
國立交通大學 

統計學研究所 

碩士論文 

 

 

隨機參數二項式選擇權定價 

Binomial Option Pricing with Stochastic Parameters 

 

 

 

研 究 生：梁坤民 

指導教授：李昭勝  教授 

          許英麟 教授 

 

中華民國九十三年六月 



隨機參數二項式選擇權定價 

Binomial Option Pricing with Stochastic Parameters 

 

 

研 究 生：梁坤民           Student：Kun-Min Liang 

指導教授：李昭勝          Advisors：Dr. Jack C. Lee 

            許英麟       Dr. Ying-Lin Hsu 

 

國 立 交 通 大 學 

統計學研究所 

碩 士 論 文 

 
 
 

A Thesis 
Submitted to Institute of Statistics 

College of Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of  

Master 
In 
 

Statistics 
 

June 2004 
Hsinchu, Taiwan, Republic of China 

中華民國九十三年六月 



隨機參數二項式選擇權定價 

學生：梁坤民         指導教授：李昭勝 

               許英麟 

 

 

 

 

國立交通大學 統計學 研究所碩士班 

 

 

 

 

 

 

摘要 

  BS 模型已經被發現其隱含波動率是隨著時間變動而變動，也就是說在二項式

模型當中的上漲下跌幅度參數也是應該要隨著時間變動而變動。然而在二項式

選擇權訂價模型當中，依舊是假設上漲下跌幅度參數是固定常數。因此，在這

篇論文中我們將探討在這些參數為隨機參數下，將如何做選擇權定價。 
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ABSTRACT 

  The Black and Scholes (1973) model has been extended in several ways. One of 
these is to allow the volatility of the underlying asset to change over time. That is, 
binomial parameters u and d must also change over time. In this thesis, we consider 
inference for the binomial option pricing model with stochastic parameters. 
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1. Introduction 

The continuous-time option-pricing model (OPM) of Black and Scholes (BS) 

(1973) has been extended in several ways. One of these is to allow the volatility of 

the underlying asset to change over time (see Hull and White, 1987; Scott, 1987). 

This is motivated by the recent evidence that the volatility of stock prices changes 

over time. The closed-form solution to this stochastic volatility option pricing in 

general is not found and is not useful. However, a quasi-closed-form solution can 

be derived under certain assumptions (see Hull and White, 1987; Scott, 1987). 

On the other hand, the binomial OPM of Cox, Ross, and Rubinstein (CRR) 

(1979), and Rendleman and Barter (RB) (1979) have been extended in the 

following ways. Boyle (1988) develops a procedure for the valuation of options 

when there are two underlying state variables. The procedure allows more than a 

two-point jump process. Hull and White (1988) and Omberg (1988) apply a 

different approach to derive the binomial OPM. 

Now, we briefly review the binomial OPM of CRR and RB under fixed 

parameters. The n-period binomial OPM may be written as 

0

1 ! (1 ) max[0, ]
!( )!

n
k n k k n k

n
k

nC p p u d
k n kr

− −

=

= −
−∑ S E− ,         (1) 

where 

 C：the n-period option price, 

 E：the option exercise price, 

 S：the current stock price, 

 n：the number of periods to maturity, 

 d：one plus the percentage of downward movement in stock price, 

 u：one plus the percentage of upward movement in stock price, 

 r：one plus the riskless rate per period, and  
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 p = r d
u d
−
−

. 

It is assumed that u > r > d; thus, 0 < p <1. Let m be an integer such that  

1 ( 1)m n m m n mu d S E u d S− − − −≤ < . 

That is, m is the minimum number of upward stock movements necessary for the 

option to terminate “in the money” (that is, 0k n ku d S E− − > ). Under this notion, (1) 

may be rewritten as 

! (1 ) ![ ( ) ( ) ] [ (1
!( )! !( )!

n n
k n k k

n
k m k m

n pu p d E nC S p p
k n k r r k n kr

− −

= =

−
= −

− −∑ ∑ ) ]n k− .   (2) 

Consider the second term in brackets: it is just a complementary binomial 

distribution with parameters n and p, which is the sum of the binomial tail 

probabilities. Likewise, via a small algebraic manipulation we can show that the 

first term in the brackets is also a complementary binomial distribution. This can be 

done by defining * ( / )p u r p≡  and *1 ( / )(1 )p d r p− ≡ − . Thus, (2) can be rewritten 

as  

( ; , `) ( ; , )n

EC SB m n p B m n p
r

= − ,                  (3) 

where 

!( ; , ) (1 )
!( )!

n
k n

k m

nB m n p p p
k n k

k−

=

= −
−∑ . 

CRR and RB have shown that the binomial OPM converges to the continuous time 

OPM of Black and Scholes (1973) as n approaches infinity. Notice that in the OPM 

of (1) or (2), it is assumed that the binomial parameters, u and d, are fixed and 

known with certainty. This implicitly assumes that the stock volatility is constant 

over time of the option. Given the recent evidence that stock volatility changes 

over time, binomial parameters u and d must also change over time. 

What is lacking in the discrete time OPM is a generalized model that allows the 

up and down parameters to be stochastic. In general, it is assumed that these up and 
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down parameters in a binomial distribution are fixed (i.e., known with certainty). 

This implicitly assumes that the volatility of the underlying stock is constant over 

time of the option. If the volatility of the underlying stock is assumed to change 

over time, the up and down parameters must be modeled as random variables.  

In this thesis, we consider inference for the binomial option pricing model with 

stochastic parameters. In section 2, it is assumed that the up and down parameters 

are independent random variables following beta distributions. Under this 

independent beta distribution assumption, a closed-form solution can be derived. In 

section 3, it is assumed that functions of up, down, and riskless rate are trivariate 

normal-distribution. In section 4, we briefly discuss estimation of parameters and 

the Markov chain Monte Carlo (MCMC) methods. In section 5, we compare some 

numerical result. Finally, we conclude this thesis in section 6.  
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2. Binomial option pricing model with stochastic parameters u and d 

In this section, we consider the inference for the binomial OPM with stochastic 

parameters. The binomial option price in (2) may be thought as the option price 

given u and d, i.e., C(S, E, n | u, d). Expressed in this way, the binomial OPM can 

be easily extended to the stochastic case. That is, if the joint distribution of u and d, 

f (u, d), are known, the stochastic binomial option price can be easily derived as 

( , , ) ( , ) ( , , | , )C S E n f u d C S E n u d dudd= ∫∫ . 

 

2.1 Assumptions 

To derive binomial OPM formally with random parameters, we need to assume 

that： 

(i) The representative investor is risk neutral so that r is the appropriate 

discount rate given jump parameters, u and d. 

(ii) r is fixed and known with certainty, while u and d are stochastic. 

(iii) d
r

 and r
u

 are independently distributed as 

1 2

1 2

~ (. , ),0

~ (. , ),0

dx Beta x
r
ry Beta y
u

β β

α α

1,

1.

= < <

= < <

；

；

 

With parameter space }0,0);,{( 2121 >>=Ω ββββx  and 

}0,0);,{( 2121 >>=Ω ααααy . 

Since u>r>d, d/r and r/u are random variables defined between 0 and 1, 

Beta distributions can be suitable candidates for them. 

  Since 

1 (1 )1
1 1

d
y xr d xrp u du d xyx

r r y

− −− −= = = =
− −− −

 , 
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and 

(1 ) 11 1
1 1
y x yp

xy xy
− −

− = − =
− −

, 

(1) may be rewritten as 

*

0

! (1 ) (1 ) max[0, ]
!( )! (1 )

k n k k n kn

n k
k

n y y x xC S C
k n k xy y

− −

=

− −
= −

− −∑ ,         (4) 

where */ , / , / nx d r y r u C E r S= = = . The option price in (4) is a function of x and y. 

By assumption 3 that x and y are independent beta distributions, we have the joint 

probability density function of x and y is   

1 2 11 1 1

1 2 1 2

1( , ) (1 ) (1 )
( , ) ( , )

f x y x x y y
B B

β β α

α α β β
2 1α− − −= − −− ,        (5) 

where B(.,.) is the beta function. 

 

2.2 The option price under stochastic parameters 

Let C(S, E, n | x, y) be the value of (4) on the right-hand side given that random 

parameters x and y are known. Then the new option price, denoted by C, is equal to 

( , , ) ( , ) ( , , | , )C S E n f x y C S E n x y dxdy= ∫∫ . 

That is, 

1 2 1 2

1 1 *

0 0
0

1 1 1 11 1 *

0 0
01 2 1 2

1 2 1 2

! (1 ) (1 ) max[0, ] ( , )
!( )! (1 )

S ! (1 ) (1 )   = max[0, ]
B( , )B( , ) !( )! (1 )

S   = [
B( , )B( , )

k n k k n kn

n k
k

k n k k n kn

n k
k

n y y x xC S C f x y dxdy
k n k xy y

n y y x x x C dxdy
k n k xy y

α α β β

α α β β

α α β β

− −

=

+ − + − − − − −

=

− −
= −

− −

− −
−

− −

×

∑∫ ∫

∑∫ ∫
1 2 1 2

*

1 2 1 2

*

1 1 1 1

0

1 1 1 1
*

0

! (1 ) (1 )
!( )! (1 )

! (1 ) (1 )      ].                                         (6
!( )! (1 )

n k

k

n k

k

n k n k kn

n
k x C

y

k n k kn

n
k x C

y

n y y x x dxdy
k n k xy

n y y x xC dxdy
k n k xy

α α β β

α α β β

−

−

− + − − + − − −

=
>

+ − + − − − −

=
>

− −
− −

− −
−

− −

∑ ∫∫

∑ ∫∫ )

 

  Now denote the first integral in (6) as A(k), and the second as B(k). As shown in 

the appendix, they are 
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1
2 1

2 1

1
1 1 2

1 2 2

11 ( )( )*( 1) ( ) ( ) ( )
( ) ,

( )( )00 ( ) ( )

1
( ) ( ) ( )

( ) =

*to be used when C >1,otherwise,

l j
n kn l n k l jj kC k n l k

l j k
A k

n k l jjl l j n l
k

n l
l n k k

l
A k

α
α α

β β

α
α β β

α α β

+ +−+ − −+ − ⎛ ⎞ − + +⎛ ⎞
− Γ + Γ + + − +⎜ ⎟⎜ ⎟∞ ∞ ⎝ ⎠ ⎝ ⎠= ∑ ∑ − + +== + + Γ + + + +

+ −⎛ ⎞
Γ + Γ + − Γ +⎜ ⎟

⎝ ⎠

1

1

1 2 1 2

2 1
2

1
1 1 2

( )

( ) ( )0

11 ( )*( 1) ( ) ( ) ( )1
         ;     

( )00 ( ) ( )

n l k

n k l n ll
n k l j

kn l k n k l jj n kC n k l
l j n k

k n k l jjl n k l j n l k
n k

β

α α β β
β

β β
α α

β
β α α

Γ + + −
∞
∑

Γ + + − + Γ + + +=
+ − + +

+ −+ − ⎛ ⎞ + − + +⎛ ⎞ −− Γ + − Γ + +⎜ ⎟⎜ ⎟∞ ∞ −⎝ ⎠ ⎝ ⎠− ∑ ∑ + − + +== + − + + Γ + + + − +
−

 

1
2 1

2 1

1
1 1 2

1 2

11 ( )( )*( 1) ( ) ( ) ( )
( ) ,

( )( )00 ( ) ( )

  
1

( ) (
( )=

*to be used when C >1,otherwise,

k l j
n kn l n k k l jj kC k l k

l j k
B k

n k k l jjl k l j k l
k

n l
l k n

l
B k

α
α α

β β

α
α β β

α α

+ + +−+ − −+ − ⎛ ⎞ − + + +⎛ ⎞
− Γ + Γ + − +⎜ ⎟⎜ ⎟∞ ∞ ⎝ ⎠ ⎝ ⎠= ∑ ∑ − + + +== + + + Γ + + + +

+ −⎛ ⎞
Γ + + Γ + −⎜ ⎟

⎝ ⎠

1

2 1

1 2 1 2

2 1
2 1

1
1 1 2

) ( ) ( )

( ) ( )0

11 ( )*( 1) ( ) ( ) ( )
         ,

( )00 ( ) ( )

k k l

n l l kl
l j

kn l k l jj n kC n k l k
l j n

k l jjl l j n l
n k

β β

α α β β
β

β β
α α

β
β α α

Γ + Γ +
∞
∑

Γ + + + Γ + + +=
+ +

+ −+ − ⎛ ⎞ + +⎛ ⎞ −− Γ + − Γ + + +⎜ ⎟⎜ ⎟∞ ∞ −⎝ ⎠ ⎝ ⎠− ∑ ∑ + +== + + Γ + + + +

k

−

 

where Γ(.) is the gamma function. 

  Following the approach in Whittaker and Watson (1962), it can be shown that 

A(k) and B(k) are absolutely convergent. Thus, the new option price can be 

represented as 

*

01 2 1 2

! [ ( ) ( )]
( , ) ( , ) !( )!

n

k

S nC A
B B k n kα α β β =

= −
−∑ k C B k ,        (7) 

where A(k) and B(k) are given in the Appendix. Equation (7) is a generalized 

binomial option price model under stochastic up and down parameters. Although 

complicated, A(k) and B(k) are double summations of absolute convergent series. 

Hence the computation of the option price can be carried out. The computation of 

A(k) and B(k) has been successful executed in Section 5 and verified with the 

results by the MCMC methods. 

  The results obtained so far are under the assumption of independence between 
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X=d/r, and Y=r/u, which could be unrealistic. We will next derive a new OPM 

when X and Y are not assumed independent. Instead, we can assume that 

* *

* *

ln( ), ,
1

ln( ), ,
1

XX X
X

YY Y
Y

= −∞ < < ∞
−

= −∞ < < ∞
−

 

where 

( )
* * *

* * **

2*

2 2*
~ , ,      and X X X Y

X Y YY

X
N

Y

µ σ σ
σ σµ

⎛ ⎞ *⎡ ⎤⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠

µ Σ µ Σ . 

Since X and Y are random variables defined between 0 and 1. *X and are 

random variables between -∞ and ∞. Bivariate normal-distribution can be suitable 

candidates for 

*Y

*X  and . *Y

  Since 

*1

* *
1

d
Yr d erp u du d X Ye er r

−−= = =
− − + +

, 

and 

* *11 1 * * * *1 1

Y Xe ep
X Y X Ye e e e

+− = − =
+ + + +

, 

(1) may be rewritten as 
*

* * * * *
*

0

! ((1 ) (1 ) max[0, ]
!( )! (1 )

Y kn
X Y n kY X n k

X n k
k

n eC S e e e e C
k n k e

−
− −

− −
=

+
= + + +

− +∑ 1 )
− , 

where * ln( )dX
r d

=
−

, * ln( )rY
u r

=
−

, . The option price in (8) is a 

function of 

* / nC E r= S

*X  and . By assumption that X and Y are bivariate normally 

distributed, we have the following joint probability density function of X and Y ,  

*Y

(
1

1 '2 1( , ) (2 ) | | exp{ ( ) }
2

f X Y π
−−= − −Σ x µ Σ x µ)1− − ,          (9) 

where 

 7



* * *

* * **

2*

2*
 ,  ,X X X Y

X Y YY

X
Y

µ σ σ
σ σµ

⎛ ⎞ *⎡ ⎤⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠

x µ Σ . 

*
* * * *

*
* *

0

! (1 )(1 ) (1 ) max[0, ] ( , )
!( )! (1 )

Y kn
X Y n kY X n k

X n k
k

n eC S e e e e C f X Y dX dY
k n k e

−
− −

− −
=

+
= + + + −

− +
∑∫∫ * . 

  We will show the result and the comparison between the dependent and the 

independent assumption in section 5. 

 

2.3 Special cases 

Now we consider two special cases if k=0 or k=n, in which we have 

1

1 2 1 2

1 2 1 2

2
1 2

1 2 1

1
( ) ( ) ( ) ( )

( 0)
( ) ( )0

11 *( ) ( )( 1) ( )
*                  ,  1;

( )( )00

n l
l n n l

l
A k

n l n ll
n l jn l j nl n C

l j
C

n l n l jjl

α α β β

α α β β
ββ

α α

α α β

+ −⎛ ⎞
Γ + Γ + Γ + + Γ⎜ ⎟∞ ⎝ ⎠= = ∑

Γ + + + Γ + + +=
+ + +−+ − ⎛ ⎞⎛ ⎞

Γ + Γ + − ⎜ ⎟⎜ ⎟∞ ∞ ⎝ ⎠ ⎝ ⎠− ≤∑ ∑
Γ + + + + + +==

1

1 2 2 1

1 2 1 2

2
2 1

1 1 2

1
( ) ( ) ( ) ( )

( 0)  
( ) ( )0

11 *( 1) ( ) ( ) ( )
                  ;

( ) ( )00

n l
l n l

l
B k

n l ll
l jn l j nC n

l j
l j n ljl

α α β β

α α β β
ββ

α α

β α α

+ −⎛ ⎞
Γ + Γ + Γ Γ +⎜ ⎟∞ ⎝ ⎠= = ∑

Γ + + + Γ + +=
+ +−+ − ⎛ ⎞⎛ ⎞

l− Γ + Γ +⎜ ⎟⎜ ⎟∞ ∞ ⎝ ⎠ ⎝ ⎠− ∑ ∑
+ + Γ + + +==

 

1 2 1 2
*

0 1 2 1 2

1
( ) ( ) ( ) ( )

( )  ,
( ) ( )l

n l
l l n

l
A k n C

l n l

α α β β

α α β β

∞

=

+ −⎛ ⎞
Γ + Γ Γ + Γ +⎜ ⎟

⎝ ⎠= = ≤
Γ + + Γ + + +∑ 1;  

1 2 2 1

0 1 2 1 2

1
( ) ( ) ( ) (

( )  
( ) ( )l

n l
n l n

l
B k n

n l n l

α α β β

α α β β

∞

=

+ −⎛ ⎞
)
.

lΓ + + Γ Γ + Γ +⎜ ⎟
⎝ ⎠= =

Γ + + + Γ + + +∑  

  Next section will derive the new binomial OPM with stochastic parameters, u, d, 

and r. 
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3. Binomial option pricing model with stochastic parameters u , d and r 

The binomial option price in (2) may also be thought as the option price given u, 

d and r, i.e., C(S, E, n | u, d, r). Expressed in this way, the binomial OPM can be 

easily extended to the stochastic case. That is, if the joint distribution of u, d and r, 

f (u, d, r), are known, the stochastic binomial option price can be easily derived as 

( , , ) ( , , ) ( , , | , , )C S E n f u d r C S E n u d r dudddr= ∫∫∫ . 

 

3.1 Assumptions 

We will derive the new binomial OPM with stochastic parameters, u, d, and r by 

assuming： 

*

*

*

*
ln( ), , ,*1

*
ln( ), , ,*1

*
ln( ), ,  1,*1

X dX X
rX

Y rY Y Y
uY

rZ Z r
r

= −∞ < < ∞
−

= −∞ < < ∞ =
−

= −∞ < < ∞ =

X

r

=

−
−

 

where 

( )

2

2
3

2

~ , ,      and 
X X XY XZ

Y XY Y

XZ YZ ZZ

X
Y N
Z

µ σ σ σ
µ σ σ

σ σ σµ
YZσ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ = = ⎢ ⎥⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

µ Σ µ Σ . 

Since are random variables defined between zero and one. 

Then X, Y, and Z are random variables defined between -∞ and ∞. Trivariate 

normal distribution would be a suitable candidate for (X, Y, Z). Notice that 

estimates of  can be functions of 

* * *,  , , and  u r d X Y r> >

and µ Σ * *,   *X Y and r . 

Since 
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( )

111
1

1 11
1

X YX

X Y X Y X
Y

X

d
r d e eerp

u du d e e e e ee
r r e

−−

− − − +
−

−

−−− += = = = =
− + + + +− + −

+

Y
, 

and 

11 1
1 1

Y X

X Y X

e ep
e e e e

+
− = − = Y+ + + +

, 

(1) may be rewritten as 

*

0

! ((1 ) (1 ) max[0, ]
!( )! (1 )

Y kn
X Y n kY x n k

X n k
k

n eC S e e e e C
k n k e

−
− −

− −
=

+
= + + +

− +∑ 1 )
− ,  (10) 

where ln( )dX
r d

=
−

, ln( )rY
u r

=
−

, 1ln( )
2
rZ

r
−

=
−

, *
n

EC
Sr

= . The option price in 

(10) is a function of X, Y and Z. By assumption that X, Y and Z are trivariate 

normally distributed, we have the following joint probability density function of X, 

Y and Z,  

(
3 1

' 12 2 1( , , ) (2 ) | | exp{ ( ) }
2

f X Y Z π
− − −= − −Σ x µ Σ x µ)−

YZσ

,          (11) 

where 

2

2

2

 ,  ,
X X XY XZ

Y XY Y

XZ YZ ZZ

X
Y
Z

µ σ σ σ
µ σ σ

σ σ σµ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟= = = ⎢ ⎥⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

x µ Σ . 

Thus, 

*

0

! (1 )(1 ) (1 ) max[0, ] ( , , )
!( )! (1 )

Y kn
X Y n kY X n k

X n k
k

n eC S e e e e C f X Y Z dXdYd
k n k e

−
− −

− −
=

+
= + + + −

− +∑∫∫∫ Z . 

 

3.2 The option price under stochastic parameters 

Let C(S, E, n | X, Y, Z) be the value of the (10) on the right-hand side given that 

random parameters X, Y and Z are known. Then the new option price, denoted by C, 

is equal to 

( , , ) ( , , ) ( , , | , , )C S E n f X Y Z C S E n X Y Z dXdYdZ= ∫∫∫ . 
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That is, 

*

0

! (1 )(1 ) (1 ) max[0, ] ( , , )
!( )! (1 )

Y kn
X Y n kY X n k

X n k
k

n eC S e e e e C f X Y X dXdYd
k n k e

−
− −

− −
=

+
= + + + −

− +∑∫∫∫ Z . (12) 

Equation (12) is a binomial option price model under stochastic up, down and 

riskless rate parameters. Since equation (12) is hard to expand, we will only use 

equation (12) to get some numerical integral result. We will show some numerical 

results by using MCMC in section 5.  
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4. Empirical Analysis 

This section starts with an introduction of the MCMC methods. 

 

4.1 MCMC methods 

  The Markov chain Monte Carlo (MCMC) methods are used in the generation of 

random variables and have proved extremely useful for doing complicated 

calculations, involving integrations and maximizations.  

As the name suggests, these methods are based on Markov chain, a probabilistic 

structure that we have not explored. The sequence of random variables , , … 

is a Markov chain if 

1X 2X

1 1 1( | ,..., ) ( | )k k kP X A X X P X A X+ + k∈ = ∈  , 

that is, the distribution of the present random variable depends, at most, on the 

immediate past random variable. Note that this is a generalization of independence. 

The Ergodic Theorem, which is generalization of the Law of Large Numbers, says 

that if the Markov chain , ,… satisfied some regularity conditions (which are 

often satisfied in statistical problems), then 

1X 2X

1

1 ( ) ( ),
n

i i
i

h X Eh X n
n =

→ →∑ ∞ , 

provided the expectation exists.  

To fully understand MCMC methods it is necessary to understand more about 

Markov chain, which we will not do here. There already a vast literature on 

MCMC methods, encompassing both theory and applications. Tanner (1996) 

provides a good introduction to computational methods in statistics, as does Robert 

(1994), who provides a more theoretical treatment with a Bayesian flavor. An 

easier introduction to this topic via the Gibbs sampler (a particular MCMC method) 

is given by Casella and George (1992). The Gibbs sampler is, perhaps, the MCMC 
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method that is still the most widely used and is responsible for the popularity of 

this method. 

Now we use the MCMC method to solve (6) in section 2 and (10) in section 3. 

 

4.2 Description of data 

First, we see the market description. 

4.2.1 Market description 

The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) is 

the most widely quoted of all TSEC (Taiwan Stock Exchange Corporation) indices. 

The base year value as of 1966 was set at 100. TAIEX is adjusted in the event of 

new listing, de-listing and new shares offering to offset the influence on TAIEX 

owing to non-trading activities. TAIEX covers all of the listed stocks excluding 

preferred stocks, full-delivery stocks and newly listed stocks, which are listed for 

less than one calendar month. The TAIEX is computed by Taiwan Stock Exchange 

Co., Ltd. and takes as its component sample all common stocks listed for trading. 

The TAIEX contract is a European option with trading during Spot month, the 

next two calendar months followed by two additional months from the March 

quarterly cycle (March, June, September, and December). The last trading day is 

the third Wednesday of the delivery month. Trading occurs from 8:45 AM to 1:45 

PM Taiwan time Monday through Friday of the regular Taiwan Stock Exchange 

business days. The exercise prices are given in 100index point intervals. It is 

important to point out that liquidity is concentrated in the nearest expiration 

contract. 

 

4.2.2 The data 

  For this thesis, our database is comprised of call options on the TAIEX traded 
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daily on TSEC during the period from July 1, 2003 through October 31, 2003. 

Given the concentration on liquidity, our daily set of observations includes only 

calls with the nearest expiration day. Moreover, we eliminate all transactions taking 

place during the last week before expiration (to avoid the expiration-related priced 

price effects). We select the calls from 13:00 to 13:25, and only the last transaction 

for each contract. The criteria yield a final sample of 663 daily observations. 

Table 1：Sample characteristics. 

 
Moneyness 

(E/S) 
Average price 

Number of 
observations 

Deep OTM calls 1.03~1.08 42.6 140 
OTM calls 1.01~1.03 84.4 92 
ATM calls 0.99~1.01 129.32 99 
ITM calls 0.97~0.99 199.33 93 

Deep ITM calls 0.90~0.97 372.77 239 

All calls  202.36 663 

 Average prices and the number of available calls are reported for each moneyness 

category. All calls are selected from 13:00 to 13:25, and only the last data for each strike 

price during the period from July 1, 2003 through October 31, 2003. E is the exercise 

price and S denotes the stock price. Moneyness is defined as the ratio of the exercise price 

to stock price (E/S). 

 

 

 

     Table 1 describes the sample properties of the call option prices used in this 

work. Average prices and the number of available calls are reported for each 

moneyness category. A call option is said to be deep out-of-the-money  if the 

ratio1.03 1.08E
S

≤ < ; out-of-the-money (OTM) if the ratio 1.01 1.03E
S

≤ < ; at the 
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money (ATM) when 0.99 1.01E
S

≤ < ; in-the-money (ITM) if 0.97 0.99E
S

≤ < ; deep 

in-the-money if 0.90 0.97E
S

≤ < .As indicated, there are 663 call option observations, 

with OTM, ATM and ITM options, respectively, accounting for 35%, 15% and 

50%. The average call prices range from 42.6 for deep OTM options to 372.77 for 

deep ITM options. 

 

4.3 Estimation 

  To estimate the parameters 1α ﹑ 2α ﹑ 1β ﹑ 2β  in equation (6) andµ﹑Σ  in (11), 

the implied u (one plus the percentage of upward movement in stock price) for 

each of our 663 options is estimated first. In order to estimate the implied u of each 

option in our sample, we use call options to compute implied u for each day from 

July 1, 2003 through October 31, 2003 that minimized the squared error between 

the theoretical value according to (1) and the market price of the call options. 

These implied u will be used to estimate the parameters 1α ﹑ 2α ﹑ 1β ﹑ 2β in (6) 

andµ﹑ in (11). Σ

Since , Yd rX
r u

= = . We use method of moments to estimate the parameters 1α ﹑ 2α ﹑

1β ﹑ 2β . That is, 

2 2

(1 ) (1 )ˆˆ~ ( , ), ( 1), (1 )(MME MME
x xX beta x x

S S
α β α β− −

= − = − 1)− , 

2where  is the sample mean and  is the sample variance.x S  

Using this method we can estimate the parameters as shown in Table 2. 

Table 2：The binomial parameters estimated by our database. 

  
 1α̂  2α̂  1̂β  2β̂  

ITM 856 1.2 880 1.3 
ATM 900 1.3 928 1.4 
OTM 876 1.5 892 1.6 
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Now, we estimate the parameters  by  

and as shown in Table 3. 

and µ Σ ˆ = the sample meanµ

ˆ = the sample variance and covariance matrixΣ

Table 3：The normal parameters estimated by our database. 

 µ  Σ̂  

ITM 
8.5
7.2

9.71

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

30

30

30 30

1.59 0.0167 1.6 10
0.0167 1.4 1.4 10

1.6 10 1.4 10 0.003

−

−

− −

⎡ ⎤− ×
⎢ ⎥− ×⎢ ⎥
⎢ ⎥− × − ×⎣ ⎦

ATM 
8.0
7.2

9.71

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

30

30

30 30

1.59 0.0167 1.6 10
0.0167 1.4 1.4 10

1.6 10 1.4 10 0.003

−

−

− −

⎡ ⎤− ×
⎢ ⎥− ×⎢ ⎥
⎢ ⎥− × − ×⎣ ⎦

OTM 
7.5
7.1

9.71

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

30

30

30 30

1.59 0.017 1.6 10
0.017 1.3 1.3 10

1.6 10 1.3 10 0.003

−

−

− −

⎡ ⎤− ×
⎢ ⎥− ×⎢ ⎥
⎢ ⎥− × − ×⎣ ⎦

  We also need to estimate the implied volatility for the BS model. We use call 

options to compute implied volatility for each day from July 1, 2003 through October 

31, 2003 that minimized the mean squared error between the theoretical value 

according to Black and Scholes (1973) option pricing formula and the market price 

of the call options. Figure 1 shows the implied volatility for each day from July 1, 2003 

through October 31, 2003. 
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    Figure1：The implied volatility for the BS model. 
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Next section, we will show the option pricing results using these parameter 

estimates as the parameter values. 
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5. Numerical results and comparison 

This section describes the out-of-sample (the calls from 13:00 to 13:25 during 

the period from November 1, 2003 through November 28, 2003) comparisons of 

the binomial option pricing having stochastic parameters model with the BS model 

and the binomial option pricing model. Most of our numerical results are obtained 

by the MCMC methods with the exception of the binomial with stochastic 

parameters (u, d) in which the result given in (7) has been used to verify our 

MCMC results. 

We will first check numerically the adequacy of the independence assumption 

between X=d/r and Y=r/u. It turns out that absolutely percentage errors between 

theoretical and actual option prices are 0.0724 and 0.0719 for independent and 

dependent models, respectively. Hence, the two models perform almost equally for 

our data. 

Next, Table 4 reports the out-of-sample absolute errors and absolute percentage 

errors for various models. The absolute errors are 9.69, 9.85, 12.17, and 13.30, 

respectively for the BS, binomial, binomial with stochastic parameters (u, d), and 

binomial with stochastic parameters (u, d, r). For the out-of-sample performance, 

the BS is best performer out-of-sample, and binomial with parameters (u, d, r) is 

worst. Looking at Figure 2, we can find that the pricing errors for the new model 

are bigger than BS model and Binomial model. This is why the new models have 

bigger absolute errors. The absolute percentage errors are 0.085, 0.089, 0.072, and 

0.071, respectively for the BS model, binomial model, binomial with stochastic 

parameters (u, d) model, and binomial with stochastic parameters (u, d, r) model. 

Binomial model is worst, and binomial with parameters (u, d, r) model is best. The 

new models in this thesis perform better. 
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Table 4：Out-of-sample pricing error for option pricing models: absolute error and 

absolute percentage error. 

 BS Binomial u and d are 
random 

u, d, and r 
are random 

Absolute error 9.69 9.85 12.17 13.30 
Absolute 

percentage error 
8.49% 8.86% 7.24% 7.10% 

 

Figure 2：This figure shows the percentage out-of-sample pricing errors. 
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Looking at the absolute valuation errors by moneyness (see Table 5), we find 

that the binomial with stochastic parameters models are able to value out-of-the 

money options (1.01 E
S

≤ ) better than the BS and binomial model. For example, the 

percentage errors for the two new models are 0.0925 and 0.0844 respectively, and 

0.1489 for the BS model. For at the money options (0.99 1.01E
S

≤ < ), the results for 

the four models are all having small errors. Note that the binomial option pricing 

with stochastic parameters (u, d) model is the best performer among the model 

compared.  
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Table 5：This table shows the absolute percentage errors by moneyness. 

 BS Binomial 
u and d are 
random 

u, d, and r are 
random 

OTM 14.89 15.66 9.25 8.44 
ATM 7.52 8.27 5.58 5.70 
ITM 4.54 4.41 6.42 7.08 
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6. Conclusions 

  This paper presents a closed-form solution for binomial option pricing model 

where the up and down parameters follow independent beta distribution. Moreover, 

we also derive the formula for binomial option pricing model where the riskless 

rate, and the up and down parameters are stochastic. 

  On average, in terms of absolute percentage error, the binomial models with 

stochastic parameters perform better than the BS and binomial models. Significant 

improvements are found in at-the-money and out-of-the-money categories for the 

proposed stochastic parameter models, although they do not perform well in 

in-the-money category. 
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1 2 1 2

*

1 2 1 2

*

1 2

1 1 1 1

1 1 1 1

0

1 1

0

(1 ) (1 )( )
(1 )

( 1)!       (1 ) (1 ) ( )
!( 1)!

( 1)!       (1 )
!( 1)!

n k

k

n k

k

n k n k k

x
C

y

n k n k k l

lx C
y

l n k

l

y y x xA k dxdy
xy

n ly y x x xy dxdy
l n

n l y y
l n

α α β β

α α β β

α α

−

−

− + − − + − − + −

>

∞
− + − − + − − + −

=
>

∞
+ − + − −

=

− −
=

−

+ −
= − −

−

+ −
= −

−

∫∫

∑∫∫

∑ 1 21
*

1

1

1 2

1 1 1 1

0 ( )

2 *
( )

1 1 1 *

0
0 0 1

0

(1 )

1
( 1) ( )

( 1)!       (1 ) [ ]
!( 1)!

( 1)!       
!( 1)!

k
n k n k

n l k k

C y

n l k j
j n k

k n l k j
l n k n k

l j

l

x x dydx

k
C

jn l y y B y dy
l n n l k j
n l B
l n

β β

β

β
α α

β

β

− −

+ + − − + −

+ + − +
−

+ + − +∞ ∞
+ − + − − −

= =

∞

=

−

+ −⎛ ⎞
− ⎜ ⎟

+ − ⎝ ⎠= − −
− + + − +

+ −
=

−

∫ ∫

∑ ∑∫

∑ 1 2

1

1
1

2

1 1 1*

0

2 *
( )

11 1

0
0 0 1

1 2

1 2

(1 )

11
( 1) ( )

                 (1 )

1 ( ) ( )
       

(

l n k

n l k j
j n k

k n l k j
l n kn k

l j

y y dy

kn l
C

l j
y y dy

n l k j

n l l n k
l n k

α α

β

β
α α

β

β

α α
α α

+ − + − −

+ + − +
−

+ + − +∞ ∞ + − + + − −−

= =

−

+ −+ − ⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠− −
+ + − +

+ − Γ + Γ + −⎛ ⎞
= ⎜ ⎟ Γ + + −⎝ ⎠

∫

∑∑ ∫

1

*

0

2 * 1
1 2

10 0
1 2 1

* 2 1

1

)

11 ( )
( 1) ( ) ( ) ( )

                 ,( .2)
( )

( ) ( )

( ) ( )
where 

(

l

n l k j
j n k

l j

B
l

kn l k n l k j
C l n

l j n k
k

A
k n l k j

n l k j n k l
n k

k n k l
B

n

ββ β
α α

β
β α α

β β
β

∞

=

+ + − +
−

∞ ∞

= =

+

+ −+ − ⎛ ⎞ + + − +⎛ ⎞
− Γ + + Γ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠−

+ + − +
+ + − + Γ + − + + +

−
Γ + Γ + − +

=
Γ +

∑

∑∑
+ −

2

.
)

   
lβ+ +

 

It is noted that if >1, we use (A.1) to compute A(k) and otherwise we use (A.2) to 

compute A(k). 
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Alternatively, 
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( )
   

l j
j n k

l j

kn l k l j
C k l n k

l j n k
A

k l j
l j n l

n k
l k

B
k l

ββ β
α α

β
β α α

β β
β β

+ +
−

∞ ∞

= =

− −+ − ⎛ ⎞ + +⎛ ⎞
− Γ + + + Γ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠−

+ +
+ + Γ + + + +

−
Γ + Γ +

=
Γ + + +

∑∑
+ −

 

Similar to A(k), if >1, we use (A.3) compute B(k) and otherwise we use (A.4) to 

compute B(k). 
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