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中文摘要 

 動態旅次起迄推估長久以來為運輸管理之核心，經由路網中偵測

器所收集的資料，可以進行路網相關交通狀態的估計或預測，並根據

預測結果進而模擬短時間內的交通狀況擬定適當的交通控制與管理

方式，維持交通順暢。本研究為對高速公路旅次起迄流量之估計採用

狀態空間模型並考慮兩地之間的旅行時間，配合上統計理論上的卡門

濾波模式(Kalman filter)與吉柏司樣本法(Gibbs sampler)去構築本

研究之模型，並比較傳統沒有考量旅行時間的模型之差異性。 
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ABSTRACT 
 
 Estimation of dynamic estimation of the O-D flow is the kernel of the traffic 

management for a long time. Through the data collected by the detectors in the 

network, we can estimate and predict the traffic condition about the network. 

According to the prediction results we can simulate the traffic condition and draft the 

associated appropriate traffic control and management to keep the free traffic. In this 

thesis, using the state-space model with travel time, estimation of the O-D flow of the 

freeway is considered. Using the Kalman filter and Gibbs sampler to complete the 

revised model, we compare the results with these from the traditional model without 

considering the travel time. 
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1 Introduction 

 

The origin-destination (O-D) flow plays an important role of most traffic 

operational analyses. The O-D flow has been used on the traffic assignment and the 

traffic flow simulation. Traditionally the O-D data collection is based mainly on field 

surveys, which not only costs a lot of budget, labor, and time, but also causes missing 

values easily when the traffic is heavy. Traffic engineers have been looking for 

statistical methods to estimate the O-D flow from less expensive data. Recent 

researchers estimate the O-D flow using Gaussian state-space model with an unknown 

transition matrix and Kalman filter but without considering the time factor. As the 

development of ITS (intelligent transportation system) changing with each passing 

day, the traditional traffic information becomes useless in the ATMS (advanced traffic 

management system). In order to achieve the aim of traffic control, the real time 

forecasts and estimates of the traffic condition in the future are desirable since the 

information can be used not only for ramp metering control but also for informing 

drivers the relevant information through the VMS (variable message sign) or HAR 

(highway advisory radio) to avoid the jammed traffic and save the travel time. 

Traditionally, researchers predict the O-D information ignoring the travel time which 

will produce erroneous results, especially when the travel time is long. In this thesis, 

we will investigate estimation of the O-D matrix with the travel time factor being 

taken into consideration in the dynamic system. 

 

Here we briefly state that the state-space model consists of the state equation, 

representing the transition of the state variables, and the observation equation, 

describing the relationship between the state variables and the present and time lagged 

observations. An adaptive Monte Carlo technique known as the Gibbs sampler will be 
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used to estimate the unknown transition matrix and more importantly, the state 

variables in the state equation of the state space model. The classical state-space 

model was as follows: 

11 ++ += ttt vFxx , called the state equation, 

ttt wxHy +′= , called the observation equation, 

where  and  are errors and if they process Gaussian distribution we called the 

model Gaussian state-space model. The Kalman filter algorithm is used to predict the 

stat variables since it gives the optimal predicted values when the model is Gaussian.  

To included the time factor, the model is modified as follows:  

tv tw

 : the state equation, 11 ++ += ttt vFxx

 : the observation equation with time lagged,  ∑
=

− +′=
d

i
titit wxHy

0

and we will investigate in more detail in the next sections. 

 

In the traditional Kalman filter, matrices F  and H  are assumed to be known 

in advance. But in fact we can only find the matrix H  from the network. And under 

the assumptions, which are outside the system, F  can easily cause the model 

behave not well enough when the traffic flow is unstable. Here we propose using the 

Gibbs sampler to solve this problem. In our model, we initialize matrix F  as an 

identity matrix and then use the Gibbs sampler to estimate F  from the full 

conditional distributions and the observations. The general procedure to estimate the 

state variable (the O-D flows) is as follows: First, use the speed data collected by 

sensors on the freeway to calculate the travel time. Second, we use the calculated 

travel times to determine whether the vehicles arrive in the specific time interval or 

not and this will help us to find out the incidence matrix H  exactly. Third, 
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conditional on the transition matrix F  obtained in the previous stage, the state 

variables are filtered by the Kalman filter. Fourth, after the filter is finished, we use 

the Gibbs sampler to estimate the matrix F  and then repeat these steps till the 

output converges. 
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2 Literature Review 

 

Estimation of dynamic O-D matrices from traffic counts in a transportation 

network has received increasing attention over decades. Traditionally, the O-D flow 

matrices are considered only for a certain time period of interest, and thus are 

estimated with the average traffic count data of that period. A comprehensive review 

of research along this line can be found in Nugyen (1984) and Cascetta and Nugyen 

(1988). Such methods are static in nature, relying on the prior O-D information. Vardi 

(1996) considered the problem of estimating the traffic intensity between all 

“source-destination pairs” of nodes of a communication network from repeated 

measurements by maximum likelihood estimation. Tebaldi and West (1998) addressed 

the network count inference problem from a Bayesian aspect. In their framework of 

inference, the previous information on the O-D matrices are required, which is 

unrealistic. Their approach is also static and not suitable for predicting future O-D 

matrices. Since the number of relations between traffic counts and O-D pairs is 

usually far less than the O-D pairs, difficulties arise and some additional assumptions  

are needed. 

 To extend the O-D estimation methods in a dynamic system environment, 

researchers (e.g., Nihan and Davis {1989} and Cremer and Keller {1987}) proposed 

the use of time series traffic counts to formulate the relationships and applied to small 

networks by the methods of least squares and maximum likelihood. Okutani (1987) 

proposed using the Kalman filtering procedures for forecasting the O-D flows in a 

dynamic system, but gave no description with respect to the dynamic traffic 

assignment proportions on which the model was based. All the results mentioned 

above were obtained by a system ignoring the travel time and therefore of limited 

applicability. Recently in order to fit the requirement of the ATIS (advanced traveler 
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information system) and ATMS (advanced transportation management system) of ITS 

(intelligent transportation system), researchers paid lots of effect on estimation and 

predicting of travel time. Dailey (1999) used the state-space model to describe the 

relationship between measurements from single loop detectors, Chen and Chien (2001) 

predicted the travel time using probe vehicles data, Coifman (2002) estimated the 

travel time by data obtained from dual loop detectors, and Petty et al. (1998) treated 

the cumulative upstream and downstream arrival vehicles as a stochastic process and 

estimated the probability density function of the travel time. 

 In this thesis, the state-space model will be combined with the concept of the 

travel time. Since it is relatively manageable in a highway system (the route choice 

issue is not involved), we will apply the proposed model to the data of National 

Highway No. 3. This thesis is organized as follows. The model specification and the 

algorithms used will be presented in Section 3. The empirical results are reported in 

Section 4. Conclusions and possible further enhancements are summarized in Section 

5. 
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3 Model Specifications and Methodology 

 

3.1  Problem Description and Notations 

Suppose that a section of the highway system is divided into N  segments so that 

each segment has only a pair of on- and off-ramps. Therefore, including the beginning 

and the ending segments, there are 1+N  nodes, N  links and N  origins and 

destinations, where the  origin and the thi thi )1( −  destination are the same ramp in 

the highway for 1,,2 −= Ni . The notations used in the model are listed as 

follows: 

tiO , : the number of vehicles starting from the  origin at time interval thi t  for 

Ni ,,1= ; 

tjD , : the number of vehicles exiting the destination at time interval thj t  for 

Nj ,,1= ; 

tijT , : the number of vehicles entering the highway from  origin to  destination 

at time interval 

thi thj

t  for Nji ≤≤≤1 . 

 

The ’s and ’s can be easily obtained from the detectors fitted in the 

highway system, ’s are the unobserved variables of fundamental importance for 

the transportation planning and management purpose. The problem to be solved is to 

use the time series of link traffic flow { } and { } to estimate the time-varying 

O-D flows { }. The state-space model is a natural alternative to specify the 

relationship between the variables. The observations { } and { } will be 

stacked up to form an observation vector, i.e., 

iO jD

ijT

tiO , tjD ,

tijT ,

tiO , tjD ,
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),,,,,,( ,,2,1,,2,1 ′= tNtttNttt DDDOOOy , 

),,,,,,,,,( ,,,1,1,1,2,23,22,1,12,11 ′= −−− tNNtNNtNNtNtttNttt TTTTTTTTTx  

),,,( ,,2,1 ′= tptt xxx , where 2)1( += NNp . 

 Observe that , and that  if the travel time could be 

ignored. Therefore, the basic model consists of a state equation indicating the 

transition of the state vector, 

∑
=

=
N

ij
tijti TO ,, ∑

=

=
N

ji
tijtj TD ,,

 , ttt vFxx += −1

and an observation equation indicating the relationship between  and , tx ty

 , where ttt wxHy +′= H  is a qp×  incidence matrix with Nq 2= . 

 

3.2  The State-Space Model with Known Transition Matrix 

 

3.2.1 State-Space Model 

Let  denote a  vector of variables observed at time ty 1×q t ,  can be 

described in terms of an unobserved 

ty

1×p  vector  called the state vector. The 

state-space model is given by the following system of equations: 

tx

ttt vFxx += −1 ,  nt ,,2,1=          (  )1

ttt wxHy +′= ,  nt ,,2,1= .        ( )2  

The development of the system over time is determined by s according to 

trices 

tx ’

equation ( )1 , but because x ’s are not observed the analysis must be based on the 

observations y ’s. The ma

t

t F  and H ′  are matrices of parameters of 
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dimensions pp  and pq × , pective Equation × res ly. ( )1  is known as the s

equation and equation (2 observation equation. Th itial state variable 0x  is 

assumed to be )( 0N p

tate 

the 

0P

)  e in

,µ  and independent of nvv ,...,1  and nww ,...,1 , where 

0µ  and 0P  a  be known. The 1re assumed to ×p  vectors tv ’s and the 1×  

tors w s are independent white noises su t )(

q

vec t ’ ch tha 0=tvE , )( twE

Σ( tvCov , Γ=)( twCov , and 0),(

0= , 

=) =tt wvCov , for nt ,,2,1= , where 

and  are  and atrices, respectively.

Typically w  v  

are matrices

Σ  

Γ pp × q  pos ariance m  

assume ( )Σ,0~
..

N  and ( )Γ,0~
...

q

dii

t Nw , tv ’s and tw ’s

q × itive definite cov

e 
.

p

dii

t

 independent, and the  Σ  and Γ  a o ive defi e. 

Equation has the structure of the linea odel and equation 

represents a vector autoregressive model, where the Markovian nature accounts for 

many of the properties of the state-space model. And the assumptions enable 

updating of estimates via the Kalman filter easily. 

re known and p sit nit

( )2  r regression m

 

3.2.2 Kalman Filter 

1 tt xxy   be the forecast of based on the 

info ion up to time 

( )1  

Let ,|(ˆ 11|1 ttt yxEx ++ = ),,,, 1+tx  

rmat t  and abbreviate as t

−ttxx

ecasts  is r e 

foll

|11|1|1

he form )|( 1 tt yxE + . The Kalman filter 

calculates these forecasts recursively, generating 10|1 ,x̂  in succession. 

The mean squared error (MSE) of the for epresented by th

|1|2 ˆ,,ˆ

ttx |1ˆ +

owing pp×  matrix : 

  [( 1 ])ˆ)(ˆ ′−−+t xxEP ≡ ++++ ttttttt xx             ( )3  
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From ( )1  we have  

 xFyxFEyFxEy |1 ˆ)|()|()| tttttttttt xEx |1 (ˆ ≡==+ . 

Substitu ng it into equation , we have 

,          

where 

≡+

ti ( )3

   Σ+′=+ FFPP tttt ||1   

( )4  

]))|())(|([(| ′−−≡ tttttttt yxExyxExEP  denotes the MSE of updating of 

en  becomes available. Next consider f

tty

tx  wh orecasting the value of ty . Let 

)|( 11 −− ≡ tt xyE . From equation 

 ty

ˆ | ( )2 , 

1 |)|( − 1|11| ˆ)(ˆ −−−
′=′=tt xEHxy= tttttt xHxEy .      

From equation the MSE of this forecast is 

 ( )5  

( )3  

  =′−− −−− yyyyEM tttttttt 1|1|1| ])ˆ)(ˆ[( Γ+′≡ − HPH tt 1| .         

After predicting the value of , we can update the current value of on the basis 

 pr

ng tion: 

 
−

−
−− −×′−−×

( )6  

ty tx  

of the observation of ty  to oduce )|(ˆˆ | tttt yxEx = . This can be evaluated using 

the formula for updati  a linear projec

 
1|1|1|| −−−

)ˆ(]})ˆ)(ˆ[({

]})ˆ)(ˆ[({ˆˆ

1|
1

1|1|

′−−+= tttttttttt yyxxExx

ttttttttt yyyyyyE
      

then we have 

1|
1

1|1|1| −
−
−−−

( )7  

  ˆ | )ˆ(ˆ ′−+ ttttttttt xHyHMPx .           =ttx ( )8  

From | ))())((( ′−−≡ tttt xExxExE  we have ttP

  1|
1

1|1|1|| −
−
−−− ′−= tttttttttt PHHMPPP .          ( )9  
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Therefore, 1+  when ty  comes in can be expressed  the recursion for predicting as tx

follows: 

  )ˆ(ˆˆ 1|
1

1|1|||1 −
−
−−+ ′−+= ttttttttttt xHyHMFPxFx  

)ˆ(ˆ 1|| −
′−+≡ tttttt xHyKxF ,          

where is the Kalman gain matrix

p filter is summarized below. 

tep 1 Initialize by giving the initial values 

( )10  

tK  . 

The com lete procedure of the Kalman 

 

S 1000 0)(ˆ ×=== pxEx µ , 

value of  (00 )( PxCov =  and let the predicted 1x 0|10|1ˆ µ=x ) with no 

observations be 0µF  , and therefore has MSE 0|1P uation (4

Predict the state v ble tx  with information up to time 1−

  from eq . 

Step 2 aria

)

t  

11|1)|( −− =≡ tttt FyxE −tµµ , 

Σ+′== −− t|1−− FFPPyxCov ttttt 11|1)|( . 

Step 3 Predict 

−−−

ty  

  )|( 1|1|1 ˆ ′== ttttt Hyt yyE µ , 

Γ+′== −−− HPHMyyCov  tt|tttt 11|1)|( . 

arameters 

−
−
−

Step 4 Update the p

)ˆ( 1|
1

1| −  1|1|| −− +=≡ ttttttt P ttttt yyHMµµµ , 

  1|
1

1|1|1|| −
−
−−− ′−=≡ ttttttttttt PHHMPPPP , 

  1+= tt . 

Step 6 If nt = , then stop. 
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Step 7 Go to step 2. 

 

 

3.3 Gibbs sampler 

The Gibbs sampler is a statistical method for generating random variables from a 

join itional distributions without deriving the actual density. 

Giv

t distribution via cond

en an arbitrary starting values ),,,( )0()0(
2

)0(
1 kZZZ , we start the sampling as 

follows: 

  ( ) ( ) ( )[ ( ) ]0
3211 k  ,  

  

001 ,,,|~ ZZZZZ

( ) ( ) ( ) ( )[ ]00
3

0
12

1
2 ,,,|~ kZZZZZ  , 

      

( ) ( ) ( ) ( )[ ]0
1

0
2

0
1

1 ,,,|~ −Kkk zZZZZ   . 

Then we have a new set of values ( ) ( ) ( )( )11
2

1
1 ,,, kZZZ  to continue the iteration. 

After m such iterations we have ( ) ( ) ( )( )m
k

mm ZZZ ,,, 21 . The paper of Geman and 

Geman showed that the following results hold under mild conditions. 

1.

( )1984  

( ) ( ) ( )( ) ( )mmm ( )
d

m

∞→m

kk ZZZZZZ ,,,,,, 2121 →  and so that for each i ZZ →  as 

For any Borel measurable function 

i , i

. 

2. ( )ZZZ ,,,  wh se n T  of k21 o  expectatio

exists,  

  ( ) ( ) ( )( ) ( )( )k

sam1 ..

j

j
k

jj

m
ZZZTEZZZT

m
,,,,,,lim 21

1
21 →∑

=∞→
. 
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3.4 State-Space Model with unknown Transition matrix 

From state-space model, equation 

 

3.4.1 Estimation of F by Gibbs Sampler 

( )1  can be written as 

,tNvFxxv ptttt ,2,1),0(~,1 =Σ−= − n . 

The joint distribution of ),,,( 21 ′= nvvvV  is 

  )
2
1exp(||),|(

1

12 ∑
=

−− Σ′−Σ∝Σ
n

i
ii

n vvFVp .       

Denote 

( )11  

)(FS  to be the  symmetric matrix pp× ( ) ( ){ }jiij FFSFS ,=  with 

11 =−−=⋅= ∑ ∑ pjixFxxFxvvFFS
n

u

n

u
ujujuiuiujuijiij ,,2,1,,))((),(

1 1= =
−− ,  

where  denote the  row of 

( )12  

iF thi F . 

Then the exponent in can be expressed as  ( )11  

))(
2
1exp( 1−Σ− trS    F          

From the transition equation of 

( )13  

( )1  we have ntvFxx ttt ,,2,1,1 =′+′′=′ −  

Let ⎥
⎥

⎢
⎢

⎥⎦

⎤

⎢⎣

⎡

′

′

=⎥
⎥

⎢
⎢=′⎥

⎥
⎢
⎢=′ −nn XX '

1, , t e

⎥⎦

⎤

⎢⎣

⎡

′

′

⎥⎦

⎤

⎢⎣

⎡

′

′

− nnn v

v
V

x

x

x

x 1

1

01

, hen the transition equation has th  

 of a linear model: form

VFXX nn ′+′′=′ −1             

XFFS

( )14  

and equation ( )12  can be expressed as 

)() FXXFX(),( 1)(1)( jnjnininjiij ′′−′′′′− ,     ( ) ′= −− 15
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where )(inX ′  tes the thi  column of nX ′ . deno  

Let denote the least square estim

n 16 be  

1)( nininjiij FXXFF ′′−′= −−  

        

Consequently, ,        

wh

11 FXXF njnninij ′−′′ −−  

ters 

)(1
1

11 )(ˆ
innnni XXXXF ′′=′ −

−
−−  ator of ′ , so that iF

equatio ) can further  rewritten as (

)ˆ()ˆ()ˆ() 11)( jjniijnjn FFXXFFFXXS ′−′′′−′+′′−′′′ −−

        

ˆ(),( 1

 ( )16  

)ˆ()ˆ()( 11 FFXXFFAFS nn ′−′′′′−′+= −− ( )17  

ere }{ ijaA =  is a pp×  matrix with 

( ) ( ) )ˆ()ˆ( XXa −=

 For the prior distribution of the parame ),( ΣF , we shall first assume that 

F  and are approximately independent so that Σ  

  )()(),( Σ⋅≈Σ pFpFp  

antconstFp ∝)(and it is appropriate to take F as locally uniform, i.e. . Then the 

rior distribution of joint poste ),( ΣF  is  

  )](
2

exp[||),|,( )1(
1

2 trXXFp pn
nn

++−

− −Σ∝Σ  ( )18  

and by changing of variable w

1 11

FS−Σ ,   

e have 

)](
2
1exp[||),|,(Fp          ( ) 1)1(1

1
1 2

1

FStrXX pn
nn

−−−−
−

− Σ−Σ∝Σ ,  

 marginal posterior distribution of 

19  

Fis the Wishart distribution. Then the  has the 

lowing form fol

  2|)(|),|( 1 FSXXFp nn −
′∝ ,           ( )20  

from equation ( )

n−

 we have 15

  2|)ˆ()ˆ
11

n

FFXXF nn
−

−−
′−′′′′−    ( )  (|),|( 1 FAXXFp nn −

′+∝ 21

is the kernel of the tmatric−  distribution.  

 13



 

Theorem 1. [Johnson and Kotz (1972)]  

T  be the random  matrix, qp× XUT 1)( 2
1 −′= , Let 

Xwhere ),(~ qmPWU p − , 1−+> qpm , independently of , the distribution 

of the tran ose of each row of , xsp X i′ , is de Nnoted by x qi ),0(~ Q′ ; P  and 

itive definite. The jo  d ty functio

Q  

are pos int n of ensi T  is 

 mqm PTQPQqpmkTp 2
1

2
1

||||)],,([)( (1− ′+×=

These results were obtained by Dickey (1967) 

p T 2
1

|| ) −−  

istribution of 

 

FAccording to the above theorem, the marginal d  with corresponding 

eters,  and , param qp = nm = 12 −> pn , can be written as 

 222 |)ˆ(|||||)( 111
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p
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Sampling sch
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−
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tep 1 

 the conditional dist

),(~,,| 11 ΣΣ −− tptt FxNxFx  S

Step 2 )|~,,| ,( 11 −−
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Generate ),(~ 11 −− ′− nnp XXpnWW   1 

 2 Generate ),,,( 21 ′= pzzzZ  and 

 3 

),0(~ ANz pi  

Let ZWF 1])[( 2
1

−′=′  

 

3.4.2 G u pa ssian state s ace without considering travel time 

In Section 3.2.2 we use Kalman filter to update the parameter vector after 

obs transition erving the new observation ty . In a traditional state-space model, the 
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matrix F  is known before we start to filter the stat vector by Kalman filter. But in 

reality F  is usually unknown, one way to solve this problem is to combine Gibbs 

sampler with Kalman filter. The complete algorithm is summarized as follows: 

 

Algorithm 1 (Gaussian state space model without considering travel time) 

Step 1 ation)  (Initializ

1. given the initial value of ppIF ×=)0(  

2. Given Σ  and Γ   

3. Given 00 , Pµ  to generate )(
0
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4. 0=g  
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an f  filter (here we update 
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3. Use the Kalm ilter to )( g
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ilter the part of predicting of  we use 
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4. 

tP

3.1 In Step 3 of the Kalman f ty

1|ˆˆ ′= xHy  to predict y  t
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1

g
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nX −
′  

 −−  

(
1

)( )( g
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4. te ~,),,,( )(
21

g
p

iid

kp ANzzzzZ ′′′′=  Genera 0( ),

ZwF g 1)( ))(( 2
1 −′=′  5. Generate 

6. 1+= gg mg <  , if go to step2 

Step 4 (Prediction) 

Then we have . At last, we will have the estimator },,{ )()1( mXX

∑=
m

XX (1ˆ ∑
−=

′=′
m

kmg

gF
k

F )(1ˆ  )( km >  
−= kmg

g

k
)  and 

After having , the predict of the state vector can be obtained according to 

with 

F̂ ( )10  

F  replaced by . 

3.4.3 Gaussian state space model with considering travel time 

In modeling the interrelation between O-D flow matrix and link flow in a freeway 

 time from one place to the destination. In 

this O-D 

estim

F̂

 

network, it is unrealistic to ignore the travel

 thesis, we propose a more adequate state-space model for dynamic 

ation by taking into account the travel time required by each trip. The incident 

matrix in the observation equation H ′  is a matrix with elements ones and zeros 

t

contribute to affect the observation at the same 

depending on whether or not the elements of  the path flow will or will not x

tiy  t , i.e. the travel time is ignored. 

By considering the travel time required form on place to another, tiy , the link flow 

obtained at time interval t  is accum ated by the path flows possibly occurred from 

several time intervals before. Therefore, the interrelationship between ty  and tx can 

be formulated by the following model: 

ul
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 ttt vFxx += −1 , 

 tndwxHy tit

d

it ,, <+′= −∑ n
i

,,2,1
0

=
=

.      

here ,( 21 ′= tpttt xxxx  is the state vector at time 

( )22  

w , ), t , nt ,,2,1=  and 

enotes the number of vehicles traveled at time 

tjx  

pj ,2,1= , t  of O-D pair j , ,

erved vector at time i

d

the obs nterval t , ,,,( 21 )′= tqy , and 

e

ttt yyy ti  is the 

counts of vehicles entering or exiting the thi  nod , qi ,,2,1

y

= . 

),,1,0( diH =′  is the pq ×  O-D pair  zero-one as its 

elements, and HH
d

′=′∑  in the equation 

i  incident matrices with

=0i
i ( )2  of the standard state-space model. 

The number is

MSE of the predictor 1 tt yxE + , 

1|1

d   the max  number of time periods needed for a path flow 

contributing the corresponding link flow. 

 We will use the same notation as in the previous derivation ttx |1ˆ +  representing 

the forecast of 1+tx  based on ty . The 

imum

)|(ˆ |1ttx + =

])ˆ)(ˆ[( |11|1 ′−−= xxxxEP  can be expressed as Σ+′ . 

The next stage of predicting the value of y : ˆ xyEy

+++++ tttttttt

211| mtttttt xx −−−−

=+ FFPP tttt ||1
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equation  we have 
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itt xyE −
=0
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i
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i
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1|111|01
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d
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d

xxEHxyEy )|()|(ˆ ( )23  

)|( 111|1 −−−− = tttt xxEµ . The MSE of the predictor is as follows: 1|ˆ −tty  

])()ˆ()][()ˆ([ 1|1111|01|1111|01| ′−′+−′−′+−′= −−−−−−−−− tttttttttttttt xHxxHxHxxHM µµ  

′′′+ Γ+′+′+′= )( PHHPFHHPH   (24−−−−−−− 11|1111|1001|1101|0 )( HFHPH tttttttt )

This can be evaluated using the formula for updating a linear projection: 
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−
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modify the original Kalman filter as

lues 

HP    ( )27  

so we can  bellow: 

 

Step 1 Initialize the algorithm by giving the initial va 000 )(ˆ µ== xEx , 
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Step 4 update the param

 )ˆ()( 1|
1

1|1101|1|| −
−
−−−− −++==t tttttttttttt yyMHFPHPµµµ  (equation ) ( )26
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4 Numerical example 

 

The data we analyze are collected from Tuchen (土城) to Jhulin (竹林) of 

northbound of National Highway No.3, a section of 60 kilometer-long, on Feb. 12, 

200

 

4.1  Data Collection

2 from 6:00 AM to 13:00 PM to study the traffic of morning peak hour and its 

effect. There are eight intersections, each with detectors on both the mainline and the 

on-and off-ramps recording the speed of vehicles, counts, number of vehicles that 

pass over the detector, and occupancy, the fraction of time that some vehicle is 

detected. See Figure 1 for the map of the Northern Area Network and Facilities 

Layout of National Highway. 
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Figure 1: Part of the Northern Area Network of National Highway 

 

Figure 2 shows the schematic map of the study area, the vertical lines indicate 

the sensor location (ramp location and mainstream location). And the black and gray 

arrows are the on-ramps (origin) and the off-ramps (destination), respectively, in this 

area. 

96    90       79       68       63     54      42      37 
NorthSouth 

 

Figure 2: Dynamic system of data source. 

 

 Therefore, as shown in Figure 2, there are seven subsections separated by the 

milepost 90 (Jhulin,竹林), 79 (Guansi,關西), 68 (Longtan,龍潭), 63 (Dasi,大溪), 54 
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(Yingge,鶯歌), 42 (Tuchen,土城). To make the study area a closed system, we add the 

vehicles entering the freeway at 96 kilometer location as  and the vehicles exiting 

the freeway at 37 kilometer as . The detectors are of double-loop type with 

twenty-second time resolution, but the data we have are aggregated to five minute 

averages by Taiwan Area National Freeway Bureau (TANFB). The counts obtained 

from an on-ramp represents the number of vehicles start from that location, denoted 

by , the counts obtained from an off-ramp is the number of vehicles go to that 

location, denoted by . ’s and ’s are the observations we will use. 

1O

7D

iO

jD iO jD

 Table 1 is the data types we get from the mainstream and we choose the speed 

data to calculate the travel time and choose the flow at 37 kilometer as the 

downstream flow and the flow at 96 kilometer as the upstream flow to balance the 

system. Table 2 is the data types we get from the ramps and we choose the flow data 

as our observed  ji DO ,

Table 1: The data recorded by the detectors on the mainstream. 

Date Location Lane Time occupancy interval Speed flow 
212 2N37 4 00:00 4 201 89 144 
212 2N37 4 00:05 3 263 89 54 
212 2N37 4 00:10 5 233 87 129 
212 2N37 4 00:15 4 231 87 126 
212 2N37 4 00:20 4 226 91 131 

 

Table 2: The data recorded by the detectors at ramps. 

Date Location Time Lane Interval Speed Flow 
212 IC28-2 00:00 1 402 68 19 
212 IC28-2 00:05 1 426 72 6 
212 IC28-2 00:10 1 433 67 13 
212 IC28-2 00:15 1 308 75 21 
212 IC28-2 00:20 1 526 77 13 
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Table 3: The relationship of  and  ijT ji DO ,

O D D1 D2 D3 D4 D5 D6 D7

O1 T11 T12 T13 T14 T15 T16 T17

O2 0 T22 T23 T24 T25 T26 T27

O3 0 0 T33 T34 T35 T36 T37

O4 0 0 0 T44 T45 T46 T47

O5 0 0 0 0 T55 T56 T57

O6 0 0 0 0 0 T66 T67

O7 0 0 0 0 0 0 T77

 

4.2  Data Analysis 

We denote the flow from the  origin and to the destination as  and , 

respectively, for  and  as the flow between the  Origin and 

the  destination. Since it is northbound data, the O-D flow matrix is upper 

triangular, table 3 describes the complete relationship between these notations. And 

here we get the state variable  and observed variable  as follows: 

thi thj iO jD

7,,2,1, =ji ijT thi

thj

tx ty

 ),D,,D,D,O,,O (Oy ttttttt ′= ,7,2,1,7,2,1

 ),77,67,66,27,23,22,17,12,11 ′= tttttttttt ,T,T,T,,T,,T,T,T,,T(T x  

And we deal with the speed data to evaluate the travel time in each section of freeway. 

Suppose we measured the speed at each sensor  and the distance 

between each sensor  then we have the average travel time

ksss ,, 21

nlll ,,, 21 ∑
=

=
k

i i

i

s
l

1
. Then 
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we have the average travel time at each section of freeway, so that we can use these 

information to divide the matrix H  into ),,2,1(},{ dkhH k
ijk ==  with 

elements , where d is the maximum 

number of time periods that  still affect  and . And thus we have all the 

data to start our computation. 

⎩
⎨
⎧

=
otherwise  0,

k  in time Dor  Oaffect  T if  1,
h jiijk

ij

ijT iO jD

 

4.3  Flow Prediction 

After using the specified model to predict the O-D flow, we denote  

and  the prediction of traditional and the revised model, respectively. Since the 

O-D flow matrix is unobservable, we can check the appropriateness only through 

comparing the predicted  with the observation.  

simpleX̂

updatedX̂

ji DO ,

Let  ),D,,D,D,O,,O (Oy ttttttt ′= ,7,2,1,7,2,1 , then 

simpletsimplet xHy ,, ′=  for nt ,,2,1= ,  

∑
=

−
′=

d

i
updateditiupdatedt xHy

0
,,  for nt ,,2,1= , 

where  and  are the simpletx , updatedtx ,
tht column of  and . simpleX̂ updatedX̂

In the following there are fourteen figures, each of which describes the patterns 

of the two predicted flows of both of the models. As we can see that the ups and 

downs of the observations are in general followed pretty well by both predicted series 

and one series performs better than the other for different cases, but neither of them is 

better for all the nodes. For example, in Figure 3 for the first origin, the patterns of the 

predicted series are similar as that of the observations, although the simple model 

gives closer predicted values. But for the other origins, the more sophisticated model 
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outperforms the simple one in both the predicted values and the patterns. As to 

destination nodes, both models show more variation, in some figures the traditional 

model even shows better patterns like Figure 14 and Figure 16. Note that in the Figure 

16, there has an outlier in the observation exceeding 800 vehicles in a five minutes 

interval, the traditional model faithfully predicts the outlier value and the revised 

model shows the similar pattern but not the similar value of observation pattern at the 

price of underestimate at all other time intervals. So it seems that the revised model 

performs better on the average and the simple model performs better when the outlier 

happens. 
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Figure 3: Observed and predicted flow entering the  origin. th1
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Figure 4: Observed and predicted flow entering the  origin. th2
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Figure 5: Observed and predicted flow entering the  origin. th3
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Figure 6: Observed and predicted flow entering the  origin. th4
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Figure 7: Observed and predicted flow entering the  origin. th5
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Figure 8: Observed and predicted flow entering the  origin. th6
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Figure 9: Observed and predicted flow entering the  origin. th7
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Figure 10: Observed and predicted flow exiting the  destination. th1
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Figure 11: Observed and predicted flow exiting the  destination. th2
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Figure 12: Observed and predicted flow exiting the  destination. th3
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Figure 13: Observed and predicted flow exiting the  destination. th4
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Figure 14: Observed and predicted flow exiting the  destination. th5
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Figure 15: Observed and predicted flow exiting the  destination. th6
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Figure 16: Observed and predicted flow exiting the  destination. th7

 

Let ( )n
ij

t
ijijijij TTTTT ,,,, 21=  be the flow entering the  origin and 

exiting  destination during each time period. We will compare the two 

patterns

thi

thj

),,( ,
1
,,

n
simpleijsimpleijsimpleij TTT =  and ),,( ,

1
,,

n
updatedijupdatedijupdatedij TTT =  

which are the same row of the  and  . There are totally twenty-eight 

O-D pairs.  Here we choose some more interesting figures meaningful to discuss. 

simpleX̂ updatedX̂

Most figures show that both patterns behave similarly as in Figures 17 and 18. 

But when the flows are low, less than 20, say, the simple method behaves badly as to 

give large negative numbers, and the updated method seldom to give unreasonable 

results of this kind, see Figure 19 and 20. In the first  and the last , Figure 21 

and Figure 22 show the large difference between the two models. The simple model 

gives big spikes without any signs in the data, the only reason we can give is that the 

1O 7D
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nodes for these two figures are the boundaries of the study area and all the vehicles 

entering or exiting the system were assigned to  or , respectively.  1O 7D

 Comparing from the figures of  and  we find that most figures have 

similar pattern for these three series. But from the figures of , the simple pattern 

have too many negative points. Since the flow is always positive, we suggest that the 

model considering the travel time is better than the simple model. 

ji DO , ijT

ijT
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Figure 17: Predicted flow between the upstream and Gaunsi. 
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Figure 18: Predicted flow between the upstream and Dasi. 
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Figure 19: Predicted flow between Jhulin and Gaunsi. 
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Figure 20: Predicted flow between Jhulin and Dasi destination. 
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Figure 21: Predicted flow between the upstream and downsteram. 
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Figure 22: Predicted flow between Gaunsi and downstream. 
 
 
5 Conclusion 

 
In this thesis we propose to incorporate the effect of travel time into the Gaussian 

state space model and developed an algorithm to estimate the unknown transition 
matrix and forecast the O-D flow matrix simultaneously. By doing so the performance 
of the model improved in different aspects. In the most figures of flow prediction, we 
find that the trends of flows have much different behavior in the different time 
interval. This means that we should assume that the matrix  varies with time. In 
other words, when using this model to estimator O-D flow, the total studying time 
period should not be too long in order not to let the pattern of O-D flow be 
unreasonable. In the future work, we could extend matrix  to vary with time or 
depend on some exogenous factors to improve the ability in describing the reality of 
the model. Non-Gaussian distribution is also an alternative for the distribution of the 
error terms. 
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