1. Introduction

When a product item is tested, we usually have more information than just pass
or fail, e.g., pass or fail low or fail high. When the measurement of each tested product
item is recorded as exactly one element in some known set consisting of k+1 elements,
the data are called either binary for k£ = 1 or polytomous for £ = 2,3,4,.... In the
paper, categorical data denote either binary data or polytomous data. See, e.g.,
Agresti (2002) for the categorical data analysis.

In the Bayesian framework, it is assumed that the prior distribution of the un-
known random parameter vector is known. In practice, it is usually a non-trivial task
to find an appropriate prior distribution fer the unknown random parameter vector.
Thus, an empirical Bayes (EB) approach is‘comimonly used instead of a Bayesian
approach in the literature. In‘contrast.with the Bayesian inference, the EB inference
utilizes the observed data to estimate the unknown hyperparameter vector in the
prior distribution and then proceeds to do the standard Bayesian inference as if the
estimated prior distribution were the true prior one.

Using an EB approach to monitoring a manufacturing process is not entirely new.
For example, utilizing the estimated posterior distributions of the random parameters
given the data, Yousry et al. (1991) used the beta-binomial model for manufacturing
binary data to judge whether a manufacturing process was in control or not. Recently,
to judge wether a manufacturing process was in control or not, Shiau et al. (2004)

used the Dirichlet-multinomial model for manufacturing polytomous data utilizing the



estimated marginal distributions of the data, and Chen et al. (2004) used the beta-
binomial or Dirichlet-multinomial model for manufacturing categorical data utilizing
the likelihood ratio (LR) method.

To proceed the discussion, first of all, we briefly introduce the Bayesian infer-
ence as follows. In the Bayesian framework, it is assumed that the unknown random
parameter vector # has the known prior probability density function (p.d.f.) or prob-
ability mass function (p.m.f.) 7(¢) with the known parameter space © and that the
observed response vector y given  has the known conditional p.d.f. or p.m.f. f(y|0).

Then the Bayesian inference is based on the posterior p.d.f. or p.m.f.,
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of 6 given y. When the posterior mean,
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of # given y exists, it minimizes E(() — 0)'(§ — #)|y) among all estimates 0. In the
literature, it is common practice to estimate 6 by either E(f|y) or the posterior mode,
mode(f|y), of 6 given y. See, e.g., Gelman et al. (2003) for the Bayesian data analysis.

Next, we briefly introduce the EB inference as follows. In the EB framework, it
is assumed that the unknown random parameter vector 6 has the prior p.d.f. or p.m.f.
7(0; ), a known function of both # and an unknown hyperparameter vector «, with
the known parameter space © and that the observed response vector y given 6 has
the known conditional p.d.f. or p.m.f. f(y|¢). Then the EB inference is based on the

2



estimated posterior p.d.f. or p.m.f., p(0|y; a)|a=a (= p(0|y; &)), of O given y, where
& is some estimate of a. In practice, it is frequent to estimate a by either the
maximum likelihood (ML) method or the method of moments. In the literature it is
common practice to estimate 6 by either the estimated posterior mean, E(0|y; @)|a=a
(= E(0|y;a)), of 6 given y or the estimated posterior mode, mode(8|y; @)|a=a (=
mode(f|y; &)), of 8 given y. See, e.g., Carlin and Louis (2000) for the EB data
analysis.

The remaining of the paper is organized as follows. In Section 2, using the
normal-binomial or -multinomial model rather than the beta-binomial or Dirichlet-
multinomial model in Chen et al. (2004)s the EB inference for manufacturing cat-
egorical data is discussed. IneSedtion -3, utilizing the LR method, an EB process
monitoring technique for manmufacturing categorical data is proposed. A simulation
study to demonstrate the proposed.methodolegy is given in Section 4. Finally, some

concluding remarks and possible generalizations of the paper are given in Section 5.

2. Empirical Bayes

Suppose that a manufacturing process produces a product that has k possible
defect types for some fixed positive integer k. Suppose further that each product item
belongs to exactly one of the k+1 categories {pass, the first defect type, .. ., the kth de-
fect type}. Let ¢ be any positive integer. Fori = 1,..., k, let p; denote the probability

that a product item manufactured at time ¢ possesses the ith defect type. Then 1 —



Zle pit (= por) is the probability that a product item manufactured at time ¢ pos-
sesses none of the k defect types. Suppose also that there are in total n; tested
product items manufactured at time ¢, where n; is a known positive integer such that
sup{ni,ns,n3, ...} <oo. Fori=1,... k, let y; denote the number of product items
that possess the ith defect type among the n; tested product items manufactured at
time t. Then n; — Zle Yit (= yor) is the number of product items that possess none of
the k defect types among the n, tested product items manufactured at time t. Set p, =
(Dres s kt) s e = Wit uke) s Pr = {pe Zle pir < 1 and pyy, ..., pee € (0,1)},
and YV, = {y; : Zle Yie <ngand Yy, ...,y € {0,1,...,n;}}. Then P, = Py and the
number of elements in ), denoted by u|Vels.is (n: + k)!/(n!k!). Moreover, suppose
that P({p; € P1}) = 1 and that g, givéen p, has either the binomial(n,; p;) distribution
for k = 1 or the multinomial(ny; p,) disttibution for k = 2,3,4,.... Let F,,, F,,, Fy,1p,
and F},|,, denote, respectively,the prior cumulative distribution function (c.d.f.)
of p;, the marginal c.d.f. of y;, the conditional c.d.f. of ¥y, given p;, and the pos-
terior c.d.f. of p, given y;. Set 0, = (014, ...,0k) = (log(pre/pot), - - -, 1og(pre/Pot)) -
Then p; = (exp(61,) /1435, exp(0;0)], - . ., exp(0re) /(143 exp(6;)])- Let Fy,, Fyp,.
and Fy,),, denote, respectively, the prior c.d.f. of 6;, the conditional c.d.f. of y; given 0,

and the posterior c.d.f. of 0, given y,. Then F, 4, = Fy,,, the conditional p.m.f. of y,



given 6, is
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and the marginal p.m.f. of y; is
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where 1y, (y:) = 1 for y; € ), and 0 otherwise.

In the paper, first of all, consider the situation where there are available his-
torical in-control manufacturingscategorical data {yi, v, ..., yr} for some large pos-
itive integer 7. In the following; suppose that (07,v:)", (05, v5), ..., (07, y7) are
independent random vectors and. that @y, 0s,. . /.07 are independent and identically
distributed (i.i.d.) normal random veetors with E(6,) = p and Cov(6,) = X, i.e.,

ii.d.

0, ~ N(u,X)fort=1,2,...,T, where pu (= (1, ..., px)") is an unknown k x 1 vector

and ¥ (= (X4,)) is an unknown k X k positive definite covariance matrix.

Throughout the paper, set 01.0 = (05,605, ...,0%), yir = (Y}, Yy, -, y5), L1
(L), and o = (p/, 31, ..., BF X2 3k SR where a is the unknown
k(k + 3)/2 x 1 hyperparameter vector. Let ®, denote the c.d.f. of N(u,X%) and

let A denote the set consisting of all possible a’s. Then the prior p.d.f. of 8.1 is
T

T
1 1
Orr;a) = [[70s0) = [ —5=—" — O — )20 — )|, (3
T(r) =1 el =1 (27T)k/2|2|1/2 P 2( 1= 1) (6= 1) )
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where 7(0;; ) denotes the prior marginal p.d.f. of 6;. Thus, the posterior p.d.f. of

0.7 given yi.r is

T T

p(Orrlyir; @) = [ [ pOulyrrs @) = [ [ p(0ilye: ), (4)

t=1 t=1

the posterior mean of 6.7 given y.r is

E (91:T|y1:T§ Oé)
= ([E(lyir; )], [E Oalyrrs @)l ..o [E Orlyirs a)])

= ([E (01|y1§ Oé)]/ ) [E (02|y2; Oz)]/ PRI [E (€T|yT; Oz)]/), ) (5)
and the posterior mode of 6.7 given yi.r is

mode (01.7|y1.1; )

/

— ([mode (01|y1.7; o] [mode (Os|yo.r: a)];' .-, [mode (O7|y1.7; oz)]/)

= ([mode (01]y1; )] Jmode (Oxfrys: oz)]' .. .., [mode (O7|yr; a)]/),, (6)

where

p(Olyrrs) = p(Oclys; @)

- exp[=(0; — = T y) S0 — pp = Sy0)/2)/[1+ Ty exp(fa)]™
S exp[=(0F — 1= Sup) S0 — e — D) /2]/[1 + S0, exp(05)] db;

(7)
EO|yria) = E(0]y; )
_ Jre O exp[= (6 — i — S ) S0 — i — Sun) /2)/[1+ 20 exp(6i)]™ db,
S xPl=(00 = pp = L) 710 — = S) 2]/ [+ S exp(0)]™ dby
(8)



and

mode (6 |ly1.r; ) = mode(0;|y;; )

. 1 _
= arg 9{2% {5(@—#—2%)/2 Y0y — = S ye) +ny log

1+ exp(@it)] }

9)

fort=1,2,...,T.
Let ¢y be a prespecified constant in (0, 1), e.g., 0.05, and let ¢r e, (y1.7;0) €

(0, 00) such that P(Rpi—c, (y1.1; @)|y1.0; ) = 1 — ep, where

RT,lch(ylzT; Oé) = {elzT . p(elleylzT; 04) 2 QT,lfCT(ylzT; 04)} (10)

Then Ry1—c; (y1.7; ) is the size'l — cp highest posterior density (HPD) region for ;.7
given yi.p. Similarly, for ¢t ==, 2", Tylet ¢y be a prespecified constant in (0, 1),
e.g., 0.05, and let q() 1, (y; a)€.(0;00) such that PR 1-¢, (Yi; @)|ys; @) = 1—c),
where

Ry i—cq, (s ) = {Qt L P(O:ly; @) > Qe 1—eq (Yt a)} : (11)

Then for t = 1,2,..., T, R)1-cq, (y1; @) is the size 1 —c) HPD region for 6, given y;.
For t = 1,2,...,T, as p(O|y1.1; @) = p(O|ys; @), Ry 1-¢( (ys; @) is also the size 1 —

c) HPD region for 6, given y;.7.



Observe that the marginal p.m.f. of yy.7 is

frr) = ]

- ﬁ 1y, (ye) - - / oD(y: 01) - 7(0y; ) db,
t=1 Hf:o Yie! Jre [1+ Zf:l exp (i )]™

T

ny!
H Ly, (ye) - k—t : / G (0, ye)m(0y; o) dby
t=1 RE

Hi:o Yit!
d nt!
= H 1y, (ye) - & . a(a; ). (12)
t=1 Hz‘:o Yit-

Fort =1,2,...,T, set l(a; 0;) = log[m(0y; )], be(cv; ye) = Oar(cv; y) /O, and ¢y yp) =

Obi(a;y)/0a’. Then

ol(a; 0
tasy) = [ P g 0,) - wl050) o
RE 0]

and

a5 y) = /R k {W(a;@f) 0ty on(a:

6;) '
Dadal . P, } 910, ye) - (65 ) db,

fort =1,2,...,T. Thus, given y.p, thedog-likelihood function for « is

log [f(r:7)] Hlog
T k
Z {10g n!) Zlog Yi!) + log [as(o; ye) } Zg(t) = (lp(af13)
t=1 =0
the score function for « is
(%T (o)
= Sy () = Sr(a), 14
;w%) 2 So(@) = Sr() (14)

the (expected) Fisher information for « is

Cov ST Z Z S(t) Z[(t (15)

t=1 yt €Vt



and the observed (Fisher) information for « is

p— af(a7y0 __tzl |

Note that given yy.p, the MLE &7 of a solves the score equation Sr(a) =
Ok(kt3)/2x1 for a, ie., Sp(a)|a=ar (= Sr(ér)) = Opkrs)/ax1, Where Oppyz)/ax1 de-
notes the k(k +3)/2 x 1 vector (0,...,0)T. Set Kr(a) = Zthl Sy (@)Siy () (=
23:1 K(a)).

One way to numerically evaluate ar is to utilize the following iterative procedure.
First choose a good initial value @Q ) for ar, e.g., the method-of-moments estimate

(MME) of « given in Appendix A, and then iterate the following equations

-1
A = @&ywlM}u) (0) (u)} ST(a)\a:#)

a:dT
a0y [M< )( (u>)] S, (a%t))

foru=0,1,2,... until dg‘) converges to dp, where Mr_(pu)(d%)) could be any of IT(dg‘)),

Jr(a), and K7(64") for each u € {0,1,2,...}. When M{" (&) = Jp(al¥) for
all ws, it is called the Newton-Raphson method. When M\ (&) = Ip(a{") for
all u’s, it is called the Fisher scoring method. Observe that all of Ir(& A )) s are
positive definite and that all of KT(OQ%L ))’s are positive semi-definite and generally
positive definite. However, Jp(& )) s are not necessarily positive semi-definite when
the initial value &(TO ) is not close to ar. As there is no simple closed-form formula
for I7(«) and |)}] is generally much larger than 1 for each ¢t € {1,2,...,T}, it takes

too much time to calculate IT(dgfL)) than either JT(&gfi)) or KT(dg:‘)) for each u €
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{0,1,2,...}. Moreover, as it takes more time to find a good initial value for the
Newton-Raphson method than the procedure with M:(F“)(dgy“ ) = KT(dgi‘ ) for all u’s,
a stable and fast method to numerically evaluate & is suggested as follows. First
choose M:(F“)(dgi‘ )) = KT(dgqf )) for all u’s until near convergence, say at v = g, and
then choose M}u) (c}g?)) = JT(@%)) for u = up+1,up+2,up+3, ... until convergence.

Note that &y = a+0,(T~Y/%) as T — oco. Thus, for any fixed t € {1,2,...,T} and
given yy, all of p(0|ys; dr) — p(6:lye; ), E(Oilys; ar) — E(6:]ye; ), mode(by|ye; ar) —
mode(:|ys; @), fr(ye) — f(ye), and quy 1y, (Ui G7) — Guya—eg, (Y @) are Op(T7?)
as T — oo, where p(0|ys; ar) = p(0i|ly; @)|azars EOly; ar) = E0ye; &) azar
mode(0;|ys; dr) = mode(0;|y; @) |azamnt i) = [(ve)lo~a,, With Par = Polazdr,
and qg),1-cq, (Y5 &) = Gy 1-cgy (Ui Olezar-, Fort = 1,2,.... T, as there is no sim-
ple closed-form formula for any of p(@ilys; &), EO:|ys; ar), mode(0i|ys; ér), fr(ye),
and q(s),1—cq, (Y1; Gr), all of them“might be evaluated numerically. Similarly, as there
is no closed formula for ¢r1_c, (y1.7;@)|azar (= qri—cp (Y1.10: Gr)), it might also be

evaluated numerically. See Appendix B for details.

3. Empirical Bayes process monitoring scheme

In this section, assume that the response vector vy, is observed at time t; and
that the random vector (67 ,y;,)" is independent of (1., y;.7)", where to € {T'+1,T +
2,T+3,...} and all of y,,0;,, 61.7, and y;.1 are defined in Section 2. Let v denote

the false alarm rate, i.e., the probability that an out-of-control signal occurs when a
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manufacturing process is in control, where - is a prespecified constant in (0,1). In the
literature, v is commonly chosen as 2®(—3) (= 0.002699796), where ® denotes the
c.d.f. of a standard normal random variable. Set Vi, = {¥s,1, Yt0,2, - - - » Yto,13,| }> Where
both Yy, and |),| are defined in Section 2. Recall from Section 2 that Fp, denotes
the prior c.d.f. of 0;,. Let F(R") denote the non-parametric family consisting of all
c.d.f’s on R*. Note that by assuming that Fp,, 1s the unknown prior c.d.f. of interest
in F(R¥) rather than in some particular parametric family such as the family of all k-
variate normal distributions, we make our process monitoring scheme more general
than most of other schemes.

Let £(1,)(Fp,, ) denote the log-likelihood function of Fy, given y;,. Then £y (F, )

= log[f(ys,)], where f(y,) is définéd in-Section 2. Note that

é(to) (Fé’to) = og |: f(yto |pt0) detO (pt0>:|

P1

< log |: » f(yto |pt0)|pt0=yt0/m0 detO (pto):|

= log [f(yto |pt0)|pt0:yt0/nt0:| )

where all of py,, f(s,|Pr,), and Fp,  are defined in Section 2 and f(ys,|py,) is maximized

if and only if py, = yy,/n4,- Thus,

sup g(to) (Feto) = log [f(yto |pt0)|pt0:yt0/nt0:| : (17)
tho EF(RF)

When the manufacturing process is in control, the prior c.d.f. of 0, is ®,, where

both a and ®,, are defined in Section 2. Thus, to monitor the manufacturing process
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at time o, we might be interested in testing the null hypothesis Hy : Fp, = P, versus
the non-parametric alternative H; : Fy,, £ P,,.

In the remaining of this section, the hyperparameter vector « is assumed to be
known in Subsection 3.1 and unknown in Subsection 3.2, respectively. Note that the
reason for utilizing the LR method to monitor a manufacturing process is that the
LR test frequently has higher power when the alternative hypothesis is true, which
corresponds to good detecting power in the process monitoring when a manufacturing

process is out of control.

3.1. Known «

In this subsection, consider the Bayesian situation where the hyperparameter
vector « is known. Set £y (a)= f(to)(F9t0)|Fot0 —#.- Then the LR statistic for testing
the simple null hypothesis Hy : Fy, == @, -versus the non-parameteric alternative

H1 . ngo 7A (I)a is

Wite) ()

2[ sup Lty (Feto)—f@o)(@)]

tho EF(Rk)

= 2 {log [f(yto‘ptoﬂpto:yto/nto} - g(to) (Oé)}
k

_ ) Yito

= 2 {; Yit, 10g (nto

where 0log(0) = 0, as (s yy,) is defined in Section 2, and P({0 < Wy (a) <

) - lOg [ato (a? yto)}} ) (18)

The size v LR test with its corresponding quality control scheme for monitor-
ing the LR statistic W,)(a) could be constructed as follows. For s = 1,2,...,[)],
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set Wiig),s(@) = Wig) (@)lysy=pige- Lt (Witg), () (@) Wit),2) (@), -+ s Witg), (3 (@)

be a permutation of (Wy)1(a), Witg)2(), - .., Wige) 1w, | (@) such that Wiy qy(a) <

Wi, @(@) < oo < Wig) (v (@) As Wigy(a) is a discrete random variable, it

is nearly impossible to attain the exact false alarm rate ~ if a deterministic con-

trol limit approach is used. Thus, based on the concept of randomized tests in

hypothesis testing, we propose the following randomized control limit approach.

To find the randomized upper control limit, we start accumulating P({W,(a) =

Wito) (1)) (@) }; Ho) until we reach the first s such that P({W(s,)(a) > Wiy,) s (@) }; Ho)
> 7. Denote this s by m,)(a) and set RUC Lz, (@) = Witg) (myy) (e)) (@) T P{Wig) (@)
> RUC Ly, (a)}; Hy) = vy, which isyvery . unlikely, then there is no need for ran-

domization and set Yruor, ) (@) = 0f otherwise, we need to find the randomization

probability yrucr, i) (@) € (0,1).

Specifically, we have

M) () = max {s . P ({W(to)(oz) > W(to),(s)(oz)} : HO) > 7} , (19)

RUC L) (@) = Witg)(my (@) (@), (20)

and

_ 1= P(Way) (@) > RUC L) (@) }; Ho)

VRUCL,(t0) (@) = P({Wy)(a) = RUCLyy(a)}; Hy) 2

Finally, the monitoring scheme for the manufacturing process at time ¢, is pro-
posed as follows. If Wy (a) > RUCL,)(a), then we reject Hy and declare that
the process is out of control; if W) (o) < RUCL,)(«x), then we accept Hy and

13



declare that the process is in control; if W, (a) = RUC L (cr), then with prob-
ability Yruor, ) (@) we reject Hy and declare that the process is out of control or,
equivalently, with probability 1 — ygucr ) () we accept Hy and declare that the
process is in control, where the randomization could be done by any random number
generator or table.

However, it is possible that |}, | is very large at time ¢y in a manufacturing pro-
cess, e.g., | Vi, | = 82,408,626, 300 if n;, = 200 and k£ = 6. In such a situation, it takes
too much time to perform the previous size v LR test. Thus, by a simulation, an
approximate size v LR test with its corresponding quality control scheme for mon-

itoring the LR statistic W, (o) couldsberconstructed as follows. First generate an

i.i.d. sample {(65 1, yi 1), (052,408 o) 5 F=h (07 y;;,r)/} of size r for some large positive
integer 7, e.g., 7 = 100, 000, such that 05~ @, and y;; |07, ~ Fy, 16, |6, =07, for s =
1,2,...,r. For s =1,2,...,r, set W(’;O)ms(oz) =3 W(to)<o‘)‘yto=yt*0,s' Let ( (70)#,(1)(0‘)’
Wiy (@)s s Wiy oy (@) be a permutation of (W ) (), Wi ) o(a), ..., W
such that W ) (a) < W) o) (@) < oo S W5 oy(@). Set mfy ) (o) = [r(1 —
7)] + 1 and

RUCLy, ,(a) = W(to)vrv(mfto),r(a))(@)v (22)

where [r(1 — 7)] denotes the largest integer less than or equal to r(1 — 7v), e.g.,

mi, (@) = 99,731 if r = 100,000 and v = 2®(—3). Let m} ., (), m 4 () €

to),r
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{1,2,...,7} such that

W) (a)f1)(04) < W(to),r,(mz’(to)yr(a))(a) = RUCLEQO),T(O()

”
ML (t0).r

= W(ffo),r,(m*U’(tO)’T(a))(a> < W(io),r,(m;wo),r(a)ﬂ)(04),

where W\ (@) =0 and W, ;) (a) = 00. Set

,,(0)
’Y - [r - m*U,(t()),’r(a)]/r . T’Y - T + m*U,(to),'r(a>
M t0),r (@) = M (1) o (@) /1 ) (@) = gy (@) +1

(23)

VRUCL (t0),r (@) = [
Finally, the monitoring scheme for the manufacturing process at time ¢, is pro-
posed as follows. If Wiy, (o) > RUCLY, , (), then we reject Hy and declare that
the process is out of control; if Wi, (a5 RUCLY, ) (), then we accept Hy and
declare that the process is in controlyif Wi (a).= RUCLY, | (), then with prob-
ability 5o L’(to)’r(a) we reject H, and-declare that the process is out of control or,
equivalently, with probability 1°— WEUCL@U)’T(a) we accept Hy and declare that the
process is in control.
Note that under Ho, both RUCLY; (o) =RUC L) () and Vo, (1) (@) —VRUCL,(10) (@)
converge to 0 with probability one as r — oo, where the rate of convergence for the

latter is much slower than that for the former as » — oo. Thus, this test converges

to the previous size v LR test as r — oo.

3.2. Unknown «
In this subsection, consider the EB situation where the hyperparameter vec-
tor a is unknown. Set yi.7y = (¥1.7,¥;,)- Then the LR statistic for testing the
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parameteric null hypothesis Hy : Iy, = @, versus the non-parameter alternative H :

tho 7é q)a is

Wr o) 2 { sup [ET(a) + Lito) (tho)] — sup [fT(oz) + 1) (a)] }

aeA,thO EF(RF) acA
= 2 {gT(dT) + log [f(yto |pt0)|pt0:yt0/nt0:| —Llr (dT,(to)) — L) (dT’(tO))} )

(24)

where all of A, {r(a), and & are defined in Section 2, G ) denotes the MLE of «
given y1.14, under Hy, and P({0 < Wy, 4,y < oo}; Hy) = 1. For simplicity of notation,
set S(io) (@) = sy () /0 and Jisyy () = =S (1) () /Ocr’.

Note that given yi.p¢,, the MLE Ggy@y.0f o solves the score equation Sp(a) +
Stte) (@) = Okri3)/2x1, 1., [Smla) £up(@]azar,, (= ST(41 (1)) + Sito) (A1)
= Op(kt3)/2x1- One way to mumerically” evaluate: ar ;) is to utilize the following

o

Newton-Raphson method. First'choose & as the initial value a, )(to) for (1, and

then iterate the following equations

-1
L) s
) T O T {[JTW)+J(to>(a)}|a:d;fgto)} [Sr(@) + Sty ()] | st

)

for u=0,1,2,... until dgﬁ(to

) converges to A (1)-

Set Wigg)(dr) = Wig) (@) |a=a, and

~ ’ A ~ A -1 ~
W up) = max {0, Wi (ar) = Sy (@) [Jr (@) + Ty (@1)] ™ S (@)}, (25)

where W)(«) is defined in Subsection 3.1, P({0 < Wy (ar) < oo}; Hy) = 1,
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and P({0 < Wy, < oo}; Hy) = 1. Then under Hy,
W 10) = Wr o) + Op (T72) = Wigg) () + O, (T71) = Wigg) (@) + O, (T712) (26)

as T — 00. See Appendix c for details.

In the following, let & ) denote either & or ar, 4, and let WT’(tO) denote any
of Wr ), WT,(tO), and W) (Gr). Then under Hy, both d&7,4,) — o and V~VT7(tO) —
Wiy (@) are Op(T1/?) as T — oo.

As the hyperparameter vector « is unknown and (Hthl | Vi) Vs, |, the number of
the elements in (Hthl Vi) X Vy,, is generally very large, it is nearly impossible to per-
form the size 7 LR test for testing the parameteric null hypothesis Hy : Fy, = P, ver-
sus the non-parameteric alternative Hips by, % ®,. Thus, by a simulation, an
approximate size v LR test with its corresponding quality control scheme for mon-

itoring the (approximate) LR statistic WT,(,:O) could be constructed as follows. For s =

L2, Dl set Wrg),s = W) lyeg=ueg.s- Lt (W t0),10 Wrnto),@): - - - - Wnteo). (94 ))
be a permutation of (WT,(tQ),la WT,(to),Qa ey WT7(tO),|ytO|) such that WT,(toL(l) S WT,(to),(Q)

< S W), (0 ) S€E

MUT(t) = maX{S i ({Wﬂ(m = WT,(to),<s>H y1:T5H0> lotir, ) > 7}7

RUNCLT,(tO) = WT7(,50)7( (27)

MU, T (tg))”

and
7y = P({Wr,40) > RUCLr1)}Hyrer; Ho)
P({Wr,4y) = RUC Ly 10) }yr:7; Ho)

oy (28)

YRUCL,T,(to) = i
QA=Qr (tq)
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Finally, the monitoring scheme for the manufacturing process at time tq is pro-
posed as follows. If WT,(,:O) > RU CLt ), then we reject Hy and declare that the
process is out of control; if WT,(tO) < RU( CLrt ), then we accept Hy and declare that
the process is in control; if WT,(tO) = RU CLrt 1), then with probability Yrucor,7,19) We
reject Hy and declare that the process is out of control or, equivalently, with proba-
bility 1 — Yrucr,7,y) We accept Hy and declare that the process is in control.

Note that under Ho, Wr 1) — Wity (@) = O,(T~/?) as T — oo. Thus, this test
approximates the size v LR test in Subsection 3.1 well for large positive integer 7T'.

Similarly, it is possible that |),,| is very large at time ¢y in a manufacturing pro-
cess, e.g., | Vi, | = 82,408,626, 300 if nz5 =200 and k£ = 6. In such a situation, it takes
too much time to perform the previous approximate size v LR test. Thus, by a simula-
tion, an alternative approximate size LR test with its corresponding quality control
scheme for monitoring the (approximate) LR statistic VNVT,(tO) could be constructed
as follows. First generate an i.i.d. sample {(é{:l, 33%71)/, (91'2, y;*o ), (~1‘:r, g;jm)’} of
size r for some large positive integer r, e.g., r = 100, 000, such that éi‘?s ~ <I>a|a:dT7(t0)

(= P54

ot 3 ~* - _ _
Gr.y) and G |67 ~ Fyto|9to’€t0=6’{,5 for s = 1,2,...,r. For s = 1,2,...,r,

Set W;‘,(to),r,s = WT7(tO)’ytO:g:0,s' Let <W;,(t0) W* ) 7(2), .. W* t()), (7‘)) be a peI‘—

mutation of (W tO)H,W* to)r2""’W;’,(to),r,r) such that WT,(tO)m(l) < Writo)m,(2)

<...< WT,(to),r,(r)‘ Set m;(to),r = [T(l — 7)] + 1 and

RUCLy (1), = Wi 10), (2 (29)

T,(tg).m )

18



where [r(1 — )] denotes the largest integer less than or equal to r(1 — 7), e.g.,

m;—u7(t0)7r - 997 731 lf r = 1007 000 aIld 7 - 2@(_3) Let Th*L,T7(tO)7T(a), m*U7T,(t0),7"(a) €

{1,2,...,7} such that

To(t0) 0iprugre—1) < WIto)(iprg) = BUCLT ),

W;’(t0)7(

T
T,(to), (", (t0),r) Yy, T (t0),r 1)’

where WT,(to),(O) = —1 and WT}(tO)7(T+1) = 00. Set

o N e G A e AL O (30)
RUCL,T,t ,T - ~ % ~ % T o~ % ~ % *
(w) (mU,T,(to),r = M7 ) T /T MGty — LT o) T 1

Finally, the monitoring scheme for the manufacturing process at time t; is pro-
posed as follows. If WT,(tO) > RUC L;,(to)ﬂ“’ then we reject Hy and declare that the pro-
cess is out of control; if WT,(to) < RU C’L*T’(to),r, then we accept Hy and declare that the
process is in control; if WT,(tO) — RU CL;’(tO),T, then with probability 7py0p 7, 1).» W
reject Hy and declare that the process is out_of'control or, equivalently, with proba-
bility 1 — 35y ¢ LT(to) WE accept Hjy and declare that the process is in control.

Note that both RUCL;@O),T—RUCLT,@O) and Yo 7 (10),r ~ VRUCL,T, (tg) CONVErge
to 0 with probability one as r — oo, where the rate of convergence for the latter is
much slower than that for the former as r — oo. Thus, this test converges to the

previous approximate size v LR test as r — oo.

4. Simulation study
In order to study the performance of this quality control scheme, we compute
the average run length (ARL). The in-control ARL, denoted by ARLy, is the average
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number of times to get an out-of-control signal when the manufacturing process is in
control. The out-of-control ARL, denoted by ARL;, is the average number of times
to get an out-of-control signal when the manufacturing process is out of control. If
the false alarm rate is 7, then ARLy = 1/, e.g., ARLg ~ 370.3983 if v = 2®(—3).
To calculate the ARL;, first of all, find both the randomized upper control
limit RUC L,)(o) and the randomization probability vyrucr,¢)(a). Next, simulate
an iid. sample {(6;,y5 1), (05,5 )} of size r for some large positive inte-
ger r, e.g., v = 100,000, such that 67, ~ Fp, and yj (|07, ~ Fy, |6, lo; =07, for s =
1,2,...,7, where Fy, # ®,. For s =1,2,...,7, set Wfkto),r,s(a) = W(to)(a)|yt0:yzo,s.
Let (Wi .y (@), Wi oy (@), - Wisiigla)) be a permutation of (W ) (a), Wi ) . »(a),
o Wiy (@) such that Wt bs(a) < WG 50 (o) < oo < WG (). Let

MY, (1) (Q)s Mg o (@) € {1,207} such that

Wito)rmy, -0 @) < TBUGEw) (@) < W) rimy, o 1)(@)
and
Wioyrmy, o, (@) = BUCLw) (@) < Wiy, +1)(@);

where W\ g (@) =0 and W, ;) (a) = 00. Set

* * *

r— mU,(to),r(a> + ’Y[mU,(to),r(a> - mL,(to),r(a) + 1]
r

Then P,y (10),r(c) converges to the out-of-control probability as » — oo when the

manufacturing process is out of control. Thus, 1/ P,y t)r(a) — ARLy as r — oo.
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Just for the illustration purpose, the following tables give the randomized upper

control limit RUC L,)() and its randomization probability yrucr, ) (c) for various

a’s and ny,’s for k = 2.

Set p§0)

0 _ K 0 _ 0
p(()l) =1- Zi:l p§1)7 n= (1085(2951)/1901

log(pg[l)?L/pé(izU)]/Q fori=1,...,k, and 3, = puyou0, for u,v =1,

= (n

(0) (0)
1

/
s PR ) P =

0) _— ( (0)

(0))

Pitps- -

(0)
yPr1,L

0 0 o
Lo log(pY oY, s =

), 0% = s

[log(p

0
7pl(cl),U)/7

0 0
z('l,)U/pél),L> -

..., k, where p§°) €

P1, 0 < pf.‘f?L < pg?) < pl(-??U <1, =1 < py < 1, and ¥ = (3,,) is a positive definite
matrix.
Table 1: pgg)l), p((ﬁ)’L, p((ﬁ),U, and p
0 0 0
p((n) pél)L p(()l),U P
Case 1 | .0.85 0.80 0.90 0.3
Case 2 |2 0.80 0:75 0.85 0.3
Case 3  0.70 0.65 0.75 0.3
Case 4 |+ 0.60 0.5 0.65 0.3
Case 5 | “0:50 0.45 0.55 0.3
Table 2: p§°), pﬁ%, and pg?()]
0 0 0 0 0 0 0
pg ) pg)L = (p51),vag1)L)/ pggf = (pgl),vagl),U)/
Case 1 (0.10,0.05) (0.05,0.025) (0.15,0.075)
Case 2 | (0.15,0.05) (0.05,0.025) (0.20,0.075)’
Case 3 | (0.20,0.10) (0.15,0.075) (0.25,0.125)’
Case 4 | (0.30,0.10) (0.20,0.075)’ (0.35,0.125)
Case 5 | (0.30,0.20) (0.20,0.150)’ (0.35,0.250)’
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Table 3: «

«
Case 1 (—2.1401, —2.8332,2.9708, —0.8912, 2.9708)’
Case 2 (—1.6740, —2.7726,1.9241, —0.7129, 2.9350)'
Case 3 (—1.2528, —1.9459,10.279, —3.0838, 10.279)’
Case 4 (—0.6931, —1.7918, 8.3242, —2.6770,9.5656)’
Case 5 (—0.5108, —0.9163, 7.6044, —2.4378, 8.6831)’
Table 4: RUC L ,)(«)
ng, = 20 Ny =130 ng, = o0 ng, = 100
Case 1 11.1625 12.3359 12.9654 14.3988
Case 2 12.1689 12:5600 13:3028 14.8388
Case 3 12.6104 12.6891 12.9089 13.5552
Case 4 12.7874 12.7396 13.2475 13.8787
Case 5 13.1051 13.2070 13:5308 14.1464
Table 5: ’YRUC'L,(to)(Oé)
ng, = 20 ng, =30 ny, =50 ng, = 100
Case 1 0.0705 0.7295 0.3479 0.5085
Case 2 0.3745 0.4376 0.7363 0.6736
Case 3 0.6094 0.8320 0.3054 0.5559
Case 4 0.8804 0.4088 0.2596 0.1560
Case 5 0.9361 0.5732 0.4771 0.8717
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5. Conclusions and possible generalizations

In the paper, the normal-binomial or -multinomial model rather than the beta-
binomial or Dirichlet-multinomial model in Chen et al. (2004) is used for manufac-
turing categorical data. Then the EB inference for manufacturing categorical data is
discussed. Finally, utilizing the LR method, an EB process monitoring technique for
manufacturing categorical data is proposed to monitor the process whether it is in
control or not.

In the paper, we assume that the transformed random parameter vectors are
i.i.d. normal when the manufacturing process is in control. However, in practice they
are usually correlated and stationarysrather than independent. What we want to
do next is to consider the correldted and stationary normal case, e.g., the vector
autoregressive (VAR) models; or the véctor movirig average (VMA) models, or the

vector autoregressive moving average (VARMAJ models.

Appendix A

Fort=1,2,...,T, set

et(o) _ (1 (ylt / ) 7‘,.711)g‘ (yk’t / )) ’
Yot 1/2 Yo 1/2
1
~ (0 § : H(0
t=1
and

. 1 . . /
0) _ 0 ~(0 0 ~(0
% =—T1§ <9§)—M(T)> (9§)—M%)> -

t=1

Then &g)) =« is an MME of « given yy.r

g s
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Appendix B

One way to numerically evaluate all of p(6;|y; dr), E(6¢|ys; ), and fr(y;) for
t=1,2,...,T is to perform the following simulation. Let t € {1,2,...,T} be fixed.
First simulate an i.i.d. sample {0} ,,07,,...,07,} of size r from ®4, for some large
positive integer 7, e.g., 7 = 100,000. Set 07, = (07, ,,...,0;,) for s = 1,2,...,r.

Next, compute

* A~ eXp yt HT s)
a; (Gr; = = ,
tﬂ,( ! yt) Z 1 + Zz 1 eXp<0:<1 s)]n
pr(Oclys; &) = exp(y, 01) exp[—(0: — fir)' S7" (0, — fir) /2]
r t t’ — * ~ N 5
[1+ Zf ! exp(e' )] (2m)k/2 [Sp |12 af , (Gors i)
1 o
B! Oy o) = —Z UL R
a; (G Y’ e Zl cexp(6y e

and

nt!
T
Hizo Yit-

for t =1,2,...,T, where fir = p|a—a, and Sr= Ylazap. Then for t = 1,2,...,T,

T1(ye) = 1) ~af,(Qr; yr)

all of pi(0i|ys; &) — p(Olys; ar), EF(Oilye; ar) — E(O|ys; &), and fq*w(yt) - fT(yt)
converge to 0 with probability one as r — oc.
A quicker way to numerically evaluate all of p(6;|y; &), E(6:|y:; &r), and fT(yt)

for t = 1,2,...,T is to use the following multivariate Gauss-Hermite integration
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method. Compute

mi mg N
o o exp(y; bu)
Qm(apsy) = 72 Z wl .. Z wk) . . _ ’
ur1=1 ' up=1 * [1 + Zj:l eXp(euJ')]nt
_ . exp(y; 0 exp|—(0; — ) 571 (6, — fir) /2
Pm(Oclys; ar) = % (6:6,) : [ (,:2 = )1 27: ( tA 7/ ]7
[1+ > exp(fi)]™ (2R 2 [S7 |2 Gy g (G i)
- ﬂ.—k/2 mi mE exp(y’é ) B
En(Otlys; 1) = —F— - wq(}) e wff) : bl Oy,
Qtm Q3 Yt ) q; ! 1;1 P+ Z§:1 exp(fy,)]™
and
x 1! - )
fm(yt) = ]‘yt<yt> ’ k—t ' at,m(aT; yt)
Hz’:() Yit!
fort =1,2,...,T, where m = (mq,...,my), u = (uq,...,u), 0, = (éul,...,éuk)’ =

ﬂf]lTﬂ Ty + fir, Ty = (m&ll), . ,:m(fz))’, :m(f;.) denotes the u;th zero of the Hermite poly-
nomial with degree m;, and wff? denotes. the eorresponding weight for :cff]) Then

for t = 1,2,...,T, all of pu(Oilys; ar) = p(O;|ys &), En(Oi|ys; ar) — E(O:lye; ar),
and fT,m(yt) — fT(yt) converge 4o 0-as min{m,, .., my} — oo.

One way to numerically evaluate"qri_.,(y1.r; &r) is to perform the following
simulation. First simulate an i.i.d. sample {ékT’l,él;T’Q, . ,él;Tﬂn} of size r from
p(01.7)v1.1; @) |a=ar (= P(O1.7|y1.7; &1)) by the rejection method for some large positive
integer r, e.g., r = 100,000. For s = 1,2,...,r, set él:T,s = (9’178,%78, ...,é’T’S)’
where 9}75 = (élm, . ,ékt’s)’ fort =1,2,...,T. Compute p(61.7|y1.7; dT)|91:T:§1:T73 (=
p(élzT,s|y1;T; ar)) fors =1,2,...,r. Let (51:T7(1), 671:7;(2), . ,élm(r)) be a permutation

of (élsT,la él:T,Qa e 79~1:T,7°) such that p<9~1:T,(1)’y1:T;dT) < p(élzT,(2)|y1:T§dT) <...<

P(é1:T7(r)|y1;T; dp). Set qri—cp (Y105 Gp) = p(9~1:T,([rc])|y1:T; ér), where [rc] denotes the
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largest integer less than or equal to rc, e.g., [rc] = 5,000 if » = 100, 000 and ¢ = 0.05.
Then ¢ri—cpr(Y1.17; G1) — qr1—c7 (Y1.7; G7) With probability one as r — oo.
Similarly, one way to numerically evaluate )1, (yg; &) for t = 1,2,...,T is
to perform the following simulation. Let t € {1,2,...,T} be fixed. First simu-
late an i.i.d. sample {5t,1,9~t,2,...,§t,r} of size r from p(0;|ys; &) by the rejection
method for some large positive integer r, e.g., r = 100,000. For s = 1,2,...,7r,
set 9}78 = (élt,s, . ,ékt’s)’. Compute p(et‘yﬁo‘)bt:ét’s,a:w (= p(ét,s|yt;dT)) for s =
1,2,...,r. Let (ét,(l)7 0~t7(2), . ,9}7(”) be a permutation of (ét,la ét,g, e ,GNW) such
that p(0y1)|ye; dr) < pOe)lye ar) < ... < p(0ylye dr). Set qt)1—cqyr (Y13 O) =
p(éty([rcmyt; ar), where [re| denotes therlargest integer less than or equal to re, e.g.,

[rc] = 5,000 if = 100,000 and ¢ = 0.05.- Then (j(t)’l_c(tw(yt; ar) — () 1-cq (ys; Ger)

with probability one as r — co.
Appendix C
Under Hy, it follows from the Taylor series expansion that
0 = Sr(bra0) + S (A1)
~ S (1) = [Jr (61) + Juo) (61)] (Gr,) — G7)

as T' — oo, which implies that

A -1

ar (1) — r = [Jr (1) + Jue) (Gr)] Sg (ar)

as T' — oo. Thus, under Hy,

OAéT7(tO) = Gp + Op(Tfl) =+ Op(Tfl/z)
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as T'— oo. Observe that under Hy,

lr (G1t0)) + Lito) (O700)) — Lo (G7)
= L) (67) + Sy) (67) (Gr,10) — G7)

—5 (@ = 1)’ [Jr (@r) + Ty (@0)] (ar) — ér) + 0, (T72)
= L) (ar) + %Sftw (1) [Jr (61) + Jo) (67)] " S () + O, (T72)
= Loy (Gr) + 0, (T7)
= Ly (@) + 0, (T7'?)

as T'— oo. Thus, equation (26) holds.
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Table 6: The sample standard error vector(SD), and the sample mean squared error
vector(MSE) of apr’s, with different o’s, T7s, and ny = ny = ... = nr.

(—2.1401, —2.8332,2.9708, —0.8912, 2.9708)’
(0.0886, 0.0842, 0.0967, 0.0757, 0.0639)’
(0.0109, 0.0520, 2.6332, 0.4141, 2.1658)’

T =100, n;, = 40, SD (0.8118,0.0868, 0.1101, 0.0727, 0.0903)’

T = 100, n, = 40, MSE (0.0066, 0.0101, 1.9750, 0.4037, 2.4135)

T = 200, ny = 20, SD (0.0630, 0.0598, 0.0685, 0.0531, 0.0176

(
—1
(

T =100, n; = 20, SD
T =100, ny = 20, MSE

T =200, n; = 20, MSE 0.0070,0.0484, 2.6694, 0.4033, 2.2012)’

(—1.6740,=2.7726, 1.9241, —0.7129, 2.9350)’
T =100, ny = 20, SD 0.0951, 0.0847, 0.1305, 0.0849, 0.0721)’
T = 100, n, = 20, MSE (012514, 0,08473.2384, 0.3662, 2.1598)’
T =100, ny = 40, SD (0.0899:0.0863,:0.1320, 0.0816, 0.0923)’
T = 100, n, = 40, MSE (0.2281,0.0222,2.6874, 0.3777, 2.4233)’
T = 200, ny = 20, SD (00679, 0.0597; 0.0916, 0.0592, 0.0499)’
T =200, n; = 20, MSE (0.2478, 0.0817, 3.2858, 0.3599, 2.1909)’

(—1.2528, —1.0459, 10.2792, —3.0838, 10.2792)’

T = 100, n; = 20, SD (0.0679,0.0780, 0.0844, 0.0547, 0.0851)’
T = 100, ny = 20, MSE (0.7904,0.8418,0.5768, 0.3032, 1.6477)’
T = 100, n, = 40, SD (0.05261,0.0660, 0.0510, 0.0365, 0.0314)’
T = 100, n, = 40, MSE (0.7888,0.7871, 1.2448,0.1902, 0.4421)’
T = 200, n; = 20, SD (0.0481,0.0555, 0.0603, 0.392, 0.0603)’

T = 200, n, = 20, MSE (0.7877,0.8378,0.5479, 0.2822, 1.6795)’
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Figure 3: The histograms of pya’s for 10,000 samples and o =
(—2.14,—-2.83,2.97,—0.89,2.97)" where n; = ny = ... =ng and p = 0.3.
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Figure 5: The histograms of &1 a’s for 10,000 samples and a =

(—2.14,—2.83,2.97,—0.89,2.97)" where n; = ny = ... = ny and oy = 0.608.
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Figure 6: The histogram
(—2.14,—-2.83,2.97,—0.89, 2.
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Figure 7: The histograms of 0&9a’s for 10,000 samples and o =
(—2.14,—-2.83,2.97,—0.89,2.97)" where n; = ny = ... = ny and o9 = 0.608.

3000 T

T
~o - T=100,n,=40
—%— T=200,n,=20
[ T=100,n;=20

2500

2000

Frequency
[=Y
a
o
]
T

1000 - -
500 - -
o o . N
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

or 10,000 samples and a =
.. =np and log(o) = —0.497.

Figure 8: The histogram
(—2.14,—-2.83,2.97,—0.89, 2.
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Figure 9: The Q-Q plots of app’s for 10,000 samples and o =

(—2.14,—-2.83,2.97,—0.89,2.97), where n; =ny = ... =ny =20 and T = 100.
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Figure 10: The Q-Q plots of apn’s for 10,000 samples and o =

(—2.14,—2.83,2.97,—-0.89,2.97), where n; = ny = ... = ny =40 and T = 100.
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Figure 11: The Q-Q plots of apn’s for 10,000 samples and o =

(—2.14,—-2.83,2.97,—-0.89,2.97), where n; = ny = ... =np =20 and T = 200.
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Figure 12: The control chart of W, (a)’s with true distribution is ®, for a =
(—2.14,—2.83,2.97,—0.89,2.97)" and n; = 20 and the generation distribution is ®,,
for a; = (—0.51, —0.92,7.60, —2.44, 8.68)".
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Figure 13: The control chart of W(to)(I )s Wlth true distribution is @, for a =
(—2.14,-2.83,2.97, -0.89, 2. 97) and n, = 20 and the generation distribution is
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Figure 14: The control chart of W, (a)’s with true distribution is ®, for a =
(—2.14,—2.83,2.97,—0.89,2.97)" and n; = 20 and the generation distribution is also
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