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Abstract

In this thesis, we proposed a robust extension of linear mixed-effects models
basing on the multivariate ¢ distributions. In particular, the within-subject
correlation is assumed to have a parsimonious AR(1) dependence structure
which is very important in practice. Meanwhile, we offer a general approach
of how to obtain the score test statistic for testing the existence of auto-
correlation among the within-subject errors. We use the scoring method for
estimation and present the approximation of ¢ restricted maximum likelihood
for estimating variance components. The technique of predicting the future
response vector of a subject given past measurements is also investigated. Nu-
merical results are illustrated with real data from a multiple sclerosis clinical

trial.



1. INTRODUCTION

Multiple sclerosis (MS) is a chronic disease of the central nervous system, especially
young adults easily fall victim. Genetic and environmental factors are known to
contribute to MS, but its precise cause is still not identified. Abundant researches
consider MS as an autoimmune disease in which the immune system attacks its own
myelin, causing disruptions to the never transmissions. The presence of areas of
demyelination and T-cell predominant perivascular inflammation in the brain white
matter are the main pathology of MS and some axons may be spared. There are
no drugs to cure MS, but some treatments are available to ease the symptoms.
For example, Interferon beta-1b (IFNB) was approved by the US Food and Drug
Administration in mid 1993 for use in early stage relapsing-remitting MS patients
and can be used to reduce the frequency and severity of relapses. Cranial magnetic
resonance imaging (MRI) is a techilique torassess the response of MS patients and
provides another descriptor offits natuiral history. The MRI data is used to be a
quantitative outcome for the MS patients in clinical trials. We use the patient’s
burden of disease, the total area of MS'lesions of'the MRI scan, as an indicator.

In this thesis, we analyze data from a randemized study which included 372 pa-
tients with relapsing-remitting MS.“It. began in June 1988 and ended in May 1990.
All of them are in ten different medical centers in the United States and one in
Canada. It was a place-controlled trial of interferon beta-1b (IFNB) and random-
ized to either a placebo (PL), a low-dose (LD), or a high-dose (HD). Low-dose and
high-dose mean a dose of 1.6 and 8 million international units (MIU) of interferon
beta-1b( IFNB) every other day, respectively. We consider a sub-study clinical trial
of 52 patients, who are administrated at the University of British Columbia (UBC).

In many longitudinal studies, the model must include between-subject variabil-
ities. Random-effects models are the most widely used general approach (Laird
and Ware, 1982). However, the distribution assumption of error terms are usually
focused on independently multivariate normal. Since longitudinal data may have
some variability within subjects, the within-subject errors should assume follow

some specific time series models such as AR(1). Chi and Reinsel (1989) proposed



a linear mixed model that contain both between-subject random effects and AR(1)
dependence for the within-subject errors. Gill (2000) proposed a robust estimation
procedure to bound the influence of outlying observations by using Huber p func-
tion. In this thesis, we shall employ an alternative robust approach to analyzing
the MS data using the ¢ linear mixed model, which was first considered by Welsh
and Richardson (1997). Subsequently, Pinherio et al. (2001) provide some efficient
EM-type algorithms for maximum likelihood (ML) estimation based on a hierarchi-
cal complete-data formulation.

In Section 2, we introduce the ¢ linear mixed-effects models with AR(1) and em-
ploy the score test approach for testing whether autocorrelation exists. Section 3
describes the computational aspects for both maximum likelihood (ML) estimation
and restricted maximum likelihood (REML) estimation in the ¢ linear mixed model.
Prediction of future observations are discussed in Section 4. In Section 5, we illus-
trate the proposed methodologies using the MS data. Finally, some discussions are

given in Section 6.

2. The MODEL-ANDSCORE TEST FOR AU-
TOCORRELATION

2.1. tlinear mixed model
Suppose that response measurements are collected on each of N subjects with the

1th subject being observed on p; time points. The model for subject 7 is

T

2

2
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Ti
where Y, = (Y1,Yi,...,Y),) is a vector of length p; observable responses for

subject i, 3 is an m; x 1 vector of unknown but fixed parameters with full-rank
design matrix X; of dimension p; X my, b; is an my X 1 vector of unobservable
random effects with design matrix Z; of dimension p; X mas, €; is p; X 1 vector of

residual errors and 7; is an unknown scale assumed to be distributed as gamma with
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mean 1 and variance 2/v. Furthermore, I' and C; are respectively ms X ms and
p; X p; scale matrices.

Y |7~ Ny(p,X/7) and 7 ~ x2/v, we can conclude that Y ~ ¢,(u, 2, v).
Here t,(pt, 3, v) denotes the p-variate ¢ distribution with mean vector p, scale matrix
¥} and degree-of-freedom v. A hierarchical version of the ¢ linear mixed-effects model
(1) can be expressed by:

Yﬁ%ﬂ@%@ﬁ+&%§&%
bﬁnﬁﬁwﬂmir% 7 3. 2)

(2

In longitudinal data, repeated measurements of some variable are made on a
number of subjects over a period of time. Therefore, the model should incorpo-
rate autocorrelation for within-subject variabilities. Assume that for each subject p;
observations are taken at time ¢, ==(t;1, t;5, i1, t;,) and are equally spaced. The di-
mension of the scale correlation matrix-for €;'is p;x p;. By parsimony, we concentrate

on C; having a simple AR(1) structure, that is,
Ci(p) =™ st <p<1 (3)

where r,s =1,...,p;.

2.2. The Score test for the autocorrelation

For many longitudinal data, we don’t know whether the autocorrelation in the
within-individual errors exist or not. Therefore, a score test is used to check the
presence of autocorrelation in the errors. The score vector is defined as

0

:%mﬂmeQMMWW ()

S(0) 20

where L(0|Y) is likelihood function of 8, 0 is the vector of parameters in the model,
and Y' = (Y,Y5,...,Y'). Under regularity conditions, we know that, for all 0,

EgS(0) = 0. In particular, if we are testing Hy : @ = 0y € O against H, : 0 € ©,

and if Hy is true, then S(6y) has mean vector 0. Furthermore, the covariance of
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Cov (5(0)) = —Eg (ﬁlog 10| Y)) — J(0), (5)

where J(0) is the Fisher information matrix. We denote the score test statistic
A = S(00)'J(00)S(6). (6)

By asymptotic efficiency of MLEs, A, is asymptotically distributed as chi-squared
with dim(©;)-dim(®) degrees-of-freedom under true Hy.

Our purpose is to test the presence of possible autocorrelation by using the score
test. It means to test the null model Hy : p = 0 in (3). If we reject the null model,
the autocorrelation in the errors may exist.

The following is the marginal distribution of Y; from model (2):

f(Yi) = //.f(Yi \ biaTi)f(Yi | Ti)f(7i>dbid7_i

VPV A (-2 B eV A-liv. oy —(vp)/2

L(%)(rvo?)pi/? vo?

where

Thus, Y; is distributed as t,,(X;8,0°A;,v). We denote e; = Y,; — X;3 and
A(B,T,p) = e/A;'e; . We parameterize I' = F'F by Cholesky decomposition,
where F is an upper triangular matrix, for guaranteeing I' to be positive definite.
Let a« = (3,0, p), with 0 = (¢, f',v), and f = (f1, f2,.-., fx)/, which is the
vector of the distinct k = my(ms + 1)/2 components in F. Let 8 and 6 be the ML
estimates of 3 and @ under the null model. Thus, we denote &y = (B', é’, 0)". Let !
denote the log-likelihood function of Y1,Y5,..., Y y. We have

= comtr 3 o ((52)) 1 (0(3)) } - §rontr

N N Az y Ly
33 tog | A =3 3w+ pog (14 28T, ®
i=1 1

o2y

1=

where n = Zf\;l pi is the total number of observations from all the subjects.
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The score vector 0l/0a has all components equal 0 except the derivative with
respect to p, denoted by (91/0p)o = 0l/dp|g, , when evaluated at &g . The infor-

mation matrix is

Joa = E(=0%/0ada)) = | Iy Jag Joo | =| O Joo Jo, |. (9
J/ﬂp Jl@p Top 0’ Jl@p Top
J o202 J02f Jo2, J02p
where Jop = | Jo, Jypp Jp | and Jg = | Jyp
o, T Ju Jup

The score test statistic, denoted by A, then

A = (;—; %)/(J\o@)‘1 (%’do) = (%)2/& (10)

where s = J9 — Jj p/J 29_1.] 5, andsthe supetscript 0 indicates the elements of J are
evaluated at ap. The evaluation of 518 detailed#in Appendix A.

To calculate A,, we first have

A —10A; -1
a1 SR LG L e N g, A e
- —_Z E tr [ AT - E ; p : 11

Note that by matrix inversion formula (See Rao (1973), page 33),
AT(Ys = Xif) = CT{Y: = XiB = Ziby), (12)

where BZ = (ZZ/CZ_IZZ + F_l)_IZi/C;l(YZ‘ — XWQ) .
When evaluated at &, we obtain A;l (Y — Xiﬁ)]dg =Y, —Xi,@—Zil;i = u;,
where b; = (Z/'Z; + f‘_l)_lZ/(Yi - Xﬁ) and @; can be viewed as the vector

of residuals from the model for individual 7. In addition, C =TI, and

1

.
OA;/0p|a, = 0Ci/0cdl g, = L+ L;, where Lj is a p; X p; matrix with the elements
on the first super-diagonal being 1. By a matrix inversion formula, we can obtain

tr(A;l%f/‘)i Nla, = —200((Z/Z;+T ) 'Z/L:Z] ,

(ﬂ> = i w[(Z/Z, +T ) Z/L.Z)) + i(f/ +pi) 1Lt (13)
ap 0 — (] 1 1 K3 K3 — (2 AQﬁ —"_ AZ (B’ f‘7 0) 9



where Ai(B, T, 0)=(Y,;— X,-B)/ﬁi . The score statistic A,y can be calculated, from
(10) and (13), as

N N o 2
o= Liu;
As = (Ztr[(Z/Zi+1—‘ 1)_1Z,-’LiZi]+Z(D+pi) S J:J’ZA - ) /s. (14)

3. PARAMETER ESTIMATION

3.1. Maximum likelihood estimation

In this subsection, we employ the scoring method for parameter estimation. There-
fore, the score vector and the Fisher information matrix are needed. We consider
the log-likelihood function of Y1, Y5, ..., Y y as given by (8). Let a = (3,8, p)' =

(B',0"")' then the Fisher information matrix (9) can be partitioned as

Jss 0. 0 J 0
Joo = B(—0°1/0adal) = |00 (8 3o, | = . (15)
., 0 Jg*g*
Wy &
0p PP

In order to estimate a, we start swith.any-suitable initial value of 8* and 3 then
we can conclude the new value of @*.and 3. The new ones are used to start the
next iteration and continue the iteration process until the absolute difference of the
new and previous estimators is less than some fixed tolerance. The score vector
s = 0l/Oa and the expectation of the negative Hessian matrix are listed in the
Appendix A. With the current estimates é*(h) and B(h) at the hth iteration step,

the scoring procedure for estimation is obtained by the following recursive equation

o (h+1) ~ (h

g = g 1 3T (16)

(h) 2(h) ~(h) ~(R)
where s)." and J,.;. denote s and Jg«p- evaluated at B~ and 6 at the hth

. . . ~ (h+1) . .
iteration step. Then the next estimate ,3( ) is obtained as

D) H(A) A (ht1)~t L (h+0.5
=B + 35 sy (17)
5 o (ht1 .
where Jg;rl) denotes Jgs evaluated at 0*( : and Sgwo.s) denotes sg evaluated at
5(h)

~ (h+1
and evaluated at 0*( ).
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For the rate of convergence, a preferred method is given suitable initial values
such as the ML or REML estimates of a normal linear mixed model with appropriate
dependence structure. It is convenient for users to fit normal linear mixed models
using commercial softwares such as SAS procedure PROC MIXED or S-PLUS func-
tion lme().

Under some regularity conditions, variance-covariance estimates can be com-
puted by plugging the converged ML estimates & = (B, 9*) into the inverse of the

Fisher information matrix. Thus, we have

N . ~1
e ~ V+pi A1 Yk T—
COV(ﬁ) =0 (; mX;AZ Xl> and COV(O ) = Je*le*. (18)
The standard errors of the elements of B and @ can be estimated by taking the square
root of the corresponding diagonal elements in (18). Moreover, an approximate
100(1 — )% confidence ellipsoidifor B is given by
v+ p; joa e 2
XA, X, - 0) < ,
( (UQZVvaz-f-Z U’ )(18 ﬂ)—Xml(a)

where x?, (a) denotes the upper 100(1-a)% guantile of the chi-squared distribution
with my d.f..

3.2. Restricted maximum likelihood estimation

Restricted maximum likelihood estimation (REML) is a method of estimating vari-
ance components. The REML estimates are obtained by maximizing the likelihood
of 8 based on some error contrasts. Harville (1974) showed that error contrasts to
make Bayesian inferences for variance components were equivalent to ignoring the
prior information on the fixed effects. The estimators of variance components ob-
tained from maximum likelihood are usually biased downwards. Therefore, REML
is often preferred to maximize likelihood estimation (ML) because it takes account
of the loss of degrees of freedom in estimating the mean and produces unbiased

estimating equations for the variance components. In this subsection, we discuss



the Bayesian approach to integrate with respect to the fixed effects 3 for ob-
taining the marginal density function given the observation vector Y. We have
Y, ~t,(X:8,0°A;,v) and let O = (02, f', v, p) to obtain

La(0]Y) = / L(B,64]Y)d8

R ()

Since it is not easy to evaluate, we use Laplace’s method to get an approximation.

L _ TN A8, T, ) 2 . .
et f(B)=1[_, |1+ =" and log(f(B)) = u(B). The following is

the approximation by Laplace’s method,

[ @18 = [exptuip)as

u (3(9)) = H6ﬁ|5:/3(0)

- i(wr ) “XATX, 22X E(0)e/(0)A X,
Di ov + Az(B(O), T, p) [021/ + Az(B(e), T, p)P

i=1
and B (@) can be obtained by solving the following estimating equation

. (Y — Xi8)
i—1 0-27/—’_ Az(ﬂ7rap)

— 0, (19)

with &;(8) = Y,; — X,3(0).

Hence, the approximation form of ¢ restricted maximum likelihood is

Lr(0r|Y)
N N N —(v+pi)/2
n 1 I'((v i 1 A;(B(0),T,
X T (1 AP



where

A _ 2A7'6i(0)6/(0)A] }izl---N
o2+ A(B(0).T.p)  [0%v+ AyB(6),T,p)2 | o

Hi:<V+pi){ F

and &;(0) =Y, — X,3(0).

Since the negative expectation of Hessian matrix of Lg(0r|Y") is difficult to com-
pute, we employ the Newton-Raphson (NR) algorithm for estimating. The REML
estimate of 0, Op, can be obtained by implementing the Newton-Raphson (NR)
algorithm with ML estimates as the initial values. In the NR algorithm, the esti-
mate of 3, B R(@ r), must be computed at each iteration by solving the estimating
equation in (19).

The first derivatives of the restricted log-likelihood Lg(0g|Y") are listed in Ap-
pendix B. The second derivatives, oft Lig(@r|Y ) are complicated, we can use the
numerical approximation formsfor each component of the Hessian matrix by

82 log LR

5000, ~ |log Lr(0:+4'0;€; + d;€;) —1logLr(0 + d;e; — 0 e;)

— lOg LR(B e 5@'61' . 5jej) =4 IOg LR(O — (5Z-ei — (Sje]')] /(4(51(5]),
where 9; and d; are small values that are chosen based on the scale of the problem,

and e; and e; are respectively the unit vector corresponding to the ith and jth

components of 6.

4. EMPIRICAL BAYES ESTIMATION FOR RAN-
DOM EFFECTS AND PREDICTION OF FU-
TURE VALUES

The estimation of the random effect b; is also of interest, and we will use empirical
Bayes to estimate it. Laird and Ware (1982) addressed the empirical Bayes of b;,
which is the expectation of the posterior density of b; given Y; with the parameters
replaced by their estimates and defined as b; = E(b; | Y;)|a=a- For evaluating the

conditional expectation of b; given Y;, we need the joint distribution of (Y, b;).
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By integrating 7; of equation (2), we get the joint distribution of (Y, b;), that is a

(pi + mo)-variate ¢ distribution with degree of freedom v, which can be expressed as

() ()7 (en 57) )
b; 0 rz, T

According to the posterior density of b; given Y;, the conditional mean of b; given

Y, is the minimum mean squared error (MSE) estimator of b;, which is given by

~

b:(0) = b1(8) — W(W, +T)"'b(6) (21)

where b} (0) = (Z/C;'Z,)"'Z/C; (Y;,— X,;8) and W; = (Z:C;'Z;)~". The error
covariance matrix of l~)z is

B[(6:(6) ~ b)(6:(6) ~ b = ;=50 Wi = Wi(W: + I)' W] (22

The calculation of equations (21) and(22)rare shown in Appendix C. The empirical
Bayes estimates of random effects b; = i)z(é) iS‘obtained by plugging 6 in (21).

The following is the prediction of future values of a subject based on ¢ linear
mixed-effects model (2). Chitand Reinsel (1989) also have discussed the prediction of
future observations for normal-mixed-effects model with AR(1) errors. We consider
the observations Y; for a subject’of length p; which are available to predict the
future values y; for the same subject, that is a ¢ (¢ > 0) dimension of values of
measurements.

The future values y, can be expressed as y;, = ;8 + z;b; + €4, where x; and z;
denote ¢ xm; and g x my design matrices, respectively. Let the vector Y = (Y, y,)’

be represented as Y = X8+ Z;b, + €} , where

X, Z,; i
X;:( ) , Z;‘:( ) sj:<€) .
Z; zZ; €iq
(pi+q) xm1 (pi+q) xma (pi+q)x1

Then we can get a (p; +¢)-dimensional random vector Y drawn from the multivari-
ate t distribution with location vector X3, scale matrix €2 and degree of freedom

v, which can be expressed as

Y, X; Q, Q.
7 thH_q ’LIB 7 0_2 11 112 v, (23)
Y, ;8 Qo1 Qi
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The scale matrix of Y is Qf = Z T Z;'+C; with C; = [p"*l] forr,s = 1,...,p;+q,

C
Cr — 11 Cr '
Cu Cyp

It is noted that C1; = C; and Cq = C',. We will need the distribution of y, given

C'’ can be partitioned as

Y ;. As the result of calculation by Bayesian approach

f@IY) x [ FwlY i) (Y imgn)dn,
we have
yz’Ythq (#i,zla wizi,22-17 v+ pi) )

where the location vector Mioq = x;3 + Qmﬂjﬁ (Y; — X;08) and the scale matrix
w;Bi001 = 02w, (Qino — Qi1 ;11 Qi12) with w; = V+(Yi_Xiﬁ),(052,meri_Xlﬂ).
The detailed calculation are given_in jAppendix D. The minimized MSE predictor

of future values y, is y; which.is the conditional expectation of y, given Y,
I YA Al -
Yi = g =i + Qin Y (Yz‘ - Xzﬂ) 7 (24)

where ,B, Qm, Qm are replaged by their estimates, such as their ML or REML

estimates, and the error covariance matrix of the predictor (26) is given by

(v +pi)

———— Wi 201, 25
I/+pi—2w 221 ( )

B9, —v) (@ —v)] =
where
Sisn = o (022.1 + (21— CCL Z)) (Wll ~ W+ Wll)‘1W11>
(z; — 0210;1121»)’) W, =(Z,Cci'Z)™".

The proof of (25) is shown in Appendix E.

5. EXAMPLE

We will next analyze the relapsing-remitting MS sub-study data which involved

burden repeated measurements of 52 patients at the University of British Columbia
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(UBC). The sample are taken approximately six weeks over two years at UBC.
The patients are randomized to placebo (PL), low-dose (LD), and high-dose (HD)
groups. Each group involved 17, 18, and 17 patients, respectively. Two patients, one
of them is in the low-dose (LD) group and the other is in the high-dose (HD) group,
are dropped out early in the study. Besides, one patient in the low-dose (LD) group
had 3 measurements zero on MRI scans. Therefore, we only use the remaining data
of 49 patients in this analysis.

For longitudinal study, we use the incomplete data. Most of the patients have 17
measurement points except 5 patients, one in placebo (PL) group dropped out after
completing 14 visits, two in low-dose (LD) group dropped out after completing 13
visits, and two in high-dose (HD) group dropped out after completing 12 visits.

We use the patient’s burden of disease, the total area of MS lesions of the MRI
scan (mm?), as an indicator to measure the disease of MS. The burden of disease at
time point j is denoted as Area(g); and Area(0).means MRI area of the patient at the
baseline time point. We use the log relative burden LRB(j)=log(Area(j)/Area(0))
to be the response variable {Y;;, j = 1;.. . p;) as a measure of the severity with
respect to the baseline. The clinical procedure and the usefulness of LRB are detailly
described by Gill (2000) and D’yachkova etal: (1997).

Figure 1 depicts the LRB evolution over the 49 patients at each time point
from various groups. Figure 2 shows the boxplots of average LRB for the three
treatments, and indicates the average of the HD group is lower than the others.
Broadly, the variability of LRB values for the PL is largest and is smallest for the
HD group. Since IFNB can be used to reduce the frequency and severity of relapses,
the patients in HD group with higher dose have remitted the frequency of relapses
and have stable condition. Hence, the variance of LRB values for the HD group is
smallest. The boxplots also clearly shows that there are three patients having larger
LRB values than the other patients in the PL group, and there is one patient in the
LD group having lower LRB values than the remaining patients.

Since the structure of the three treatments are different from each other, we

analyze the MS data for each treatment group. The following is the form of the
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Figure 2: Box plot for average LRB
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fixed-effects 3 and the design matrix of the fixed-effects X;.

11 1] Bo
X, = , = ,
a3

where [y and (; represent the fixed-effects intercept and slope, respectively. To
explore the autocorrelation in the within-subject errors, we start by fitting a ¢ linear
mixed model with random intercept and white noise structure (p = 0). With these

assumptions the model takes the following form:

Y, = XB+Lb+e, b|n~N00%),
gi|m ~ N, (0, 0°I,), 7~ Gamma(v/2,v/2), (26)

where 1; = (1,1,...,1), a p; x 1 vector with all elements 1, and the covariance

matrix of Y is 02(1T'1" + I,,). We fit (26) to the MS data for each group. We

Table 1: ML estimation results and score test statistics for model (26), where F is
such that T' = F?

Group Bo B o F v AIC s
-0.0076 0.0185 0.0143 1°.8290 1.82

o (0:0042)  (0.272)  (0.59) -99.02  16.91
0.0132  0.9462  2.08

LD (0.0039) (0.194) (0.71) -145.58  21.30
0.0128  1.0856

o -251.44 49.58

(0.0356) (0.0015) (0.0027) (0.2185) (1:87)

have no evidence to prove the errors with an AR(1) process. Therefore, we consider
model (26) to test whether the autocorrelation exits or not by score test. The score
statistic under Hy : p = 0 and Hy : p # 0 is expressed as equation (14). Table 1 lists
the ML estimates and Akaike’s Information Criterions (AICs) along with the score
test statistics A\;. Here we define AIC to be -2(log-likelihood-the number of model
parameters). As shown in the table, the score statistics are all highly significant

compared with y? distribution, indicating that there exists autocorrelation in the

15



Table 2: ML estimation results for model (27), where F' is such that ' = F

Group Bo o3t o? F p v AIC

PL -0.0036 0.0176 0.0154 1.8290 0.3164 1.81
(0.0476) (0.0020) (0.0046) (0.7322) (0.0685) (0.59) 1020
-0.0040 0.0125 0.0137 0.8734 0.3584 1.97

LD -167.10
(0.0343)  (0.0021) (0.0043) (0.1994) (0.0712) (0.67)
-0.0814 0.0137 0.0174 0.8348 0.5587 6.79

HD -310.38
(0.0400) (0.0027) (0.0040) (0.2192) (0.0689) (3.15)

Table 3: ML estimation results for model (28), where F is the Cholesky decompo-

sition of T’

Group Bo 01 o? Fiv, Fia, Fy v AIC
-0.0139 0.0190 0.0129 1°1255 0.0352 0.0480 1.76

PL (0.0358)  (0.0023)= (0[0038) - (0.2629) (0.1022) (0.0323) (0.57) 10820
-0.0070 0.0125 0.0114 1.0115- -0.0264 0.0663 1.97

LD 0.0319)  (0.0025)7 (0.0040)(0:5310) (0.2712) (0.0344) (0.67) 1308
-0.0857  0.0140 0.0113 0.9412 -0.0136 0.0989 5.49

HD (0.0299) (0.0032) (0.0023).71(0.2665) (0.1216) (0.0253) (2.39) -273.26

within-subjects errors of model (26). It leads us to consider the alternative model,

Y, X8+ 1,b; + e,

&; | T Npi((]? G2Ci<p))7

b; | 7 ~ N(0,0%7),

7; ~ Gamma(v/2,v/2), (27)

with AR(1) structure for the within-subject errors. The covariance matrix of Y'; is
0?(1T1'+C;(p)). The resulting ML estimates with the associated standard errors in
parentheses, along with AICs are shown in Table 2. As expected, this kind of model
has lower AICs than model (26). In some cases, however, a more general random
effects may be useful for the interpretation of autocorrelation in the within-subjects

error. Therefore, we consider to fit the following model,
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Y, = X8+ Xbi+e;, b|7~N(007T),
gi| T ~ N,(0, 0’I,), 7~ Gamma(v/2,v/2). (28)

with random intercept, random slope and white noise structure (p = 0). The co-
variance matrix of Y; is 0?(X ;L' X, + C;(p)). The ML estimation results are given
in Table 3. The values of AICs were found to be -108.20 for PL, -153.68 for LD
and -273,26 for HD, which did not improve model (27) with the corresponding AICs
being -116.26, -167.10 and -310.38, respectively. In addition, the elements of F}5 and
Fy9 were relatively small compared with their respective standard errors, indicating
the random slope effects should be extra. Overall, we conclude that model (27) is
the most suitable fit for the MS data since it not only explains the autocorrelation
but also with fewer parameters and_lower AICs.

In order to see whether thedmodel (27) is'more robust or not, we compare the ¢

and normal linear mixed model such -as
Yi = XZIB + ]-zbz + €, bz s N(O, 0'2’)/), g; ~ Npi(O, UQCZ(p)) (29)

Table 4 shows the log-likelihood ‘and-the values of AIC for model (27) and (29).
The results reflect model (29) are not suitable for the PL and LD groups based on
substantially larger AIC statistics, while it is comparable for the HD group. We can
see clearly that no matter which treatment we take, the ¢ linear mixed model has
smaller values of AIC than the normal linear model. Therefore, the ¢ linear mixed
model with AR(1) owns the better explanation than the normal linear model for the
MS data. Since the REML estimates are similar to the ML estimates, we just list
the estimators by maximum likelihood method.

Figure 3 displays the corresponding normal quantile plots for the residuals from
model (29). Obviously, the residuals of PL and LD seriously deviate from normality,
confirming the presence of longer-than-normal tails. In contract, the departure of
normality for HD is minor. Based on these findings, it appears that a normal model
(29) might be adequate for HD.

We next compare the prediction accuracy between ¢ model (27) and normal
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Table 4: Estimated logarithm of maximum likelihood and AIC

number of Placebo Low dose High dose
Model parameters log, L AIC log, L AIC log, L AIC
nlme 5 -65.67  141.34 -15.13  40.26 154.65  -299.30
tlme 6 64.13 -116.26 89.55 -167.10 161.19 -310.38
PL LD HD

0.2

residuals
residuals
0.0

-~
.

-0.2

(-

-15 -10 -05 0.0 0.5 1.0 15
. . .
residuals
25 -20 -15 -10 -05 00 05
| . . . .

T T T T T T T T o T T T T T T T
-3 -2 -1 0 1 2 3 -3 2l -1 ) 1 2 3 -3 -2 -1 0 1 2 3

Quantiles of Standard Normal Quantiles of Standard.Normal Quantiles of Standard Normal

Figure 3:*“Normal quantile plot for residuals

model (29). We use the predictive sample reuse procedure described in Geisser
(1975). The process is addressed that the last point of each vector measurement is
taken out as the true value and use the rest to be predicted each time. As a measure
of precision we use the mean absolute relative deviation (MARD), which is defined

as
Ypj — Ypj

| N
MARD = —
N Z Ypj

j=1

The MARD is a widely used criterion when applied to time series observations are
monotonically increasing. We restrict our attention to the one-step-ahead forecasts
by setting p = 13,14,15,16,17. We withheld one response vector Y'; and use the
most recent p — 1 measurements as the sample to predict the last component Yj,
using (24). The process is repeated for each of N subjects. Table 5 shows fixed

effects estimates and prediction results from these two models. Comparatively, the
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Table 5: Comparison fixed effects estimates and one-step-ahead forecast accuracy
in terms of MARD

Time of point  Normal linear mixed model t linear mixed model
Group being forecast Bo 01 MARDy Bo 01 v MARD;
13 0.052 0.022 0.532 0.004 0.017 1.93 0.414
14 0.047 0.023 1.186 0.004 0.018 1.89 1.020
PL 15 0.064 0.020 1.825 -0.003 0.019 1.86 1.610
16 0.050 0.023 0.818 -0.003 0.019 1.93 0.702
17 0.065 0.020 0.717 -0.006 0.019 1.88 0.675
Average 1.016 0.884
13 0.059 0.004 0.528 0.017 0.010 2.11 0.504
14 0.053 0.006 1.044 0.016 0.009 2.25 1.010
LD 15 0.056  0.005 0.580 0.019 0.009 2.30 0.591
16 0.079  0.001 0.716 0.016 0.010 1.49 0.484
17 0.046+°0.007 0.302 -0.002 0.012 1.50 0.287
Average 0.634 0.572
13 -0:0670.006 0:803 -0.063 0.008 10.43  0.817
14 -0.081 10009 0.245 -0.071 0.010 8.94 0.220
HD 15 -0.078 0008 04714 -0.068 0.010 9.26 0.382
16 -0.087 “0.010 0.765 -0.080 0.013 8.10 0.741
17 -0.089 0.011 0.412 -0.079 0.013 7.08 0.397
Average 0.528 0.511
Overall average 0.726 0.656

t-based model has much smaller MARD than those of normal for PL. and LD. The
percentages of improvement ([MARDy — MARD,|/|[MARDy| x 100%) using the
t-based model are 13% and 9.3%, respectively. On the contrary, the prediction
performances using the t-based model for HD is slightly better than the normal
model with only 3.2% improvement. It is clear that the #based model not only
provides better model fittings, but also yields smaller forecast errors for the MS
data. Regardless of the treatment groups, the overall average MARD for the ¢-
based model is smaller than that of the normal model, with an improvement of

about 9.6%.
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6. DISCUSSION

We propose the ¢ linear mixed model with AR(1) dependence for longitudinal data
analysis. The heavy-tailed ¢ linear mixed modelling provides an alternatively robust
way of dealing with longitudinal data when some outlying observations are present.
Besides, from our the illustrated MS data it is encouraging that the use of ¢ lin-
ear mixed model coupling AR(1) structure offers better fitting as well as prediction
performance than the use of normal counterpart. Inclusion of the simple AR(1)
dependence could lead an appropriate representation of correlation structure. In
the future tasks, one may consider higher order ARMA(p, q) dependence structures
for the within-subject errors. A nature extension of the present research is to ex-
plore some potential advantages of the Markov Chain Monte Carlo in the Bayesian

paradigm.
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APPENDIX A: The evaluation of s

The following is the score vector s,, which we define as the first derivatives of the

log-likelihood function with respect to a:

= 2 ) A G )
B 1(67P7p)
= oty QZ”“’Z (02v+Ai(6,Fap>)’

_ 1 al y+pz v Pi Al(ﬁarap)
S = §Z{¢( > )‘¢(§>—T1‘)g<”—02y )

_|_(V+pi) Al(ﬁ7rvp) }
alv+ ANi(B,T,p) |’

%
N 1A La-1
1 i1 e;A; A, A e
sol, = 9 Z {tr(Ai Ay + 7o) (02u + Ai(@I‘yﬂ)) } ’
where w = (vech(F),p), Ag =l 0A{w)/Ow,, for r = 1,...,k + 1 and ¢(z) =
d/dxlog(T'(z)).

To obtain the Fisher information mattix; we must get the Hessian matrix which is

the second derivatives of the log-likelihood-function.

We have
%AZ(B, ]__‘,p) = —X;A;lel — e;A;lXZ = —QBZAZ_IX“
di(AilAirAil) = —ATAGATTAGAT AT A AT+ A (AT AATY)
S

= OATTALATTAGATT FATTAGAT

then the elements of the Hessian matrix are given below:

al XA X (020 + AB,T, p)) — XA ei(—2elA X;)

Hys = ) (v+p)x (020 + Ay(B,T, p))?

i=1

N

S+ ){ ~XIAT'X, N 2X;Ai‘1eie;A;1Xi}
= 1% 5 9
2T s AB T | ot ABT P

—X'A e al XA e
H 2 — i ( v — _ i 177 1 ’
” Z: P G AT 2 Y PG A T T
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H,:,

Hcr21/

(XGA " e) (0% + A(B,T, p)) — (v + pi) (XiA; 'e;)o?
[U2V + A'L(/Ba I‘? p)P

X A_ €; X;A;lez
ov + Ai(B,T, p) o?v + A;(B, T, p)]?
(v +p) [- XA A A ei] (0% + Ai(B,T, p))
1 [02V+Ai(ﬁ7rap)]2
() (XA e (€A A A )
[02v + Ay(B, T, p)]?
N i(l/ + i) XA AvA e _ XA eiej A A A e
PRV v BT, )~ [P+ A-(ﬁ Lo [

U2<V + pz) [

M= 11= 11

7

n 1 (18 FHO —Az(ﬂ,]__‘,p)l/
201~ 301 2 TP, A BT ;”ﬂ” v+ A(B.T. p)P?

n1 ¢ | Ai(B.T,p) o’v(v +p)Ai(B,T, p)
?_@{Z(”“)( B A BT ) ot t AdB.T, )l >}
1

=1

( A(B.Tlp) <u+pi)<0—Ai<ﬂ,r,p)02>)
o+ Ay(B. T, p) 0% + Ai(B,T, p))?

(/67 » P ) ‘ OQ(V—l-pi)Ai(,B,F,p)}
o V+A (:Ba ) P ) [UQU—i—Ai(ﬁ,F,p)]Q 7

1 —0 V(eiAi_lAirAi_lei)

QT,QX;{WH%) [0?v + Ay(B,T, p)? }
( ,A 1AWA e’)
o+ AB TR [

I 1 (vp\ 1, (v\, pi o’y Ai(B,T, p)
52{57?( 2 ) —§¢ <§)+§_021/+Ai(,8,1",p) (_ o?? )
—Ai(,B,F,,O)O'2 pz (/8 I‘ap) + & —Ai(,@,I‘,p)ch }

Pt ABT AP Rt AB T v ot ABT P

v+ p; Di 1 i(ﬁ7r7p>
_Z{ ( )_§w<§>+§+502v+&(5,r,ﬂ)
i ABTp) vtp PA(BT,p)o’ }
20?2+ Ay(B,T, p) v [o?v+ A48T, ) )’
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H,,) li 2p(—el A A A Te;) 1 L7 + pi —o?v(—€e, A7 AL A e;)
b = 32\ T ok ABL) o v vt ABT P
1 i e’A_lAwA_lez v+ p; UQV(—e;Ai_lAirAi_lei)
24 e+ A(BT,p) v [0+ AB T p)?
B EXN: A A AT e o*(v+pi)(efAT A A e)
- 24| o+ AB,T, ) [0%v + Ai(B, T, p))? ’
1 1
wa = = t A 1AzsA 1Azr +t A 1A1rs + Di
R )+t A R — O )
X [e (_2A;1AirAi_1AisAi_ + Ai_lAirsAi_ )61'(0 v+ Ai(B,T,p))

N
- 3 {tf@‘i AT Ay — (A A
o+ g SO ARG — AR A e
i
p o2y BLL, p)
e,iAi_lAirAi_leiegAi_lAisAi_lei
[o2r + Ad(B,T, p)2

+(v + pi)

The Fisher information matrix is the negativerexpectation of the Hessian matrix.
The following lists expectations which swe need to obtain the Fisher information
matrix.

The marginal distribution of Y is

fYV) = //fY by, 7) f(bs | 72) () dbsdr

B V+pz |A | 1/2 . N (Y X“B)/A (Y — X, ,3) —(v+pi)/2
B F( )(7w02)pz/2 2
F(U+pz) A, | 1/2 ( e;Ailei)—(Vﬂ?i)/z
1+ ,

['(3)(rvo?)ri/? 2

vo

vo

(a)

1
E (azv + A(B, F,p))
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1
B E(0'2V+(Yi_Xi/@)/Ai_1<Yi_Xiﬂ))
1 1

2
ag°v
1 0'2V

D(ZE2i) A~ 1/2 PA—1, \ ~H24pi)/2
= 1 / ( 2 ) | 1+61A1 €i dYZ
o?v | T(§)(mvo?)pi/? vo?
1 i 1 14 i v — v — 7(V+2+p7«)/2

*%)F(%?)/"FVj%Q)EEAﬂlp ( €H;3AA1@> v

%) T (”“’TZ”) F(VTH)[W(I/ + 2)o2|pil? (v+2)o?

It is noted that
y ~1/2

v+ 2

SEEILVIRE A7 ,p>+au—au)_E(1_ A
alv+ A;(B,T,p) ] ‘02u+Az([3,1—‘,p) B alv+ A(B, T, p)

1 i
= 1—021/><2—:1— et L D .
o*(v+p) . VAP D

:ﬂuw 12

yp1/2

7

(b)

B €;€;
J2V + Az(ﬁa F7 p)

1 B e;e.
B Y. X.8'AY.-X.B

o2y
O'2V

1+
vtp; - - —(v+2+pi)/2
_ L ie;F(Tp) Al 1/2 14 e;A; 1€i
o2 | T v 2
1T ()T (45)

( 1/+pz+2 )

v4p; v —(v+2+pi)/2
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dY;

vo
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It is noted that

LDl (v + 2)07 P2 (v +2)?

v+pi v - v _ —(v+2+pi)/2
p(+++2) u_+2Az‘| 1/2 (1 e;[V_HAi] 1ei) P

2
Y, is the distributed as t,,(X;8, *5A;, v + 2).

v+2
Then
vipit2\ v _ v _ —(v+2+p;)/2
/e,e’, PEEER) Al 2 () el Ad e 1Y,
TR [r(v + 2)0?]pil? (v +2)02 '
2
20'2>< vt X v Ai:O'2Ai.
(v+2)—2 v+2

(d)

To obtain E <[U2V?ZA(;?6FF BIE ) , we must compute the expectation of E ([021/+Ai(1/67 |NIE > .

First

: ([a?v T Ail(ﬁ,r,p)]?)

1 £
= E
U4V2 [ Y X,B) AZ (Y X,B ]

1 / F(%)“Ail*w : +‘ eéAflei —(v+4+p;i) /2 v
o2 ) T(4)(rvo)e2 2ok ‘

L D(4)T (%)

7T (5)T (75)
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[ I (el ) T
R+ 907 ' e |

1 3G+ v+2

ol (AR 1) oty 4 p) (v +pi+2)

S ramrar) "B am )

= 1 — 0_21/ 1
- E(02V+Ai(ﬁ,1“,p)) E([a?uﬂiw,r,p)]z)

Then

1 2, v+ 2
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(f)

We must use the fact that

B (f‘“g_ﬂY)) - (alog f(Y ) Olog f(Y») |

0w, 0w, ow, Ow,

' ' o (@AALA e A AL A e,
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the trigamma function. We note that
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Therefore, the form of s is concluded.

APPENDIX B: The first derivatives of the restricted log-likelihood

The following is the log of restrieted likelihood Lr(0r|Y ):

lp = logLr(6r|Y)

E:XTIX

=1

1
= constant — glog(a ) Tk log

N 1
——log(v) — B Zlog\AA — (v + p;) log

2 ,
=1 1= 1

ii{
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We take the first derivatives of Iz with respect to o2, v, and w, which can be

expressed as:

ol  n 1 N ﬁH
Gof = TaE 3" (ZXiHiXi) (ZX >

-1
ol 1 N Y. oH;
W = Taf (ZXZ'HZ'XZ) (in o Xi)




—1
o] 1 N N oH;
5] - e (o) (B

i=1 i=1
N N 1 La—1n
_1 Z {tr(A;lAW ) _ (y +pl) ( eiAZ A1,7' AZ €; )}
2 i=1 o?v+ Ai(B(0),T,p)
where
oH, A AN 'ee A
902 —v(v+pi) 2 2 (42 ¢ 3 (7
a 020 + Ay(B(6),T, )2 [02v + Ay(B(6),T, p)]
OH,; B Z_ B 2A; le A’A 1
o 0% + Ay(B(8) [02V +Ai(B(0).T, p))?

. { B eiA; }

o%v + AUBO), Tip)?  [02v + Ay(B(6 ,r,p)]3

OH, (sz){ AN [a v+ AB(0). T, p)] +

O, [o2r 4+ A:(8(6),T, p)?

| 27 AN A oA TR AT AT AT AT léfA"_lA"A;léi}.
0% +'AB(6), T, )} [0?v + Ai(B(6).T, p)?

APPENDIX C: The Bayes estimate b;(8) and the MSE matrix of b;(6)

The conditional mean of b; given Y, is the minimum squared error (MSE) estimator
of b; simultaneously, which is IA)l(O) TZA; YY;— X,B3). Since A; = ZTZ.+C,,

using the matrix inversion formula, we can get

A = Cit-citz, T v Zietz) T Ziet
= C;' - [r +Z/C7'Z,) (2,67 Z,)(Z.C1 Z,) " Z,C!
= Cc7'-C'z,[(z )y 'r 4+ 1,] 7 (Zie zy) T Ze)

= C;/'-C;'z; [WZ-I“ +Ipi}‘ (z,Cc;'z)'z,C;!
= c/'-c/lzr W, + T (Z\ci7'z)  Zz,C!
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where W, = (Z,C;'Z;)~!. Then

bi(0) = FZ;'A;l(Yz‘ — XiB)
= I'Z,C;' (Y- X:8)-TZ,C;'ZT W, +T| " (Z,C;'Z,)"' Z,.C; (Y — X.B)
= I(z,c;'z)(z.C;7'z) ' Z,C;\ (Y, — X,8) - TW,'T W, +T] ' (Z.C;*Z,)!

xZ.CTHY; — X.8)

Z (

= TW;'b/(0) -TW 'T(W, +T)"'b:(0)

= TW b/ (0) -TW (W, +T — W,;)(W, +T)"'b;(6)
= TW;' I, — I, + W,(W,+T)""] b;(0)

= (W, +T)'b;(6)

= b(0) - bi(0) +T(W,; +T)7'b;(0)

= b}(0)—bi(0)+ (W, + L W,)(W,+T)"'b;(6)
= bj(0)— [I,, — I, +W (Wt L)7] b1 (0)

= bj(0) - W, (W, £1)7'b(0),

where b5 (0) = (Z,C;'Z,) ' Z,C ;' (¥.7=X,3), and the equation (22) holds.
The following is the calculation.of the-MSE matrix of 51(0) To conclude the
MSE matrix of b;(0), we need the covariance matrices of b; and b;(8), which are

20T and T Z[A; ' (-%502A;)A; ' Z,T, respectively. Hence,

v—

- Cov< — b, bi() — bi> (Since E(b:(8) — b;) = 0)
= Cov (b, b)) + Cov (b 6), Bi(e)) — 2 Cov (Bi(e),bi)

= LT +TZA? (L 0®A A ZT —2TZA ' Z, (——0* | T
2 v—2 v—2

L,
= 02 [T —TZA;'ZT]

= 02 T -Tz.[Cc;'-C'ZT W, +T] ' (Z2,C;'Z) ' Z,C;'| Z.T|
= 02 T -TZ.C;'ZT+TZ.C;*'ZT (W, +T) ']

= 02 T -TZz.c7'Z; (I, —-T (W, +T) )T]
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02 W,+T - W, )(W,+T)"'| W,

02 I, —W,(W,;+T)"'| W,

0_2

50 [ =TWH (L, —T (W, + )]
02 T-TW;' (W, +T)(W,;+T)" ~=T (W, +T)"")T]
02 L -TW; ' (W(W,;+T)")T]
02 [T (I, — (W, +T)7'T)]
02 T (I,,—(W,+T)"" (W, +T - W,))]
02 INUZES SR
I
[
4

(W, +T)"'W].

APPENDIX D« The distribution of y, given Y,

< Yz ) NtPH“] (X:/Bv UQQ’i) V) )

Yi O'2
( ) TiNNpi-i-q (X;kﬁ7 _Qz> .
Y; Ti
The conditional distribution of y, given Y';, 7; is normal with mean ;21 = x;,3 +

-1 . . * _ o? -1
QmQQi’ll(Yi — X ;) and covariance matrix 301 = T—Z_(sz — leﬂi’nﬂi’m), and

Since

we can get

note that ;0.1 = 02(Q; 02 — 91,219[’1119“2). By Bayesian approach, we have

f(yz'|Yi)
/f(yi|Yz', ) f(Yi|7)g(m)dT;

-1
2 (Y; — pig)’ <%2¢,22~1> (y; — pi21)
exp § — 5

g

= (27r)_5

1
—Xi221
-

i
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I'(3)
pitaty _ o 1i01) (Bio1) (Y, — pio ; ;) —
X/Ti 5 1exp{—(y’ i) (Big21)  (y; 2#,21)+(W(V+p) y)—i_yn}dn
7,+q L4 v
! _1(2m) (32wt
= |Zio01| % |02 Q| 2 =
7" o)
1 _Pi+2q+v
pit+q+v (Y — pi21) (Bigaa) (Y — pipa) +wi(v + p;)
xI'( ) X
2 2
1 _pitatv
'_i~/i2i~_ ;— i 9. :
~ ((yz piga) (WiXhiooa) Y, — prig1) %,
UV + p;

Thus we have
yi’Yz‘"’tq (”i,2~17wizi,22-17 v+ pi) )

where

o1 = T8+ 91219,-_11 (Y, — X.08),

Sin1 = o (QiZQ - QinﬂillﬂilZ) ;
w = Y + (Vi = XiB)' (o*Qn) (Y, — XipB)
' v+ pi '

APPENDIX E: The equation of (25)
(From Appendix C, we know that X; 901 = o? (Qm — Qiglﬂi_ﬁﬂilg), where

Qill Qi12

Q,=ZTZ; +C; =
Qi21 Qi22

i ZZI‘Z;—FCH ZiFZ;"‘ClQ
B ZZI‘Z; + Cgl ZiI‘Z; + 022 .

Using the matrix inversion formula, we get
Q) = (Zrz,+cn)t
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- Cl-Chz [+ zclz) T ziey)
= C —CLZ:i[(Z,C\\Z)" — (Z/C\\' Z:) (T + (Z,C Z:) ") (Z;C Z:) 7]
x ZCyy
= C'-CH'Z Wy -Wy (T +Wu)' Wy Z,Cy,
where W1, = (Z,C'Z;)~'. The following is the calculation of €;91€2;,1Q;12:
Qi1 Q71 Qo
= [2TZ,+Cy)[CT' —CHZ; Wi — Wy (T + W) ' Wy Z,C] [ZTZ, + C1)
= 2TZ,C{'Z Tz, +2TZ,C;]C
—2LZ,CH'Z; Wiy —Wnul+Wn) "Wy Z,C' ZT2,
2L Z,C1'Z; Wy — W (T + W) 'Wy| Z,C1 Cyy
+C9C1'Z, T2, + CyCy]' Cyg
—CC{'Z; [Wi — Wil + W) "W | Z,C1' Z,.T 2,
—CC1'Z; [W1 — Wil + W11)_1W11] Z\C/Cs
= zIW Tz, +2,TZ.Cy Ci
— 2z TW W W [Tz, Y2 LW 'WhH(T + W) "W, W [Tz]
—2TW W Z/C[Cry + 2TW W (T + W) "W, Z/C[ Chy
+CC' Z T2, + CyC'Cry
~CyCZW WT2, + CyC ' ZW (T + W) "W W T2,
~CC' Z; [Wn - W+ W11)_1W11] Z\C/Cs
= 2 ITW{'T2 +2TZ,C{!Cyy — 2zTW T2, + 2,T(T + W) 'T'z]
—2TZ,C{!Cy+ 2T (T + W) "W, Z/C!Cy + CyCL Z T2, + CyC i Chy
~CyC Z T2, + CHC'Z,W (T + W) 'T2]
_02101_1122' [Wll - Wy (T + W11)71W11] Z;Cﬁlclz
= z (T + Wll)_lI‘z; + z,I(T + Wll)_1W11Z;CilC12 + C,CC1s
+CnC'ZW (T + W) T2,
- CyC1'Z; (Wi — W (T +Wy) "Wy Z;C Cha.
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Then

-1
Qi22 - Qi?lﬂillﬂiw

ZZ'I‘ZQ + 022 — ZZ]__‘(F + Wll)_lI‘zg — ZZI‘(I‘ + W11>_1W11ZQCI11012 —

—CuC'ZW (T +Wyy) T2,

+CC'Z; (W — Wi(T+ W) Wy Z,Cr'Cys

Cyp — CyC'Ciy+ 22, — 2,T(T + Wy, 'T'2]

— 2T+ W) "W, Z/C!Cy — Co1CZ,W (T + W) 'T2]
+C1C'Z; (Wi — Wi (T + W) 'Wy] Z/Cy,' Cha.

We note that

and

ZZ'I‘Z; — Zl:[‘(].—‘ -+ Wll)ill—‘zg = Z; [F — F(F + W11)71F:| Z;

Z; [F — F(F + Wll)_ll" — Wll(r i Wll)_lr + Wll(r + Wll)_lr} z

I — F + W11)<F + Wn)*lI‘ S Wll(F + Wn)ilr] Z/i

W (T + W) (B4 W= Wi (D -+ W11)_1W11} z
zi (Wi — WL+ W) 1W11} 2

Zi

CQlcﬂlcu

zi |

Z Wi+ W) ' Wit =W+ W) "Wy + Wy (T+Wy) Tz
[
[

z, (T + Wn)‘IWuZQCIECu = z; [Wu -Wu(T+ W11)_1W11} (021Cf11Zi)/
CxC'ZW (T +Wy) 'Tz, = CxCy'Z; (Wi =W (T+ W) "Wy 2

Therefore, we conclude that

Qigs — Qi1 Q71 Q15

Cy» — CyuC'Cio+ 2z [Wi —Wi(T+Wi) "Wy 2
—z; (Wi =Wy +Wy) "Wy (CuC' Z))
—CnCH'Z; Wi — Wiyl +Wp) "Wy 2z
+C51C1'Z; (Wi — Wiy + W) "Wy Z,C' Cys

Cai + (2 — CnC1,' Z;) [Wn - Wu(l+ Wu)_lwn} (zi — CnC' Z;).
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