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ABSTRACT

The Black and Scholes (1973) model has been extended in several ways. One of
these is to allow the volatility of the underlying asset to change over time. That is,
binomial parameters u and d must also change over time. In this thesis, we consider
inference for the binomial option pricing model with stochastic parameters.
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1.

Introduction

The continuous-time option-pricing model (OPM) of Black and Scholes (BS)
(1973) has been extended in several ways. One of these is to allow the volatility of
the underlying asset to change over time (see Hull and White, 1987; Scott, 1987).
This is motivated by the recent evidence that the volatility of stock prices changes
over time. The closed-form solution to this stochastic volatility option pricing in
general is not found and is not useful. However, a quasi-closed-form solution can
be derived under certain assumptions (see Hull and White, 1987; Scott, 1987).

On the other hand, the binomial OPM of Cox, Ross, and Rubinstein (CRR)
(1979), and Rendleman and Barter (RB) (1979) have been extended in the
following ways. Boyle (1988) develops a procedure for the valuation of options
when there are two underlying state variables. The procedure allows more than a
two-point jump process. -Hull and White, (1988) and Omberg (1988) apply a
different approach to derive theibinomial OPM.

Now, we briefly review the binomial- OPM of CRR and RB under fixed

parameters. The n-period binomial OPM may be written as

1 & n!
C:— Ttk 1— n—k 0, kdn—kS_E ’ 1
F";k!(n—k)!p( p)"™* max[0,u | "

where
C the n-period option price,
E the option exercise price,
S the current stock price,
n the number of periods to maturity,
d one plus the percentage of downward movement in stock price,
u one plus the percentage of upward movement in stock price,

r one plus the riskless rate per period, and



:r—d
u—d’

It is assumed that u > r > d; thus, 0 < p <I. Let m be an integer such that
u"'d" " VS <E<u"d"™"S.

That is, m 1s the minimum number of upward stock movements necessary for the

option to terminate “in the money” (that is, «“d"™*S — E > 0). Under this notion, (1)

may be rewritten as

n! /pu (l_p)d n—k _E - n! ke _ n—k
[Zk,( mpn ) == rn[;m—k!(n_k)!p 1-p"1. @

Consider the second term in brackets: it is just a complementary binomial
distribution with parameters n and p, which is the sum of the binomial tail
probabilities. Likewise, via a small algebraic manipulation we can show that the
first term in the brackets is alsQ.a complementary binomial distribution. This can be

done by defining p" =(u/r)p land -1= p=(d/r)(1- p). Thus, (2) can be rewritten

as
o
C=8B(m;n, p)~—B(m;n, p), (3)
r
where
B n—k
(m;n, p) = gk,( _k), p*d-p)

CRR and RB have shown that the binomial OPM converges to the continuous time
OPM of Black and Scholes (1973) as n approaches infinity. Notice that in the OPM
of (1) or (2), it is assumed that the binomial parameters, # and d, are fixed and
known with certainty. This implicitly assumes that the stock volatility is constant
over time of the option. Given the recent evidence that stock volatility changes
over time, binomial parameters u# and d must also change over time.

What is lacking in the discrete time OPM is a generalized model that allows the

up and down parameters to be stochastic. In general, it is assumed that these up and



down parameters in a binomial distribution are fixed (i.e., known with certainty).
This implicitly assumes that the volatility of the underlying stock is constant over
time of the option. If the volatility of the underlying stock is assumed to change
over time, the up and down parameters must be modeled as random variables.

In this thesis, we consider inference for the binomial option pricing model with
stochastic parameters. In section 2, it is assumed that the up and down parameters
are independent random variables following beta distributions. Under this
independent beta distribution assumption, a closed-form solution can be derived. In
section 3, it is assumed that functions of up, down, and riskless rate are trivariate
normal-distribution. In section 4, we briefly discuss estimation of parameters and
the Markov chain Monte Carlo (MCMC) methods. In section 5, we compare some

numerical result. Finally, we conclude this thesis in section 6.



. Binomial option pricing model with stochastic parameters u and d
In this section, we consider the inference for the binomial OPM with stochastic
parameters. The binomial option price in (2) may be thought as the option price
given u and d, i.e., C(S, E, n | u, d). Expressed in this way, the binomial OPM can
be easily extended to the stochastic case. That is, if the joint distribution of u and d,

f(u, d), are known, the stochastic binomial option price can be easily derived as

C(S,E,n) = [[ fu,d)C(S, E,n | u,d)dudd .

2.1 Assumptions

To derive binomial OPM formally with random parameters, we need to assume

that

(1) The representative investormis:risk meutral so that » is the appropriate
discount rate given jump parameters, v and d.

(i)  ris fixed and knownwith certainty, while u and d are stochastic.

(iii) 4 and _ are independently distributed as
r u

x:i~Beta(. B.5),0<x<],
r

y S Beta(. «,,a,),0<y<]1.
u

With parameter space Q. = {(5,,/,); 5, > 0,5, >0} and
Qy = {(alaaz);al >0,a, > 0.

Since u>r>d, d/r and r/u are random variables defined between 0 and 1,
Beta distributions can be suitable candidates for them.

Since




and

l—p:l—y(l_x): 1-y ’
I-xy 1-xy
(1) may be rewritten as
n | ke _ n—k 1 _ k n—k .
c=sy -t YU 29 o Xy, (4)
im0 k!(n—k)! (1=xp)" Y

where x=d/r,y=r/u,C" = E/r"S . The option price in (4) is a function of x and y.
By assumption 3 that x and y are independent beta distributions, we have the joint

probability density function of x and y is
1

_ pi-1 _ Bl oy—1 _ a,-1
f(x,y)—B(al,%)B(ﬂ“ﬁz)x (I=x)">"y""(A=-p)*, (5)

where B(.,.) is the beta function.

2.2 The option price under stochastic parameters
Let C(S, E, n | x, y) be the value of (4) on the right-hand side given that random

parameters x and y are known. Then.the new option price, denoted by C, is equal to

C(S, E,n) = [ £ed)C(S, E,n | x, y)dxdy .

That is,
c=[] Zk|(nn!k)|y(1 (1y_));§1 D' rex0
B(al %)Bwl, , I I Zk'(n k)! Wkl(l_y)z%_;;ﬁl(l_x)ﬂz“ m[o’%:—@ Jdbxy
" it ket ek g Bk
=B(%’%)B(ﬂl’ﬂ2) ;k'(n ol ” Y (1-y) 2_;)}1 (1-x) dxdy
_c*kz’;:k!(nn i = x,” | Jrk (1—y)’:1 “2_ iy‘;ﬁl (1—x)y*! i o

Now denote the first integral in (6) as A(k), and the second as B(k). As shown in

the appendix, they are



a++j

Uu—lj(_l)j(n'mz—k—lJ(C*) T F(ﬂ2+k)1"(n+,81+l—k+(n_k)(02+l+j))
o0 00 ]
A k = : )
*) oné() (n—k)(a1+l+j))

k

(q+1+PH(n+ B+ 6, +1+
k .
to be used when C >1,otherwise,

[n+l—lj
(e, + DT(n+a, —kT(B, + k)T (n+ B, +1-k)

A =3
1=0 IF'n+a,+a,—k+DI'(n+ G, + 6, +1)
_ B . n+f—k+l+j .
[7”_1](—1)/(@% lj(C) n—k r(n+a2—k)r(a1+1+—k(”+ﬂl”;””))
o0 o0 j n—
-2 X — . ;
1=0/=0 (n+/5'17k+l+j)l“(n+al+a2+lfk+%kk+l+1))
n—
1 ‘ b1 _oytktlj ,
[’” ) ](—1)1(”.”2_ ) ](c*) R R
o0 00 J
Bk)y=% X~ ;
1=0=0 (al+k+l+j)1"(ﬁ1+ﬂ2+k+l+(n_k)(a‘;k+l+j))
to be used when C* > 1,otherwise,
[””_ljr(a1 +1+ k)T (n+a, — (B, + T (B +1)
o |/
B(k)= 3
/=0 IF'(n+oa, +o, +DI(B + B, + 1+ k)
) B prl+ .
U”‘j(—l){éﬁk IJ(C*) n=k F(n+a2—k)l“(a1+l+k+7k('b)l+lk+]))
o0 00 J n—
1=0 /=0 Bp 1+ ),

B+ (n+o +a, +1+ .
—

where /1.) is the gamma function:
Following the approach in Whittaker and Watson (1962), it can be shown that
A(k) and B(k) are absolutely convergent. Thus, the new option price can be

represented as

S c n! .
© = BB ) 2 im0~ € B (7

where A(k) and B(k) are given in the Appendix. Equation (7) is a generalized
binomial option price model under stochastic up and down parameters. Although
complicated, A(k) and B(k) are double summations of absolute convergent series.
Hence the computation of the option price can be carried out. The computation of
A(k) and B(k) has been successful executed in Section 5 and verified with the
results by the MCMC methods.

The results obtained so far are under the assumption of independence between



X=d/r, and Y=r/u, which could be unrealistic. We will next derive a new OPM

when X and Y are not assumed independent. Instead, we can assume that

X =1In( X ),—0 < X <o,
1-X

Y =In( Y ),—0 <Y <o,
1-Y

where

X" e 2 .
. |~N,(mE), p=| " |andZ= “x Oxr
Y My

2
O i« O
XY Y

Since X and Y are random variables defined between 0 and 1. X and Y are

random variables between -oco and co. Bivariate normal-distribution can be suitable
candidates for X~ and Y.

Since
d
p_r—d_l_r__ eY’k
—_— P * ’
u—d u—i 1+eX +eY}l<
RS
and
%k
- p eY>x< 1+eX
- * * %
l+eX +eY* 1+eX +eY

(1) may be rewritten as

(I+e .
i kl(n—k)!

! R . . Ty
C:SZL(He)‘ +e ) (1) max[O,—(l1 X*)Zk -C1,
+e

where X =In( dd), Y =In(——), C"=E/r"S. The option price in (8) is a
r— u-—r

function of X" and Y. By assumption that X and Y are bivariate normally

distributed, we have the following joint probability density function of X and Y,

FX.Y)=Qa) ! |22 exp{—%(x W= (x—p)), )

where



* 2
X = AX; ’u: :LIX* ’Z: O-X* GX*YZ* ‘
Y ~ ﬂy* O-X*Y* O-Y*

n ! . . . . Yk
C= j j Sy — (14 ey e (14t max[O,w
i kl(n = k)! (+e )™

-C 1f(X,Y)dX dY" -

We will show the result and the comparison between the dependent and the

independent assumption in section 5.

2.3 Special cases

Now we consider two special cases if k=0 or k=n, in which we have

n+l-1
o [l jr(al +D0(n+a,)T'(n+ f, +DI(B,)
A(k=0)= 3

1=0 IF'n+o,+o, +DI(n+ g+ B, +1)

nti-1 (B -1 B
T DI(n+an-n’ |2 |c) 7
0 o (/] j *
-2 X ,C <1,
[=0 j=0 [n+a+o; 4+ Dwm+1+ 6+ j)

n+l-1
[ ; jf(al +DO0(n+a, )FCS,)T (B, +1)

B(k=0) = %
/=0 IF'(n+a +o, DG + B, +1)
_ ) _ . B+
(”” 1](—1)1 [[ﬁ 1j(C ) 1 T(n+a,)(a +1)
g / |
[=0 j=0 B +1+ DI (n+a +a, +1) ,

n+l-1
" [l Jr(al + Dl (e,)U(B, +DI(B, +n)
Ae=m =3 <
= I, +a, +DI'(n+ B+ B, +1)

n+l-1

. ( , an +a, + D (e )T (n+ B)T(B, +1)
Bk=n) =Y

=0 I'n+a +a, +DI'(n+ B, + B, +1)

Next section will derive the new binomial OPM with stochastic parameters, u, d,

and 7.



3. Binomial option pricing model with stochastic parametersu,d and r
The binomial option price in (2) may also be thought as the option price given u,
d and r, 1.e., C(S, E, n | u, d, r). Expressed in this way, the binomial OPM can be
easily extended to the stochastic case. That is, if the joint distribution of u, d and 7,

f(u, d, r), are known, the stochastic binomial option price can be easily derived as

C(S,E,m) = [[[ £, d,r)C(S,E,n |u,d,r)dudddr .

3.1 Assumptions

We will derive the new binomial OPM with stochastic parameters, u, d, and r by

assuming
X d
X =In(=E"2)%0< X <o, X =—,
I-X r
Y*
Y Slne——5), =% <Y <0,Y .
I5¥ u
%
Z =T ),~0 <Z< oo, ¥ =r—1,
l—r
where

X Hx o Oy Oy
Y ~N3(p,2), p=|y |andE=|o, o] oy,

2

Z Hy Ox; Oy, Oy
Since u>r>d, X ,Y ,andr  are random variables defined between zero and one.
Then X, Y, and Z are random variables defined between -co and co. Trivariate

normal distribution would be a suitable candidate for (X, Y, Z). Notice that

estimates of p and £ can be functions of XY and .

Since



p_’”_d r l1+e ™ e _ e’
u—d E—i l+e? — 1 e +el +e ™ 14 e
ror l+e”
and
Y X
e l+e
I-p=1-

= ’
l+e* +e" 1+e* +e'

(1) may be rewritten as

n

_ n' X Y\N-n kY x\n—k
C—SZ—k!(n_k)!(He +e )" e (1+ ") max[O0,

k=0

(I+e™) e
Urey s c1, (10)

d ), ¥ =In(——), Z:In(r_l), =L The option price in
r—d u-—r 2—r Sr"

where X =In(

(10) 1s a function of X, Y and Z. By assumption that X, Y and Z are trivariate

normally distributed, we have the following joint probability density function of X,

Yand Z,
= L 1
S(X.Y,Z) =(27) * FELR exp (5 (x 1) X (x—p), (11)

where

X ILlX O-Xz O-XY O-XZ

x=|Y |,p=|g [ ,E=|0y o] oy

Z Hy Oy; Oy O-ZZ
Thus,
c—msi P (aet ety e (14 ¥ ) max[0 M—C*V(XYZ)dXdez-

S LGZptTe Te) e e s e Xyt P A)RAeTe

3.2 The option price under stochastic parameters
Let C(S, E, n | X, ¥, Z) be the value of the (10) on the right-hand side given that
random parameters X, ¥ and Z are known. Then the new option price, denoted by C,

is equal to

C(S,En) = [[[ £(X,Y,2)C(S, E,n| X,Y,2)dXdVdZ .

10



That is,

(I+e )

Lre ) c1rxy, x)dxavdz - (12)
(I+e )"

C n! X YN-n kY X \n—k
C=Il1S) —({+e" +e e (l+e max|[0,
] 2o ) e (1+e") [

Equation (12) is a binomial option price model under stochastic up, down and
riskless rate parameters. Since equation (12) is hard to expand, we will only use
equation (12) to get some numerical integral result. We will show some numerical

results by using MCMC in section 5.

11



4. Empirical Analysis

This section starts with an introduction of the MCMC methods.

4.1 MCMC methods

The Markov chain Monte Carlo (MCMC) methods are used in the generation of
random variables and have proved extremely useful for doing complicated
calculations, involving integrations and maximizations.

As the name suggests, these methods are based on Markov chain, a probabilistic

structure that we have not explored. The sequence of random variables X,, X,, ...

1s a Markov chain if
P(X,, €Al X,,..X,)=P(X,,, €4 X,) ,

that is, the distribution of the present.random variable depends, at most, on the
immediate past random variable. Note that this'is a generalization of independence.
The Ergodic Theorem, which is-generalization of the Law of Large Numbers, says
that if the Markov chain X, X,;:.. satisfied some regularity conditions (which are

often satisfied in statistical problems), then

th(X,.) — Eh(X,),n — o,

i=1

provided the expectation exists.

To fully understand MCMC methods it is necessary to understand more about
Markov chain, which we will not do here. There already a vast literature on
MCMC methods, encompassing both theory and applications. Tanner (1996)
provides a good introduction to computational methods in statistics, as does Robert
(1994), who provides a more theoretical treatment with a Bayesian flavor. An
easier introduction to this topic via the Gibbs sampler (a particular MCMC method)

is given by Casella and George (1992). The Gibbs sampler is, perhaps, the MCMC

12



method that is still the most widely used and is responsible for the popularity of
this method.

Now we use the MCMC method to solve (6) in section 2 and (10) in section 3.

4.2 Description of data
First, we see the market description.
4.2.1 Market description

The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) is
the most widely quoted of all TSEC (Taiwan Stock Exchange Corporation) indices.
The base year value as of 1966 was set at 100. TAIEX is adjusted in the event of
new listing, de-listing and new shares offering to offset the influence on TAIEX
owing to non-trading activities. TAIEX cevers all of the listed stocks excluding
preferred stocks, full-delivery. stocks and newly listed stocks, which are listed for
less than one calendar month. The TAIEX is computed by Taiwan Stock Exchange
Co., Ltd. and takes as its component sample all common stocks listed for trading.

The TAIEX contract is a European option with trading during Spot month, the
next two calendar months followed by two additional months from the March
quarterly cycle (March, June, September, and December). The last trading day is
the third Wednesday of the delivery month. Trading occurs from 8:45 AM to 1:45
PM Taiwan time Monday through Friday of the regular Taiwan Stock Exchange
business days. The exercise prices are given in 100index point intervals. It is
important to point out that liquidity is concentrated in the nearest expiration

contract.

4.2.2 The data
For this thesis, our database is comprised of call options on the TAIEX traded

13



daily on TSEC during the period from July 1, 2003 through October 31, 2003.
Given the concentration on liquidity, our daily set of observations includes only
calls with the nearest expiration day. Moreover, we eliminate all transactions taking
place during the last week before expiration (to avoid the expiration-related priced
price effects). We select the calls from 13:00 to 13:25, and only the last transaction
for each contract. The criteria yield a final sample of 663 daily observations.

Table 1 Sample characteristics.

Moneyness . Number of
Average price )

(E/S) observations
Deep OTM calls 1.03~1.08 42.6 140
OTM calls 1.01~1.03 84.4 92
ATM calls 0.99~1.01 129.32 99
ITM calls 0.97~0.99 199.33 93
Deep ITM calls 0:90~0.97 372.77 239
All calls 202.36 663

Average prices and the number of-available calls are reported for each moneyness
category. All calls are selected from 13:00 to 13:25, and only the last data for each strike
price during the period from July 1, 2003 through October 31, 2003. E is the exercise
price and S denotes the stock price. Moneyness is defined as the ratio of the exercise price

to stock price (E/S).

Table 1 describes the sample properties of the call option prices used in this
work. Average prices and the number of available calls are reported for each

moneyness category. A call option is said to be deep out-of-the-money if the

ratio1.03 £§< 1.08; out-of-the-money (OTM) if the ratio 1.01 £§< 1.03; at the

14



money (ATM) when0.99 < % <1.01; in-the-money (ITM) 1f0.97 < % <0.99; deep

in-the-money 1f0.90 < % < 0.97 .As indicated, there are 663 call option observations,

with OTM, ATM and ITM options, respectively, accounting for 35%, 15% and
50%. The average call prices range from 42.6 for deep OTM options to 372.77 for

deep I'TM options.

4.3 Estimation

To estimate the parameters ¢, «, f f, inequation (6)andp X in(11),
the implied u (one plus the percentage of upward movement in stock price) for
each of our 663 options is estimated first. In order to estimate the implied u of each
option in our sample, we use call options:to compute implied u for each day from
July 1, 2003 through October 31, 2003 that minimized the squared error between
the theoretical value according to (1) and the market price of the call options.
These implied u will be used to estimate the parameters ¢, «a, f  f,in (6)

andp X in (11).

Since X = 1, Y = .. We use method of moments to estimate the parameters a
r u
S B,. Thatis,

a-x)
S2

1-x)

X ~ beta(a, f), Gy = (- —1), By = =3

-1,
where X is the sample mean and S” is the sample variance.

Using this method we can estimate the parameters as shown in Table 2.

Table 2 The binomial parameters estimated by our database.

& 2 i A
IT™ 856 1.2 880 1.3
ATM 900 1.3 928 1.4
OTM 876 1.5 892 1.6

15



Now, we estimate the parameters pand X by [ = the sample mean

and = = the sample variance and covariance matrix as shown in Table 3.

Table 3 The normal parameters estimated by our database.

i )
8.5 [ 159 00167 —1.6x107™ |
ITM 7.2 0.0167 1.4 —1.4x107%
-9.71 -1.6x10%*° —14x10 0.003
8.0 [ 159 00167 —1.6x107™ |
ATM 7.2 0.0167 1.4 —1.4x107%
-9.71 -1.6x10%*° —-14x10™ 0.003
75 159 0017  —1.6x10™
OTM 7.1 0.017 1.3 —-1.3x107™°
—971 21.6x10%° —1.3x10™ 0.003

We also need to estimate the implied volatility for the BS model. We use call
options to compute implied volatility foreach day from July 1, 2003 through October
31, 2003 that minimized the"‘mean-squared error between the theoretical value
according to Black and Scholes (1973) option pricing formula and the market price
of the call options. Figure 1 shows the implied volatility for each day from July 1, 2003

through October 31, 2003.

16



Figurel The implied volatility for the BS model.
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Next section, we will show the option pricing results using these parameter

estimates as the parameter values.
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5. Numerical results and comparison

This section describes the out-of-sample (the calls from 13:00 to 13:25 during
the period from November 1, 2003 through November 28, 2003) comparisons of
the binomial option pricing having stochastic parameters model with the BS model
and the binomial option pricing model. Most of our numerical results are obtained
by the MCMC methods with the exception of the binomial with stochastic
parameters (u#, d) in which the result given in (7) has been used to verify our
MCMC results.

We will first check numerically the adequacy of the independence assumption
between X=d/r and Y=r/u. It turns out that absolutely percentage errors between
theoretical and actual option prices are 0.0724 and 0.0719 for independent and
dependent models, respectively. Hence, the:two models perform almost equally for
our data.

Next, Table 4 reports the out-of-sample absolute errors and absolute percentage
errors for various models. The absolute errors are 9.69, 9.85, 12.17, and 13.30,
respectively for the BS, binomial, binomial with stochastic parameters (1, d), and
binomial with stochastic parameters (u, d, r). For the out-of-sample performance,
the BS is best performer out-of-sample, and binomial with parameters (i, d, r) is
worst. Looking at Figure 2, we can find that the pricing errors for the new model
are bigger than BS model and Binomial model. This is why the new models have
bigger absolute errors. The absolute percentage errors are 0.085, 0.089, 0.072, and
0.071, respectively for the BS model, binomial model, binomial with stochastic
parameters (1, d) model, and binomial with stochastic parameters (u, d, ») model.
Binomial model is worst, and binomial with parameters (i, d, ) model is best. The

new models in this thesis perform better.
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Table 4 Out-of-sample pricing error for option pricing models: absolute error and

absolute percentage error.

BS Binomial u and d are u, d,and r
random are random
Absolute error 9.69 9.85 12.17 13.30
Absolute 8.49% 8.86% 7.24% 7.10%
percentage error

Figure 2 This figure shows the percentage out-of-sample pricing errors.

18
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// — 8 % ud random
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0.9-0.99 0.99-1.01 1.01-1.08
Moneyness(E/S)

Looking at the absolute valuation errors by moneyness (see Table 5), we find

that the binomial with stochastic parameters models are able to value out-of-the
money options (1.01 < %) better than the BS and binomial model. For example, the
percentage errors for the two new models are 0.0925 and 0.0844 respectively, and

0.1489 for the BS model. For at the money options (0.99 < % <1.01), the results for

the four models are all having small errors. Note that the binomial option pricing
with stochastic parameters (1, d) model is the best performer among the model

compared.
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Table 5 This table shows the absolute percentage errors by moneyness.

) ) uanddare |u,d,andr are
BS Binomial
random random
OTM 14.89 15.66 9.25 8.44
ATM 7.52 8.27 5.58 5.70
IT™ 4.54 441 6.42 7.08
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6. Conclusions

This paper presents a closed-form solution for binomial option pricing model
where the up and down parameters follow independent beta distribution. Moreover,
we also derive the formula for binomial option pricing model where the riskless
rate, and the up and down parameters are stochastic.

On average, in terms of absolute percentage error, the binomial models with
stochastic parameters perform better than the BS and binomial models. Significant
improvements are found in at-the-money and out-of-the-money categories for the
proposed stochastic parameter models, although they do not perform well in

in-the-money category.
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Alternatively,
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where B" =

It is noted that if C">1, we usé.(4.7) to compute A(k) and otherwise we use (4.2) to

compute A(k).
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Alternatively,
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where B" =

Similar to A(k), if C">1, we use (4.3) compute B(k) and otherwise we use (4.4) to

compute B(k).
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