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ABSTRACT

A central hypothesis of the Black-Scholes model is that the return on the underlying asset
distributed log-normally with constant volatility. However, it has been widely recognized that
financial asset return processes: possess heavy-tailed marginal distributions and volatility
clustering. These features are interpretedias:the ‘evidence of the stochastic volatility of
financial assets, and estimating the term structure of volatility has become an important issue
in finance engineering.

We introduced the GARCH option pricing model of Duan (1995), using the LRNVR
change measure to price options by Monte Carlo simulation runs and evaluate the empirical
performance of different option pricing models on Taiwan Stock Exchange Capitalization
Weighted Stock Index Options. We considered the improved and constant volatility
(non-update) Black-Scholes models, and the update and non-update GARCH option pricing

models. We then compare their pricing performance according to several criteria.
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1. Introduction

Following the seminal work of Black and Scholes (1973) and Merton (1973), the option
literature has developed into an important area of research. A central hypothesis of the
Black-Scholes model is that the return on the underlying asset distributed log-normally with
constant volatility. However, it has been widely recognized that financial asset return
processes possess heavy-tailed marginal distributions and volatility clustering. These features
are interpreted as the evidence of the stochastic volatility of financial assets, and estimating

the term structure of volatility has become an important issue in finance engineering.

There are basically two types of volatility models: continuous-time stochastic models
and discrete-time stochastic generalized " autoregressive conditional heteroscedasticity
(GARCH) models. On one hand,:the continuous-time:model can serve as the limit of a certain
GARCH model. Duan (1996) argued that most of theexisting bivariate diffusion models that
had been used to model asset returns.and volatility could be represented as limits of a family
of GARCH models. The continuous-time stochastic model has an inherent disadvantage that it
assumes that volatility is observable, but it is impossible to exactly filter volatility from
discrete observations of spot asset prices in a continuous-time stochastic volatility model.
Consequently, it is impossible to price an option solely on the basis of the history of asset
prices. On the other hand, the GARCH model has an advantage over the continuous-time
model in that the volatility is readily observable in the history of asset prices. As a result, the
volatility term structure is calculated on the basis of market observations of underlying asset

prices.

Although there have been many papers on the comparison of these two models, some of

these studies obtain quite different results. Different conclusions are drawn because of the



usage of different sample periods, models and estimation methods. Therefore, it is still
meaningful to examine the empirical performance of the Black-Scholes model and the

GARCH option pricing model by Monte Carlo simulation using a new data set.

In this study, we use the GARCH (1, 1) option pricing model developed by Duan (1995)
in a discrete time GARCH (1, 1) environment. Under the local risk-neutral valuation
relationship (LRNVR) derived by Duan, the asset return process under the risk-neutralized
pricing measure differs from the conventional GARCH process in an interesting way. We
perform and compare the option pricing result both of the update and non-update,

Black-Scholes and GARCH option pricing model.

The numerical results compare the empirical option pricing performance in different
moneyness categories of the update Black-Scholes, non-update Black-Scholes and update and
non-update GARCH models. We applied_the_models to daily closing prices of the Taiwan
Stock Exchange Capitalization Weighted. Stock-Index (TAIEX) and its corresponding TAIEX
options. We use the TAIEX and its corresponding options based on two considerations. One
is that the index and the option prices data for the TAIEX index options are freely available.
Furthermore, the TAIEX index option is the most actively traded European-style option in

Taiwan.

This thesis is structured as follows: Chapter 2 discusses the famous Black-Scholes option
pricing model and the GARCH option pricing model of Duan (1995). The description of the
data is provided in Chapter 3. In Chapter 4, we examine the empirical performance of the
GARCH option pricing model and the Black-Scholes model in Taiwan’s market. Conclusions

are offered in Chapter 5.



2. The Option Pricing Models

In this chapter we will introduce the most famous option pricing model, the
Black-Scholes model, and the GARCH option pricing model of Duan (1995).
Since for a European put, its price can be derived easily via the following put-call parity

relationship:
p,+8, =C +Xe ",

we will demonstrate only the pricing of the call options in the rest of this thesis.

2.1 The Black-Scholes Model

Black and Scholes (1973) publishedsan-option valuation formula which is known today

as the Black-Scholes model.
The Black-Scholes model was establishedrunder the following conditions:

1. The short selling of securities with full use of proceeds is permitted.
2. There are no transition casts or taxes.

3. All securities are perfectly divisible.

4. There are no arbitrage opportunities.

5. Security trading is continuous.

6. The risk-free rate of interest, r, is constant and the same for all maturities.

When the underlying asset follows geometric Brownian motion
dS,=u-S,-dt+o-S,-dw,
with constants xand o, then the Black-Scholes formula calculates the price of a call option
to be:

C=S-N(d,)-Ke"" -N(d,)



where
C = price of a call option,
S = price of the underlying asset,
K = option exercise price,
r = risk-free rate,
T = current time to maturity,

N (.) = standard normal cumulative distribution function,

_In(S/K)+(r+050°)-T

o T

dy=d,—oT.

dl

The Black-Scholes model assumes that the volatility of stock prices is a constant. In
practice, some analysts use the market optionsprices to obtain the implied volatility as an
estimate of the volatility for the=Black-Scholes madel. There is no explicit for the implied
volatility. However, using somesimple numerical method like Newton method, we can easily

obtain the implied volatility from the option pricing formula.

Nevertheless, the implied volatility is found to vary, and thus the assumption of constant
volatility is violated. The plot of the implied volatility of an option as a function of its strike
price is known as a volatility smile. The volatility smile of the TAIEX options in September,
2, 2003 has the form shown in Figure 1. The implied volatility decreases as the strike price
increases, which is sometimes referred as volatility skew. In addition to a volatility smile,
volatility term structure is also observed. The volatility used to price an option depends on the
length of time to maturity of the option. When volatility smile and volatility term structure are
combined, they produce a volatility surface. This defines implied volatility as a function of

both the strike price and the time to maturity.



We perform both the original (non-update, constant volatility) Black-Scholes option
pricing and improved models. In the improved Black-Scholes model, we allow different
volatilities for different lengths of time to maturity. Since the only unobserved variable is the
implied volatility, we can compute the implied volatility for all the call options on each day
by numerical method. In fact, we can also use the information contained in the put option
prices. For simplicity, we will just consider the call options here. We then use this implied

volatility to value all the call options on the following day.



2.2 The GARCH Option Pricing Model

The objective of this section is to give a brief introduction to the GARCH model and its
applications. In 2.2.2, we will introduce the locally risk-neutral valuation relationship, and the

GARCH option pricing model proposed by Duan (1995).

2.2.1 Introduction of the GARCH model

The objective of this sub section is to study the generalized auto-regressive conditional

heteroscedastic model of Bollerslev (1986).

Define 4, as the variance rate of a market variable on day ¢ which can be estimated at the

end of day (t—1). The square root of the variance on day 7,/ , is called the volatility.

Suppose that the value of the market variable at the end of day ¢ isS,. The log return during

day ¢ (between the end of day /—1 and the énd of day #), r,, is defined as

r —Iog( 5, j
. St—l .

A log return series, {r}, is said to follow a GARCH (p, ¢) model, if

L= té, & = \/ht "Zi

q )4
h =a, +Zﬁi h,_ + Zaj &l
i=1 j=1
where {z[} is a sequence of identically and independently distributed random variables with
mean zero and variance 1, and it is often assumed to be a standard normal or standardized

Student-z distribution, , is the trend of log return at time t. For a stable GARCH (p, ¢) process,

the conditione, >0, «;, 5, 20, is required to assume the weight of the long-run average

q 4
variance is positive, and the condition Za[+2ﬂj <1 implies that the unconditional
i=1 j=1

variance of {r:} is finite.



Because the simple GARCH (1, 1) with normal distribution assumption is the most

commonly used, we will focus on it with

=& 5t:\/Z'Zm Zt~N(O’1)’

_ 2
h=ay+p-h +o -,

a,>0, 0<a,p <L(a,+p,)<1.

With the normality assumption, all the parameters can be estimated directly from the data
through the maximum likelihood method. It is easy to obtain the parameter estimates by
non-linear constrained optimization given the constraints of the boundary and stationarity

conditions with packages such as MATLAB or E-views.

Forecast through the GARCH model. can then be easily obtained. The conditional

variance #,,, depends on the ong-step ahead.-observation and the one-step ahead variance

rate:

2
t 1)

h,=o,+ph +a&
where £, and ¢, are known in time index ¢. Therefore, the 1-step ahead forecast is
h(Q) =, +ph +ae’.
For multiple ahead forecasts, we rewrite the volatility equation as

ht+1 = aO + (al +ﬂ1) 'hz +al 'htz (‘9t2 _1) .

Since E(&? —]JF,) =0, the 2-step ahead volatility forecast at the forecast origin ¢ satisfies the

1
equation

h(2) =y + (o + SR, (D).
In general, we have

h (1) = ay+(a, + B)h, (1-1),0 > 1.

By repeated substitutions, we obtain the following /-step ahead forecast



h (1) == [11‘_(21 - gl)l_l] +(o+8) Q).

Therefore,

h,(l) >

(04
© _as /> o

l-a,- 5
provided that o, +f, <1. Consequently, the multi-step ahead volatility forecasts of a

GARCH (1, 1) model converge to the unconditional variance as the forecast horizon increases

to infinity provided that the variance exists.



2.2.2 The LRNVR and the GARCH Option Pricing Model
Duan (1995) develops a pricing model for options on an asset whose return follow the
GARCH process in a discrete time economy environment. By maximizing the expected utility,
he shows the Locally Risk-Neutral Valuation Relationship (LRNVR) holds and derives the

following model for log return process.

Duan started by assuming that the asset return dynamic, under the actual probability

measure, P, is

In( Xt J:]"—O—ﬂ,\/h_t—%ht"'gt,

X t-1

where ¢, has zero mean and conditional variance /#, under measure P; r is the constant
one-period risk-free rate of return(continuously.compounded) and A4 is the constant unit risk

premium. Under conditional log=normality, one plus the conditionally expected rate of return

equals exp(r+/1\/h7t). It thus suggests'that 4 ~can be interpreted as the unit risk premium.

Furthermore, ¢, follows a GARCH (p, q) process of Bollerslev (1986) under measure P.
That means:

&|F,_, ~ N(0,h,) under measure P,

q P
h=ay+Y ael +>.Bh._;,
i=1 j=1
where ¢, is the information set (o -field ) of all information up to and including time ¢. For

positive  variance  and stationarity, the  following conditions are

q p
required: p >0, ¢>0; &, >0, &, 20,i=1...,q; B,20,j=1...,p; D a,+D B, <1.
=1 =1

Asp=0and g =0, we have



Xt 1 il
I”t=|0g(X J:V—Eht+a[, at~dN(0,62),

t-1

which implies

|09[%} ~ N[(r—%az)-T,asz.

It is back to the Black-Scholes result. Obviously, the Black-Scholes model is a special

case of the GARCH option pricing model.

For pricing purpose, we introduced the LRNVR of Duan (1995):
Definition: The risk-neutral probability measure Q is said to satisfy the local risk-neutral
valuation relationship (LRNVR) if the following conditions are satisfied:

(i) Measure Q is mutually continuous with respect to measure P;

(if) Log return is normally-distributed under Q,

. X -
WIthEQ[ ‘ |F,_1J:e’,
Xt—l

and VarQ(In(X%( )|E_1):Var”(ln(X%( )|Ft_lj almost surely with respect to
t-1 t-1

measure P.

In the above definition, the conditional variances under the two measures are required to
be the same. It is desirable because one can observe and hence estimate the conditional
variance under measure P. This property and the fact that the conditional mean can be
replaced by the risk-free rate obtained a well-specified model that does not depend on
preference. However, the local risk neutralization is not sufficient to eliminate the preference
parameters. Under the model setting, it is nevertheless strong enough to reduce all preference

consideration to the risk premium. In the case of a homoscedastic lognormal process, i.e., p =

10



0 and ¢ = 0, the conditional variances become the same constant and the LRNVR reduces to

the conventional risk-neutral valuation relationship.

Duan (1995) also proved in the view of equilibrium that, under some combinations of the
distributions and the preferences, the LRNVR holds its validity.

Theorem: If the representative agents is an expected utility maximizer and the utility function
is time separable and additive, then the LRNVR holds under any of the following conditions:
(i) The utility function is of constant relative risk aversion and changes in the
logarithm aggregate consumption are distributed normally with constant mean and
variance under measure P.
(i) The utility function is of constant absolute risk aversion and changes in the
aggregate consumption are distributed normally with constant mean and variance
under measure P.
(iii) The utility function is linear;
The first and second conditions ensure that the implied interest rate is constant. This is
the same with the constant interest rate assumption earlier. It is possible to develop the model

with stochastic interest rates, but the resulting model will become much more complicated.

Under the local risk-neutralized probability measure Q, the asset return dynamic

becomes

In X, :r—iht +&,
X, 2

where

E|F, ~N(0,h,) under measure Q,
q P

hf =& +Zai(§t27i _/1‘\/ ht—l)2 +Zﬂjht—j )
i=1 j=1

11



The result implies that the form of the GARCH (p, ¢) process remains largely intact with
respect to local risk neutralization. The variance innovation is governed by g non-central
chi-square random variables with one degree of freedom and non-central parameter A,
whereas the GARCH process under P can be seen as the process governed by g central
chi-square innovations. It suggests that the unit risk premium, A4, influences the conditional
variance process globally although the risk has been locally neutralized under measure Q.

Under GARCH model, a European call option with exercise price K maturing at time T

has the following time-z value,

C, =" E¢max(X, - K 0)F, .

t

12



3. Description of the Data

To examine the empirical performance of the GARCH option pricing model, we applied
the model to daily closing prices of the Taiwan Stock Exchange Capitalization Weighted
Stock Index (TAIEX) and its corresponding TAIEX options. We use the index and its
corresponding options based on the following consideration. The first reason is that the index
and the option data are freely available. The data were obtained from the official website of
Taiwan Stock Exchange Corporation (TSEC):

http://www.tse.com.tw

and the official website of Taiwan Futures Exchange (TAIFEX):

http://www.taifex.com.tw .

Second, the TAIEX index option i1s the most. actively traded European-style option in
Taiwan. Thus, the TAIEX option market is chosen to test the empirical performance of the

Black-Scholes model and the GARCH.option pricing model.

We will use the TAIEX index with the sample period from January 4, 2000 to December
10, 2003 to establish the GARCH volatility dynamic. There are 617 observations. Figure 2
describes the evolution of the daily TAIEX index levels, which fluctuated dramatically during
this period. One can easily see that the daily TAIEX index levels in Figure 2 demonstrate a
decreasing trend. The mean index value is about 5,800, while the maximum index value is
more than 10,000, and the lowest value is less than 3,500. Starting year 2000, Taiwanese
economy has been affected by many political and non-political issues. The first shift of
Taiwanese political party, the suspension and re-establishment of nuclear power station, and
the unhealthy financial system had all affected the stock market. Figure 3 describes the daily
return for the sample period. It shows that the mean of the return series appears to be constant
whereas the variance clearly changes over time. Volatility clustering is also observed in the

13



plot, a large value tends to follow by another large value. This is known as the conditional

heteroscedasticity.

The TAIEX option is a European style option, and it expires at the opening of the
Thursday following the third Wednesday of each contract month. The expiration month is the
next two calendar months followed by two additional months from the March quarterly cycle
(March, June, September, and December). Their strike price intervals are 100 points. On each
trading day, we report the first call contract happened in the time interval of 1:00-1:25 which
is near the closing time for each strike price and the time-to-maturity. The time-to-maturity is
measured as the number of calendar days from the trading date to the Wednesday
immediately preceding the Thursday when the option expires date, because TAIEX index
options expire at the opening of trading. The reported index level is the closing price of the
TAIEX index. After establishing the GARCH dynamic, we will compute the index option
prices from September 1, 2003 to-December.10,.2003:

The following criteria are employed.to filter the option data:

First, general arbitrage violations must be eliminated from the data; otherwise there
might be a negative implied volatility. A transaction has to satisfy the following no-arbitrage

relationships:
C, >max(0,S - K -e”""™),

Second, very short-term options and very long-term options are excluded. Options with
less than 7 days to expiration are excluded because they are very sensitive to liquidity-related
biases and their prices are generally very volatile. Options with time to maturity longer than
40 days are also excluded because they are not actively traded and thus excluded from the
sample.

Third, very deep out-of-the-money and very deep in-the-money options are excluded.

14



This criterion is based on the same considerations as discussed in the above paragraph.
Options with deep out-of-the-money and very deep in-the-money options may contain little
information about the volatility process. Moreover, these options are not traded actively. An
option is defined as very deep in- or out-of-the-money if its moneyness is greater than 1.2 or
lower than 0.8. The option moneyness is defined as the ratio between the TAIEX level and the
strike price:

Moneyness = S/K .

Our exclusionary criteria yield a final daily sample of 584 observations for 70 days. On
average we have about 9 option prices available on each day. Since option prices are not very
sensitive to the interest rate and the change of interest rate is small on daily basis, we shall just

assume the risk free rate as 2% per year.

It is a common practice in the:literature -to divide options into different moneyness
categories to study their price behavior because option prices are very sensitive to their
exercise prices. We divide the option data into 5 categories according to the moneyness.

We define a call option is said to be at-the-money if the moneyness is between (0.98,
1.02), in-the-money if the moneyness is between (1.02, 1.05), out-of-the-money if the
moneyness is between (0.95, 0.98) and deep in-the-money if the moneyness is greater than
1.05 and deep out-of-the-money if the moneyness is less than 0.95.

Table 1 provides the average and standard deviation of call option prices reported for
each moneyness category, and also shows the numbers of observations in these categories for
the period from September 1, 2003 to December 10, 2003. About 25% of the samples are
at-the-money, 19% of the samples are out-of-the-money and 19% of the samples are
in-the-money. Only 8% of the samples are deep out-of-the-money. The most unusual thing is
the high proportion of the deep in-the-money (26%). The demand for in-the-money options is

15



higher than the demand for out-of-the-money options, which indicates that investors are
cynical about future market increases, since in-the-money call options will be valuable only if
the market decreases significantly in the future. The overall average call price in our sample

period is NT$210.51 with a standard deviation of NT$197.61.

16



4. Empirical Analysis

The GARCH Model

As mentioned in Chapter 2, a European call option with exercise price K maturing at

time T has the following time-¢ value under measure Q,

C

 =e" T ECmax(X, - K 0)F,]

Thus the Monte Carlo simulation is used in the computation of the GARCH option prices.
Use of the Monte Carlo method to compute option prices can be traced back to Boyle (1977).
It is a convenient method for the GARCH option pricing model because the distribution for
the temporally aggregated asset return can not be derived easily. To simulate the
risk-neutralized GARCH (1, 1) asset returns_for the option pricings at time ¢, we recognize

that the asset price S, and the conditional-velatility /., can together serve as sufficient

1
statistics.

We tried two different ways to-employ:-the GARCH option pricing model: one is to
assume that the implied parameters are constant'in the following period, i.e. the structure will
not change in the following period. Then, we input the period’s implied parameters to the
GARCH option model and price all the option contracts. And another is to assume that the
implied parameters change daily, we input the previous day’s implied parameters to the
GARCH option pricing model and compute current day’s model-determined option prices, it
predicts one day ahead.

In the first case, the GARCH-M model specified as Duan (1995) with p=1 and g =1

is fitted to the TAIEX daily index series from January 4, 2000 to September 30, 2003. The
estimated parameters are ¢, =2.072x107° , g, =0.075, ,Bl —0.867 , and A=0.007 ,

respectively. The GARCH parameter values together imply that the annualized standard

deviation is 29.09%. The risk-free rate is fixed at 2% for simplicity. Each contract was

17



obtained by carrying out fifty thousand Monte Carlo simulation runs.

In the second case, the GARCH model will be re-estimated daily. There are two ways to
predict volatility via GARCH model period by period: one is to “rolling GARCH model”, that
is, we fix the number of observations, every time we add a new observation, we eliminate the
oldest observation; the other one is to “updating GARCH model”, every period, add a new
observation into the original observations. We adopt the rolling GARCH model method
which uses the same data length. The estimated parameter values were varying period by
period. In Figure 4, the parameter patterns shows there were few changes in the model. All the
fitted models were stationary GARCH (1, 1) model, i.e. «,+ 3, <1. The estimates of the

risk-premium parameter, A4, are all very close to zero.

Duan also mentioned that it S an opportunity to examine the impacts of the initial
conditional variance on the price_of the option., To compare the impacts of conditional
volatility, three levels of initial-conditional _standard deviations are studied. They are the
stationary level, 20% below the stationary level, and 20% above, respectively. Similar to his
parameter setting, our result shows that although the different initial values effect the option
pricing result, but the difference is limited, as indicated in Tables 3A and 3B. Therefore, the

following analysis will focus on the initial value being the standard conditional volatility, i.e.

Ji=o.

The Black-Scholes Model

The only unobservable variable in the Black-Scholes formula is the volatility; therefore, the
value of implied volatility will determine the pricing result. The original model assumption
limits the implied volatility to be a constant. However, it has been widely recognized that

financial asset return processes possess heavy-tailed marginal distributions and volatility

18



clustering. Various improvements had been employed. Similar to the GARCH model, we

tried the non-update and update volatility for the Black-Scholes model.

We impose the original Black-Scholes’ assumption in the non-update case: the constant
volatility. Estimation of implied volatility is 20.35% from the option contracts in August,
2003. And in the case we update the volatility, for each contract we computed the implied
volatility of the previous day by numerical method, and used their average as the estimate of

the volatility to value the current day’s options.

Comparison

Table 2 lists the mean of the market option prices, the update Black-Scholes, non-update
Black-Scholes, update GARCH, and-non-update GARCH prices by the moneyness categories.
As mentioned above, the GARCH option pricing model is computed via 50,000 Monte Carlo
simulation runs. The difference between the non-update and update GARCH model is in the
parameter estimates being obtained. TFhe implied volatilities of the update Black-Scholes
model were obtained from the previous day, while for the non-update model it was obtained

from our option sample available in the previous day.

When we are comparing the performance of the option pricing model, there is something
to note about. As we can see from Table 1, the amplitudes of option prices of the different
moneyness categories are significantly different. The relative pricing error is a decreasing
function of moneyness(S/K). It is reasonable because the option price is relative high when
they are (deep) in-the-money, thus the pricing errors are relatively small to the option price.
Therefore, when we compare the pricing performance, it is not proper to just judge them in
either pricing error or percentage pricing error. The pricing error may be huge when the price
of option is large, while the percentage pricing error may be huge when the price of option is
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small. The pricing error is defined as the difference between the market option price and the
model-determined price while the percentage pricing error is the pricing error divided by the

market price, within each moneyness category.

For a closer look, we compare the pricing performance of different moneyness categories.
In Figures 5A and 5B, we visualize the comparison of Tables 4A and 4B with plots. In Figure
5A, it seems that the update GARCH model underestimates the option prices in all moneyness
categories. And the Update-GARCH model performs better than the Black-Scholes model in
the deep-out-of-the-money, Out-of-money, and At-the-money categories. While the update
Black-Scholes model always has the best performance.

The update and non-update Black-Scholes models overestimate all the options besides
deep-in-the-money. One probable explanation is-the volatility smiles. When we take the
“average” implied volatility as the estimate, there might be an underestimation to the implied

volatility for the out-of-the-money category.

Also, the total pricing error could be eliminated once some of them were positive while
some were negative. Thus, it is natural to consider absolute pricing error and the absolute
percentage pricing error. The absolute pricing error, defined as the absolute value of the
difference between the market option price and the model-determined price while the absolute
percentage pricing error is the absolute pricing error divided by the market price, within each
moneyness category. In Tables 5A and 5B, the absolute and absolute percentage pricing errors

of the alternative models are shown with the corresponding plots given in Figures 6A and 6B.

In Table 5A, the update Black-Scholes model has an overall average absolute error of
15.59 NT dollars, while the non-update Black-Scholes model has 17.56 NT dollars, the
non-update GARCH model has NT 20.76 dollars and update GARCH has NT 23.27 dollars.
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In Table 5B, the overall absolute percentage pricing error of the non-update Black-Scholes
model is 26%, while the error of the update Black-Scholes model is 23%, the non-update
GARCH model is 24%, and update GARCH model is 27%. The performance of the GARCH

model is similar or worse than the update Black-Scholes model.
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5. Conclusion

A central hypothesis of the Black-Scholes model is that the return on the underlying asset
distributed log-normally with constant volatility. However, it has been widely recognized that
financial asset return processes possess heavy-tailed marginal distributions and volatility
clustering. These features are interpreted as the evidence of the stochastic volatility of
financial assets, and estimating the term structure of volatility has become an important issue

in finance engineering.

We introduced the GARCH option pricing model of Duan (1995), using the LRNVR
change measure to price options by Monte Carlo simulation. We then evaluate the empirical
performance of different option pricing models.on TAIEX options. We had considered the
improved and constant volatility (non-update). Black-Scholes models and the update,
non-update GARCH option pricing models. We then compare their pricing performance

according to the absolute and percentage pricing errors.

Under Duan’s model setting, we compute the option prices according to the information
set of the underlying asset, say, stock index; while for the Black-Scholes the information set
of index options. There are a lot of authors utilizing information from the option data, for
examples, Heston and Nandi (2000), Brigo and Mercurio (2001). They estimated their model
by non-linear least square method, and the performance could depend on the parameter

dimension.
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Appendix A. Tables

Table 1: Summary Statistics for TAIEX Call Options (2003/9/1-2003/12/10)*

Table 1. Moneyness (S/K)
Stat. DOTM | OTM ATM I™ DITM | Over all
Average 18.35 44.16 | 118.15 | 252.45 | 501.58 | 210.52
Market Price | Std. Dev. | 10.90 23.93 43.71 4535 | 162.85 | 197.61
Number 52 121 160 113 138 584

*The summary statistics of TAIEX call option near closing prices are reported for each moneyness category.
Moneyness is defined as S/K, where S denotes the closing value of the TAIEX and K denotes the exercise price

of the option. The sample period is from+September 1,°2003 to December 10, 2003 with a total of 584 call

options.

Table 2: The market option prices and the estimated prices of the alternative models*

Table 2 Moneyness (S/K)
Model DOTM | OTM ATM ITM DITM Over all
Market Price 18.35 44,16 | 118.15 | 252.45 | 501.58 210.52
Non-update BS 29.02 62.57 | 136.16 | 260.63 | 489.41 218.93
Update BS 29.34 57.76 | 130.36 | 255.40 | 488.15 215.06
Non-update GARCH 29.75 60.62 | 130.43 | 259.54 | 490.28 217.02
Update GARCH 12.72 38.28 | 102.10 | 240.08 | 485.80 198.28

*The GARCH option pricing model is computed via 50,000 Monte Carlo simulation runs. The only difference
between the non-update and update GARCH model is in the parameters being obtained. The implied volatilities

of the update Black-Scholes model were obtained from the previous day, while the non-update model was

obtained from the available sample.
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Table 3A: The option prices with various initial conditional variance ratios in the
GARCH option pricing model (Non-Update case)

Table 3A Moneyness (S/K)

DOTM | OTM ATM IT™M DITM | Over all
Jhn o

0.8 29.91 | 60.59 | 130.14 | 258.61 | 511.08 | 235.11
1 29.75 | 60.62 | 130.43 | 258.65 | 511.20 | 235.22
1.2 29.93 | 60.89 | 131.02 | 258.48 | 511.20 | 23541

Table 3B: The option prices -with-various initial conditional variance ratios in the

GARCH option pricing model (Update case)

Table 3B Moneyness (S/K)

\/E/O' DOTM | OTM | ATM I™ DITM | Over all

0.8 12.68 | 37.94 | 101.87 | 239.90 | 507.62 | 217.38
1 12.72 | 38.28 | 102.10 | 239.76 | 507.51 | 217.45
1.2 12.62 | 38.23 | 102.25 | 240.50 | 507.44 | 217.59
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Table 4A: The Pricing Error of Alternative Option Pricing Models

Table 4A. Moneyness (S/K)
Moneyness DOTM O™ ATM IT™™ DITM | Overall
SIK <0.95 | (0.95,0.98) | (0.98,1.02) | (1.02,1.05) | >1.05
BS 10.68 18.42 18.02 8.18 -12.17 8.41
update BS 10.99 13.60 12.22 2.95 -13.43 4.54
Non-update GARCH 11.40 16.46 12.28 7.09 -11.30 6.49
Update GARCH -5.63 -5.88 -16.05 -12.37 -15.78 | -12.24

Table 4B: The Percentage Pricing Errorof Alternative Option Pricing Models

Table 4B. Moneyness (S/K)
Moneyness DOTM OT™M ATM I™ DITM | Overall
SIK <0.95 | (0.95,0.98) | (0.98,1.02) | (1.02,1.05) | >1.05
BS 0.68 0.55 0.20 0.04 -0.02 0.23
update BS 0.74 0.39 0.12 0.02 -0.02 0.18
Non-update GARCH 0.57 0.30 0.10 0.03 -0.02 0.14
Update GARCH -0.43 -0.26 -0.18 -0.05 -0.03 -0.16
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Table 5A: The Absolute Pricing Error of the Alternative Option Pricing Models

Table 5A. Moneyness (S/K)
Moneyness DOTM O™ ATM IT™™ DITM | Overall
SIK <0.95 | (0.95,0.98) | (0.98,1.02) | (1.02,1.05) | >1.05
BS 10.74 18.80 20.00 15.76 17.69 17.56
update BS 11.97 16.19 16.55 13.87 16.71 15.59
Non-update GARCH 12.30 20.50 22.22 21.81 21.63 20.76
Update GARCH 9.55 19.54 29.14 25.47 23.11 23.27

Table 5B: The Percentage Absolute PricingError of Alternative Option Pricing Models

Table 5B. Maneyness (S/K)
Moneyness DOTM OT™M ATM I™ DITM | Overall
SIK <0.95 | (0.95,0.98) | (0.98,1.02) | (1.02,1.05) | >1.05
BS 0.69 0.56 0.22 0.07 0.04 0.26
update BS 0.79 0.47 0.16 0.06 0.03 0.23
Non-update GARCH | 0.66 0.47 0.20 0.09 0.05 0.24
Update GARCH 0.58 0.52 0.29 0.10 0.05 0.27
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Appendix B. Figures

Figure 1: The volatility smile of the TAIEX options in September, 2, 2003.
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Figure 2: The Daily Closing price of TAIEX (2000/1/1 to 2003/12/10)
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Figure 3: The Daily Log Return series of the TAIEX (2000/1/1 to 2003/12/10)
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Figure 4: Maximum Likelihood Estimations of update GARCH (1, 1) process*
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*The parameters of the GARCH model were’ obtained by constrained optimization. Since we use the
“rolling the GARCH model” method, the parameter-estimations-.changed daily. All the estimation sets satisfy the
stationary GARCH conditions, i.e. o +#3;<1. The estimates of the risk-premium parameter, 1, are all very

close to zero.
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Figure 5A: The Pricing Error of Alternative Option Pricing Models
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Figure 6A: The Absolute Pricing Error of Alternative Option Pricing Models.
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