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ABSTRACT

Estimation of dynamic estimation of the O-D flow is the kernel of the traffic
management for a long time. Through the data-collected by the detectors in the
network, we can estimate and predict the traffic condition about the network.
According to the prediction results we can simulate the traffic condition and draft the
associated appropriate traffic control and management to keep the free traffic. In this
thesis, using the state-space model with travel time, estimation of the O-D flow of the
freeway is considered. Using the Kalman filter and Gibbs sampler to complete the
revised model, we compare the results with these from the traditional model without

considering the travel time.
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1 Introduction

The origin-destination (O-D) flow plays an important role of most traffic
operational analyses. The O-D flow has been used on the traffic assignment and the
traffic flow simulation. Traditionally the O-D data collection is based mainly on field
surveys, which not only costs a lot of budget, labor, and time, but also causes missing
values easily when the traffic is heavy. Traffic engineers have been looking for
statistical methods to estimate the O-D flow from less expensive data. Recent
researchers estimate the O-D flow using Gaussian state-space model with an unknown
transition matrix and Kalman filter but without considering the time factor. As the
development of ITS (intelligent transportation system) changing with each passing
day, the traditional traffic information becomes useless in the ATMS (advanced traffic
management system). In order-to.achieve the aim-of traffic control, the real time
forecasts and estimates of the traffic.condition, in the future are desirable since the
information can be used not only “for-ramp.metering control but also for informing
drivers the relevant information through the VMS (variable message sign) or HAR
(highway advisory radio) to avoid the jammed traffic and save the travel time.
Traditionally, researchers predict the O-D information ignoring the travel time which
will produce erroneous results, especially when the travel time is long. In this thesis,
we will investigate estimation of the O-D matrix with the travel time factor being

taken into consideration in the dynamic system.

Here we briefly state that the state-space model consists of the state equation,
representing the transition of the state variables, and the observation equation,
describing the relationship between the state variables and the present and time lagged

observations. An adaptive Monte Carlo technique known as the Gibbs sampler will be
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used to estimate the unknown transition matrix and more importantly, the state
variables in the state equation of the state space model. The classical state-space

model was as follows:

X, = FX, +V,,, called the state equation,
y, = HX%, +W,, called the observation equation,

where V, and W, are errors and if they process Gaussian distribution we called the

model Gaussian state-space model. The Kalman filter algorithm is used to predict the
stat variables since it gives the optimal predicted values when the model is Gaussian.

To included the time factor, the model is modified as follows:

X, = FX +V,_,: the state equation,

d
y, = > H/X_, + W, : the observation equation-with time lagged,

i=0

and we will investigate in more:detail in the next sections.

In the traditional Kalman filter, matrices F and H are assumed to be known
in advance. But in fact we can only find the matrix H from the network. And under
the assumptions, which are outside the system, F can easily cause the model
behave not well enough when the traffic flow is unstable. Here we propose using the
Gibbs sampler to solve this problem. In our model, we initialize matrix F as an
identity matrix and then use the Gibbs sampler to estimate F from the full
conditional distributions and the observations. The general procedure to estimate the
state variable (the O-D flows) is as follows: First, use the speed data collected by
sensors on the freeway to calculate the travel time. Second, we use the calculated
travel times to determine whether the vehicles arrive in the specific time interval or

not and this will help us to find out the incidence matrix H exactly. Third,



conditional on the transition matrix F obtained in the previous stage, the state
variables are filtered by the Kalman filter. Fourth, after the filter is finished, we use
the Gibbs sampler to estimate the matrix F and then repeat these steps till the

output converges.



2 Literature Review

Estimation of dynamic O-D matrices from traffic counts in a transportation
network has received increasing attention over decades. Traditionally, the O-D flow
matrices are considered only for a certain time period of interest, and thus are
estimated with the average traffic count data of that period. A comprehensive review
of research along this line can be found in Nugyen (1984) and Cascetta and Nugyen
(1988). Such methods are static in nature, relying on the prior O-D information. Vardi
(1996) considered the problem of estimating the traffic intensity between all
“source-destination pairs” of nodes of a communication network from repeated
measurements by maximum likelihood estimation. Tebaldi and West (1998) addressed
the network count inference problem from a Bayesian aspect. In their framework of
inference, the previous information on the-O-D matrices are required, which is
unrealistic. Their approach is also static-and-not suitable for predicting future O-D
matrices. Since the number of relations between traffic counts and O-D pairs is
usually far less than the O-D pairs, difficulties arise and some additional assumptions
are needed.

To extend the O-D estimation methods in a dynamic system environment,
researchers (e.g., Nihan and Davis {1989} and Cremer and Keller {1987}) proposed
the use of time series traffic counts to formulate the relationships and applied to small
networks by the methods of least squares and maximum likelihood. Okutani (1987)
proposed using the Kalman filtering procedures for forecasting the O-D flows in a
dynamic system, but gave no description with respect to the dynamic traffic
assignment proportions on which the model was based. All the results mentioned
above were obtained by a system ignoring the travel time and therefore of limited

applicability. Recently in order to fit the requirement of the ATIS (advanced traveler
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information system) and ATMS (advanced transportation management system) of ITS
(intelligent transportation system), researchers paid lots of effect on estimation and
predicting of travel time. Dailey (1999) used the state-space model to describe the
relationship between measurements from single loop detectors, Chen and Chien (2001)
predicted the travel time using probe vehicles data, Coifman (2002) estimated the
travel time by data obtained from dual loop detectors, and Petty et al. (1998) treated
the cumulative upstream and downstream arrival vehicles as a stochastic process and
estimated the probability density function of the travel time.

In this thesis, the state-space model will be combined with the concept of the
travel time. Since it is relatively manageable in a highway system (the route choice
issue is not involved), we will apply the proposed model to the data of National
Highway No. 3. This thesis is organized as follows. The model specification and the
algorithms used will be presented.in Section.3. The-empirical results are reported in
Section 4. Conclusions and possible further-enhancements are summarized in Section

5.



3 Model Specifications and Methodology

3.1 Problem Description and Notations
Suppose that a section of the highway system is divided into N segments so that
each segment has only a pair of on- and off-ramps. Therefore, including the beginning

and the ending segments, there are N +1 nodes, N links and N origins and
destinations, where the i" origin and the (i —1)" destination are the same ramp in

the highway for i=2,---,N —1. The notations used in the model are listed as

follows:

O, : the number of vehicles starting from the i" origin at time interval t for
it

Tij,t : the number of vehicles entering the-highway from i" origin to jth destination

attime interval t for 1<i< J<N.

The O;’s and D,’s can be easily obtained from the detectors fitted in the

highway system, Tij ’s are the unobserved variables of fundamental importance for
the transportation planning and management purpose. The problem to be solved is to

use the time series of link traffic flow {Oi,t} and { Dj,t} to estimate the time-varying

O-D flows {Tij,t}' The state-space model is a natural alternative to specify the

relationship between the variables. The observations {Oi’t} and {Djyt} will be

stacked up to form an observation vector, i.e.,

6
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ignored. Therefore, the basic model consists of a state equation indicating the

transition of the state vector,
X = FX 4V,
and an observation equation indicating the relationship between X and Y,,

y,=HX +w  where H isa pxq incidence matrix with q=2N.

3.2 The State-Space Model with-Known:Transition Matrix

3.2.1 State-Space Model

Let y, denote a ¢ x1 vector of variables observed at time t, Y, can be

described in terms of an unobserved P x1 vector X, called the state vector. The

state-space model is given by the following system of equations:

X =Fx_ +V,, t=12,---.n (1)

y, =HxX +W, t=12,-,n. (2)
The development of the system over time is determined by X, ’s according to
equation (1) but because X, ’s are not observed the analysis must be based on the

observations Y,’s. The matrices F and H' are matrices of parameters of



dimensions px p and Qx p, respectively. Equation (1) is known as the state
equation and equation (2) the observation equation. The initial state variable X, is

assumed tobe N_(x,,P,) andindependentof Vv,,...,v, and W,,...,W,, where

M, and P, are assumed to be known. The px1 vectors V,’sandthe gx1

vectors W, s are independent white noises such that E(v,) =0, E(w,)=0,
Cov(v,)=Z, Cov(w,)=I",and Cov(v,w,)=0,for t=12,---,n, where X

and I" are px p and gx( positive definite covariance matrices, respectively.

ii.d. ii.d.

Typically we assume V, ~ Np(O,E) and W, ~ Nq(O,F), V.’s and W,’s
are independent, and the matrices® 2 and L, are known and positive definite.
Equation (2) has the structure of the:linear.regression model and equation (1)
represents a vector autoregressive model, where the Markovian nature accounts for
many of the properties of the. state-space model. And the assumptions enable

updating of estimates via the Kalman filter easily.

3.2.2 Kalman Filter

Let X, =E(Xui| Yoo Yo X, X)) be the forecast of X, based on the

t+1

information up to time t and abbreviate as the form E(X_, | ¥,). The Kalman filter

A~

calculates these forecasts recursively, generating )A(ﬂo, )A(m, -+, X, Insuccession.

tt—1

The mean squared error (MSE) of the forecasts X is represented by the

t+1t

following px p matrix :

Pt+11t = E[(Xt+l - )2t+]Jt)(Xt+l - )’ztﬁut)l] (3)



From (1) we have
)zt-HJt = E(Xt+1 | yt) = E(FXt | yt) = FE(Xt | yt) = F)’ztn'
Substituting it into equation (3) we have

P, =FP

tt it

F'+X,

(4)

where P,

=E[(x, —E(X | ¥,))(X, —E(X, | ¥,))"] denotes the MSE of updating of
X, when Y, becomes available. Next consider forecasting the value of Y,. Let
Y1 =E(Y, %) . Fromequation (2),

Vor = E(Y, %) =HE(X |x,) =HX,,. (5)

From equation (3) the MSE of this forecast is

Mt|t—l = E[(yt - S\lt|t—l)(yt i 9’(]’(—1)'] =H R[t—lH +T.

(6)

After predicting the value of Y, , we can update the current value of X on the basis

of the observation of Y, to produce X, = E(Xt | y,) . This can be evaluated using

the formula for updating a linear projection:
),ztlt = )2t|t—l +{E[(Xt - )’itlt—l)(yt - yqt—l),]}
><{E[(yt - 9t|t—1)(yt - S\/t|t—1),]}_1 X (yt - 9t|t—l)
(7)

then we have

)’ztlt = )’ztlt—l +P HMt|7tl—1(yt —-H 5’Zt|t71) ' (8)

tit-1
From P, =E(X —E(X))(x, —E(x))" we have

P, =P, -P, HM HP, . (9)

it tjt-1 tit—1 tit—1

9



Therefore, the recursion for predicting X,,, when Y, comes in can be expressed as
follows:
)21+1lt = I:)’iut + FPt|t—1HMt|_t1—1(yt -H SZ1|t—1)

= F)’ztn + Kt(yt -H sztlt—l)’ (10)

where K, is the Kalman gain matrix.
The complete procedure of the Kalman filter is summarized below.
Step 1 Initialize by giving the initial values X, = E(X,) =2, =0,

Cov(X,) =P, and let the predicted value of X, (X, = f4,) with no

0

observations be Fz, ,and therefore has MSE P, from equation (4)

Step2  Predict the state variable "X, with information up to time t -1

E(Xt | yt—l) =My = Fi s,

Cov(x |y_,)=P,,=FP_ F'+Z.

t-1 t-1t—1

Step 3 Predict Y,

E(yt | yt_l) = yt|t_1 = H :ut|t—1'

Cov(y,|y,)=M,,=HPB H+T.

tit-1

Step4  Update the parameters
/ut = lutlt = Iut|t—l + Ptlt—lHMtItlfl(yt - S\/t|tfl) )

P=P =P —P HM HP

tt tt-1 tjt-1 tit-1 tit-1?
t=t+1.

Step6 If t=n, then stop.

10



Step7  Goto step 2.

3.3 Gibbs sampler
The Gibbs sampler is a statistical method for generating random variables from a

joint distribution via conditional distributions without deriving the actual density.
Given an arbitrary starting values (Z\”,Z”,---,Z(?), we start the sampling as
follows:

20 ~[2,129,29,,29]

k

Z;l) - [Zz |ZfO)’Z§O)""’Zl§O)] ,

20 ~[z,12, 203 2l

K-1

Then we have a new set of values (Zl(l),Zél),---,Zlfl)) to continue the iteration.

After m such iterations we have (Zl(m),Zém),---,Zlfm)). The paper of Geman and

Geman (1984) showed that the following results hold under mild conditions.

d
1.(z™,z\™.....2™)>(2,,Z,,---,Z,) andsothat foreach i, Z\™ —Z, as

M— 0.

2. For any Borel measurable function T of (Z,,Z,,---,Z,) whose expectation

21"
exists,
a.s.

lim 23T (20, 2, z0) S ET(Z

m—oo m j:l

02 Z))

11



3.4 State-Space Model with unknown Transition matrix

3.4.1 Estimation of F by Gibbs Sampler

From state-space model, equation (1) can be written as

V=X —-Fx,, v,~N(0,Z) t=12,--n.
The joint distribution of V = (1, " ’Vn), is

PIV | F. ) e 2 exp(= 3z ). a)

Denote S(F) tobethe px p .symmetric matrix S(F) {S (F F )} with

it
Sij(Fi’Fj)zévui'Vuj:é(xm FXul)(X j ul) i,j:]_,z’...’p’ (12)
where F. denote the i" row of F.

Then the exponent in (11) can be expressed as
exp(—%trS(F =) (13)

From the transition equation of (1) we have X' =X/ ,F'+V/, t=12,---,n

X| X v,
Let X! =|: |, X/, =|: [,V =|: |,thenthe transition equation has the
! ! !
Xn Xn—l Vn
form of a linear model:
X! =X F'+V' (14)

and equation (12) can be expressed as

S, (FLF)=(Xl, = X, EY(X.,, = XI,F)), (15)

12



where X'

i, denotesthe i columnof X.

Let Ifi'z(anan'fl)’lxnle;(i) denote the least square estimator of F', so that

equation (16) can further be rewritten as
Sij (F, Fj) = (Xrll(i) o XI:—lFi),(Xr:(j) B Xr:—le,) + (Fi,_ Fir)lxn—lxr:—l(Fj’_ FJ’)
(16)
Consequently, S(F)=A+(F'- If')'XMXr:,l(F'— F, (17)

where A={a,} isa px p matrix with

a; = (X5 = X F) (X = X, F)

For the prior distribution of the parameters (F,X), we shall first assume that
F and X are approximately independent so that
p(F.Z) = p(F)- pZ)
and it is appropriate to take F as locally uniform, i.e. p(F) oc constant. Then the
joint posterior distribution of (F,X)is
p(F,=| X, X, ) o TP exp[—%trZ‘ls(F)], (18)
and by changing of variable we have
1 -1 3(n-p-1) 1 1
P(FLZ™ X, X)) o 2277 expl= Stz S (F), (19)

is the Wishart distribution. Then the marginal posterior distribution of F has the

following form

p(F X, X,,) o S(F)[*, (20)
from equation (15) we have

P(F | X, X, o A+(F = F') X X, (F = F) [ (21)

is the kernel of the matric—t distribution.

13



Theorem 1. [Johnson and Kotz (1972)]

Let T betherandom pxq matrix, T =(U '%)‘1X :
where U ~W (P,m-q), m> p+q-—1, independently of X, the distribution
of the transpose of each row of X', X/, isdenoted by X/ ~N_(0,Q); P and Q

are positive definite. The joint density function of T is

p(T) =[k(m, p, )" x| Q" P[] Q+TPT [ "

These results were obtained by Dickey (1967)

According to the above theorem, the marginal distribution of F with corresponding

parameters, P =0 and M=nNg s N> 2pP=1; canbe written as

p(F") ol APV X, X FPTASCE - FX, XL F I
Sampling scheme: generate X, and:.F from the conditional distribution.
Step1 X |F, X, Z~N_(Fx,,X)

Step2 F'| X, , X ,,Z~p(F'| X, ,X, )

n-11
1 Generate W ~W (n—p, X X/ ,)

2 Generate Z =(2,,2,,-+,2,)" and z, ~ N (0, A)

3Let F'=[W?)]'Z

3.4.2 Gaussian state space without considering travel time

In Section 3.2.2 we use Kalman filter to update the parameter vector after
observing the new observation Y,. In a traditional state-space model, the transition

14



matrix F is known before we start to filter the stat vector by Kalman filter. But in
reality F is usually unknown, one way to solve this problem is to combine Gibbs

sampler with Kalman filter. The complete algorithm is summarized as follows:

Algorithm 1 (Gaussian state space model without considering travel time)
Step 1 (Initialization)

1. given the initial value of F® =1__

2. Given X and I"

3. Given x,,P, togenerate x* from N _(x,,P,)
4, g=0
Step 2 (Generate X, t=0,1,2,-:5;17)

1. Generate X from N (x,P)

2. Generate X'¥

(@), el (9) y (9)
wa from XopxEhF N (Fx

t-1"? t-1?

%)
3. Use the Kalman filter to filter x'® (here we update 4, and P)

3.1 In Step 3 of the Kalman filter the part of predicting of Yy, we use

¥, =HX,, topredict VY,

tit—1
4. Repeat2,3for t=2,3,---,n
Step 3 (Generate F''9)

(9) y 7(9)
1. Calculate X % X'

(@) _ f£a(0) (@ _ 1(g) 1@) = 1)\ y 1(9) 1(9) = 1(9)
2. Caleulate A" ={a,”}, a;" = (X = X/ TF") (X5 = X PF™)

=1(9) _ (@) y 1(9)\-1y 1(3) y 7(9)
where F"¢ = (X% X X0 X

3. Generate W~W_(X©X? n—p)

n-1"?

15



iid
4. Generate Z =(z,,2;,--,2,),z,~N_(0,A”)

5. Generate F'® =((w?))*Z
6. g=0+1,if g<m gotostep2
Step 4 (Prediction)

Then we have {X @ ,---, X ™} At last, we will have the estimator

X = % S X and ﬁ'_%i £ (m>k)

After having F , the predict of the state vector can be obtained according to (10)

N

with F replaced by F .

3.4.3 Gaussian state space model-with considering travel time

In modeling the interrelation between-O-D flow matrix and link flow in a freeway
network, it is unrealistic to ignore:the travel time from one place to the destination. In
this thesis, we propose a more adequate state-space model for dynamic O-D
estimation by taking into account the travel time required by each trip. The incident

matrix in the observation equation H' is a matrix with elements ones and zeros

depending on whether or not the elements of X, the path flow will or will not
contribute to affect the observation Yy, atthe same t, i.e. the travel time is ignored.

By considering the travel time required form on place to another, Y., the link flow
obtained at time interval t is accumulated by the path flows possibly occurred from
several time intervals before. Therefore, the interrelationship between Y, and X can

be formulated by the following model:

16



X =FX, +v,,

S HX, 4w, d<n, t=12,-n. (22)

i=0

where X, = (X, X, 1 X,)" isthe state vector at time t, t=12,---,n and X,
denotes the number of vehicles traveled at time t of O-D pair j, j=12,---,p,

the observed vector at time interval t, Y, =(Y,,Y,.**1Y,)  and Y, is the

counts of vehicles entering or exiting the i™ node, i= 12,---,q.

H/(1=0.---,d) is the gx p O-D pair incident matrices with zero-one as its
elements, and iHi' =H' in the equation (2) of the standard state-space model.
The number d is the maximum number.of time periods needed for a path flow

contributing the corresponding link flow.

We will use the same notation as in the previous derivation X representing

t+1t

the forecast of X, based on Y. The MSE. of the predictor X, =E(X,,|Y,).

t+1

P = E[(X.; = Xy ) (X, — Xq)'] can be expressed as P, =FPF'+X.
The next stage of predicting the value of y,: ¥, , = E(Y, | X 1, X_,,**, X_,) from

equation (18) we have E(y,|x )= io H/x_, andthen
Vi =E(V 1X,)= io H/E(X , [ %) =HiX, +Hip + i Hx, (23)
where the 2, , = E(X_, | X,) . The MSE of the predictor Y, , is as follows:
Mo =[HG (% = Ry0) + HI( = 2 DIH (= Xy0) + H (X = 20T
=HP, H,+HP, (H/F)+(H,F)P  H +HP  H +T (24)

This can be evaluated using the formula for updating a linear projection:

17



),zqt = )’itlt—l +{E[(Xt - )’itlt—l)(yt - yqt—l)']}
X{E[(yt - 9t|t—1)(yt - S\/t|t—1)’]}_1 X (yt - yqt—l)

then we have
)21|t = )2t|t—l + (Pt|t—lHO + FPt—lHl)Mﬂ_t];l(yt - yt|t—l) (26)
and from P, = E(X — E(X))(X, —E(x))" we have

Ptlt = Ptlt—l - (P

tit-1

H, +FP_H,)M_ (P

t-1' "1 tit—1

|t—lHO + FPt—lHl)’ (27)

so we can modify the original Kalman filter as bellow:

Step 1 Initialize the algorithm by giving the initial values )A(0 = E(Xo) =M,

Var(x,) = P, and let the predictivalue of X (X, = £4,) with no

0
observations be F =, and therefore has MSE P, .

and start with t=1

Step 2  estimating the next stage:
E(X | Ye) =ty = Fa,

=FP,F'+3

t-1 tit

Var(xt | yt—l) = PI
Step 3 prediction of Y,

d

E(Y, | Vi) = Voo = Hopty o + Hipg, + D H/X,, (equation (23))
i=2

var(y,|y.,) = |\/|t|t_1 (equation (24))

= H/P,H, +H/P_ ,(H.F) +(HF)P

o' tit-1 t t-1t-1

H, + Hl'Pt_m_lH1 +T

Step4  update the parameters

My = My = My, + (PtltleO + FPt—lHl)MtItl—l(yt - 9t|t—l) (equation (26))

18



P, =P, —(P.H, + FP_H, )M (P, ,H, + FP_H,) (equation (27))
t=t+1

Step5 if t=n stop

Step6 gotostep 2

And we can update the Algorithm 1 as:

Algorithm 2 (Gaussian state space model with travel time)
Step 1 (Initialization)

1. give the initial value of F©@ =1 __

2. Given 2 and I

3. Given x,,P, to generate the prior state-matrix X @ = (x{, x{,---, x{9),

where X ~ N (, P)efor i=0,-1-:,—d
4, g=0
Step 2 (Generate X, t=0,1,2,---,n)

1. Generate X ~N_(z,P)

2. Generate X{7, from x |x%,F®@ ~N_(F®x{ X)

tjt—1 -1 -1
3. Use the Kalman filter to filter x®

The updated Kalman filter the part of predicting of Yy, we use

d
¥, = Hx! +H/u% + > H/x topredict Yy, and change the
i=2

0Mjt-1 t— _ i M

matrix X© =(x%,x!%,---,x") to continue the filter.

4. Repeat2,3for t=2,3,---,n

Step 3 (Generate F''9)
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(9) y 7(9)
1. Calculate X % X"

2. Calculate A(g) {a(g)} a(g) (xr:glg)) X'(g)F.'(g))(X;E?))—X'(g)F'(g))

=1(9) _ (@) r(g) -1 r(g) 1(g)
where F"¢ = (X9 X/ X0 X

3. Generate W~W_(X©X? n—p)

n-1"?

iid
4. Generate Z =(z/,2 z),z,~N, (0,A")

11 21 Yy
5. Generate F'® =((w?))*Z
6. g=0g+1,if g<m gotostep?2.

Step 4 (Prediction)

Then we have {X @ ,---, X ™} At last, we will have the estimator
~ 1 m ~ 1 m
X = 0y X @ and F'—E Z F'9 (m> k)
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4 Numerical example

4.1 Data Collection

The data we analyze are collected from Tuchen (+ %) to Jhulin (T7%f) of
northbound of National Highway No.3, a section of 60 kilometer-long, on Feb. 12,
2002 from 6:00 AM to 13:00 PM to study the traffic of morning peak hour and its
effect. There are eight intersections, each with detectors on both the mainline and the
on-and off-ramps recording the speed of vehicles, counts, number of vehicles that
pass over the detector, and oecupancy, the-fraction of time that some vehicle is
detected. See Figure 1 for the- map.of-the-Northern Area Network and Facilities

Layout of National Highway.
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The Northern Area Network
and Facilities Layout of
National Highway e

5 c
Ay Guansi
Jhulin

sinchu S1C.

G National Highway No.3
=™ (The Second Freeway)

Figure 1: Part of the Northern Area Network of National Highway

Figure 2 shows the schematic map of-the study area, the vertical lines indicate
the sensor location (ramp location and‘mainstream location). And the black and gray
arrows are the on-ramps (origin) and the off-ramps (destination), respectively, in this

area.

96 90 79 68 63 54 42 37
South North

-
1 1111

Figure 2: Dynamic system of data source.

Therefore, as shown in Figure 2, there are seven subsections separated by the

milepost 90 (Jhulin, ™ %), 79 (Guansi,EfJﬁ'l), 68 (Longtan,#=3&r), 63 (Dasi,™1%), 54
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(Yingge,ﬁ;ﬁ’), 42 (Tuchen,-t 55%). To make the study area a closed system, we add the

vehicles entering the freeway at 96 kilometer location as O, and the vehicles exiting

the freeway at 37 kilometer as D,. The detectors are of double-loop type with

twenty-second time resolution, but the data we have are aggregated to five minute
averages by Taiwan Area National Freeway Bureau (TANFB). The counts obtained

from an on-ramp represents the number of vehicles start from that location, denoted

by O,, the counts obtained from an off-ramp is the number of vehicles go to that

location, denoted by D,. O;’sand D, s are the observations we will use.

Table 1 is the data types we get from the mainstream and we choose the speed
data to calculate the travel time and.choose the flow at 37 kilometer as the
downstream flow and the flow at 96 kilometer as'the upstream flow to balance the

system. Table 2 is the data types we get from the ramps and we choose the flow data

as our observed O,, Dj

Table 1: The data recorded by the detectors on the mainstream.

Date Location Lane Time occupancy interval  Speed flow
212 2N37 4 00:00 4 201 89 144
212 2N37 4 00:05 3 263 89 54
212 2N37 4 00:10 5 233 87 129
212 2N37 4 00:15 4 231 87 126
212 2N37 4 00:20 4 226 91 131

Table 2: The data recorded by the detectors at ramps.

Date Location Time Lane Interval  Speed Flow
212 IC28-2  00:00 1 402 68 19
212 IC28-2  00:05 1 426 72 6
212 IC28-2  00:10 1 433 67 13
212 IC28-2  00:15 1 308 75 21
212 IC28-2  00:20 1 526 77 13
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Table 3: The relationship of T, and O,,D,

0] D D, Ds D Ds Ds D7
0, Tu T Tis Taa Tis Tie T
O 0 T2 Tas Tas Tas Tas Tor
Os 0 0 Tas LEY Tss T3 Tar
O4 0 0 0 Tas Tss Tas Ta7
Os 0 0 0 0 Tss Tse Tsy
Os 0 0 0 0 0 Tes Te7
Oy 0 0 0 0 0 0 Tz

4.2 Data Analysis

We denote the flow from the i origin-and to the j" destination as O, and D,,
respectively, for i, j=1,2,---,7 ‘and T, _as-the flow between the i" Origin and

the jth destination. Since it is northbound data, the O-D flow matrix is upper
triangular, table 3 describes the complete relationship between these notations. And

here we get the state variable X, and observed variable Y, as follows:

Y. = (Ol,t ’Oz,t" i ’07,t’Dl,t’D2,t N ’D7,t )’
X = (Tll,t ’T12,t e ’T17,t ’T22,t ’T23,I "t ’T27,t e ’T66,t ’T67,t ’T77,t )l

And we deal with the speed data to evaluate the travel time in each section of freeway.
Suppose we measured the speed at each sensor S,S,,---S, and the distance

k

. ]
between each sensor | ,1,,---,1 then we have the average travel time= Z—'. Then

112 n
i=1 S
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we have the average travel time at each section of freeway, so that we can use these

information to divide the matrix H into H, :{hi:.‘}, (k=12,---,d) with

1, if T, affect O, or D, intime k

elements h* :{ , Where d is the maximum

U]

0, otherwise
number of time periods that T, still affect O, and D;. And thus we have all the

data to start our computation.

4.3 Flow Prediction

N

After using the specified model to predict the O-D flow, we denote X

simple

and X the prediction of traditional and the revised model, respectively. Since the

updated

O-D flow matrix is unobservable, we can check‘the appropriateness only through

comparing the predicted O,, Dj with the observation.

Let y, = (O,,0,,,---,0,,,D

1~

D,,,---,Ds) . then

1t

yt,simple =H 5(t,simp|e for t= 1,2’ e n,
: '
yt,updated = Z HiXt—i,updated for t= 1,2, - N,
i=0
where Xt'Simp'e and Xtvupdated are the tth column of X simple and Xupdated .

In the following there are fourteen figures, each of which describes the patterns
of the two predicted flows of both of the models. As we can see that the ups and
downs of the observations are in general followed pretty well by both predicted series
and one series performs better than the other for different cases, but neither of them is
better for all the nodes. For example, in Figure 3 for the first origin, the patterns of the
predicted series are similar as that of the observations, although the simple model

gives closer predicted values. But for the other origins, the more sophisticated model
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outperforms the simple one in both the predicted values and the patterns. As to
destination nodes, both models show more variation, in some figures the traditional
model even shows better patterns like Figure 14 and Figure 16. Note that in the Figure
16, there has an outlier in the observation exceeding 800 vehicles in a five minutes
interval, the traditional model faithfully predicts the outlier value and the revised
model shows the similar pattern but not the similar value of observation pattern at the
price of underestimate at all other time intervals. So it seems that the revised model

performs better on the average and the simple model performs better when the outlier

happens.
Mainstream (96 kilometer)
01
250
200
m
Q
Q
<
(0]
2
8 150 |
2 150
100 observation
o= simple
——— updated
T T T T T
10 30 50 70 90

Time (5 minutes)

Figure 3: Observed and predicted flow entering the 1" origin.
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Jhulin (90 kilometer)
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40
observation
20 | simple
——— updated
T T T T T
10 30 50 70 90

Time (5 minutes)

Figure 4: Observed and predicted flow entering:the 2" origin.

Guansi..(79 kilometer)
03

80

60

Flow (vehicles)
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o
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| simple
0 ——— updated

T T T T
10 30 50 70
Time (5 minutes)

Figure 5: Observed and predicted flow entering the 3" origin.
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Longtan (68 kilometer)
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Figure 6: Observed and predicted flow entéering. the 4" origin.

Dasi. (63 kilometer)
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Figure 7: Observed and predicted flow entering the 5" origin.
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Yingge (54 kilometer)
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Figure 8: Observed and predicted flowi/enterifigithe 6" origin.

Tuchen (42 kilometer)
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Figure 9: Observed and predicted flow entering the 7" origin.
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Jhulin (90 kilometer)
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Figure 10: Observed and predictéd flow exiting.the’»1" destination.
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Figure 11: Observed and predicted flow exiting the 2" destination.
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Longtan (68 kilometer)
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Figure 12: Observed and predicted flow exiting the’- 3" destination.
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Figure 13: Observed and predicted flow exiting the 4" destination.
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Yingge (54 kilometer)
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Figure 14: Observed and predicted flow exiting the’. 5" destination.

Tuchen: (42 kiIometer)‘
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Figure 15: Observed and predicted flow exiting the 6" destination.
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Mainstream (37 kilometer)
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Figure 16: Observed and predicted flow exiting, the’ 7" destination.

Let T, = (T..l T2

ij? IJ’.

--Tijt,---,Tij") be~the flow entering the i" origin and
exiting jIh destination during each time period. We will compare the two

s o n . ! .
patterns T; = (r e T ) and Tij,updated _( ij .updated ? ’Tij,updated

ij,simple ij,simple ? ¥ Vij,simple

N N

which are the same row of the X and X . There are totally twenty-eight

simple updated

O-D pairs. Here we choose some more interesting figures meaningful to discuss.
Most figures show that both patterns behave similarly as in Figures 17 and 18.

But when the flows are low, less than 20, say, the simple method behaves badly as to

give large negative numbers, and the updated method seldom to give unreasonable
results of this kind, see Figure 19 and 20. In the first O, and the last D,, Figure 21

and Figure 22 show the large difference between the two models. The simple model

gives big spikes without any signs in the data, the only reason we can give is that the
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nodes for these two figures are the boundaries of the study area and all the vehicles

entering or exiting the system were assignedto O, or D, , respectively.
Comparing from the figures of O, Dj and Tij we find that most figures have

similar pattern for these three series. But from the figures of Tij, the simple pattern

have too many negative points. Since the flow is always positive, we suggest that the

model considering the travel time is better than the simple model.
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Figure 17: Predicted flow between the upstream and Gaunsi.
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96km~63km
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Figure 18: Predicted flow between the upstream and Dasi.
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Figure 19: Predicted flow between Jhulin and Gaunsi.
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Figure 20: Predicted flow between Jhulin.and Dasi.destination.
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Figure 21: Predicted flow between the upstream and downsteram.
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Figure 22: Predicted flow between Gaunsi, and.dovnstream.

5 Conclusion

In this thesis we propose to incorporate the effect of travel time into the Gaussian
state space model and developed an algorithm to estimate the unknown transition
matrix and forecast the O-D flow matrix simultaneously. By doing so the performance
of the model improved in different aspects. In the most figures of flow prediction, we
find that the trends of flows have much different behavior in the different time
interval. This means that we should assume that the matrix F varies with time. In
other words, when using this model to estimator O-D flow, the total studying time
period should not be too long in order not to let the pattern of O-D flow be
unreasonable. In the future work, we could extend matrix F to vary with time or
depend on some exogenous factors to improve the ability in describing the reality of
the model. Non-Gaussian distribution is also an alternative for the distribution of the
error terms.
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