomial model in Chen et al. (2004), the EB inference for manufacturing cat-

egorical data is discussed. In Section 3, utilizing the LR method, an EB process

monitoring technique for manufacturing categorical data is proposed. A simulation

study to demonstrate the proposed methodology is given in Section 4. Finally, some

concluding remarks and possible generalizations of the paper are given in Section 5.

2. Empirical Bayes

Suppose that a manufacturing process produces a product that has k possible

defect types for some fixed positive integer k. Suppose further that each product item

belongs to exactly one of the k+1 categories {pass, the first defect type, . . ., the kth de-

fect type}. Let t be any positive integer. For i = 1, . . . , k, let pit denote the probability

that a product item manufactured at time t possesses the ith defect type. Then 1−
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∑k
i=1 pit (≡ p0t) is the probability that a product item manufactured at time t pos-

sesses none of the k defect types. Suppose also that there are in total nt tested

product items manufactured at time t, where nt is a known positive integer such that

sup{n1, n2, n3, . . .} < ∞. For i = 1, . . . , k, let yit denote the number of product items

that possess the ith defect type among the nt tested product items manufactured at

time t. Then nt−
∑k

i=1 yit (≡ y0t) is the number of product items that possess none of

the k defect types among the nt tested product items manufactured at time t. Set pt ≡

(p1t, . . . , pkt)
′
, yt ≡ (y1t, . . . , ykt)

′
, Pt ≡ {pt :

∑k
i=1 pit < 1 and p1t, . . . , pkt ∈ (0, 1)},

and Yt ≡ {yt :
∑k

i=1 yit ≤ nt and y1t, . . . , ykt ∈ {0, 1, . . . , nt}}. Then Pt = P1 and the

number of elements in Yt, denoted by |Yt|, is (nt + k)!/(nt!k!). Moreover, suppose

that P ({pt ∈ P1}) = 1 and that yt given pt has either the binomial(nt; pt) distribution

for k = 1 or the multinomial(nt; pt) distribution for k = 2, 3, 4, . . .. Let Fpt , Fyt , Fyt|pt ,

and Fpt|yt denote, respectively, the prior cumulative distribution function (c.d.f.)

of pt, the marginal c.d.f. of yt, the conditional c.d.f. of yt given pt, and the pos-

terior c.d.f. of pt given yt. Set θt ≡ (θ1t, . . . , θkt)
′ ≡ (log(p1t/p0t), . . . , log(pkt/p0t))

′.

Then pt = (exp(θ1t)/[1+
∑k

j=1 exp(θjt)], . . . , exp(θkt)/[1+
∑k

j=1 exp(θjt)])
′. Let Fθt , Fyt|θt ,

and Fθt|yt denote, respectively, the prior c.d.f. of θt, the conditional c.d.f. of yt given θt,

and the posterior c.d.f. of θt given yt. Then Fyt|θt = Fyt|pt , the conditional p.m.f. of yt
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given θt is

f(yt|θt) = 1Yt(yt) · nt!∏k
i=0 yit!

· exp(θ′t yt)

[1 +
∑k

i=1 exp(θit)]nt

= 1Yt(yt) · nt!∏k
i=0 yit!

·
k∏

i=0

pyit

it = f(yt|pt), (1)

and the marginal p.m.f. of yt is

f(yt) ≡ 1Yt(yt) · nt!∏k
i=0 yit!

·
∫

Rk

exp(θ′t yt)

[1 +
∑k

i=1 exp(θit)]nt

dFθt(θt)

= 1Yt(yt) · nt!∏k
i=0 yit!

·
∫

P1

k∏
i=0

pyit

it dFpt(pt), (2)

where 1Yt(yt) ≡ 1 for yt ∈ Yt and 0 otherwise.

In the paper, first of all, consider the situation where there are available his-

torical in-control manufacturing categorical data {y1, y2, . . . , yT} for some large pos-

itive integer T . In the following, suppose that (θ′1, y
′
1)
′, (θ′2, y

′
2)
′, . . ., (θ′T , y′T )′ are

independent random vectors and that θ1, θ2, . . . , θT are independent and identically

distributed (i.i.d.) normal random vectors with E(θ1) = µ and Cov(θ1) = Σ, i.e.,

θt
i.i.d.∼ N(µ, Σ) for t = 1, 2, . . . , T , where µ (≡ (µ1, . . . , µk)

′) is an unknown k×1 vector

and Σ (≡ (Σuv)) is an unknown k × k positive definite covariance matrix.

Throughout the paper, set θ1:T ≡ (θ′1, θ
′
2, . . . , θ

′
T )′, y1:T ≡ (y′1, y

′
2, . . . , y

′
T )′, Σ−1 ≡

(Σuv), and α ≡ (µ′, Σ11, . . . , Σk1, Σ22, . . . , Σk2, . . . , Σkk)′, where α is the unknown

k(k + 3)/2 × 1 hyperparameter vector. Let Φα denote the c.d.f. of N(µ, Σ) and

let A denote the set consisting of all possible α’s. Then the prior p.d.f. of θ1:T is

π(θ1:T ; α) =
T∏

t=1

π(θt; α) =
T∏

t=1

1

(2π)k/2|Σ|1/2
· exp

[
−1

2
(θt − µ)′Σ−1(θt − µ)

]
, (3)
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where π(θt; α) denotes the prior marginal p.d.f. of θt. Thus, the posterior p.d.f. of

θ1:T given y1:T is

p(θ1:T |y1:T ; α) =
T∏

t=1

p(θt|y1:T ; α) =
T∏

t=1

p(θt|yt; α), (4)

the posterior mean of θ1:T given y1:T is

E (θ1:T |y1:T ; α)

=
(
[E (θ1|y1:T ; α)]′ , [E (θ2|y1:T ; α)]′ , . . . , [E (θT |y1:T ; α)]′

)′

=
(
[E (θ1|y1; α)]′ , [E (θ2|y2; α)]′ , . . . , [E (θT |yT ; α)]′

)′
, (5)

and the posterior mode of θ1:T given y1:T is

mode (θ1:T |y1:T ; α)

=
(
[mode (θ1|y1:T ; α)]′ , [mode (θ2|y2:T ; α)]′ , . . . , [mode (θT |y1:T ; α)]′

)′

=
(
[mode (θ1|y1; α)]′ , [mode (θ2|y2; α)]′ , . . . , [mode (θT |yT ; α)]′

)′
, (6)

where

p(θt|y1:T ; α) = p(θt|yt; α)

=
exp[−(θt − µ− Σ yt)

′
Σ−1(θt − µ− Σ yt)/2]/[1 +

∑k
i=1 exp(θit)]

nt

∫
Rk exp[−(θ∗t − µ− Σ yt)

′Σ−1(θ∗t − µ− Σ yt)/2]/[1 +
∑k

i=1 exp(θ∗it)]nt dθ∗t
,

(7)

E(θt|y1:T ; α) = E(θt|yt; α)

=

∫
Rk θt exp[−(θt − µ− Σ yt)

′
Σ−1(θt − µ− Σ yt)/2]/[1 +

∑k
i=1 exp(θit)]

nt dθt∫
Rk exp[−(θt − µ− Σ yt)

′Σ−1(θt − µ− Σ yt)/2]/[1 +
∑k

i=1 exp(θit)]nt dθt

,

(8)
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and

mode(θt|y1:T ; α) = mode(θt|yt; α)

= arg min
θt∈Rk

{
1

2
(θt − µ− Σ yt)

′ Σ−1 (θt − µ− Σ yt) + nt log

[
1 +

k∑
i=1

exp(θit)

]}

(9)

for t = 1, 2, . . . , T .

Let cT be a prespecified constant in (0, 1), e.g., 0.05, and let qT,1−cT
(y1:T ; α) ∈

(0,∞) such that P (RT,1−cT
(y1:T ; α)|y1:T ; α) = 1− cT , where

RT,1−cT
(y1:T ; α) ≡ {θ1:T : p(θ1:T |y1:T ; α) ≥ qT,1−cT

(y1:T ; α)}. (10)

Then RT,1−cT
(y1:T ; α) is the size 1−cT highest posterior density (HPD) region for θ1:T

given y1:T . Similarly, for t = 1, 2, . . . , T , let c(t) be a prespecified constant in (0, 1),

e.g., 0.05, and let q(t),1−c(t)(yt; α) ∈ (0,∞) such that P (R(t),1−c(t)(yt; α)|yt; α) = 1−c(t),

where

R(t),1−c(t)(yt; α) ≡
{

θt : p(θt|yt; α) ≥ q(t),1−c(t)(yt; α)
}

. (11)

Then for t = 1, 2, . . . , T , R(t),1−c(t)(yt; α) is the size 1−c(t) HPD region for θt given yt.

For t = 1, 2, . . . , T , as p(θt|y1:T ; α) = p(θt|yt; α), R(t),1−c(t)(yt; α) is also the size 1 −

c(t) HPD region for θt given y1:T .
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Observe that the marginal p.m.f. of y1:T is

f(y1:T ) =
T∏

t=1

f(yt)

=
T∏

t=1

1Yt(yt) · nt!∏k
i=0 yit!

·
∫

Rk

exp(y′t θt)

[1 +
∑k

i=1 exp(θit)]nt

· π(θt; α) dθt

≡
T∏

t=1

1Yt(yt) · nt!∏k
i=0 yit!

·
∫

Rk

gt(θt, yt)π(θt; α) dθt

≡
T∏

t=1

1Yt(yt) · nt!∏k
i=0 yit!

· at(α; yt). (12)

For t = 1, 2, . . . , T , set `(α; θt) ≡ log[π(θt; α)], bt(α; yt) ≡ ∂at(α; yt)/∂α, and ct(α; yt) ≡

∂bt(α; yt)/∂α′. Then

bt(α; yt) =

∫

Rk

∂`(α; θt)

∂α
· gt(θt, yt) · π(θt; α) dθt

and

ct(α; yt) =

∫

Rk

[
∂2`(α; θt)

∂α∂α′
+

∂`(α; θt)

∂α

∂`(α; θt)

∂α′

]
gt(θt, yt) · π(θt; α) dθt

for t = 1, 2, . . . , T . Thus, given y1:T , the log-likelihood function for α is

log [f(y1:T )] =
T∏

t=1

log [f(yt)]

=
T∑

t=1

{
log (nt!)−

k∑
i=0

log (yit!) + log [at(α; yt)]

}
≡

T∑
t=1

`(t)(α) ≡ `T (α),(13)

the score function for α is

∂`T (α)

∂α
=

T∑
t=1

bt(α; yt)

at(α; yt)
≡

T∑
t=1

S(t)(α) ≡ ST (α), (14)

the (expected) Fisher information for α is

Cov (ST (α)) =
T∑

t=1

∑
yt∈Yt

S(t)(α)S ′(t)(α)f(yt) ≡
T∑

t=1

I(t)(α) ≡ IT (α), (15)
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and the observed (Fisher) information for α is

−∂ST (α)

∂α′
=

T∑
t=1

bt(α; yt)b
′
t(α; yt)− at(α; yt)ct(α; yt)

a2
t (α; yt)

≡
T∑

t=1

J(t)(α) ≡ JT (α). (16)

Note that given y1:T , the MLE α̂T of α solves the score equation ST (α) =

0k(k+3)/2×1 for α, i.e., ST (α)|α=α̂T
(≡ ST (α̂T )) = 0k(k+3)/2×1, where 0k(k+3)/2×1 de-

notes the k(k + 3)/2× 1 vector (0, . . . , 0)T . Set KT (α) ≡ ∑T
t=1 S(t)(α)S ′(t)(α) (≡

∑T
t=1 K(t)(α)).

One way to numerically evaluate α̂T is to utilize the following iterative procedure.

First choose a good initial value α̂
(0)
T for α̂T , e.g., the method-of-moments estimate

(MME) of α given in Appendix A, and then iterate the following equations

α̂
(u+1)
T = α̂

(u)
T +

[
M

(u)
T (α)

∣∣∣
α=α̂

(u)
T

]−1

ST (α)|
α=α̂

(u)
T

≡ α̂
(u)
T +

[
M

(u)
T

(
α̂

(u)
T

)]−1

ST

(
α̂

(u)
T

)

for u = 0, 1, 2, . . . until α̂
(u)
T converges to α̂T , where M

(u)
T (α̂

(u)
T ) could be any of IT (α̂

(u)
T ),

JT (α̂
(u)
T ), and KT (α̂

(u)
T ) for each u ∈ {0, 1, 2, . . .}. When M

(u)
T (α̂

(u)
T ) = JT (α̂

(u)
T ) for

all u’s, it is called the Newton-Raphson method. When M
(u)
T (α̂

(u)
T ) = IT (α̂

(u)
T ) for

all u’s, it is called the Fisher scoring method. Observe that all of IT (α̂
(u)
T )’s are

positive definite and that all of KT (α̂
(u)
T )’s are positive semi-definite and generally

positive definite. However, JT (α̂
(u)
T )’s are not necessarily positive semi-definite when

the initial value α̂
(0)
T is not close to α̂T . As there is no simple closed-form formula

for IT (α) and |Yt| is generally much larger than 1 for each t ∈ {1, 2, . . . , T}, it takes

too much time to calculate IT (α̂
(u)
T ) than either JT (α̂

(u)
T ) or KT (α̂

(u)
T ) for each u ∈
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{0, 1, 2, . . .}. Moreover, as it takes more time to find a good initial value for the

Newton-Raphson method than the procedure with M
(u)
T (α̂

(u)
T ) = KT (α̂

(u)
T ) for all u’s,

a stable and fast method to numerically evaluate α̂T is suggested as follows. First

choose M
(u)
T (α̂

(u)
T ) = KT (α̂

(u)
T ) for all u’s until near convergence, say at u = u0, and

then choose M
(u)
T (α̂

(u)
T ) = JT (α̂

(u)
T ) for u = u0 +1, u0 +2, u0 +3, . . . until convergence.

Note that α̂T = α+Op(T
−1/2) as T →∞. Thus, for any fixed t ∈ {1, 2, . . . , T} and

given yt, all of p(θt|yt; α̂T ) − p(θt|yt; α), E(θt|yt; α̂T ) − E(θt|yt; α), mode(θt|yt; α̂T ) −

mode(θt|yt; α), fT (yt) − f(yt), and q(t),1−c(t)(yt; α̂T ) − q(t),1−c(t)(yt; α) are Op(T
−1/2)

as T → ∞, where p(θt|yt; α̂T ) ≡ p(θt|yt; α)|α=α̂T
, E(θt|yt; α̂T ) ≡ E(θt|yt; α)|α=α̂T

,

mode(θt|yt; α̂T ) ≡ mode(θt|yt; α)|α=α̂T
, fT (yt) ≡ f(yt)|θ∼Φα̂T

with Φα̂T
= Φα|α=α̂T

,

and q(t),1−c(t)(yt; α̂T ) ≡ q(t),1−c(t)(yt; α)|α=α̂T
. For t = 1, 2, . . . , T , as there is no sim-

ple closed-form formula for any of p(θt|yt; α̂T ), E(θt|yt; α̂T ), mode(θt|yt; α̂T ), fT (yt),

and q(t),1−c(t)(yt; α̂T ), all of them might be evaluated numerically. Similarly, as there

is no closed formula for qT,1−cT
(y1:T ; α)|α=α̂T

(≡ qT,1−cT
(y1:T ; α̂T )), it might also be

evaluated numerically. See Appendix B for details.

3. Empirical Bayes process monitoring scheme

In this section, assume that the response vector yt0 is observed at time t0 and

that the random vector (θ′t0 , y
′
t0
)′ is independent of (θ′1:T , y′1:T )′, where t0 ∈ {T +1, T +

2, T + 3, . . .} and all of yt0 ,θt0 , θ1:T , and y1:T are defined in Section 2. Let γ denote

the false alarm rate, i.e., the probability that an out-of-control signal occurs when a
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manufacturing process is in control, where γ is a prespecified constant in (0,1). In the

literature, γ is commonly chosen as 2Φ(−3) (≈ 0.002699796), where Φ denotes the

c.d.f. of a standard normal random variable. Set Yt0 ≡ {yt0,1, yt0,2, . . . , yt0,|Yt0 |}, where

both Yt0 and |Yt0| are defined in Section 2. Recall from Section 2 that Fθt0
denotes

the prior c.d.f. of θt0 . Let F(Rk) denote the non-parametric family consisting of all

c.d.f.’s on Rk. Note that by assuming that Fθt0
is the unknown prior c.d.f. of interest

in F(Rk) rather than in some particular parametric family such as the family of all k-

variate normal distributions, we make our process monitoring scheme more general

than most of other schemes.

Let `(t0)(Fθt0
) denote the log-likelihood function of Fθt0

given yt0 . Then `(t0)(Fθt0
)

= log[f(yt0)], where f(yt0) is defined in Section 2. Note that

`(t0)

(
Fθt0

)
= log

[∫

P1

f(yt0|pt0) dFpt0
(pt0)

]

≤ log

[∫

P1

f(yt0|pt0)|pt0=yt0/nt0
dFpt0

(pt0)

]

= log
[
f(yt0|pt0)|pt0=yt0/nt0

]
,

where all of pt0 , f(yt0|pt0), and Fpt0
are defined in Section 2 and f(yt0|pt0) is maximized

if and only if pt0 = yt0/nt0 . Thus,

sup
Fθt0

∈F(Rk)

`(t0)

(
Fθt0

)
= log

[
f(yt0|pt0)|pt0=yt0/nt0

]
. (17)

When the manufacturing process is in control, the prior c.d.f. of θt0 is Φα, where

both α and Φα are defined in Section 2. Thus, to monitor the manufacturing process
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at time t0, we might be interested in testing the null hypothesis H0 : Fθt0
= Φα versus

the non-parametric alternative H1 : Fθt0
6= Φα.

In the remaining of this section, the hyperparameter vector α is assumed to be

known in Subsection 3.1 and unknown in Subsection 3.2, respectively. Note that the

reason for utilizing the LR method to monitor a manufacturing process is that the

LR test frequently has higher power when the alternative hypothesis is true, which

corresponds to good detecting power in the process monitoring when a manufacturing

process is out of control.

3.1. Known α

In this subsection, consider the Bayesian situation where the hyperparameter

vector α is known. Set `(t0)(α) ≡ `(t0)(Fθt0
)|Fθt0

=Φα . Then the LR statistic for testing

the simple null hypothesis H0 : Fθt0
= Φα versus the non-parameteric alternative

H1 : Fθt0
6= Φα is

W(t0)(α) ≡ 2

[
sup

Fθt0
∈F(Rk)

`(t0)

(
Fθt0

)− `(t0)(α)

]

= 2
{
log

[
f(yt0|pt0)|pt0=yt0/nt0

]− `(t0) (α)
}

= 2

{
k∑

i=0

yit0 log

(
yit0

nt0

)
− log [at0(α; yt0)]

}
, (18)

where 0 log(0) ≡ 0, at0(α; yt0) is defined in Section 2, and P ({0 < W(t0)(α) <

∞}; H0) = 1.

The size γ LR test with its corresponding quality control scheme for monitor-

ing the LR statistic W(t0)(α) could be constructed as follows. For s = 1, 2, . . . , |Yt0|,
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set W(t0),s(α) ≡ W(t0)(α)|yt0=yt0,s . Let (W(t0),(1)(α),W(t0),(2)(α), . . . , W(t0),(|Yt0 |)(α))

be a permutation of (W(t0),1(α),W(t0),2(α), . . . ,W(t0),|Yt0 |(α)) such that W(t0),(1)(α) ≤

W(t0),(2)(α) ≤ . . . ≤ W(t0),(|Yt0 |)(α). As W(t0)(α) is a discrete random variable, it

is nearly impossible to attain the exact false alarm rate γ if a deterministic con-

trol limit approach is used. Thus, based on the concept of randomized tests in

hypothesis testing, we propose the following randomized control limit approach.

To find the randomized upper control limit, we start accumulating P ({W(t0)(α) =

W(t0),(|Yt0 |)(α)}; H0) until we reach the first s such that P ({W(t0)(α) ≥ W(t0),(s)(α)}; H0)

> γ. Denote this s by m(t0)(α) and set RUCL(t0)(α) ≡ W(t0),(m(t0)(α))(α). If P ({W(t0)(α)

> RUCL(t0)(α)}; H0) = γ, which is very unlikely, then there is no need for ran-

domization and set γRUCL,(t0)(α) = 0; otherwise, we need to find the randomization

probability γRUCL,(t0)(α) ∈ (0, 1).

Specifically, we have

m(t0)(α) = max
{
s : P

({
W(t0)(α) ≥ W(t0),(s)(α)

}
; H0

)
> γ

}
, (19)

RUCL(t0)(α) = W(t0),(m(t0)(α))(α), (20)

and

γRUCL,(t0)(α) =
γ − P ({W(t0)(α) > RUCL(t0)(α)}; H0)

P ({W(t0)(α) = RUCL(t0)(α)}; H0)
. (21)

Finally, the monitoring scheme for the manufacturing process at time t0 is pro-

posed as follows. If W(t0)(α) > RUCL(t0)(α), then we reject H0 and declare that

the process is out of control; if W(t0)(α) < RUCL(t0)(α), then we accept H0 and

13



declare that the process is in control; if W(t0)(α) = RUCL(t0)(α), then with prob-

ability γRUCL,(t0)(α) we reject H0 and declare that the process is out of control or,

equivalently, with probability 1 − γRUCL,(t0)(α) we accept H0 and declare that the

process is in control, where the randomization could be done by any random number

generator or table.

However, it is possible that |Yt0| is very large at time t0 in a manufacturing pro-

cess, e.g., |Yt0| = 82, 408, 626, 300 if nt0 = 200 and k = 6. In such a situation, it takes

too much time to perform the previous size γ LR test. Thus, by a simulation, an

approximate size γ LR test with its corresponding quality control scheme for mon-

itoring the LR statistic W(t0)(α) could be constructed as follows. First generate an

i.i.d. sample {(θ∗′1,1, y
∗′
t0,1)

′
, (θ∗

′
1,2, y

∗′
t0,2)

′
, . . . , (θ∗

′
1,r, y

∗′
t0,r)

′} of size r for some large positive

integer r, e.g., r = 100, 000, such that θ∗1,s ∼ Φα and y∗t0,s|θ∗1,s ∼ Fyt0 |θt0
|θt0=θ∗1,s

for s =

1, 2, . . . , r. For s = 1, 2, . . . , r, set W ∗
(t0),r,s

(α) ≡ W(t0)(α)|yt0=y∗t0,s
. Let (W ∗

(t0),r,(1)(α),

W ∗
(t0),r,(2)(α), . . . , W ∗

(t0),r,(r)(α)) be a permutation of (W ∗
(t0),r,1(α),W ∗

(t0),r,2(α), . . . , W ∗
(t0),r,r(α))

such that W ∗
(t0),r,(1)(α) ≤ W ∗

(t0),r,(2)(α) ≤ . . . ≤ W ∗
(t0),r,(r)(α). Set m∗

(t0),r(α) ≡ [r(1 −

γ)] + 1 and

RUCL∗(t0),r(α) ≡ W(t0),r,(m∗
(t0),r

(α))(α), (22)

where [r(1 − γ)] denotes the largest integer less than or equal to r(1 − γ), e.g.,

m∗
(t0),r(α) = 99, 731 if r = 100, 000 and γ = 2Φ(−3). Let m∗

L,(t0),r(α),m∗
U,(t0),r(α) ∈

14



{1, 2, . . . , r} such that

W ∗
(t0),r,(m∗

L,(t0),r
(α)−1)(α) < W ∗

(t0),r,(m∗
L,(t0),r

(α))(α) = RUCL∗(t0),r(α)

= W ∗
(t0),r,(m∗

U,(t0),r
(α))(α) < W ∗

(t0),r,(m∗
U,(t0),r

(α)+1)(α),

where W ∗
(t0),r,(0)(α) ≡ 0 and W ∗

(t0),r,(r+1)(α) ≡ ∞. Set

γ∗RUCL,(t0),r(α) ≡
γ − [r −m∗

U,(t0),r(α)]/r

[m∗
U,(t0),r(α)−m∗

L,(t0),r(α) + 1]/r
=

rγ − r + m∗
U,(t0),r(α)

m∗
U,(t0),r(α)−m∗

L,(t0),r(α) + 1
.

(23)

Finally, the monitoring scheme for the manufacturing process at time t0 is pro-

posed as follows. If W(t0)(α) > RUCL∗(t0),r(α), then we reject H0 and declare that

the process is out of control; if W(t0)(α) < RUCL∗(t0),r(α), then we accept H0 and

declare that the process is in control; if W(t0)(α) = RUCL∗(t0),r(α), then with prob-

ability γ∗RUCL,(t0),r(α) we reject H0 and declare that the process is out of control or,

equivalently, with probability 1 − γ∗RUCL,(t0),r(α) we accept H0 and declare that the

process is in control.

Note that under H0, both RUCL∗(t0),r(α)−RUCL(t0)(α) and γ∗RUCL,(t0),r(α)−γRUCL,(t0)(α)

converge to 0 with probability one as r → ∞, where the rate of convergence for the

latter is much slower than that for the former as r → ∞. Thus, this test converges

to the previous size γ LR test as r →∞.

3.2. Unknown α

In this subsection, consider the EB situation where the hyperparameter vec-

tor α is unknown. Set y1:T,t0 ≡ (y′1:T , y′t0)
′. Then the LR statistic for testing the

15



parameteric null hypothesis H0 : Fθt0
= Φα versus the non-parameter alternative H1 :

Fθt0
6= Φα is

WT,(t0) ≡ 2

{
sup

α∈A,Fθt0
∈F(Rk)

[
`T (α) + `(t0)

(
Fθt0

)]− sup
α∈A

[
`T (α) + `(t0) (α)

]
}

= 2
{
`T (α̂T ) + log

[
f(yt0|pt0)|pt0=yt0/nt0

]− `T

(
α̂T,(t0)

)− `(t0)

(
α̂T,(t0)

)}
,

(24)

where all of A, `T (α), and α̂T are defined in Section 2, α̂T,(t0) denotes the MLE of α

given y1:T,t0 under H0, and P ({0 < WT,(t0) < ∞}; H0) = 1. For simplicity of notation,

set S(t0)(α) ≡ ∂`(t0)(α)/∂α and J(t0)(α) ≡ −∂S(t0)(α)/∂α
′
.

Note that given y1:T,t0 , the MLE α̂T,(t0) of α solves the score equation ST (α) +

S(t0)(α) = 0k(k+3)/2×1, i.e., [ST (α) + S(t0)(α)]|α=α̂T,t0
(≡ ST (α̂T,(t0)) + S(t0)(α̂T,(t0)))

= 0k(k+3)/2×1. One way to numerically evaluate α̂T,(t0) is to utilize the following

Newton-Raphson method. First choose α̂T as the initial value α̂
(0)
T,(t0) for α̂T,(t0) and

then iterate the following equations

α̂
(u+1)
T,(t0) = α̂

(u)
T,(t0) +

{[
JT (α) + J(t0)(α)

]∣∣
α=α̂

(u)
T,(t0)

}−1 [
ST (α) + S(t0)(α)

]∣∣
α=α̂

(u)
T,(t0)

for u = 0, 1, 2, . . . until α̂
(u)
T,(t0) converges to α̂T,(t0).

Set W(t0)(α̂T ) ≡ W(t0)(α)|α=α̂T
and

ŴT,(t0) ≡ max
{

0,W(t0) (α̂T )− S ′(t0) (α̂T )
[
JT (α̂T ) + J(t0) (α̂T )

]−1
S(t0) (α̂T )

}
, (25)

where W(t0)(α) is defined in Subsection 3.1, P ({0 < W(t0)(α̂T ) < ∞}; H0) = 1,
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and P ({0 ≤ ŴT,t0 < ∞}; H0) = 1. Then under H0,

WT,(t0) = ŴT,(t0) + Op

(
T−2

)
= W(t0) (α̂T ) + Op

(
T−1

)
= W(t0) (α) + Op

(
T−1/2

)
(26)

as T →∞. See Appendix c for details.

In the following, let α̃T,(t0) denote either α̂T or α̂T,(t0) and let W̃T,(t0) denote any

of WT,(t0), ŴT,(t0), and W(t0)(α̂T ). Then under H0, both α̃T,(t0) − α and W̃T,(t0) −

W(t0)(α) are Op(T
−1/2) as T →∞.

As the hyperparameter vector α is unknown and (
∏T

t=1 |Yt|)|Yt0|, the number of

the elements in (
∏T

t=1 Yt)×Yt0 , is generally very large, it is nearly impossible to per-

form the size γ LR test for testing the parameteric null hypothesis H0 : Fθt0
= Φα ver-

sus the non-parameteric alternative H1 : Fθt0
6= Φα. Thus, by a simulation, an

approximate size γ LR test with its corresponding quality control scheme for mon-

itoring the (approximate) LR statistic W̃T,(t0) could be constructed as follows. For s =

1, 2, . . . , |Yt0|, set W̃T,(t0),s ≡ W̃T,(t0)|yt0=yt0,s . Let (W̃T,(t0),(1), W̃T,(t0),(2), . . . , W̃T,(t0),(|Yt0 |))

be a permutation of (W̃T,(t0),1, W̃T,(t0),2, . . . , W̃T,(t0),|Yt0 |) such that W̃T,(t0),(1) ≤ W̃T,(t0),(2)

≤ . . . ≤ W̃T,(t0),(|Yt0 |). Set

m̃U,T,(t0) ≡ max
{

s : P
({

W̃T,(t0) ≥ W̃T,(t0),(s)

}∣∣∣ y1:T ; H0

)
|α=α̃T,(t0)

> γ
}

,

˜RUCLT,(t0) ≡ W̃T,(t0),(m̃U,T,(t0)), (27)

and

γ̃RUCL,T,(t0) ≡
γ − P ({W̃T,(t0) > ˜RUCLT,(t0)}|y1:T ; H0)|α=α̃T,(t0)

P ({W̃T,(t0) = ˜RUCLT,(t0)}|y1:T ; H0)|α=α̃T,(t0)

. (28)
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Finally, the monitoring scheme for the manufacturing process at time t0 is pro-

posed as follows. If W̃T,(t0) > ˜RUCLT,(t0), then we reject H0 and declare that the

process is out of control; if W̃T,(t0) < ˜RUCLT,(t0), then we accept H0 and declare that

the process is in control; if W̃T,(t0) = ˜RUCLT,(t0), then with probability γ̃RUCL,T,(t0) we

reject H0 and declare that the process is out of control or, equivalently, with proba-

bility 1− γ̃RUCL,T,(t0) we accept H0 and declare that the process is in control.

Note that under H0, W̃T,(t0) −W(t0)(α) = Op(T
−1/2) as T → ∞. Thus, this test

approximates the size γ LR test in Subsection 3.1 well for large positive integer T .

Similarly, it is possible that |Yt0| is very large at time t0 in a manufacturing pro-

cess, e.g., |Yt0| = 82, 408, 626, 300 if nt0 = 200 and k = 6. In such a situation, it takes

too much time to perform the previous approximate size γ LR test. Thus, by a simula-

tion, an alternative approximate size γ LR test with its corresponding quality control

scheme for monitoring the (approximate) LR statistic W̃T,(t0) could be constructed

as follows. First generate an i.i.d. sample {(θ̃∗′1,1, ỹ
∗′
t0,1)

′
, (θ̃∗

′
1,2, ỹ

∗′
t0,2)

′
, . . . , (θ̃∗

′
1,r, ỹ

∗′
t0,r)

′} of

size r for some large positive integer r, e.g., r = 100, 000, such that θ̃∗1,s ∼ Φα|α=α̃T,(t0)

(≡ Φα̃T,(t0)
) and ỹ∗t0|θ̃∗1,s ∼ Fyt0 |θt0

|θt0=θ̃∗1,s
for s = 1, 2, . . . , r. For s = 1, 2, . . . , r,

set W̃ ∗
T,(t0),r,s ≡ W̃T,(t0)|yt0=ỹ∗t0,s

. Let (W̃ ∗
T,(t0),r,(1), W̃

∗
T,(t0),r,(2), . . . , W̃

∗
T,(t0),r,(r)) be a per-

mutation of (W̃ ∗
T,(t0),r,1, W̃

∗
T,(t0),r,2, . . . , W̃

∗
T,(t0),r,r) such that W̃T,(t0),r,(1) ≤ W̃T,(t0),r,(2)

≤ . . . ≤ W̃T,(t0),r,(r). Set m̃∗
T,(t0),r ≡ [r(1− γ)] + 1 and

˜RUCL
∗
T,(t0),r ≡ W̃ ∗

T,(t0),(m̃∗
T,(t0),r

), (29)
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where [r(1 − γ)] denotes the largest integer less than or equal to r(1 − γ), e.g.,

m̃∗
T,(t0),r = 99, 731 if r = 100, 000 and γ = 2Φ(−3). Let m̃∗

L,T,(t0),r(α), m̃∗
U,T,(t0),r(α) ∈

{1, 2, . . . , r} such that

W̃ ∗
T,(t0),(m̃L,T,(t0),r−1) < W̃ ∗

T,(t0),(m̃L,T,(t0),r) = ˜RUCL
∗
T,(t0),r

= W̃ ∗
T,(t0),(m̃U,T,(t0),r) < W̃ ∗

T,(t0),(m̃U,T,(t0),r+1),

where W̃T,(t0),(0) ≡ −1 and W̃T,(t0),(r+1) ≡ ∞. Set

γ̃∗RUCL,T,(t0),r ≡
γ − (r − m̃∗

U,T,(t0),r)/r

(m̃∗
U,T,(t0),r − m̃∗

L,T,(t0),r + 1)/r
=

rγ − r + m̃∗
U,T,(t0),r

m̃∗
U,T,(t0),r − m̃∗

L,T,(t0),r + 1
. (30)

Finally, the monitoring scheme for the manufacturing process at time t0 is pro-

posed as follows. If W̃T,(t0) > ˜RUCL
∗
T,(t0),r, then we reject H0 and declare that the pro-

cess is out of control; if W̃T,(t0) < ˜RUCL
∗
T,(t0),r, then we accept H0 and declare that the

process is in control; if W̃T,(t0) = ˜RUCL
∗
T,(t0),r, then with probability γ̃∗RUCL,T,(t0),r we

reject H0 and declare that the process is out of control or, equivalently, with proba-

bility 1− γ̃∗RUCL,T,(t0),r we accept H0 and declare that the process is in control.

Note that both ˜RUCL
∗
T,(t0),r− ˜RUCLT,(t0) and γ̃∗RUCL,T,(t0),r−γ̃RUCL,T,(t0) converge

to 0 with probability one as r → ∞, where the rate of convergence for the latter is

much slower than that for the former as r → ∞. Thus, this test converges to the

previous approximate size γ LR test as r →∞.

4. Simulation study

In order to study the performance of this quality control scheme, we compute

the average run length (ARL). The in-control ARL, denoted by ARL0, is the average
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number of times to get an out-of-control signal when the manufacturing process is in

control. The out-of-control ARL, denoted by ARL1, is the average number of times

to get an out-of-control signal when the manufacturing process is out of control. If

the false alarm rate is γ, then ARL0 = 1/γ, e.g., ARL0 ≈ 370.3983 if γ = 2Φ(−3).

To calculate the ARL1, first of all, find both the randomized upper control

limit RUCL(t0)(α) and the randomization probability γRUCL,(t0)(α). Next, simulate

an i.i.d. sample {(θ∗′1,1, y
∗′
t0,1)

′, . . . , (θ∗
′

1,r, y
∗′
t0,r)

′} of size r for some large positive inte-

ger r, e.g., r = 100, 000, such that θ∗1,s ∼ Fθt0
and y∗t0,s|θ∗1,s ∼ Fyt0 |θt0

|θt0=θ∗1,s
for s =

1, 2, . . . , r, where Fθt0
6= Φα. For s = 1, 2, . . . , r, set W ∗

(t0),r,s(α) ≡ W(t0)(α)|yt0=y∗t0 ,s.

Let (W ∗
(t0),r,(1)(α),W ∗

(t0),r,(2)(α), . . . ,W ∗
(t0),r,(r)(α)) be a permutation of (W ∗

(t0),r,1(α),W ∗
(t0),r,2(α),

. . . , W ∗
(t0),r,r(α)) such that W ∗

(t0),r,(1)(α) ≤ W ∗
(t0),r,(2)(α) ≤ . . . ≤ W ∗

(t0),r,(r)(α). Let

m∗
L,(t0),r(α), m∗

U,(t0),r(α) ∈ {1, 2, . . . , r} such that

W ∗
(t0),r,(m∗

L,(t0),r
−1)(α) < RUCL(t0)(α) ≤ W ∗

(t0),r,(m∗
U,(t0),r

+1)(α)

and

W ∗
(t0),r,(m∗

U,(t0),r
)(α) ≤ RUCL(t0)(α) < W ∗

(t0),r,(m∗
U,(t0),r

+1)(α),

where W ∗
(t0),r,(0)(α) ≡ 0 and W ∗

(t0),r,(r+1)(α) ≡ ∞. Set

Pout,(t0),r(α) ≡
r −m∗

U,(t0),r(α) + γ[m∗
U,(t0),r(α)−m∗

L,(t0),r(α) + 1]

r
.

Then Pout,(t0),r(α) converges to the out-of-control probability as r → ∞ when the

manufacturing process is out of control. Thus, 1/Pout,(t0),r(α) → ARL1 as r →∞.
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Just for the illustration purpose, the following tables give the randomized upper

control limit RUCL(t0)(α) and its randomization probability γRUCL,(t0)(α) for various

α’s and nt0 ’s for k = 2.

Set p
(0)
1 ≡ (p

(0)
11 , . . . , p

(0)
k1 )′, p

(0)
1,L ≡ (p

(0)
11,L, . . . , p

(0)
k1,L)′, p

(0)
1,U ≡ (p

(0)
11,U , . . . , p

(0)
k1,U)′,

p
(0)
01 ≡ 1 − ∑k

i=1 p
(0)
i1 , µ ≡ (log(p

(0)
11 /p

(0)
01 ), . . . , log(p

(0)
k1 /p

(0)
01 ))′, σi ≡ [log(p

(0)
i1,U/p

(0)
01,L) −

log(p
(0)
i1,L/p

(0)
01,U)]/2 for i = 1, . . . , k, and Σuv ≡ ρuvσuσv for u, v = 1, . . . , k, where p

(0)
1 ∈

P1, 0 < p
(0)
i1,L < p

(0)
i1 < p

(0)
i1,U < 1, −1 < ρuv < 1, and Σ ≡ (Σuv) is a positive definite

matrix.

Table 1: p
(0)
(01), p

(0)
01,L, p

(0)
01,U , and ρ

p
(0)
01 p

(0)
01,L p

(0)
01,U ρ

Case 1 0.85 0.80 0.90 0.3
Case 2 0.80 0.75 0.85 0.3
Case 3 0.70 0.65 0.75 0.3
Case 4 0.60 0.55 0.65 0.3
Case 5 0.50 0.45 0.55 0.3

Table 2: p
(0)
1 , p

(0)
1,L, and p

(0)
1,U

p
(0)
1 p

(0)
1,L = (p

(0)
11,L, p

(0)
21,L)′ p

(0)
1,U = (p

(0)
11,U , p

(0)
21,U)′

Case 1 (0.10, 0.05)′ (0.05, 0.025)′ (0.15, 0.075)′

Case 2 (0.15, 0.05)′ (0.05, 0.025)′ (0.20, 0.075)′

Case 3 (0.20, 0.10)′ (0.15, 0.075)′ (0.25, 0.125)′

Case 4 (0.30, 0.10)′ (0.20, 0.075)′ (0.35, 0.125)′

Case 5 (0.30, 0.20)′ (0.20, 0.150)′ (0.35, 0.250)′
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Table 3: α

α
Case 1 (−2.1401,−2.8332, 2.9708,−0.8912, 2.9708)′

Case 2 (−1.6740,−2.7726, 1.9241,−0.7129, 2.9350)′

Case 3 (−1.2528,−1.9459, 10.279,−3.0838, 10.279)′

Case 4 (−0.6931,−1.7918, 8.3242,−2.6770, 9.5656)′

Case 5 (−0.5108,−0.9163, 7.6044,−2.4378, 8.6831)′

Table 4: RUCL(t0)(α)

nt0 = 20 nt0 = 30 nt0 = 50 nt0 = 100
Case 1 11.1625 12.3359 12.9654 14.3988
Case 2 12.1689 12.5600 13.3028 14.8388
Case 3 12.6104 12.6891 12.9089 13.5552
Case 4 12.7874 12.7396 13.2475 13.8787
Case 5 13.1051 13.2070 13.5308 14.1464

Table 5: γRUCL,(t0)(α)

nt0 = 20 nt0 = 30 nt0 = 50 nt0 = 100
Case 1 0.0705 0.7295 0.3479 0.5085
Case 2 0.3745 0.4376 0.7363 0.6736
Case 3 0.6094 0.8320 0.3054 0.5559
Case 4 0.8804 0.4088 0.2596 0.1560
Case 5 0.9361 0.5732 0.4771 0.8717
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5. Conclusions and possible generalizations

In the paper, the normal-binomial or -multinomial model rather than the beta-

binomial or Dirichlet-multinomial model in Chen et al. (2004) is used for manufac-

turing categorical data. Then the EB inference for manufacturing categorical data is

discussed. Finally, utilizing the LR method, an EB process monitoring technique for

manufacturing categorical data is proposed to monitor the process whether it is in

control or not.

In the paper, we assume that the transformed random parameter vectors are

i.i.d. normal when the manufacturing process is in control. However, in practice they

are usually correlated and stationary rather than independent. What we want to

do next is to consider the correlated and stationary normal case, e.g., the vector

autoregressive (VAR) models, or the vector moving average (VMA) models, or the

vector autoregressive moving average (VARMA) models.

Appendix A

For t = 1, 2, . . . , T , set

θ̂
(0)
t ≡

(
log

(
y1t + 1/2

y0t + 1/2

)
, . . . , log

(
ykt + 1/2

y0t + 1/2

))′
,

µ̂
(0)
T ≡ 1

T

T∑
t=1

θ̂
(0)
t ,

and

Σ̂
(0)
T ≡ 1

T − 1

T∑
t=1

(
θ̂

(0)
t − µ̂

(0)
T

)(
θ̂

(0)
t − µ̂

(0)
T

)′
.

Then α̂
(0)
T ≡ α|

µ=µ̂
(0)
T ,Σ=Σ̂

(0)
T

is an MME of α given y1:T
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Appendix B

One way to numerically evaluate all of p(θt|yt; α̂T ), E(θt|yt; α̂T ), and fT (yt) for

t = 1, 2, . . . , T is to perform the following simulation. Let t ∈ {1, 2, . . . , T} be fixed.

First simulate an i.i.d. sample {θ∗1,1, θ
∗
1,2, . . . , θ

∗
1,r} of size r from Φα̂T

for some large

positive integer r, e.g., r = 100, 000. Set θ∗1,s ≡ (θ∗11,s, . . . , θ
∗
k1,s)

′ for s = 1, 2, . . . , r.

Next, compute

a∗t,r(α̂T ; yt) ≡ 1

r

r∑
s=1

exp(y′t θ
∗
1,s)

[1 +
∑k

i=1 exp(θ∗i1,s)]
nt

,

p∗r(θt|yt; α̂T ) ≡ exp(y′t θt)

[1 +
∑k

i=1 exp(θit)]nt

· exp[−(θt − µ̂T )′ Σ̂−1
T (θt − µ̂T )/2]

(2π)k/2 |Σ̂T |1/2 a∗t,r(α̂T ; yt)
,

E∗
r (θt|yt; α̂T ) ≡ 1

a∗t,r(α̂T ; yt)
· 1

r

r∑
s=1

exp(y′t θ
∗
1,s)

[1 +
∑k

i=1 exp(θ∗i1,s)]
nt

· θ∗1,s,

and

f ∗T,r(yt) ≡ 1Yt(yt) · nt!∏k
i=0 yit!

· a∗t,r(α̂T ; yt)

for t = 1, 2, . . . , T , where µ̂T ≡ µ|α=α̂T
and Σ̂T ≡ Σ|α=α̂T

. Then for t = 1, 2, . . . , T ,

all of p∗r(θt|yt; α̂T ) − p(θt|yt; α̂T ), E∗
r (θt|yt; α̂T ) − E(θt|yt; α̂T ), and f ∗T,r(yt) − f̂T (yt)

converge to 0 with probability one as r →∞.

A quicker way to numerically evaluate all of p(θt|yt; α̂T ), E(θt|yt; α̂T ), and f̂T (yt)

for t = 1, 2, . . . , T is to use the following multivariate Gauss-Hermite integration
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method. Compute

ãt,m(α̂T ; yt) ≡ π−k/2

m1∑
u1=1

w(1)
u1
· · ·

mk∑
uk=1

w(k)
uk
· exp(y′t θ̃u)

[1 +
∑k

j=1 exp(θ̃uj
)]nt

,

p̃m(θt|yt; α̂T ) ≡ exp(y′t θt)

[1 +
∑k

i=1 exp(θit)]nt

· exp[−(θt − µ̂T )′ Σ̂−1
T (θt − µ̂T )/2]

(2π)k/2 |Σ̂T |1/2 ãt,m(α̂T ; yt)
,

Ẽm(θt|yt; α̂T ) ≡ π−k/2

ãt,m(α̂T ; yt)
·

m1∑
u1=1

w(1)
u1
· · ·

mk∑
uk=1

w(k)
uk
· exp(y′t θ̃u)

[1 +
∑k

j=1 exp(θ̃uj
)]nt

· θ̃u,

and

˜̂
fm(yt) ≡ 1Yt(yt) · nt!∏k

i=0 yit!
· ãt,m(α̂T ; yt)

for t = 1, 2, . . . , T , where m ≡ (m1, . . . , mk), u ≡ (u1, . . . , uk), θ̃u ≡ (θ̃u1 , . . . , θ̃uk
)′ ≡

√
2Σ̂

1/2
T xu + µ̂T , xu ≡ (x

(1)
u1 , . . . , x

(k)
uk )′, x

(j)
uj denotes the ujth zero of the Hermite poly-

nomial with degree mj, and w
(j)
uj denotes the corresponding weight for x

(j)
uj . Then

for t = 1, 2, . . . , T , all of p̃m(θt|yt; α̂T ) − p(θt|yt; α̂), Ẽm(θt|yt; α̂T ) − E(θt|yt; α̂T ),

and
˜̂
fT,m(yt)− f̂T (yt) converge to 0 as min{m1, . . . ,mk} → ∞.

One way to numerically evaluate qT,1−cT
(y1:T ; α̂T ) is to perform the following

simulation. First simulate an i.i.d. sample {θ̃1:T,1, θ̃1:T,2, . . . , θ̃1:T,r} of size r from

p(θ1:T |y1:T ; α)|α=α̂T
(≡ p(θ1:T |y1:T ; α̂T )) by the rejection method for some large positive

integer r, e.g., r = 100, 000. For s = 1, 2, . . . , r, set θ̃1:T,s ≡ (θ̃′1,s, θ̃
′
2,s, . . . , θ̃′T,s)

′

where θ̃t,s ≡ (θ̃1t,s, . . . , θ̃kt,s)
′ for t = 1, 2, . . . , T . Compute p(θ1:T |y1:T ; α̂T )|θ1:T =θ̃1:T,s

(≡

p(θ̃1:T,s|y1:T ; α̂T )) for s = 1, 2, . . . , r. Let (θ̃1:T,(1), θ̃1:T,(2), . . . , θ̃1:T,(r)) be a permutation

of (θ̃1:T,1, θ̃1:T,2, . . . , θ̃1:T,r) such that p(θ̃1:T,(1)|y1:T ; α̂T ) ≤ p(θ̃1:T,(2)|y1:T ; α̂T ) ≤ . . . ≤

p(θ̃1:T,(r)|y1:T ; α̂T ). Set q̃T,1−cT ,r(y1:T ; α̂T ) ≡ p(θ̃1:T,([rc])|y1:T ; α̂T ), where [rc] denotes the
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largest integer less than or equal to rc, e.g., [rc] = 5, 000 if r = 100, 000 and c = 0.05.

Then q̃T,1−cT ,r(y1:T ; α̂T ) → qT,1−cT
(y1:T ; α̂T ) with probability one as r →∞.

Similarly, one way to numerically evaluate q(t),1−c(t)(yt; α̂T ) for t = 1, 2, . . . , T is

to perform the following simulation. Let t ∈ {1, 2, . . . , T} be fixed. First simu-

late an i.i.d. sample {θ̃t,1, θ̃t,2, . . . , θ̃t,r} of size r from p(θt|yt; α̂T ) by the rejection

method for some large positive integer r, e.g., r = 100, 000. For s = 1, 2, . . . , r,

set θ̃t,s ≡ (θ̃1t,s, . . . , θ̃kt,s)
′. Compute p(θt|yt; α)|θt=θ̃t,s,α=α̂T

(≡ p(θ̃t,s|yt; α̂T )) for s =

1, 2, . . . , r. Let (θ̃t,(1), θ̃t,(2), . . . , θ̃t,(r)) be a permutation of (θ̃t,1, θ̃t,2, . . . , θ̃t,r) such

that p(θ̃t,(1)|yt; α̂T ) ≤ p(θ̃t,(2)|yt; α̂T ) ≤ . . . ≤ p(θ̃t,(r)|yt; α̂T ). Set q̃(t),1−c(t),r(yt; α̂T ) ≡

p(θ̃t,([rc])|yt; α̂T ), where [rc] denotes the largest integer less than or equal to rc, e.g.,

[rc] = 5, 000 if r = 100, 000 and c = 0.05. Then q̃(t),1−c(t),r(yt; α̂T ) → q(t),1−c(t)(yt; α̂T )

with probability one as r →∞.

Appendix C

Under H0, it follows from the Taylor series expansion that

0 = ST

(
α̂T,(t0)

)
+ S(t0)

(
α̂T,(t0)

)

≈ S(t0) (α̂T )− [
JT (α̂T ) + J(t0) (α̂T )

] (
α̂T,(t0) − α̂T

)

as T →∞, which implies that

α̂T,(t0) − α̂T ≈
[
JT (α̂T ) + J(t0) (α̂T )

]−1
S(t0) (α̂T )

as T →∞. Thus, under H0,

α̂T,(t0) = α̂T + Op(T
−1) = α + Op(T

−1/2)
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as T →∞. Observe that under H0,

`T

(
α̂T,(t0)

)
+ `(t0)

(
α̂T,(t0)

)− `T (α̂T )

= `(t0) (α̂T ) + S ′(t0) (α̂T )
(
α̂T,(t0) − α̂T

)

−1

2

(
α̂T,(t0) − α̂T

)′ [
JT (α̂T ) + J(t0) (α̂T )

] (
α̂T,(t0) − α̂T

)
+ Op

(
T−2

)

= `(t0) (α̂T ) +
1

2
S ′(t0) (α̂T )

[
JT (α̂T ) + J(t0) (α̂T )

]−1
S(t0) (α̂T ) + Op

(
T−2

)

= `(t0) (α̂T ) + Op

(
T−1

)

= `(t0) (α) + Op

(
T−1/2

)

as T →∞. Thus, equation (26) holds.
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Table 6: The sample standard error vector(SD), and the sample mean squared error
vector(MSE) of α̂MM ’s, with different α’s, T ’s, and n1 = n2 = . . . = nT .

(−2.1401,−2.8332, 2.9708,−0.8912, 2.9708)′

T = 100, n1 = 20, SD (0.0886, 0.0842, 0.0967, 0.0757, 0.0689)′

T = 100, n1 = 20, MSE (0.0109, 0.0520, 2.6332, 0.4141, 2.1658)′

T = 100, n1 = 40, SD (0.8118, 0.0868, 0.1101, 0.0727, 0.0903)′

T = 100, n1 = 40, MSE (0.0066, 0.0101, 1.9750, 0.4037, 2.4135)′

T = 200, n1 = 20, SD (0.0630, 0.0598, 0.0685, 0.0531, 0.0176)′

T = 200, n1 = 20, MSE (0.0070, 0.0484, 2.6694, 0.4033, 2.2012)′

(−1.6740,−2.7726, 1.9241,−0.7129, 2.9350)′

T = 100, n1 = 20, SD (0.0951, 0.0847, 0.1305, 0.0849, 0.0721)′

T = 100, n1 = 20, MSE (0.2514, 0.08473.2384, 0.3662, 2.1598)′

T = 100, n1 = 40, SD (0.0899, 0.0863, 0.1320, 0.0816, 0.0923)′

T = 100, n1 = 40, MSE (0.2281, 0.0222, 2.6874, 0.3777, 2.4238)′

T = 200, n1 = 20, SD (0.0679, 0.0597, 0.0916, 0.0592, 0.0499)′

T = 200, n1 = 20, MSE (0.2478, 0.0817, 3.2858, 0.3599, 2.1909)′

(−1.2528,−1.9459, 10.2792,−3.0838, 10.2792)′

T = 100, n1 = 20, SD (0.0679, 0.0780, 0.0844, 0.0547, 0.0851)′

T = 100, n1 = 20, MSE (0.7904, 0.8418, 0.5768, 0.3032, 1.6477)′

T = 100, n1 = 40, SD (0.05261, 0.0660, 0.0510, 0.0365, 0.0814)′

T = 100, n1 = 40, MSE (0.7888, 0.7871, 1.2448, 0.1902, 0.4421)′

T = 200, n1 = 20, SD (0.0481, 0.0555, 0.0603, 0.392, 0.0603)′

T = 200, n1 = 20, MSE (0.7877, 0.8378, 0.5479, 0.2822, 1.6795)′
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Figure 1: The histograms of µ̂1,MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT .
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Figure 2: The histograms of µ̂2,MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT .
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Figure 3: The histograms of ρ̂MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and ρ = 0.3.
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Figure 4: The histograms of log[(1 + ρ̂MM)/(1− ρ̂MM)]’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and log[(1+ρ)/(1−ρ)] =
0.619.
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Figure 5: The histograms of σ̂1,MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and σ1 = 0.608.
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Figure 6: The histograms of log( ˆσ1,MM)’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and log(σ1) = −0.497.
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Figure 7: The histograms of σ̂2,MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and σ2 = 0.608.
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Figure 8: The histograms of log( ˆσ2,MM)’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ where n1 = n2 = . . . = nT and log(σ2) = −0.497.
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Figure 9: The Q-Q plots of α̂MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′, where n1 = n2 = . . . = nT = 20 and T = 100.
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Figure 10: The Q-Q plots of α̂MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′, where n1 = n2 = . . . = nT = 40 and T = 100.

−4 −2 0 2 4
−2.5

−2

−1.5

Standard Normal Quantiles

µ
1

−4 −2 0 2 4
−3.5

−3

−2.5

−2

Standard Normal Quantiles

µ
2

−4 −2 0 2 4
0.5

1

1.5

Standard Normal Quantiles

σ
1

−4 −2 0 2 4
−1

−0.5

0

0.5

Standard Normal Quantiles

lo
g

(σ
1
)

−4 −2 0 2 4
0.5

1

1.5

Standard Normal Quantiles

σ
2

−4 −2 0 2 4
−0.5

0

0.5

Standard Normal Quantiles

lo
g

(σ
2
)

−4 −2 0 2 4
−0.5

0

0.5

1

Standard Normal Quantiles

ρ

−4 −2 0 2 4
−1

0

1

2

Standard Normal Quantiles

lo
g

(1
+

ρ
)−

lo
g

(1
−

ρ
)

35



Figure 11: The Q-Q plots of α̂MM ’s for 10, 000 samples and α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′, where n1 = n2 = . . . = nT = 20 and T = 200.
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Figure 12: The control chart of W(t0)(α)’s with true distribution is Φα for α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ and nt = 20 and the generation distribution is Φα1

for α1 = (−0.51,−0.92, 7.60,−2.44, 8.68)′.
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Figure 13: The control chart of W(t0)(α)’s with true distribution is Φα for α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ and nt = 20 and the generation distribution is
Dirichlet(7,2,1).
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Figure 14: The control chart of W(t0)(α)’s with true distribution is Φα for α =
(−2.14,−2.83, 2.97,−0.89, 2.97)′ and nt = 20 and the generation distribution is also
Φα.
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