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Abstract. Secret image sharing is a popular technology to secure digital
images in storage and transmission. Traditionally, the technology trans-
forms one secret image into several images called shadows or shares.
Later, when the number of collected shadows reaches a specified
threshold value, the decomposed image can be reconstructed. We pro-
pose a new sharing approach to transform n secret images into n shad-
ows. Later, after gathering all the n shadows, all the n secret images can
be retrieved error-free. No information in any secret image is revealed if
one shadow is absent. The total size of n generated shadows is identical
to the total size of n input secret images; hence, this approach does not
waste storage space. Each pixel in each secret image is reconstructed
using only one Boolean, one modulus, and two mathematical operations,
so it is also a fast approach for reconstructing many secret images.
Comparisons are included. © 2010 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3407067�

Subject terms: multi-image sharing; modulus operation; Boolean operation; input/
output size ratio; computational complexity.
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Introduction

o secure an image file in storage or transmission, there are
wo well-known sharing approaches: polynomial secret
haring �PSS�1 and visual cryptography �VC�.2 They can
ivide a secret image into several extremely noisy images
alled shadows �also called shares�. Each participant can
old some of these shadows. Later, when the total number
f shadows brought to a meeting reaches a specified thresh-
ld value, the shared secret image can be reconstructed.
everal extended works of the introducing papers1,2 have
een reported. Examples include the reduction of memory
ost for shadows,3 extension of binary VC to grayscale4 or
olor images,5 even a two-in-one sharing method called
CPSS6 that combined PSS and VC to create a tool whose
ecoding quality depends on the condition of whether a
omputer is available or not.

In real life, a project team often processes several secret
mages simultaneously. Therefore, some research shared

ultiple images in one encoding process. For example, the
legant PSS scheme7 presented by Feng et al. used
agrange interpolation to deal with multisecret images.
heir method is an economical method, for it has a very
igh input/output �I/O� size ratio between 1 /2 and 1, i.e.,
otal input image size is at least 50% of the total output
hadow size, and 100% is possible. But the computational
omplexity O�log2 k� would be needed to reconstruct each
ecret pixel by using Lagrange interpolation from k re-
uired shadows. To the contrary, to save computational op-
rations in the retrieval of secret images, visual cryptogra-
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phy �VC� schemes can be used. For example, Shyu et al.
used two circular shadows to design a VC scheme8 that can
share more than two secret images. Feng et al. also pre-
sented a multisecret VC scheme,9 and their shadows are in
rectangular shape. By stacking the shadows �know as trans-
parencies in the VC field�, these VC schemes are very fast
in revealing all secret images. The disadvantage of using
VC methods is their low I/O size ratio �at least 1 /2� due to
the high pixel expansion rate �per�2� in generating shad-
ows. As for the disadvantage of the low contrast of the
images recovered by stacking transparencies, it can be
avoided if VC methods are implemented on a computer.
When VC methods are implemented on a computer to re-
construct n original secret images error-free, the complexity
to decode a pixel of a secret image would be O�n� due to
the high per.

Besides PSS and VC schemes, Alvarez, Encinas, and del
Rey also developed a multisecret sharing scheme10 for
color images with different sizes based on modulus opera-
tions. Albeit their I/O size ratio is a very good value n / �n
+1� after sharing n secret images by n+1 shadows, their
reconstruction in each secret pixel needs one modulus op-
eration and many mathematical operations �addition or sub-
traction� whose computational complexity is O�n�. Muñoz-
Rodríguez and Rodríguez-Vera developed three very fast
methods11–13 based on phase encoding of a secret image
and a pattern image. In their methods, decoding is per-
formed by using just a simple overlapping operation to re-
trieve each pixel of the input secret image. The methods are
very fast, but their decryption creates approximated ver-
sions of the original image, rather than error-free recovery.
Among the error-free �lossless� schemes7–10 for multise-
April 2010/Vol. 49�4�1
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rets, no one can simultaneously own the two advantages:
. I/O size ratio is 1, and 2. only a constant number of
perations is needed to reconstruct each secret pixel. To
chieve these two advantages simultaneously, we propose
ere a novel sharing scheme for multiple images, by using
odulus �MOD� and exclusive-OR �XOR� operations. The

roposed method generates n extremely noisy shadows for
given binary/grayscale/color secret images �notably, the n

iven images all have the same size�, and each shadow’s
ize is identical to each given image. When the n shadows
eplace the n original secret images in the image database,
ince our I/O size ratio is always 1, we do not need extra
torage space. Furthermore, after gathering all n shadows,
ur lossless decoding process only uses one XOR, one
OD, one addition �ADD�, and one subtraction �SUB� op-

ration �symbolized as �, Mod, �, and �� to reconstruct
ach pixel’s 8-bit value of each secret image. This holds for
ll values of n. Hence, no matter how many secret images
re shared, the CPU time in decoding each secret image
ill not increase. In summary, the proposed lossless
ethod is not only economical in storage space of shadows

ut also in constant-speed quickness in decoding.
The rest of the work is as follows. Section 2 describes

wo basic tools based on MOD and XOR operations, re-
pectively, and these tools are used in the proposed method.
ection 3 presents the method. Section 4 gives experimen-

al result and comparisons. Security analysis is in Sec. 5.
ummary and future work are in Sec. 6.

Two Basic Tools Used in the Proposed
Scheme

o achieve the two advantages �higher I/O size ratio and
ewer decoding operations� mentioned in Sec. 1, two basic
ools are used in the proposed method. The first is the
MOD-based �2, 2� secret sharing tool” in Sec. 2.1, which
an make our I/O size ratio 1. The other is the “XOR-based
n ,n� shadows combination tool” in Sec. 2.2, which can
ake our �n ,n� scheme only need constant operations to

ecode each secret pixel, no matter how large the value of
is.

.1 MOD-Based (2, 2) Secret Sharing Tool
hien and Lin proposed a modified version14 of Shamir’s

k ,n�-threshold PSS approach1 to reduce the size of shad-
ws. They use polynomials to share a secret image A
mong n shadows B1 ,B2 , . . . ,Bn; and each of them is k
imes smaller than A in size. A cannot be revealed unless k
f the n shadows are gathered. In their encoding, to trans-
orm a sector �a0 ,a1 , . . . ,ak−1� formed of k secret pixel val-
es of A into n shadow pixel values �b1 ,b2 , . . . ,bn�, �where
ach bi�Bi�, they use a prime number p=251 to create a
olynomial,

�x� = �a0 + a1x + . . . + ak−1xk−1�Mod p, �1�

f degree k−1. Then we evaluate b1=q�1� ,b2

q�2� , ¯ ,bn=q�n�. Later, using any k of the n produced
airs ��i ,bi��i=1

n , people can recover all k coefficients

0 ,a1 , . . . ,ak−1 in q�x� by constructing the interpolation
olynomial.
ptical Engineering 047007-
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To let our method have shadows with small size, we
apply Ref. 14. More specifically, we apply Ref. 14 in a
special manner �k=2, n=2�. We call this �2, 2� scheme a
“MOD-based �2, 2� secret sharing tool.” The tool is de-
scribed as follows.

Sharing phase. �See �2, 2�-MOD-SS in left-top part of
Fig. 1.�

Step 1. Use a prime number key to generate a permuta-
tion sequence to permute all pixel positions of the given
grayscale image A. Then attach the key in the permuted

image Ã.

Step 2. Sequentially read in gray values �pi� of Ã, and
then store in array E according to the rules.

Step 2.1. If pi�250, then store pi in E.
Step 2.2. If pi�250, then split pi into two values 250
and �pi−250�. Store these two values in E �first 250,
then pi−250�.

Step 3. Sequentially grab two not-shared-yet elements a0
and a1 of E. Use the grabbed �a0 ,a1� to evaluate

b1 = q�1� = �a0 + a1�Mod 251, �2�

b2 = q�2� = �a0 + a1 � 2�Mod 251, �3�

and then attach b1 to shadow B1, and attach b2 to
shadow B2.
Step 4. Repeat step 3 until all elements of the array E are
processed.

Notably, step 2.2 handles the gray values larger than 250
�see Ref. 14�, which seldom happens for most natural im-
ages. Therefore, the size of E, which equals the total size of
B1 and B2, is very close to size A. In other words, each
created B1 and B2 is about two times smaller than A in size.

Reveal phase. �See Reveal of �2, 2�-MOD-SS in the bot-
tom part of Fig. 2.�

Step 1. Take the first nonused pixel from each of the two
shadows B and B . Call the two values �b ,b �.

Fig. 1 Diagram of the proposed encoding algorithm.
1 2 1 2
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Step 2. Use these two values �b1 ,b2� to recover the two
coefficients �a0 ,a1� in Eqs. �2� and �3� by

a1 = �b2 − b1 + 251�Mod 251, �4�

a0 = �b1 − a1 + 251�Mod 251. �5�

The recovered �a0 ,a1� are the two corresponding values
in E.
Step 3. Repeat steps 1 and 2 until all values of the two
shadows B1 and B2 are processed.
Step 4. Sequentially grab an element pi of E, then do:

Step 4.1. If pi�250, then store pi in Ã. Now, delete pi
from E, because the information contained in pi has
been used.
Step 4.2. If pi=250, then read in pi+1 immediately. Then

store the single value �250+ pi+1� in Ã. Now, delete both
pi and pi+1 from E, because the information in pi and
pi+1 have both been used.

Step 5. Extract the prime number key from Ã and apply
the inverse-permutation operation to the permuted image

Ã to get back to the secret image A.

n this reveal algorithm, only three operations �one SUB,
ne ADD, and one MOD� are needed in Eqs. �4� or �5� to

econstruct each secret pixel of Ã. Because usually there

re only a few pixels in A �and hence in Ã� whose gray
alues are above 250, the ADD operation in step 4.2 sel-
om occurs. Also, for each pixel, step 5 uses one mapping
peration �indexing� rather than computational operation.

.2 Exclusive-OR-Based �n ,n� Shadows
Combination Tool

nce all given n secret images A1 ,A2 , . . . ,An are processed
y the MOD-based �2, 2� secret sharing tool described in
ec. 2.1, each secret image Ai �1� i�n� generates two
alf-size temporary shadows Bi,1 and Bi,2. To avoid any
ecret leaking when collecting less than n final shadows,
e use the following steps of a combination phase to form

he final shadow C .

Fig. 2 Diagram of the proposed decoding algorithm.
i
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Combination phase. �See right-top and bottom parts of
Fig. 1.�

Step 1. Size-synchronization: if some shadows Bi,j �1
� i�n and 1� j�2� have distinct size due to the exis-
tence of pixels whose gray values are in 251 to 255 in
some images Ai, then add a suitable number of dummy
pixels in all shadows to make all shadows Bi,j have the
same size as the one with the largest size.
Step 2. Stacking: take the first not-yet-processed pixel
bi,1 from each shadow Bi,1 �1� i�n�. Then evaluate the
corresponding pixel b* for a new image B* by

b* = b1,1 � b2,1 � ¯ � bn,1. �6�

After all pixels of all Bi,1 are processed, the generation
of image B* is done, and its size is the same as Bi,1 �and
Bi,2, too�.
Step 3. Shifting Bi,2 to Bi,3: take next not-yet-processed
pixel bi,2 from each shadow Bi,2 �1� i�n�, and at the
same pixel position take the corresponding pixel b*

�B*. Then create the corresponding pixel value bi,3 of a
new image Bi,3 by

bi,3 = bi,2 � b* �1 � i � n� . �7�

After all pixels in all Bi,2 are processed, all n images Bi,3
are generated. Notably, each Bi,3 is as large as each Bi,2.
Step 4. Physically gluing: for 1� i�n, physically com-
bine each pair of Bi,1 and Bi,3 to generate their final
shadow Ci= �Bi,1 ;Bi,3�. Because Bi,1 and Bi,3 are both
about two times smaller than Ai, each Ci is about as
large as Ai.

When all n final shadows C1 ,C2 , . . . ,Cn are gathered,
we can reconstruct all Bi,1 and Bi,2 �1� i�n� by using the
following steps of a decomposing phase whose computa-
tion is very low.

Decomposition phase. �See top part of Fig. 2.�

Step 1. For 1� i�n, physically separate each Ci
= �Bi,1 ;Bi,3� into two halves to get Bi,1 �front half� and
Bi,3 �rear half�.
Step 2. Take next not-yet-processed pixel bi,1 from each
Bi,1 �1� i�n�. Then evaluate the corresponding pixel b*

in the image B* by Eq. �6�. After all pixels of all Bi,1 are
processed, the image B* is generated.
Step 3. Take next not-yet-processed pixel bi,3 from each
Bi,3 �1� i�n�, and at the same pixel position, take the
corresponding pixel b* from B*. Then evaluate the cor-
responding pixel bi,2 for each image Bi,2 by

bi,2 = bi,3 � b* �1 � i � n� . �8�

After all pixels of all Bi,3 are processed, all Bi,2 are
recovered.

On average, only one XOR operation is needed to re-
cover a pixel of a secret image, and this statement is true
for each secret image A �1� i�n�. The analysis is as fol-
i
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ows. Assume size of each Ai is w�h, then each Bi,1 in step
uses on average ��n−1� /n�� ��w�h� /2� XOR operations

n Eq. �6� to create B*. And each Bi,3 in step 3 uses on
verage �w�h� /2 XOR operations in Eq. �8� to recover

i,2. Therefore, for each secret image Ai, the total number
f XOR operations needed in the decomposition phase is
��n−1� /n�+1�� ��w�h� /2�, which will be smaller than 1
fter dividing by Ai’s size w�h. In other words, less than
ne XOR operation is needed in the decomposition phase
o recover a pixel of a secret image Ai.

Proposed Method

.1 Encoding
he encoding uses the sharing phase of the MOD-based �2,
� secret sharing tool in Sec. 2.1, followed by the combi-
ation phase of the XOR-based �n ,n� shadows combination
ool in Sec. 2.2. The encoding creates n shadows

1 ,C2 , . . . ,Cn to replace the n given secret images
1 ,A2 , . . . ,An. The main steps are as follows.

ncoding algorithm. �The diagram is in Fig. 1.�
Input: n input binary/grayscale/color secret images

1 ,A2 , . . . ,An of the same size.

Step 1. It does not matter whether the image is binary or
gray or color, just treat each Ai �1� i�n� as a long
byte-stream �so each element has 8 bits and can be con-
sidered as a gray-value pixel�.
Step 2. Then, for each stream Ai �1� i�n�, use the shar-
ing phase of MOD-based �2, 2� secret sharing tool in
Sec. 2.1 to create its half-size shadows �Bi,1 ,Bi,2�.
Step 3. Use all �Bi,1 ,Bi,2� 1� i�n in the combination
phase of the XOR-based �n ,n� shadows combination
tool in Sec. 2.2 to generate n final shadows
C1 ,C2 , . . . ,Cn.

Notably, each final shadow Ci is �nearly� as large as Ai.
s a result, even from a multisecrets view, the I/O size ratio

s also 1, because total secret size ��A1 ,A2 , . . . ,An�� is iden-
ical to the total shadow size ��C1 ,C2 , . . . ,Cn��.

.2 Decoding
o recover the n secret images A1 ,A2 , . . . ,An from the n
nal shadows C1 ,C2 , . . . ,Cn, the decoding uses the decom-
osition phase of the XOR-based �n ,n� shadows combina-
ion tool in Sec. 2.2, followed by the reveal phase of the

OD-based �2, 2� secret sharing tool in Sec. 2.1. The main
teps are as follows.

ecoding algorithm. �See the diagram in Fig. 2.�

Step 1. Use the decomposition phase of the XOR-based
�n ,n� shadows combination tool in Sec. 2.2 to recon-
struct the half-size images �Bi,1 ;Bi,2�1� i�n from the n
final shadows �C1 ,C2 , . . . ,Cn�.
Step 2. For each pair �Bi,1 ;Bi,2�, where 1� i�n, use the
reveal phase of the MOD-based �2, 2� secret sharing tool
in Sec. 2.1 to recover the secret image Ai from
�B ;B �.
i,1 i,2

ptical Engineering 047007-
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Step 3. If the original secret images are not gray-valued,
then transform all n 8-bit images A1 ,A2 , . . . ,An to their
binary/color equivalent.

On average, the decoding only needs one XOR, one MOD,
one ADD, and one SUB operations �all are between bytes�
to reconstruct each 1-byte �8-bit� pixel value of a secret
image. �In step 1 of decoding, one XOR operation is
needed to recover a 1-byte pixel value of Bi,2 for the de-
composition phase of the XOR-based �n ,n� shadows com-
bination tool. In step 2, one MOD, one ADD, and one SUB
operations are needed to recover a 1-byte pixel value of Ai
in the reveal phase of the MOD-based �2, 2� secret sharing
tool.�

4 Experimental Result and Comparisons

4.1 Experimental Result
In the experiment here, without the loss of generality, let
n=5 and let the n input images �A1 ,A2 , . . . ,A5� be the
512�512 grayscale images �Jet, Lena, Pepper, Scene, and
Monkey� shown in Figs. 3�a�–3�e�. Then, Figs. 4�a�–4�e�
show the n=5 final shadows �C1 ,C2 , . . . ,C5� generated in
Sec. 3.1, and each 512�512 shadow is as large as each
input image. Figures 5�a�–5�e� show five error-free recov-
ered images A1 ,A2 , . . . ,A5 �Jet, Lena, Pepper, Scene, and
Monkey� in Sec. 3.2 using all n=5 final shadows
C1 ,C2 , . . . ,C5. In general, all recovered images in our
method are error-free, i.e., the peak signal-to-noise ratio
�PSNR� value is infinity ��� for each of our recovered im-
ages. So each of the recovered images �Jet, Lena, Peppers,
Scene, and Monkey� shown in Fig. 5 has PSNR=�. �The
five images in Fig. 5 and the five images in Fig. 3 are
exactly the same, rather than just similar.�

In addition, to show our constant decoding-time prop-
erty in the retrieval, we also listed in Table 1 the number of
operations on average needed to decode each one of the n
secret images. It can be seen that, indeed, a constant num-
ber of operations is needed for each value of n. The actual
CPU time taken in decoding is also checked in a computer.
We still find that our decoding time does not vary as the
value of n varies.

Fig. 3 Five input grayscale images in the n=5 case.
April 2010/Vol. 49�4�4

se: http://spiedl.org/terms



4
T
s
s
c
T
i
s
s
2
r
o
e
s
c
m
R

F
=
t
a
c
M

F
fi

Chao and Lin: Sharing of multiple images: economically-sized and fast-decoding approach…

O

Downloaded Fro
.2 Comparisons
able 2 compares our method with other multisecret
chemes7–10 in terms of two quantifiable measures: 1. I/O
ize ratio and 2. decoding computational complexity. For
omparison, the same conditions hold for each scheme.
hey are: 1. there are n secret images, 2. every recovered

mage must be lossless, and 3. the computer versions of VC
chemes8,9 are implemented using an OR-like operation to
imulate the stacking action of transparencies. From Table
, we can see that our method not only keeps the I/O size
atio as large as 1, but also needs only constant decoding
perations to reconstruct a secret pixel. Other schemes7–10

ither have I/O size ratio smaller than 1, or need noncon-
tant decoding complexity to reconstruct a secret pixel. For
ompleteness, we also include in Table 2 the very fast
ethods11–13 developed by Muñoz-Rodríguez and
odríguez-Vera that use one secret image and one pattern

ig. 4 The five generated noisy shadows �C1 ,C2 , . . . ,C5� in the n
5 case. Their PSNRs are all around 8.0 if we compare them with

he secret image Jet �all around 9.5 if we compare them with Lena;
ll around 9.2 if we compare them with Peppers; all around 8.6 if we
ompare them with Scene; all around 9.7 if we compare them with
onkey�.

ig. 5 The five error-free images �PSNR=�� recovered by using all
ve shadows �Fig. 4� in the n=5 case.
ptical Engineering 047007-
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image as input. Their I/O size ratios are as good as ours.
Their decoding complexity is very economic, but their de-
coding only gives approximated versions �rather than error-
free recovery� of the original image. So theirs and ours
have different highlighting.

Table 1 Number of operations needed to decode each one of the n
secret images whose sizes are all 512�512.

Value of n
Number of operations needed to de-
code one 512�512 secret image

2 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

3 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

4 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

5 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

6 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

7 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

8 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

9 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

… 512�512 XOR, 512�512 MOD, 512
�512 ADD, 512�512 SUB operations

Table 2 I/O size ratio and decoding complexity. For I/O size ratio,
total size of input images is divided by total size of shadows. Hence,
larger is better. For decoding complexity, complexity is to decode a
pixel of a secret image. For math operators, k is a user-specified
threshold value, e.g., k=0.5n or k=2. For Ref. 10, math operations:
�, �, �, �. References 11–13 are very fast, but the decoding just
gives approximated versions �rather than an error-free version� of
the original secret image.

Schemes
I/O size ratio

�larger is better�
Decoding complexity

�smaller is better�

Ref. 7 1/2�1 O�log2 k� �math operations�

Ref. 8 1/4 2�n �OR-like operations�

Ref. 9 1/6 3�n �OR-like operations�

Ref. 10 n / �n+1� 1 �MOD operation� and
O�n� �math operations�

Refs. 11–13 1 1 overlapping operation

Our scheme 1 1 XOR, 1 MOD, 1 ADD,
and 1 Substraction operations
April 2010/Vol. 49�4�5
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Security Analysis

n this section, we analyze the security of the encrypted
mages �shadows�.

.1 Probability

ssume that only n−1 final shadows are available, and a
hadow Cj is missing. Then, people cannot obtain B* cre-
ted by b*=b1,1 � b2,1 � ¯ � bn,1 in Eq. �6�, due to the lack
f the bj,1, which is in the front half of Cj. Wthout B*,
eople cannot reconstruct B1,2 ,B2,2 , . . . ,Bn,2 defined by
i,2=bi,3 � b* �1� i�n� in Eq. �8�. As a result, no secret
mage Ai can be recovered �see the reveal phase of the

OD-based �2, 2� secret sharing tool in Sec. 2.1� due to
bsence of all Bi,2 �1� i�n�.

Next we discuss the probability of obtaining some right
ecret images Ai through guessing. Without the loss of gen-
rality, assume that a betrayal party of n−1 participants
athers their n−1 final shadows C1 ,C2 , . . . ,Cn−1, and try to
ecover some of the n secret images without the coopera-
ion of the missing shadow Cn. From Eqs. �6� and �8�, we
ave

i,2 = bi,3 � b* = bi,3 � b1,1 � b2,1 � ¯ � bn,1

�1 � i � n� . �9�

ecause of the lack of Cn= �Bn,1 ;Bn,3�, for each pixel bn,1 in

n,1, the betrayal party will have to guess a value, and then
hey use this guessing value to get a set of n−1 pixel values
1,2 ,b2,2 , . . . ,bn−1,2 in B1,2 ,B2,2 , . . . ,Bn−1,2, respectively, at
he same pixel position �there is no bn,2 value in Bn,2 due to
ack of bn,3�. Then, the 2� �n−1� secret pixels in

1 ,A2 , . . . ,An−1 can be reconstructed by using bi,1 and bi,2
1� i�n−1� in the reveal phase of the MOD-based �2, 2�
ecret sharing tool in Sec. 2.1. This is just to reconstruct
wo pixels in each Ai �1� i�n−1�. This value guessing of
ne pixel, like bn,1, will repeat �w�h� /2 times if the size of
ach Ai is w�h �then, the size of Bn,1 is 0.5�w�h�.

From this description, we can evaluate the probability of
btaining some right grayscale images Ai of size w�h as
ollows:

Table 3 The entropy and PSNR values of the fiv
Fig. 4.

The five shadows C1

Entropy values 7.999

PSNR values �Jet� 8.059

PSNR values �Lena� 9.473

PSNR values �Peppers� 9.202

PSNR values �Scene� 8.594

PSNR values �Monkey� 9.703
ptical Engineering 047007-
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probability = 	 1

values range

w�h/2

= 	 1

251

w�h/2

,

which is �1 /251�512�512/2= �1 /251�131,072=10−314530 if each
image size is 512�512. Here, 1 /values range=1 /251 is
the probability to guess successfully a pixel’s value whose
range is from 0 to 250; w�h /2 is the number of pixels in
Bn,1. In fact, for each secret image Ai �1� i�n� in the
encoding process �as we did in step 1 of the sharing phase
of the MOD-based �2, 2� secret sharing tool in Sec. 2.1�, we
already use a prime number as a key �a seed� of a random
number generator to rearrange all the pixel positions of Ai.
Even if many pixel values in Bn,1 are guessed successfully,
in step 4 of the reveal phase of the MOD-based �2, 2� secret

sharing tool in Sec. 2.1, the recovered images Ãi �1� i
�n−1� are still extremely noisy. Therefore, the security
guardian has double levels.

For instance, in the experimental example of Sec. 4.1, if
we only get four shadows, say C1 ,C2 , . . . ,C4 in Figs.
4�a�–4�d�, and then guess the pixel values of images B5,1

rated noisy shadows �C1 ,C2 , . . . ,C5� shown in

C3 C4 C5

9 7.999 7.999 7.999

5 8.047 8.056 8.036

4 9.506 9.501 9.495

4 9.206 9.186 9.213

1 8.603 8.571 8.593

4 9.698 9.705 9.699

Fig. 6 The n=5 images A1 ,A2 ,A3 ,A4 ,A5 recovered by using only
four shadows C1 ,C2 ,C3 ,C4 �Figs. 4�a�–4�d�� and two guessed im-
ages B5,1 and B5,2 in the n=5 case.
e gene

C2

7.99

8.05

9.51

9.20

8.60

9.70
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nd B5,2, then the five recovered images of A1 ,A2 , . . . ,A5
re the extremely noisy images shown in Fig. 6.

.2 Dissimilarity between Shadow Images
n the case of sensitivity, the difference between two
hadow images cannot be observed visually. For this mat-
er, we check the dissimilarity between shadow images as
ptical Engineering 047007-
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follows. First, from Table 3, we can see that all generated
shadows have very similar entropy �7.999� and very similar
PSNRs �when they are all compared with a secret image,
say Lena�. Second, besides comparing a shadow �Ci� with a
secret image, if a shadow Ci is compared with another
shadow Ci�1� i� j�5�, then a PSNR value called
PSNR�C ,C � can be evaluated by the formula
i j
SNR�Ci,Cj� = 10 � log10
2552

�u=1
512�v=1

512�Ci�u,v� − Cj�u,v��2/�512 � 512�
, �10�
nd the computation result is as listed in Table 4. From this
able, we can see that the PSNR�Ci ,Cj� values are all very
ow �smaller than 9� for all pairs of shadows �Ci ,Cj�. This
eans that none of the shadows are alike. Third, none of

he shadow Ci in �C1 , . . . ,C5� can be predicted in any part
rom another shadow Ci, because each difference image
Ci−Ci� �see Fig. 7� between two shadows Ci and Cj �1

i� j�5� still looks extremely noisy and has neither a
eaningful pattern nor meaningful contour. From the end

f Fig. 7, we also see that the ten histograms for �Ci
Cj�1�i�j�5 all look alike �due to space limitation, only

wo of the ten are shown�, and this fact implies that the ten
ntropies for the ten difference images ��Ci−Cj��1�i�j�5 are
lmost identical �the entropy of each difference image reads
.673…, as shown in Table 4.� From Fig. 7 and Table 4, no
hadow can be predicted in any part from another shadow.

able 4 The entropy of the difference image �Ci−Cj�, and the
SNR�Ci ,Cj� value. �The two shadow images Ci and Cj are taken

rom the five shadow images �C1 , . . . ,C5� shown in Fig. 4. So there
re 5!÷ �2!�5−2�!�=10 pairs.�

Difference image
�Ci−Cj�

Entropy value
of �Ci−Cj�

PSNR�Ci ,Cj�
for the pair �Ci ,Cj�

�C1−C2� 7.673 7.728

�C1−C3� 7.673 7.875

�C1−C4� 7.673 8.140

�C1−C5� 7.673 7.728

�C2−C3� 7.673 7.792

�C2−C4� 7.673 7.748

�C2−C5� 7.673 7.824

�C3−C4� 7.673 8.016

�C3−C5� 7.673 7.974

�C4−C5� 7.673 7.734
Fig. 7 The ten difference images ��C1�− �C2� , �C1�− �C3� , �C1�
− �C4� , �C1�− �C5� , �C2�− �C3� , �C2�− �C4� , �C2�− �C5� , �C3�− �C4� , �C3�
− �C5� , �C4�− �C5��; and the two histograms for �C1−C2� and �C1−C3�,
respectively. The remaining 10−2=8 histograms all look like these
two histograms, so their entropies all read 7.673…, as shown in
Table 4.
April 2010/Vol. 49�4�7
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.3 Statistical Analysis
any attackers use statistical analysis to analyze the en-

rypted images to trace back the original secret images. So
e also apply statistical analysis to our shadows. It includes

he following: the histogram of each shadow is inspected in
ec. 5.3.1; the correlations of two adjacent pixels of each
hadow are examined in Sec. 5.3.2; and the number of pix-
ls change rate �NPCR� and unified average changing in-
ensity �UACI� values are examined in Sec. 5.3.3 to check
he relationship between the original images �secrets� and
he encrypted images �shadows�.

.3.1 Histograms, entropies, and peak signal-to-
noise ratios of the encrypted images

e still inspect the five images in Fig. 3 whose image
ontents are of quite different styles �airplane, human face,
egetable, scenery, and animal�. The histograms of the five
nput images and the histograms of the five created shad-
ws are compared. A typical example of the comparison is
hown in Fig. 8. The histogram of each encrypted image
shadow� is fairly uniform, and it is significantly different
rom the histogram of any input secret image �e.g., Lena�.
he same observation also exists for the shadows created
sing other sets of n secret images.

In general, besides the histogram, entropy is another
seful value to measure the information distribution of an
mage. If an image has G gray levels �G�256�, and the
robability of gray-level k�0�k�G−1� is P�k�, then the
mage’s entropy He is

e = − �
k=0

G−1

P�k�log2�P�k�� . �11�

he entropy value of the secret image Lena in Fig. 8�a� is
e�Lena�=7.327, and the entropy value of the shadow im-

ge in Fig. 8�c� is He�shadow image�=7.999. Note that
.999 is very close to the perfect entropy value

ig. 8 Histograms of the original and encrypted images. �a� is one
f the n=5 input secret images; �b� is the histogram of �a�; �c� is a
ypical shadow image; and �d� is the histogram of �c�.
ptical Engineering 047007-
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8 = − �
k=0

256−1
1

256
log2	 1

256

 = − log2	 1

256

 ,

which is the entropy value for an ideal image whose gray
values are of exactly uniform distribution. He �shadow im-
age� is almost 8, because the gray values of each shadow
are almost uniformly distributed. In view of security,
shadow images with entropy values very close to 8 are
good, because it means that the original secret information
is now widely and uniformly spread over the shadow im-
ages. We have also checked the entropy values of the shad-
ows created from other sets of secret images; and the en-
tropy values of the shadows are still very close to 8.

In terms of PSNR, we include in Table 3 the PSNR
values of the five generated shadow images printed in Fig.
4. As shown in Table 3, if we randomly pick a shadow Ci
�i=1, 2, 3, 4, 5, because n=5� in Fig. 4, and compare this
randomly chosen shadow with the secret image Jet in Fig.
3, then the PSNR value is in a very concentrated range
�between 8.036 and 8.059, as shown in row 3 of Table 3�.
Likewise, if we compare the randomly chosen shadow with
the secret image Lena, then the PSNR value is still in a
very concentrated range �between 9.473 and 9.514, as
shown in row 4 of Table 3�. Similar observation exists in
the remaining rows of Table 3, if the secret image is being
compared with Peppers �or Scene or Monkey�. The phe-
nomenon that shadows �C1 , . . . ,C5� are so alike in both
entropy and PSNRs indicates that the shadows are very
similar in pixel distribution. Also note that the PSNR values
appeared in Table 3 are all very low �less than 10�, and this
indicates that each of these extremely noisy shadows
�C1 , . . . ,C5� in Fig. 4 looks completely different from any
of the five original secret images shown in Fig. 3. Thus, the
hackers can hardly guess what the original secret images
are.

5.3.2 Correlation of two adjacent pixels

In the subsection, we examine the correlation between two
�vertically/horizontally/diagonally� adjacent pixels. As
quoted from Ref. 15, for a given image, its correlation co-
efficient between adjacent pixels is computed according to
the formula

rxy =
cov�x,y�

�D�x��D�y�
. �12�

Here, the symbol �x ,y� represents the random variable of
the gray values of two adjacent pixels. Notably, for an im-
age, if there are N pairs of �x ,y�, then we compute

E�x� =
1

N
�
i=1

N

xi, E�y� =
1

N
�
i=1

N

yi, �13�

D�x� =
1

N
�
i=1

N

�xi − E�x��2, D�y� =
1

N
�
i=1

N

�yi − E�y��2, �14�
April 2010/Vol. 49�4�8
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ov�x,y� =
1

N
�
i=1

N

�xi − E�x���yi − E�y�� , �15�

o get rxy. Figure 9�a� shows the distribution of two adja-
ent pixels �x ,y� for the secret image Lena in Fig. 8�a�.
hen, Fig. 9�b� shows the distribution for the shadow im-
ge sketched in Fig. 8�c�. The correlation coefficients are
.360456 and 0.004678, respectively. In general, the corre-
ation coefficient is high for each secret image, and very
ow for each shadow.

.3.3 Differential analysis
ere, the number of pixels change rate �NPCR� and unified

verage changing intensity �UACI� are checked. In general,
hen a pixel value is changed in one of the n secret images,

wo measures NPCR and UACI can be utilized to describe
he impact to the n shadow images. Details are as follows.

ig. 9 Distribution of the pairs of adjacent pixels. �a� is for the secret
mage Lena sketched in Fig. 8�a�, whereas �b� is for the shadow
mage sketched in Fig. 8�c�.
ptical Engineering 047007-
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Assume that we change a pixel value in one of the n
input secret images—for example, change a pixel value for
the Lena image shown in Fig. 3�b�. Before this one-pixel
change, let the n corresponding shadow images be
�C1 , . . . ,Cn�. Then, after this one-pixel change of the secret
image Lena, let the n generated shadow images be
�C1� , . . . ,Cn��. For the two versions Ck and Ck� of the k’th
shadow, let Ck�i , j� and Ck��i , j� denote their grayscale val-
ues at position �i , j�, respectively. The NPCRk for shadow k
is defined as

NPCRk =
�i,jDk�i, j�

W � H
� 100%, �16�

where W and H are the width and height of a shadow. In the
evaluation of NPCRk for shadow k, the comparison record
Dk is defined as the binary matrix in which Dk�i , j�=0 if
Ck�i , j�=Ck��i , j�, and Dk�i , j�=1 if Ck�i , j��Ck��i , j�. Nota-
bly, NPCRk measures the percentage of the altered pixels
for shadow k �0% means the two versions Ck and Ck� of
shadow k are identical everywhere�.

The UACIk for shadow k is defined as

UACIk =
1

W � H
�
i,j

�Ck�i, j� − Ck��i, j��
255 � � 100%, �17�

which measures the average intensity of the differences be-
tween the two versions �Ck and Ck�� of shadow k.

One of the performed tests is when the one-pixel change
is on the Lena image of Fig. 3�b�. Then the range of
�NPCR1, . . . ,NPCRn� for the n shadows is from 99.60 to
99.63%, and the range of �UACI1 , . . . ,UACIn� for n shad-
ows is from 33.20 to 33.40%. The average of
�NPCR1, . . . ,NPCRn� is NPCRaverage=99.6111%, and the
average of �UACI1 , . . . ,UACIn� is UACIaverage=32.2980%.
When the one-pixel change is on any other image of Fig. 3,
the average value of �NPCR1, . . . ,NPCRn� is still larger
than 99.6%; and the average value of �UACI1 , . . . ,UACIn�
is still larger than 33.2%. Therefore, a one-pixel change in
any secret image can cause a significant change to all n
shadow images. Hence, our shadows can resist differential
attack in which the opponents, as mentioned in Refs. 15
and 16, make a slight change in the secret image, and then
observe the result in the shadow images. In this way, the
opponents try to find a meaningful relationship between the
pixels of the secret image and the pixels of the shadows. In
our system, since one minor change in the secret image can
cause a significant change in all shadows, the differential
attack would become useless.

6 Summary and Future Works

A novel lossless sharing scheme for multiple secret images
is designed using MOD and XOR operations. Our advan-
tages are: 1. the total size of n given secret images is the
same as the total size of the n final shadows �hence our I/O
size ratio is 1�; 2. we only need one XOR, one MOD, one
ADD, and one SUB �all are byte-to-byte� operations to get
a lossless recovery of each secret pixel’s 8-bit value for the
April 2010/Vol. 49�4�9
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iven binary/grayscale/color images �so our decoding com-
utational complexity for each pixel is a constant and inde-
endent of n�.

Our method is better than other lossless multisecret
chemes in terms of two quantity measures: I/O size ratio
nd decoding time. But Ref. 7–10 have features of their
wn. 1. Feng et al.’s7 uses generalized access structures to
chieve higher flexibility, and each qualified set of the ac-
ess structure is able to share secret images independently.
. If the shadows are printed in transparencies, then the VC
chemes8,9 can also reveal images by doing physical stack-
ng of transparencies although true-color images will be
ery hard for VC to retrieve error-free by stacking transpar-
ncies. 3. Alvarez et al.’s method10 can process n given
ecret images of nonequal sizes. To improve our multisecret
haring scheme in the future, the advantages of these others
ill be our main guidelines.
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