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ABSTRACT 

 
A central hypothesis of the Black-Scholes model is that the return on the underlying asset 

distributed log-normally with constant volatility. However, it has been widely recognized that 

financial asset return processes possess heavy-tailed marginal distributions and volatility 

clustering. These features are interpreted as the evidence of the stochastic volatility of 

financial assets, and estimating the term structure of volatility has become an important issue 

in finance engineering. 

We introduced the GARCH option pricing model of Duan (1995), using the LRNVR 

change measure to price options by Monte Carlo simulation runs and evaluate the empirical 

performance of different option pricing models on Taiwan Stock Exchange Capitalization 

Weighted Stock Index Options. We considered the improved and constant volatility 

(non-update) Black-Scholes models, and the update and non-update GARCH option pricing 

models. We then compare their pricing performance according to several criteria. 
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GARCH 選擇權訂價模型在台灣市場的實證表現 

 

研究生: 邱政輝   指導教授: 李昭勝 博士 

國立交通大學統計學研究所 

中文摘要 

 資產的對數報酬服從常態分布以及波動率為一常數是 Black-Scholes 選擇權估價

模型的重要假設。然而，資產報酬有著較常態分布大的尾端機率及波動率叢聚現象。這

些現象被解讀為財務資產的波動隨機結構，而這也成為財務工程的重要議題。 

我們介紹由段錦泉教授在1995年所提出的 GARCH 選擇權訂價模型。在局部風險

中立測度下以蒙地卡羅模擬法計算台灣加權股價指數選擇權價格。我們會呈現數個不同

的評價準則以比較原始的、修正的 Black-Scholes 模型，與隨時間更新、不隨時間更新

的 GARCH 選擇權模型評價表現。 
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1. Introduction 

Following the seminal work of Black and Scholes (1973) and Merton (1973), the option 

literature has developed into an important area of research. A central hypothesis of the 

Black-Scholes model is that the return on the underlying asset distributed log-normally with 

constant volatility. However, it has been widely recognized that financial asset return 

processes possess heavy-tailed marginal distributions and volatility clustering. These features 

are interpreted as the evidence of the stochastic volatility of financial assets, and estimating 

the term structure of volatility has become an important issue in finance engineering. 

 

There are basically two types of volatility models: continuous-time stochastic models 

and discrete-time stochastic generalized autoregressive conditional heteroscedasticity 

(GARCH) models. On one hand, the continuous-time model can serve as the limit of a certain 

GARCH model. Duan (1996) argued that most of the existing bivariate diffusion models that 

had been used to model asset returns and volatility could be represented as limits of a family 

of GARCH models. The continuous-time stochastic model has an inherent disadvantage that it 

assumes that volatility is observable, but it is impossible to exactly filter volatility from 

discrete observations of spot asset prices in a continuous-time stochastic volatility model. 

Consequently, it is impossible to price an option solely on the basis of the history of asset 

prices. On the other hand, the GARCH model has an advantage over the continuous-time 

model in that the volatility is readily observable in the history of asset prices. As a result, the 

volatility term structure is calculated on the basis of market observations of underlying asset 

prices.  

 

Although there have been many papers on the comparison of these two models, some of 

these studies obtain quite different results. Different conclusions are drawn because of the 
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usage of different sample periods, models and estimation methods. Therefore, it is still 

meaningful to examine the empirical performance of the Black-Scholes model and the 

GARCH option pricing model by Monte Carlo simulation using a new data set. 

 

In this study, we use the GARCH (1, 1) option pricing model developed by Duan (1995) 

in a discrete time GARCH (1, 1) environment. Under the local risk-neutral valuation 

relationship (LRNVR) derived by Duan, the asset return process under the risk-neutralized 

pricing measure differs from the conventional GARCH process in an interesting way. We 

perform and compare the option pricing result both of the update and non-update, 

Black-Scholes and GARCH option pricing model.  

 

The numerical results compare the empirical option pricing performance in different 

moneyness categories of the update Black-Scholes, non-update Black-Scholes and update and 

non-update GARCH models. We applied the models to daily closing prices of the Taiwan 

Stock Exchange Capitalization Weighted Stock Index (TAIEX) and its corresponding TAIEX 

options. We use the TAIEX and its corresponding options based on two considerations. One 

is that the index and the option prices data for the TAIEX index options are freely available. 

Furthermore, the TAIEX index option is the most actively traded European-style option in 

Taiwan. 

 

This thesis is structured as follows: Chapter 2 discusses the famous Black-Scholes option 

pricing model and the GARCH option pricing model of Duan (1995). The description of the 

data is provided in Chapter 3. In Chapter 4, we examine the empirical performance of the 

GARCH option pricing model and the Black-Scholes model in Taiwan’s market. Conclusions 

are offered in Chapter 5. 

 

 2



2. The Option Pricing Models 

In this chapter we will introduce the most famous option pricing model, the 

Black-Scholes model, and the GARCH option pricing model of Duan (1995). 

Since for a European put, its price can be derived easily via the following put-call parity 

relationship: 

  , )( tTr
ttt XeCSp −−+=+

we will demonstrate only the pricing of the call options in the rest of this thesis. 

 

 

2.1   The Black-Scholes Model 

Black and Scholes (1973) published an option valuation formula which is known today 

as the Black-Scholes model. 

The Black-Scholes model was established under the following conditions: 

1. The short selling of securities with full use of proceeds is permitted. 

2. There are no transition casts or taxes. 

3. All securities are perfectly divisible. 

4. There are no arbitrage opportunities. 

5. Security trading is continuous. 

6. The risk-free rate of interest, r, is constant and the same for all maturities. 

 

When the underlying asset follows geometric Brownian motion  

  tttt dwSdtSdS ⋅⋅+⋅⋅= σµ  

with constants µ and σ , then the Black-Scholes formula calculates the price of a call option 

to be: 

)()( 21 dNKedNSC rT ⋅−⋅= −  
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where  

 C = price of a call option, 

 S = price of the underlying asset, 

 K = option exercise price, 

 r = risk-free rate, 

 T = current time to maturity, 

 N (.) = standard normal cumulative distribution function , 

 ( )
T

TrKSd
σ

σ ⋅++
=

)5.0(ln 2

1 , 

 Tdd σ−= 12 . 

The Black-Scholes model assumes that the volatility of stock prices is a constant. In 

practice, some analysts use the market option prices to obtain the implied volatility as an 

estimate of the volatility for the Black-Scholes model. There is no explicit for the implied 

volatility. However, using some simple numerical method like Newton method, we can easily 

obtain the implied volatility from the option pricing formula. 

  

Nevertheless, the implied volatility is found to vary, and thus the assumption of constant 

volatility is violated. The plot of the implied volatility of an option as a function of its strike 

price is known as a volatility smile. The volatility smile of the TAIEX options in September, 

2, 2003 has the form shown in Figure 1. The implied volatility decreases as the strike price 

increases, which is sometimes referred as volatility skew. In addition to a volatility smile, 

volatility term structure is also observed. The volatility used to price an option depends on the 

length of time to maturity of the option. When volatility smile and volatility term structure are 

combined, they produce a volatility surface. This defines implied volatility as a function of 

both the strike price and the time to maturity. 
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We perform both the original (non-update, constant volatility) Black-Scholes option 

pricing and improved models. In the improved Black-Scholes model, we allow different 

volatilities for different lengths of time to maturity. Since the only unobserved variable is the 

implied volatility, we can compute the implied volatility for all the call options on each day 

by numerical method. In fact, we can also use the information contained in the put option 

prices. For simplicity, we will just consider the call options here. We then use this implied 

volatility to value all the call options on the following day. 
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2.2 The GARCH Option Pricing Model 

The objective of this section is to give a brief introduction to the GARCH model and its 

applications. In 2.2.2, we will introduce the locally risk-neutral valuation relationship, and the 

GARCH option pricing model proposed by Duan (1995).   

 

2.2.1 Introduction of the GARCH model 

The objective of this sub section is to study the generalized auto-regressive conditional 

heteroscedastic model of Bollerslev (1986). 

Define as the variance rate of a market variable on day t which can be estimated at the 

end of day (t−1). The square root of the variance on day t,

th

th , is called the volatility. 

Suppose that the value of the market variable at the end of day t is . The log return during 

day t (between the end of day t−1 and the end of day t), , is defined as  

tS

tr

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−1

log
t

t
t S

Sr . 

A log return series, {rt}, is said to follow a GARCH (p, q) model, if  

,tttr εµ +=  ttt zh ⋅=ε ,   

∑∑
=

−
=

− ⋅+⋅+=
p

j
jtj

q

i
itit hh

1

2

1
0 εαβα  

where{ } is a sequence of identically and independently distributed random variables with 

mean zero and variance 1, and it is often assumed to be a standard normal or standardized 

Student-t distribution,

tz

tµ is the trend of log return at time t. For a stable GARCH (p, q) process, 

the condition ,00 >α 0, ≥ji βα , is required to assume the weight of the long-run average 

variance is positive, and the condition  implies that the unconditional 

variance of {rt} is finite. 

1
11

<+∑∑
==

p

j
j

q

i
i βα
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Because the simple GARCH (1, 1) with normal distribution assumption is the most 

commonly used, we will focus on it with 

,ttr ε=  ttt zh ⋅=ε ,  ( )1,0~ Nzt , 

2
11110 −− ⋅+⋅+= ttt hh εαβα , 

,00 >α  ( ) .1,1,0 1111 <+<< βαβα  

With the normality assumption, all the parameters can be estimated directly from the data 

through the maximum likelihood method. It is easy to obtain the parameter estimates by 

non-linear constrained optimization given the constraints of the boundary and stationarity 

conditions with packages such as MATLAB or E-views. 

 

Forecast through the GARCH model can then be easily obtained. The conditional 

variance  depends on the one-step ahead observation and the one-step ahead variance 

rate: 

1+th

2
1101 ttt hh εαβα ++=+ , 

where andth tε are known in time index t. Therefore, the 1-step ahead forecast is 

  . 2
110)1( ttt hh εαβα ++=

For multiple ahead forecasts, we rewrite the volatility equation as 

)1()( 22
11101 −⋅+⋅++=+ tttt hhh εαβαα . 

Since 0)1( 2
1 =−+ tt FE ε , the 2-step ahead volatility forecast at the forecast origin t satisfies the 

equation 

  ).1()()2( 110 tt hh βαα ++=  

In general, we have 

  .1),1()()( 110 >−++= llhlh tt βαα  

By repeated substitutions, we obtain the following l-step ahead forecast  

 7



 [ ] ).1()(
1

)(1)( 1
11

11

1
110

t
l

l

t hlh −
−

++
−−
+−

= βα
βα
βαα  

Therefore, 

 ,
1

)(
11

0

βα
α
−−

→lht  as ∞→l  

provided that 111 <+ βα . Consequently, the multi-step ahead volatility forecasts of a 

GARCH (1, 1) model converge to the unconditional variance as the forecast horizon increases 

to infinity provided that the variance exists. 
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2.2.2 The LRNVR and the GARCH Option Pricing Model 

Duan (1995) develops a pricing model for options on an asset whose return follow the 

GARCH process in a discrete time economy environment. By maximizing the expected utility, 

he shows the Locally Risk-Neutral Valuation Relationship (LRNVR) holds and derives the 

following model for log return process. 

 

Duan started by assuming that the asset return dynamic, under the actual probability 

measure, P, is 

,
2
1ln

1
ttt

t

t hhr
X
X ελ +−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

 

where tε has zero mean and conditional variance under measure P; r is the constant 

one-period risk-free rate of return (continuously compounded) and

th

λ  is the constant unit risk 

premium. Under conditional log-normality, one plus the conditionally expected rate of return 

equals )exp( thr λ+ . It thus suggests thatλ  can be interpreted as the unit risk premium. 

 

Furthermore, tε  follows a GARCH (p, q) process of Bollerslev (1986) under measure P. 

That means: 

( )ttt hNF ,0~1−ε  under measure P, 

,
11

2
0 ∑∑

=
−

=
− ++=

p

j
jtj

q

i
itit hh βεαα  

where tφ  is the information set (σ -field ) of all information up to and including time t. For 

positive variance and stationarity, the following conditions  are 

required: ,0≥p ;0≥q ,00 >α ;,,1,0 qii K=≥α ;,,1,0 pjj K=≥β  .  1
11

<+∑∑
==

p

j
j

q

i
i βα

 

As p = 0 and q = 0, we have 
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,
2
1log

1
tt

t

t
t ahr

X
Xr +−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

 , ),0(~ 2σNa iid
t

which implies  

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
TTrN

X
X T 22

0

,)
2
1(~log σσ . 

 It is back to the Black-Scholes result. Obviously, the Black-Scholes model is a special 

case of the GARCH option pricing model. 

 

For pricing purpose, we introduced the LRNVR of Duan (1995): 

Definition: The risk-neutral probability measure Q is said to satisfy the local risk-neutral 

valuation relationship (LRNVR) if the following conditions are satisfied: 

(i) Measure Q is mutually continuous with respect to measure P; 

(ii) Log return is normally distributed under Q,  

with r
t

t

tQ eF
X
XE =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
1

1

, 

and ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

−
−

−
−

1
1

1
1

lnln t
t

tP
t

t

tQ FX
XVarFX

XVar  almost surely with respect to 

measure P. 

 

In the above definition, the conditional variances under the two measures are required to 

be the same. It is desirable because one can observe and hence estimate the conditional 

variance under measure P. This property and the fact that the conditional mean can be 

replaced by the risk-free rate obtained a well-specified model that does not depend on 

preference. However, the local risk neutralization is not sufficient to eliminate the preference 

parameters. Under the model setting, it is nevertheless strong enough to reduce all preference 

consideration to the risk premium. In the case of a homoscedastic lognormal process, i.e., p = 
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0 and q = 0, the conditional variances become the same constant and the LRNVR reduces to 

the conventional risk-neutral valuation relationship. 

 

Duan (1995) also proved in the view of equilibrium that, under some combinations of the 
distributions and the preferences, the LRNVR holds its validity. 

 

Theorem: If the representative agents is an expected utility maximizer and the utility function 

is time separable and additive, then the LRNVR holds under any of the following conditions: 

(i) The utility function is of constant relative risk aversion and changes in the 

logarithm aggregate consumption are distributed normally with constant mean and 

variance under measure P. 

(ii) The utility function is of constant absolute risk aversion and changes in the 

aggregate consumption are distributed normally with constant mean and variance 

under measure P. 

(iii) The utility function is linear. 

The first and second conditions ensure that the implied interest rate is constant. This is 

the same with the constant interest rate assumption earlier. It is possible to develop the model 

with stochastic interest rates, but the resulting model will become much more complicated. 

 

Under the local risk-neutralized probability measure Q, the asset return dynamic 

becomes 

,
2
1ln

1
tt

t

t hr
X
X ξ+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

 

where 

 ( )ttt hNF ,0~1−ξ  under measure Q, 

 ∑∑
=

−
=

−− +−+=
p

j
jtj

q

i
titit hhh

11

2
1

2
0 )( βλξαα . 
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 The result implies that the form of the GARCH (p, q) process remains largely intact with 

respect to local risk neutralization. The variance innovation is governed by q non-central 

chi-square random variables with one degree of freedom and non-central parameter λ , 

whereas the GARCH process under P can be seen as the process governed by q central 

chi-square innovations. It suggests that the unit risk premium,λ , influences the conditional 

variance process globally although the risk has been locally neutralized under measure Q. 

Under GARCH model, a European call option with exercise price K maturing at time T 

has the following time-t value, 

  ( )[ ]tT
QtTr

t FKXEeC 0,max)( −= −− . 
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3. Description of the Data 

To examine the empirical performance of the GARCH option pricing model, we applied 

the model to daily closing prices of the Taiwan Stock Exchange Capitalization Weighted 

Stock Index (TAIEX) and its corresponding TAIEX options. We use the index and its 

corresponding options based on the following consideration. The first reason is that the index 

and the option data are freely available. The data were obtained from the official website of 

Taiwan Stock Exchange Corporation (TSEC): 

http://www.tse.com.tw 

and the official website of Taiwan Futures Exchange (TAIFEX): 

http://www.taifex.com.tw . 

Second, the TAIEX index option is the most actively traded European-style option in 

Taiwan. Thus, the TAIEX option market is chosen to test the empirical performance of the 

Black-Scholes model and the GARCH option pricing model. 

 

We will use the TAIEX index with the sample period from January 4, 2000 to December 

10, 2003 to establish the GARCH volatility dynamic. There are 617 observations. Figure 2 

describes the evolution of the daily TAIEX index levels, which fluctuated dramatically during 

this period. One can easily see that the daily TAIEX index levels in Figure 2 demonstrate a 

decreasing trend. The mean index value is about 5,800, while the maximum index value is 

more than 10,000, and the lowest value is less than 3,500. Starting year 2000, Taiwanese 

economy has been affected by many political and non-political issues. The first shift of 

Taiwanese political party, the suspension and re-establishment of nuclear power station, and 

the unhealthy financial system had all affected the stock market. Figure 3 describes the daily 

return for the sample period. It shows that the mean of the return series appears to be constant 

whereas the variance clearly changes over time. Volatility clustering is also observed in the 
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plot, a large value tends to follow by another large value. This is known as the conditional 

heteroscedasticity. 

 

The TAIEX option is a European style option, and it expires at the opening of the 

Thursday following the third Wednesday of each contract month. The expiration month is the 

next two calendar months followed by two additional months from the March quarterly cycle 

(March, June, September, and December). Their strike price intervals are 100 points. On each 

trading day, we report the first call contract happened in the time interval of 1:00-1:25 which 

is near the closing time for each strike price and the time-to-maturity. The time-to-maturity is 

measured as the number of calendar days from the trading date to the Wednesday 

immediately preceding the Thursday when the option expires date, because TAIEX index 

options expire at the opening of trading. The reported index level is the closing price of the 

TAIEX index. After establishing the GARCH dynamic, we will compute the index option 

prices from September 1, 2003 to December 10, 2003.  

The following criteria are employed to filter the option data: 

First, general arbitrage violations must be eliminated from the data; otherwise there 

might be a negative implied volatility. A transaction has to satisfy the following no-arbitrage 

relationships: 

).,0max( )( tTr
t eKSC −−⋅−≥  

Second, very short-term options and very long-term options are excluded. Options with 

less than 7 days to expiration are excluded because they are very sensitive to liquidity-related 

biases and their prices are generally very volatile. Options with time to maturity longer than 

40 days are also excluded because they are not actively traded and thus excluded from the 

sample. 

Third, very deep out-of-the-money and very deep in-the-money options are excluded. 
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This criterion is based on the same considerations as discussed in the above paragraph. 

Options with deep out-of-the-money and very deep in-the-money options may contain little 

information about the volatility process. Moreover, these options are not traded actively. An 

option is defined as very deep in- or out-of-the-money if its moneyness is greater than 1.2 or 

lower than 0.8. The option moneyness is defined as the ratio between the TAIEX level and the 

strike price: 

 .KSMoneyness =  

 

Our exclusionary criteria yield a final daily sample of 584 observations for 70 days. On 

average we have about 9 option prices available on each day. Since option prices are not very 

sensitive to the interest rate and the change of interest rate is small on daily basis, we shall just 

assume the risk free rate as 2% per year. 

 

It is a common practice in the literature to divide options into different moneyness 

categories to study their price behavior because option prices are very sensitive to their 

exercise prices. We divide the option data into 5 categories according to the moneyness. 

We define a call option is said to be at-the-money if the moneyness is between (0.98, 

1.02), in-the-money if the moneyness is between (1.02, 1.05), out-of-the-money if the 

moneyness is between (0.95, 0.98) and deep in-the-money if the moneyness is greater than 

1.05 and deep out-of-the-money if the moneyness is less than 0.95.  

Table 1 provides the average and standard deviation of call option prices reported for 

each moneyness category, and also shows the numbers of observations in these categories for 

the period from September 1, 2003 to December 10, 2003. About 25% of the samples are 

at-the-money, 19% of the samples are out-of-the-money and 19% of the samples are 

in-the-money. Only 8% of the samples are deep out-of-the-money. The most unusual thing is 

the high proportion of the deep in-the-money (26%). The demand for in-the-money options is 
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higher than the demand for out-of-the-money options, which indicates that investors are 

cynical about future market increases, since in-the-money call options will be valuable only if 

the market decreases significantly in the future. The overall average call price in our sample 

period is NT$210.51 with a standard deviation of NT$197.61.  
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4.  Empirical Analysis 

The GARCH Model 

As mentioned in Chapter 2, a European call option with exercise price K maturing at 

time T has the following time-t value under measure Q, 

  ( )[ ]tT
QtTr

t FKXEeC 0,max)( −= −− . 

Thus the Monte Carlo simulation is used in the computation of the GARCH option prices. 

Use of the Monte Carlo method to compute option prices can be traced back to Boyle (1977). 

It is a convenient method for the GARCH option pricing model because the distribution for 

the temporally aggregated asset return can not be derived easily. To simulate the 

risk-neutralized GARCH (1, 1) asset returns for the option pricings at time t, we recognize 

that the asset price and the conditional volatility can together serve as sufficient 

statistics. 

tS 1+th

We tried two different ways to employ the GARCH option pricing model: one is to 

assume that the implied parameters are constant in the following period, i.e. the structure will 

not change in the following period. Then, we input the period’s implied parameters to the 

GARCH option model and price all the option contracts. And another is to assume that the 

implied parameters change daily, we input the previous day’s implied parameters to the 

GARCH option pricing model and compute current day’s model-determined option prices, it 

predicts one day ahead. 

 In the first case, the GARCH-M model specified as Duan (1995) with  and q = 1 

is fitted to the TAIEX daily index series from January 4, 2000 to September 30, 2003. The 

estimated parameters are ,

1=p

5
0 10072.2ˆ −×=α ,075.0ˆ1 =α 867.0ˆ

1 =β , and , 

respectively. The GARCH parameter values together imply that the annualized standard 

deviation is 29.09%. The risk-free rate is fixed at 2% for simplicity. Each contract was 

007.0ˆ =λ
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obtained by carrying out fifty thousand Monte Carlo simulation runs.  

 In the second case, the GARCH model will be re-estimated daily. There are two ways to 

predict volatility via GARCH model period by period: one is to “rolling GARCH model”, that 

is, we fix the number of observations, every time we add a new observation, we eliminate the 

oldest observation; the other one is to “updating GARCH model”, every period, add a new 

observation into the original observations. We adopt the rolling GARCH model method 

which uses the same data length. The estimated parameter values were varying period by 

period. In Figure 4, the parameter patterns shows there were few changes in the model. All the 

fitted models were stationary GARCH (1, 1) model, i.e. 111 <+ βα . The estimates of the 

risk-premium parameter,λ , are all very close to zero. 

 

 Duan also mentioned that it is an opportunity to examine the impacts of the initial 

conditional variance on the price of the option. To compare the impacts of conditional 

volatility, three levels of initial conditional standard deviations are studied. They are the 

stationary level, 20% below the stationary level, and 20% above, respectively. Similar to his 

parameter setting, our result shows that although the different initial values effect the option 

pricing result, but the difference is limited, as indicated in Tables 3A and 3B. Therefore, the 

following analysis will focus on the initial value being the standard conditional volatility, i.e. 

σ=0h . 

 

The Black-Scholes Model 

The only unobservable variable in the Black-Scholes formula is the volatility; therefore, the 

value of implied volatility will determine the pricing result. The original model assumption 

limits the implied volatility to be a constant. However, it has been widely recognized that 

financial asset return processes possess heavy-tailed marginal distributions and volatility 
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clustering. Various improvements had been employed. Similar to the GARCH model, we 

tried the non-update and update volatility for the Black-Scholes model.  

 

We impose the original Black-Scholes’ assumption in the non-update case: the constant 

volatility. Estimation of implied volatility is 20.35% from the option contracts in August, 

2003. And in the case we update the volatility, for each contract we computed the implied 

volatility of the previous day by numerical method, and used their average as the estimate of 

the volatility to value the current day’s options.  

 

Comparison 

 Table 2 lists the mean of the market option prices, the update Black-Scholes, non-update 

Black-Scholes, update GARCH, and non-update GARCH prices by the moneyness categories. 

As mentioned above, the GARCH option pricing model is computed via 50,000 Monte Carlo 

simulation runs. The difference between the non-update and update GARCH model is in the 

parameter estimates being obtained. The implied volatilities of the update Black-Scholes 

model were obtained from the previous day, while for the non-update model it was obtained 

from our option sample available in the previous day. 

 

When we are comparing the performance of the option pricing model, there is something 

to note about. As we can see from Table 1, the amplitudes of option prices of the different 

moneyness categories are significantly different. The relative pricing error is a decreasing 

function of moneyness(S/K). It is reasonable because the option price is relative high when 

they are (deep) in-the-money, thus the pricing errors are relatively small to the option price. 

Therefore, when we compare the pricing performance, it is not proper to just judge them in 

either pricing error or percentage pricing error. The pricing error may be huge when the price 

of option is large, while the percentage pricing error may be huge when the price of option is 
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small. The pricing error is defined as the difference between the market option price and the 

model-determined price while the percentage pricing error is the pricing error divided by the 

market price, within each moneyness category.  

 

For a closer look, we compare the pricing performance of different moneyness categories. 

In Figures 5A and 5B, we visualize the comparison of Tables 4A and 4B with plots. In Figure 

5A, it seems that the update GARCH model underestimates the option prices in all moneyness 

categories. And the Update-GARCH model performs better than the Black-Scholes model in 

the deep-out-of-the-money, Out-of-money, and At-the-money categories. While the update 

Black-Scholes model always has the best performance. 

The update and non-update Black-Scholes models overestimate all the options besides 

deep-in-the-money. One probable explanation is the volatility smiles. When we take the 

“average” implied volatility as the estimate, there might be an underestimation to the implied 

volatility for the out-of-the-money category.  

 

Also, the total pricing error could be eliminated once some of them were positive while 

some were negative. Thus, it is natural to consider absolute pricing error and the absolute 

percentage pricing error. The absolute pricing error, defined as the absolute value of the 

difference between the market option price and the model-determined price while the absolute 

percentage pricing error is the absolute pricing error divided by the market price, within each 

moneyness category. In Tables 5A and 5B, the absolute and absolute percentage pricing errors 

of the alternative models are shown with the corresponding plots given in Figures 6A and 6B.  

 

In Table 5A, the update Black-Scholes model has an overall average absolute error of 

15.59 NT dollars, while the non-update Black-Scholes model has 17.56 NT dollars, the 

non-update GARCH model has NT 20.76 dollars and update GARCH has NT 23.27 dollars. 
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In Table 5B, the overall absolute percentage pricing error of the non-update Black-Scholes 

model is 26%, while the error of the update Black-Scholes model is 23%, the non-update 

GARCH model is 24%, and update GARCH model is 27%. The performance of the GARCH 

model is similar or worse than the update Black-Scholes model. 
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5. Conclusion 

A central hypothesis of the Black-Scholes model is that the return on the underlying asset 

distributed log-normally with constant volatility. However, it has been widely recognized that 

financial asset return processes possess heavy-tailed marginal distributions and volatility 

clustering. These features are interpreted as the evidence of the stochastic volatility of 

financial assets, and estimating the term structure of volatility has become an important issue 

in finance engineering. 

 

 We introduced the GARCH option pricing model of Duan (1995), using the LRNVR 

change measure to price options by Monte Carlo simulation. We then evaluate the empirical 

performance of different option pricing models on TAIEX options. We had considered the 

improved and constant volatility (non-update) Black-Scholes models and the update, 

non-update GARCH option pricing models. We then compare their pricing performance 

according to the absolute and percentage pricing errors.  

 

 Under Duan’s model setting, we compute the option prices according to the information 

set of the underlying asset, say, stock index; while for the Black-Scholes the information set 

of index options. There are a lot of authors utilizing information from the option data, for 

examples, Heston and Nandi (2000), Brigo and Mercurio (2001). They estimated their model 

by non-linear least square method, and the performance could depend on the parameter 

dimension. 
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Appendix A. Tables 

Table 1: Summary Statistics for TAIEX Call Options (2003/9/1-2003/12/10)* 

 

 Table 1.   Moneyness (S/K)   

 Stat. DOTM OTM ATM ITM DITM Over all 

Average 18.35 44.16 118.15 252.45 501.58  210.52 

Std. Dev. 10.90 23.93 43.71 45.35 162.85  197.61 

 

Market Price 

 Number 52 121 160 113 138 584 

 

*The summary statistics of TAIEX call option near closing prices are reported for each moneyness category. 

Moneyness is defined as S/K, where S denotes the closing value of the TAIEX and K denotes the exercise price 

of the option. The sample period is from September 1, 2003 to December 10, 2003 with a total of 584 call 

options. 

 
 
 

Table 2: The market option prices and the estimated prices of the alternative models+

 

Table 2 Moneyness (S/K)   

Model DOTM OTM ATM ITM DITM Over all 

Market Price 18.35 44.16 118.15 252.45 501.58  210.52 

Non-update BS 29.02 62.57 136.16 260.63 489.41  218.93 

Update BS 29.34 57.76 130.36 255.40 488.15  215.06 

Non-update GARCH 29.75 60.62 130.43 259.54 490.28  217.02 

Update GARCH 12.72 38.28 102.10 240.08 485.80  198.28 

 
+The GARCH option pricing model is computed via 50,000 Monte Carlo simulation runs. The only difference 

between the non-update and update GARCH model is in the parameters being obtained. The implied volatilities 

of the update Black-Scholes model were obtained from the previous day, while the non-update model was 

obtained from the available sample. 
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Table 3A: The option prices with various initial conditional variance ratios in the 
GARCH option pricing model (Non-Update case)  

 

Table 3A Moneyness (S/K) 

σ0h  DOTM OTM ATM ITM DITM Over all 

0.8 29.91 60.59 130.14 258.61 511.08 235.11 

1 29.75 60.62 130.43 258.65 511.20 235.22 

1.2 29.93 60.89 131.02 258.48 511.20 235.41 

 

 

 

 

 

 

Table 3B: The option prices with various initial conditional variance ratios in the 

GARCH option pricing model (Update case) 

 

Table 3B Moneyness (S/K) 

σ0h  DOTM OTM ATM ITM DITM Over all 

0.8 12.68 37.94 101.87 239.90 507.62 217.38 

1 12.72 38.28 102.10 239.76 507.51 217.45 

1.2 12.62 38.23 102.25 240.50 507.44 217.59 
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Table 4A: The Pricing Error of Alternative Option Pricing Models 

 

Table 4A.  Moneyness (S/K)   

Moneyness DOTM OTM ATM ITM DITM Overall

S/K <0.95 (0.95, 0.98) (0.98, 1.02) (1.02, 1.05) >1.05   

BS 10.68  18.42  18.02  8.18  -12.17  8.41  

update BS 10.99  13.60  12.22  2.95  -13.43  4.54  

Non-update GARCH 11.40  16.46  12.28  7.09  -11.30  6.49  

Update GARCH -5.63  -5.88  -16.05  -12.37  -15.78  -12.24 

 

 

 

 

 

 

Table 4B: The Percentage Pricing Error of Alternative Option Pricing Models 

 

Table 4B.  Moneyness (S/K)   

Moneyness DOTM OTM ATM ITM DITM Overall

S/K <0.95 (0.95, 0.98) (0.98, 1.02) (1.02, 1.05) >1.05   

BS 0.68  0.55  0.20  0.04  -0.02  0.23  

update BS 0.74  0.39  0.12  0.02  -0.02  0.18  

Non-update GARCH 0.57  0.30  0.10  0.03  -0.02  0.14  

Update GARCH -0.43  -0.26  -0.18  -0.05  -0.03  -0.16 
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Table 5A: The Absolute Pricing Error of the Alternative Option Pricing Models 

 

Table 5A.  Moneyness (S/K)   

Moneyness DOTM OTM ATM ITM DITM Overall

S/K <0.95 (0.95, 0.98) (0.98, 1.02) (1.02, 1.05) >1.05   

BS 10.74  18.80  20.00  15.76  17.69  17.56 

update BS 11.97  16.19  16.55  13.87  16.71  15.59 

Non-update GARCH 12.30  20.50  22.22  21.81  21.63  20.76 

Update GARCH 9.55  19.54  29.14  25.47  23.11  23.27 

 

 

 

 

  
 
 
 

Table 5B: The Percentage Absolute Pricing Error of Alternative Option Pricing Models 

 

Table 5B.  Moneyness (S/K)   

Moneyness DOTM OTM ATM ITM DITM Overall

S/K <0.95 (0.95, 0.98) (0.98, 1.02) (1.02, 1.05) >1.05   

BS 0.69  0.56  0.22  0.07  0.04  0.26  

update BS 0.79  0.47  0.16  0.06  0.03  0.23  

Non-update GARCH 0.66  0.47  0.20  0.09  0.05  0.24  

Update GARCH 0.58  0.52  0.29  0.10  0.05  0.27  
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Appendix B. Figures 

Figure 1: The volatility smile of the TAIEX options in September, 2, 2003. 
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Figure 2: The Daily Closing price of TAIEX (2000/1/1 to 2003/12/10) 
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Figure 3: The Daily Log Return series of the TAIEX (2000/1/1 to 2003/12/10) 
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Figure 4: Maximum Likelihood Estimations of update GARCH (1, 1) process* 
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*The parameters of the GARCH model were obtained by constrained optimization.  Since we use the 

“rolling the GARCH model” method, the parameter estimations changed daily. All the estimation sets satisfy the 

stationary GARCH conditions, i.e. 111 <+ βα . The estimates of the risk-premium parameter, λ , are all very 

close to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 31



Figure 5A: The Pricing Error of Alternative Option Pricing Models 
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Figure 5B: The Percentage Pricing Error of Alternative Option Pricing Models 
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Figure 6A: The Absolute Pricing Error of Alternative Option Pricing Models. 
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Figure 6B: The Absolute Percentage Pricing Error of Alternative Option Pricing 

Models. 
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