
國 立 交 通 大 學 
統計學研究所 
碩 士 論 文 

 
 
 
 

利用 K-mean 與混合模型的方法對微正子斷層掃

描的動態影像做影像分割 

Segmentation of Dynamic MicroPET Images by 

K-mean and Mixture Methods 

 

 

 

研 究 生：江宏元 

指導教授：盧鴻興  教授 

 

 
 
 

中 華 民 國 九 十 三 年 六 月 



利用 K-mean 與混合模型的方法對微正子斷層掃

描的動態影像做影像分割 

Segmentation of Dynamic MicroPET Images by 

K-mean and Mixture Methods 
 

研 究 生：江宏元             Student：Hung-Yuan Chiang 

指導教授：盧鴻興             Advisor：Dr. Henry Horng-Shing Lu 

 

國 立 交 通 大 學 

統計學研究所 

碩 士 論 文 

A Thesis 

Submitted to Institute of Statistics 

College of Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

Statistics 
June 2004 

Hsinchu, Taiwan, Republic of China 
 

中華民國九十三年六月 



 i

利用 K-mean 與混合模型的方法對微正子斷層掃

描的動態影像做影像分割 

 

研 究 生：江宏元               指導教授：盧鴻興 博士 

 

國立交通大學統計學研究所 

 

摘要 

在活體追蹤和認識基因活動的過程中，動態 microPET 影像處理

及分割是其中很重要的一部份。 為了能夠觀測到微觀的基因活動， 

使用高精密度及較少假影的重建技術來探討真實的活度是必要的。 

因此，我們使用最大概似函數估計並經由 EM 演算法來重建 microPET 

圖像，然後利用 k-mean 和混合模型的統計方法到重建的圖像。在本

研究中使用模擬資料與實驗數據，所得到的結果證實這些新方法是可

行的。  
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Segmentation of Dynamic MicroPET Images by 

K-mean and Mixture Methods 
 

Student：Hung-Yuan Chiang   Advisor：Dr. Henry Horng-Shing Lu 

 

Institute of Statistics 

National Chiao Tung University 

 

ABSTRACT 

 

 The segmentation of dynamic microPET images is an important issue 

in tracing and recognizing the gene activity in vivo.  In order to discover 

the gene activity near the resolution of molecular level, reconstruction 

techniques with high precision and less artifacts are necessary to recover 

the genuine activity.  Hence, we will apply the maximum likelihood 

estimate by the EM algorithms to reconstruct microPET images with 

improved resolution.  Then, advanced statistical techniques based on 

k-mean and mixture models are developed to segment the reconstructed 

images.  Simulation and empirical studies are carried out to evaluate the 

performance of new methods proposed in this report.  The results show 

that these new methods are promising. 
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Chapter 1. Introduction 

 

Positron emission tomography (PET) provides a useful medical modality for 

detecting the metabolic activity inside a human body.  Recently, the technique of 

microPET has been developed to trace the gene activity near the resolution of 

molecular level in vivo (Cunningham, 1993).  In particular, the dynamic imaging by 

microPET offers valuable information of gene activity that is difficult or impossible to 

obtain by other image modalities.  Hence, it is very crucial to have reconstruction 

techniques with better precision and fewer artifacts so that the genuine activities of 

genes inside biological objects can be recovered. 

The maximum likelihood estimate by the EM (MLEM) algorithms and related 

techniques has been proposed to reconstruct PET images to improve resolution and 

reduce artifacts (Shepp and Vardi, 1982, Vardi, Shepp, and Kaufman, 1985, Politte 

and Snyder, 1991, Ollinger and Fessler, 1997, Lu and Tseng, 1997, Lu, Chen, and 

Yang, 1998, Chen et al., 1998, Tu et al., 2000, Chen et al., 2000, Tu et al., 2001, Chen, 

Lu, and Hsu, 2001).  Hence, we are motivated to apply these techniques to 

reconstruct dynamic microPET images in this study. 

The filtered backprojection (FBP) reconstruction and the technique of k-mean 

clustering with Akaike information criterion (AIC) has been applied to segment 

dynamic PET images in Wong et al. (2001, 2002).  Hence, we will consider the 

MLEM reconstruction and k-mean clustering to segment dynamic microPET images.  

Because the variances between different clusters may be different, we also consider 

the mixture model (McLachlan and Basford, 1988, Hsiao, Rangarajan, and Gindi, 

1998) for clustering instead of k-mean clustering when the equality test of variances 

fails.  In addition, AIC is replaced by the Bayesian information criterion (BIC) since 

BIC is consistent (Akaike, 1969, Akaike, 1974, Rand, 1971).  Furthermore, 
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dimension reduction techniques, like the principal component analysis (PCA) 

(Hotelling, 1933) or regression over time, are integrated with BIC to select the cluster 

size. 

The mouse data from the MocroPET R4 system in the Institute of Nuclear 

Energy in Taiwan are used for empirical studies in this report.  The size of images is 

128 by 128.  There are 63 time frames in the data set of dynamic images.  The 

empirical and simulation studies of the proposed new methods are reported to 

evaluate the performances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3

Chapter 2. Materials and Methods 

 

2.1 MLEM 

 The FBP reconstruction has been applied to tomography due to its fast 

computation.  However, the FBP is developed for transmission tomography and it 

does not consider the difference in emission tomography and the randomness in PET.  

Hence, the FBP reconstructions of PET images are typically noisy and inaccurate.  

Therefore, the MLEM reconstructions and related improvements have been proposed 

to PET in literature (Shepp and Vardi, 1982, Vardi, Shepp, and Kaufman, 1985, Politte 

and Snyder, 1991, Ollinger and Fessler, 1997, Lu and Tseng, 1997, Lu, Chen, and 

Yang, 1998, Chen et al., 1998, Tu et al., 2000, Chen et al., 2000, Tu et al., 2001, Chen, 

Lu, and Hsu, 2001). 

Suppose the target image is partitioned into B pixels and there are D detector 

tubes.  For each pixel, b = 1, 2, …, B, and each tube, d = 1, 2, …, D, the observations 

in prompt and delay windows are assumed to be 

( ) ( )( )* *Poissonp pn d dλ∼ ,  

( ) ( )( )* *Poissond dn d dλ∼ , 

( ) ( ) ( )* * *
p dd d dλ λ λ= + , 

( ) ( ) ( )*

1
,

B

b
d p b d bλ λ

=

=∑ . 

Where ( )*
pn d  and ( )*

dn d  are the number of coincidence events in prompt and 

delayed windows respectively, ( )bλ  is the emission intensity of the target image at 

pixel b, ( ),p b d  is the transition probability, ( )*
d dλ  is the accidental coincidence 

intensity, ( )*
pn d  and ( )*

dn d are assumed to be statistically independent. 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 
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 Because ( )*
pn d  and ( )*

dn d  are independent Poisson distributions with means 

( )*
p dλ  and ( )*

d dλ , the joint likelihood function, *( , )dL λ λ , becomes  

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

* *

* *
* *

*
* *

1 1

,
p d

p d

n d n dD D
d p d d

d
d dp d

d d
L e e

n d n d
λ λλ λ

λ λ − −

= =

=∏ ∏
！ ！

. 

As a result, the log-likelihood function is 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

* *

* *

1 1 1 1

* * *

1 1

, log ,

             , log ,

2 log .

d d

D B D B

p d
d b d b

D D

d d d
d d

l L

p b d b n d p b d b d

d n d d

λ λ λ λ

λ λ λ

λ λ

= = = =

= =

=

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

− +

∑∑ ∑ ∑

∑ ∑

 

The partial derivatives of the above log-likelihood with respect to ( )dλ  and ( )*
d dλ  

turn out to be 

( )( )
( )

( ) ( )

( ) ( ) ( )
( )

* *

' ' *1 1

' 1

log , ,
, 0

,

D Dd p
B

d d
d

b

L n d p b d
p b d

b b p b d d

λ λ

λ λ λ= =

=

∂
= − =

∂ +
∑ ∑
∑

, 

and 

( )( )
( )

( )

( ) ( ) ( )

( )
( )

* * *

* *
' *

' 1

log ,
2 0

,

d p d
B

d d
d

b

L n d n d
d dp b d b d

λ λ

λ λλ λ
=

∂
= − + =

∂ +∑
. 

The score equations of (2.1.7) and (2.1.8) for b =1, 2, …, B, d=1, 2, …, D, are 

intractable to find closed form solutions.  The iteration technique for computing 

maximum likelihood estimates, the EM algorithm, can be applied to find the closed 

solutions in every step (Dempster, Laird, and Rubin, 1977, Wu, 1983). 

Firstly, the observed data, ( )*
pn d  and ( )*

dn d , are regarded as incomplete data.  

The EM algorithm needs to specify the complete data.  One possible model for the 

complete data for PET with AC events is as follows. 

(2.1.5) 

(2.1.6) 

(2.1.7) 

(2.1.8) 
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( ) ( ) ( )( )* , Poisson ,pn b d p b d bλ∼ , 

( ) ( )( )* *Poissonpd dn d dλ∼ , 

where, ( )* ,pn b d  is the number of emissions occur at pixel b that are detected by tube 

d, ( )*
pdn d  is the number of accidental coincidence (AC) events detected by tube d.  

Assume ( )* ,pn b d  and ( )*
pdn d  are statistically independent, 

then ( ) ( ) ( )* * *

1
,

B

p p pd
b

n d n b d n d
=

= +∑ . 

The E-step will compute the conditional expectation of the log-likelihood of 

complete data given the observed incomplete data and old values of parameters, oldλ  

and *old
dλ .  This is a function of new values of parameters, newλ  and *new

dλ  as 

follows: 

( )
( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )

* *

* * * *

*

*1 1 1 1

' 1
*

* * *

1

, | ,

, | , , ,

,
, log ,

', '

   2 log
',

new new old old
d d

new new old old
d p d d

oldD B D B
new new

p B
old oldd b d b

d
b

oldD
dnew new

d d pd
oldd

Q

E l n n

p b d b
p b d b p b d b n d

p b d b d

d
d d n d

p b d b

λ λ λ λ

λ λ λ λ

λ
λ λ

λ λ

λ
λ λ

λ

= = = =

=

=

⎡ ⎤= ⎣ ⎦
⋅

= − + ⋅ ⋅
⋅ +

− + ⋅
⋅

∑∑ ∑∑
∑

∑
( ) ( )

( ) ( )( )

*1

' 1

* *

1

'

log .

D

B
oldd

d
b

D
new

d d
d

d

n d d

λ

λ

=

=

=

+

+

∑
∑

∑

 The M-step will determine newλ  and *new
dλ  as the solutions that maximize the 

above function of ( )* *, | ,new new old old
d dQ λ λ λ λ .  This can be achieved now by taking 

the first derivatives equal to zeros, 

( )
( )

* *, | ,
0

new new old old
d d
new

Q

b

λ λ λ λ

λ

∂
=

∂
, 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 
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and 

( )
( )

* *

*

, | ,
0

new new old old
d d

new
d

Q

b

λ λ λ λ

λ

∂
=

∂
. 

The solutions are  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

*1

' 1

,

', ' ',

D
pnew old

B
old oldd

d
b

n d p b d
b b

p b d b p b d d
λ λ

λ λ=

=

=
+

∑
∑

, 

and 

( ) ( ) ( )

( ) ( ) ( )
( )

* *
* *

*

' 1

1
2 ', '

old
p dnew

d dB
old old

d
b

n d b
d n d

p b d b d

λ
λ

λ λ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥+⎢ ⎥⎣ ⎦
∑

, 

for b = 1, 2, …, B, and d = 1, 2, …,D. 

 

Algorithm 2.1: The EM algorithm for reconstruction PET: 

1. Choose initial values ( ) 0old bλ >= , b = 1, 2, …, B. 

2. Choose initial values ( )* 0old
d dλ >= , d = 1, 2, …,D. 

3. Compute a new estimate ( )new bλ  by (2.1.14). 

4. Compute a new estimate ( )*new
d dλ  by (2.1.15). 

5. If ( ) ( )* *, , tolerancenew new old old
d dl lλ λ λ λ− < , then stop. 

 Otherwise, go to step 3 with oldλ   newλ  and *old
dλ   *new

dλ .   

(2.1.13) 

(2.1.14) 

(2.1.15) 
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2.2 K-mean Clustering  

K-mean clustering is a widely used method for clustering and segmentation of 

images because of its simplicity and fast speed (Cooper, 1979, Wong et al., 2001, 

2002).  K-mean clustering finds the centroid of every group and every data point is 

clustered such that the distance to its group centroid is minimal through iterations.  

Suppose the data point is T dimensional and the Euclidean distance is used, then the 

square of the distance of data point xi to the centroid µj is defined to be 

( ) ( )2 22

1
,

T

i j it jt i j
t

d x x xµ µ µ
=

= − = −∑ .  

The details of k-mean clustering are described in the following algorithm. 

 

Algorithm 2.2: K Mean Clustering  

1. Partition the data into K clusters with similar sizes by sorting the means of xi in 

T time frames and the initial centroids for K groups, {µ1, …, µK}, are calculated. 

2. Let M = {M1 ,…,MN} denote the membership of N data points and Mi indicate 

the cluster number for the data point xi as follows:  

1
,   mini i l i kk K

M l if x xµ µ
≤ ≤

= − = − .  

3. The centroids are updated by the memberships:  

1
( ) ,

N
i

k i
i k

xI M k
n

µ
=

= = ×∑  

0    ;
( )

1    .
i

i
i

if M k
I M k

if M k
≠⎧

= = ⎨ =⎩
 

where nk represents the number of data points in the kth cluster.   

4. Repeat the second and third steps until the memberships M = {M1, …, MN} 

remain the same or the maximum number of iterations is achieved.   

 

(2.2.1) 

(2.2.3) 

(2.2.2) 

(2.2.4) 
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2.3 Multivariate Normal Mixtures  

For the study of dynamic images, the entire data is denoted by X = {x1, …, xN}, 

where xi represents the intensity vector for T time frames at one pixel of the image.  

The Euclidean distance used in (2.2.1) for k-mean clustering is equivalent to assume 

that the distributions are normally distributed with normal distribution with different 

mean vectors and a common covariance matrix of σ2I, where σ2 is a variance scale and 

I is an identity matrix.  As the variance scale in every cluster may be different, we 

can consider the model of multivariate normal mixture with different mean vectors 

and covariance matrices (McLachlan and Basford, 1988, Hsiao, Rangarajan, and 

Gindi, 1998). 

Suppose that the probability that the data xi comes from the kth distribution is πk, 

k
K

k
k=1

0 1,

=1.

π

π

≤ ≤

∑  

Then the probability density function of xi becomes  

( ) ( )
1

, , ,
K

i k k i k
k

f x f xπ θ
=

Φ =∑  

where fk(xi,θk) refers to the probability density function in the kth cluster with 

parameters θk and the overall parameters are collected as 

).,...,,,...,( 11 KK θθππ=Φ  

Hence, we can write down likelihood function and log likelihood function for the 

observed incomplete data as follows:  

(2.3.1) 

(2.3.2) 

(2.3.3) 
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( ) ( )

( )

( ) ( )

( )

1

11

1

1 1

 ;

, ,

log  log ;

log , .

N

in i
i

N K

k k i k
ki

N

in i
i

N K

k k i k
i k

L f x

f x

L f x

f x

π θ

π θ

=

==

=

= =

Φ = Φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

Φ = Φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∏

∑∏

∏

∑ ∑

 

Then, the maximum likelihood estimate (MLE) needs to solve the partial 

differential equations of  

( )log
0inL∂ Φ

=
∂Φ

. 

However, the above score functions are usually difficult to solve directly.  The EM 

algorithm is applied to find the MLE iteratively (McLachlan and Basford, 1988, Hsiao, 

Rangarajan, and Gindi, 1998).   

Firstly, we introduce the following index function: 

1  if  comes from kth normal distribution; 
0  otherwise.                            

i
ik

 x
Y

                      
⎧

= ⎨
⎩

 

and let Yi = (Yi1, …, YiK).  These induces are not observed and {xi, Yi} form the 

complete data for the EM algorithm.  The conditional density of xi given Yi becomes 

( ) ( )
1

,
K

i i ik k i k
k

f x Y Y f xπ θ
=

=∑ . 

The conditional log-likelihood turns out to be 

( ) ( )

( )

( )( )( )

( )( )

1

1 1

1 1

1 1

log  log

log ,

log ,

log log , .

N

i i
i

N K

ik k i k
i k

N K

ik k i k
i k
N K

ik k i k
i k

L f x Y

Y f x

Y f x

Y f x

π θ

π θ

π θ

=

= =

= =

= =

Φ =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

= +

∏

∑ ∑

∑∑

∑∑

 

The E-step calculates compute the conditional expectation of (2.3.11) given the 

initial parameter Φ(old) and X: 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

(2.3.12) 

(2.3.13) 

(2.3.14) 
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( )( ) ( ) ( )( )old old; log ,Q E L XΦ Φ = Φ Φ . 

The M-step maximizes the above function with respect to Φ and the solution is used 

as Φ(new) to update the value of Φ(old).   

For finite mixtures, we have 

( )( ) ( ) ( )( )
( )( ) ( )

( )( ) ( )( )

old old

old

1 1

old

1 1

; log ,

      Y log log , ,

  Y , log log , .

N K

ik k i k
i k

N K

ik k i k
i k

Q E L X

E f x x

E x f x

π θ

π θ

= =

= =

Φ Φ = Φ Φ

⎛ ⎞
= + Φ⎜ ⎟

⎝ ⎠

= Φ +

∑∑

∑∑

 

So, we should evaluate E(Yik|x,Φ(old)) as follows:  

( )( ) ( )( ) ( )( )
( ) ( )( )
( ) ( )( )

old old old

old old

old old

1

, 1 1 , 0 0 ,

,
     .

,

ik i ik i ik i

k i k

K

k i k
k

E Y x f Y x f Y x

f x

f x

π θ

π θ
=

Φ = × = Φ + × = Φ

=

∑
 

Hence, 

( )( )
( ) ( )( )
( ) ( )( )

( )( )
old old

kold

old old1 1
k '

' 1

,
; log log , .

,

N K i k
k i kK

i k
i k

k

f x
Q f x

f x

π θ
π θ

π θ= =

=

Φ Φ = +∑∑
∑

 

Because of the constraint of πk in (2.3.2), we can use the Lagrange multiplier as 

follows: 

( )( ) ( )( )old old

1
; ; ; 1

K

k
k

Q Qλ λ π
=

⎛ ⎞
Φ Φ = Φ Φ + −⎜ ⎟

⎝ ⎠
∑ , 

where λ is in Lagrange multiplier parameter.  By the constraint in (2.3.1) and (2.3.2), 

we have the solution for the local maximum in (2.3.21) and (2.3.22) for the normal 

mixture as follows: 

( ) ( )( )
( )( )

new old

1

old

1

1 ,

1 , ,

N

k i
i
N

i
i

f k x

f k x
N

π
λ =

=

= − Φ

= − Φ

∑

∑
 

(2.3.15) 

(2.3.16) 

(2.3.17) 

(2.3.18) 

(2.3.19) 

(2.3.20) 

(2.3.21) 

(2.3.22) 

(2.3.23) 

(2.3.24) 



 11

( )

( )( )
( )( )

old

new 1

old

1

,
,

,

N

i i
i

k N

i
i

f k x x

f k x
µ =

=

Φ
=

Φ

∑

∑
 

( )

( )( ) ( )( ) ( )( )
( )( )

old new new
k k

new 1

old

1

,

,

N T

i i i
i

k N

i
i

f k x x x

f k x

µ µ
=

=

Φ − −
Σ =

Φ

∑

∑
, 

where 

( ) ( )

( ) ( ) ( )
1

12 2

; ; ,

12 exp .
2

k k k

d T
k k k k

f x f x

x x

θ µ

π µ µ− − −

= Σ

⎛ ⎞= Σ − − Σ −⎜ ⎟
⎝ ⎠

 

Thus, the EM algorithm for multivariate normal mixtures is described in the following 

algorithm.   

 

Algorithm 2.3: The EM algorithm for multivariate normal mixtures  

1. Set the initial parameters Φ(old).   

2. Update the parameters by using (2.3.24), (2.3.25) and (2.3.26). 

3. If log Lin (Φ(new) ) –log Lin (Φ(old) ) < tolerance, then the iteration stops.  

Otherwise, go to Step 2 with the old values of parameters replaced by the new 

values.   

 

2.4 Model Selection 

How do we select the cluster size? Model selection criterion is useful to select 

the cluster size, like the Akaike information criterion (AIC) or Bayesian information 

criterion (BIC) (Akaike, 1969, Akaike, 1974, Rand, 1971).  They are defined to 

balance the tradeoff between the maximum log-likelihood and the complexity penalty 

as follows: 

(2.3.27) 

(2.3.25) 

(2.3.26) 
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( )
2log 2 ,         
2 log ln ,

AIC likelihood p
BIC likelihood p N

= − +⎧
⎨ = − +⎩

 

where p is the number of free parameters.  It is shown that BIC is consistent and we 

will consider BIC.  These two criteria are the same when the sample size is N = 

7.389.  When the sample size is greater than 7.389, the penalty term in BIC is bigger 

than that in AIC.  The sample size is 16384 * T in simulation and empirical studies 

of this report with the number of time frames in T.  Hence, the BIC will select a 

simpler model with smaller clusters than the AIC will in these studies. 

 

2.5 Tests for Homogeneity of Variances  

If the variances are not the same, then we shall consider the normal mixtures 

instead of k-mean clustering.  We can use tests of homogeneity of variances for this 

purpose.  If the distributions in clusters are normally distributed, then the Bartlett test 

can be applied (Snedecor and Cochran, 1989).  The hypotheses are  

0 1: , 1, , ; :  a t lea s t o n e  .i iH i K Hσ σ σ σ= = ≠  

The following notations are defined: 

1
( ) ,

0    
( ) .

1    

N
i

k i
i k

i
i

i

xI M k
n

if M k
I M k

if M k

µ
=

= = ×

≠⎧
= = ⎨ =⎩

∑
 

( )2
2

1
( ) ,

1

N
i k

k i
i k

x
S I M k

n
µ

=

−
= = ×

−∑  

( )

( )

2

2 1

1

1
.

1

K

k k
k

K

k
k

n S
S

n

=

=

−
=

−

∑

∑
 

( ) ( )2 2

1 1
1 log 1 log ,

K K

k k k
k k

D n S n S
= =

= − − −∑ ∑  

(2.5.1) 

(2.5.2) 

(2.5.3) 

(2.5.4) 

(2.4.1) 

(2.4.2) 
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( )

( )

1

1

1 1
1 1

1
3 1

K

K
k k

k
k

n n
C

K

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟−

−⎜ ⎟−⎜ ⎟
⎝ ⎠= +

−

∑
∑

. 

Under 0H , the quantity D
C  is approximately distributed as a 2

1Kx − variable.  By a 

significance level α, we reject 0H  if 2
1,K

D xC α−>  by the Bartlett test.   

If the distributions in clusters are not normally distributed, then the Levene test 

can be applied (Levene, 1960).  The Levene test is less sensitive the departure of 

normality than the Bartlett test is.  Let 

( ) ( )

( ) ( )

2
. ..

1

2
. ..

1 1

,
1

k

K

k k
k

nK

k
k j

N K n Z Z
W

K Z Z

=

= =

− −
=

− −

∑

∑∑
 

where .kj kj iZ x x= −  and .ix  is the median of kth subgroup.  Under 0H , the quantity 

W is approximately distribution as an ( )1, .K N KF − −  By a significance level α, we 

reject 0H  if ( )1, ,K N KW F α− −>  by the Levene test. 

 

2.6 Dimension Reduction 

In this study, the data amount is large and the computation costs in BIC become 

large.  Dimension reduction methods can be applied to reduce the computation cost 

and suggest good initial cluster size.  For example, the techniques of principal 

component analysis (PCA) (Hotelling, 1933) and regression in time can be applied.  

In PCA, we will select the leading principal components that explain more than 80% 

of variances.  For regression in time, we use the regression slope in a linear 

regression model in time to reduce the dimension to one. 

 

(2.5.5) 
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2.7 Cluster Merging in Segmentation 

In microPET, there are a lot of factors that may cause noises in data.  

Multivariate normal mixtures are sensitive to noises and tend to separate noisy pixels 

into small clusters.  K-mean clustering will have small clusters when the noise effect 

is large.  Hence, we will merge neighboring clusters that have similar intensities.  

For example, we can test the distributions of mean intensities over time by the 

Kolmogorov-Smirno test (Feller, 1948).   

 

2.8 Flow Charts 

 For comparison studies, three procedures are investigated in this report.  The 

first procedure use the method of k-mean clustering and the second procedure uses the 

method of multivariate normal mixture.  The third procedure uses tests of 

homogeneity for variances to select the clustering methods.  If the homogeneity of 

variances is rejected, then the clustering results and the cluster size by k-mean 

clustering are used as the initial values in multivariate normal mixture of the original 

data.  The flow charts are displayed below. 
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Procedure 1 and 2: 
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Procedure 3: 
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Chapter 3. Simulation Studies 

 

3.1 Simulation 1 

The phantom used in simulation 1 is displayed in Figure 1 of the Appendix.  

Those pixels outside the field-of-view (FOV) or region-of-interest (ROI) are put in 

Cluster 1.  Inside the FOV or ROI, there are three clusters with different dynamic 

activities.  Cluster 2 has similar activity as time increases.  Cluster 3 has decreasing 

activity as time increases, whereas Cluster 4 has increasing activity as time increases.  

There are 128 by 128 pixels and 10 time frames simulated according to the model of 

(2.1.1) and (2.1.2) with D = 192 and ( )*
d dλ  / ( )*

p dλ  = 30%.  Time-activity 

curves in Simulation 1 are plotted in Figure 2. 

 

3.1.1 Procedure 1 

The PCA loadings of simulation 1 are plotted in Figure 3.  The first principal 

component explains 86.9% of the variation and it is used for the purpose of dimension 

reduction.  The BIC plots for k-mean clustering by PCA and regression in time are 

displayed in Figure 4 and 5 that both suggest the cluster size of 6.  The segmentation 

results of k-mean clustering when the cluster size is 3, 4, 5, and 6 are shown in Figure 

6, 7, 8, and 9.  Hence, the selected cluster size of 6 results in small clusters caused by 

noise effects.  The neighboring clusters with similar intensities can be merged from 

the cluster size of 6 to 4.  However, the cluster size shall not be reduced from 4 to 3 

since the neighboring clusters have different intensities. 

The BIC plot of Simulation 1 for the original data by k-mean clustering is plotted 

in Figure 10.  This BIC plot will select the correct cluster size this case.  In any case, 

the cluster sizes selected by BIC with PCA or regression in time can provide a fast 
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approach to suggest a good initial size for searching the cluster size by BIC for the 

original data.  Classification errors of k-mean clustering with cluster size 4 in 

Simulation 1 are reported in Table 1 of the Appendix. 

 

3.1.2 Procedure 2 

Similarly, we investigate the performance of normal mixture in Procedure 2 for 

Simulation 1.  The BIC plots of normal mixture in Simulation 1 by PCA and 

regression in time are plotted in Figure 11 and 12, which suggest the cluster size of 6 

and 5 that has the largest drops of BIC values respectively.  The segmentation results 

of normal mixtures when the cluster size varies from 3 to 6 are displayed in Figure 

13-16.  These segmentation results of normal mixture in Figure 13-16 are similar in 

quality to those of k-mean clustering in Figure 6-9.  The BIC plot of k-mean 

clustering in Simulation 1 for the original data by normal mixture clustering is plotted 

in Figure 17, which has the largest decrease of BIC value when the cluster size is 4.  

Classification errors of normal mixture with cluster size 4 in Simulation 1 are reported 

in Table 2, which are similar in quantity to those of k-mean clustering in Table 1.  

The error rate of normal mixture is better in Cluster 3 and 4, which have decreasing or 

increasing activities over time that are the major focus in dynamic studies. 

 

3.1.3 Procedure 3 

Procedure 3 is the combination of Procedure 2 and Procedure 1 with the test of 

homogeneity of variances.  The results of Bartlett tests are reported in Table 3, which 

reject the null hypothesis in this case.  Hence, Procedure 1 with normal mixture is 

used in this case.   
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3.2 Simulation 2 

 The phantom study in Simulation 2 is displayed in Figure 18, where there are 

nested clusters that are of interest.  The segmentation results are reported in the 

Appendix.  The error rate of normal mixture is better in Cluster 3 and 4 that have 

similar intensities.  Because the simulations are based on the simulations of Poisson 

distributions in the model of (2.1.1) and (2.1.2), the variance is the same as the mean 

intensity for a Poisson distribution.  So, Cluster 3 and 4 in these two simulations 

have high intensities and variances.  Hence, clustering by normal mixture has higher 

accuracy to distinguishing the clusters with higher intensities over time in these two 

simulations. 
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Chapter 4. Empirical studies  

 

The empirical data are collected from the mouse data from the MocroPET R4 

system in Taiwan.  There are 63 slices of the volume data and we use the middle 

24th slice for investigation.  There are 10 time frames.  The MLEM reconstruction 

of the first time frame is displayed in Figure 28.  There are two clusters of regions 

with high intensities.  We will proceed automatic clustering of this data by Procedure 

3.  The loading of principal components are shown in Figure 29.  As the first 

principal component explains 85% of variation, it is selected as the dimension 

reduction method for PCA in this study.  Linear regression in time is another method 

of dimension reduction in this study. 

Firstly, k-mean clustering with dimension reduction methods is used to segment 

the dynamic images.  The BIC plots of PCA and regression are displayed in Figure 

31 and 30, which suggest that the cluster size can be 4 and 5.  The segmentation 

results of 4 and 5 clusters for the original data by k-mean clustering are demonstrated 

in Figure 32 and 33. 

The results of Bartlett tests are reported in Table 4, which reject the null 

hypothesis that the variances are equal in all clusters.  Hence, the normal mixture is 

used to segment the images.  The segmentation results by normal mixture are 

displayed in Figure 34-37.  The qualities of segmentation results by k-mean 

clustering and normal mixtures are similar.  The quantity differences can be 

evaluated by expertise in future studies. 
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Chapter 5. Conclusion and Discussion 

 

We have proposed new methods to segment dynamic microPET images by 

MLEM reconstruction with k-mean or mixture clustering.  The MLEM 

reconstruction is more precise than the FBP reconstruction with fewer artifacts.  

K-mean or mixture clustering can perform the segmentation automatically.  Tests of 

homogeneity of variances are used to decide k-mean or mixture clustering.  BIC is 

used to select the cluster size from the data adaptively.  Dimension reduction 

techniques can be integrated to reduce the computation cost in determining the cluster 

size by BIC. 

If the activities of various clusters have different temporary patterns, then 

regression in time is useful to distinguish them via dimension reduction.  Otherwise, 

the principal component analysis is a general tool for dimension reduction.  Besides 

simple linear regression, we can also consider polynomial or nonlinear regression in 

time.   

 Because the images of MLEM reconstruction may be still noisy, noise reduction 

filters can be applied to remove noises.  For example, the median filter can be 

applied as demonstrated in Figure 38.  Other filters that can remove noises and 

preserve edges are important for this purpose. 

 For further investigation of these methods, it will be of great interest to evaluate 

the quality and quantity performance by more phantom studies and empirical studies 

with the judgments from medical experts in the future. 
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Appendix 

 

 

  

 

Figure 1: Four clusters in Simulation 1 within the size of 128 by 128 are displayed. 

Figure 2: Time-activity curves in 
Simulation 1 are plotted. 

Figure 3: PCA loadings of simulation 1 
are plotted. 

Cluster 4 

Cluster 3 Cluster 2 

Cluster 1 
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Figure 4: The BIC plot of k-mean 
clustering in Simulation 1 by PCA is 
displayed. 

Figure 5: The BIC plot of k-mean clustering in 
Simulation 1 by regression is displayed. 

Figure 6: The results of 3 clusters in 
Simulation 1 by k-mean clustering are shown. 

Figure 7: The results of 4 clusters in 
Simulation 1 by k-mean clustering are shown. 

Figure 8: The results of 5 clusters in 
Simulation 1 by k-mean clustering are shown. 

Figure 9: The results of 6 clusters in 
Simulation 1 by k-mean clustering are shown. 
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K-mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 Sum of Errors

True Cluster 1 3492 0 0 0 0 

True Cluster 2 1 ( )36 10 %−×  11350 5 ( )0.03%  104 ( )0.63%  ( )110 0.67%  

True Cluster 3 0 163 ( )1%  505 48 ( )0.3%  ( )211 1.28%  

True Cluster 4 0 198 ( )1.2%  0 518 ( )198 1.2%  

 

Figure 10: The BIC plot of k-mean clustering 
in Simulation 1 for the original data by k-mean 
clustering is plotted. 

Figure 11: The BIC plot of normal 
mixture in Simulation 1 by PCA is 
displayed. 

Figure 12: The BIC plot of normal mixture 
in Simulation 1 by regression is displayed. 
 

Table 1: Classification errors and error rates of k-mean clustering in Simulation 1 are shown.  
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Figure 13: The results of 3 clusters in 
Simulation 1 by normal mixture are shown. 

Figure 14: The results of 4 clusters in 
Simulation 1 by normal mixture are shown.

Figure 15: The results of 5 clusters in 
Simulation 1 by normal mixture are shown.

Figure 16: The results of 6 clusters in 
Simulation 1 by normal mixture are shown. 

Figure 17: The BIC plot of normal mixture in 
Simulation 1 for the original data by normal 
mixture is plotted. 
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Normal 
mixture 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Sum of Errors

True Cluster 1 3492 0 0 0 0 

True Cluster 2 64 ( )0.4%  11211 12 ( )0.07%  173 ( )1.05%  ( )249 1.52%  

True Cluster 3 0 85 ( )0.52%  520 111 ( )0.68%  ( )196 1.2%  

True Cluster 4 0 112 ( )0.68%  0 604 ( )112 0.68%  

 
 
 
 
 

Table 2: Classification errors and error rates of normal mixture clustering in Simulation 1 are 
shown. 
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Figure 18: Four clusters in Simulation 2 are displayed. 

Cluster 4 
Cluster 3 

Cluster 2 

Cluster 1 

Figure 19: Time-activity curves in Simulation 2 are plotted. 
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Figure 20: The results of 3 clusters in 
Simulation 2 by k-mean clustering are 
shown. 

Figure 21: The results of 4 clusters in 
Simulation 2 by k-mean clustering are 
shown.

Figure 22: The results of 5 clusters in 
Simulation 2 by k-mean clustering are 
shown. 

Figure 23: The results of 6 clusters in 
Simulation 2 by k-mean clustering are 
shown. 

Figure 24: The results of 3 clusters in 
Simulation 2 by normal mixture are shown. 
 

Figure 25: The results of 4 clusters in 
Simulation 2 by normal mixture are shown.
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 k_mean 3 4 5
simulation error    

True 
Cluster 3 

(992 6.05

 

25

( )0.15%  
940

967

( )5.9%

True 
Cluster 4 

(3 0.018%

 0 

3

( )0.018%

121
 mixture 3 4 5
simulation error    

True 
Cluster 3 

(649 3.9%

 

83

( )0.5%  
1283

566

( )3.45%

True 
Cluster 4 

(19 0.11%

 0 

19

( )0.11%
105

 
 

Figure 26: The results of 5 clusters in 
Simulation 2 by normal mixture are shown. 
 

Figure 27: The results of 6 clusters in 
Simulation 2 by normal mixture are shown.
 

Table 3: Classification errors and error rates of k-mean and normal mixture clustering in 
Simulation 2 are shown. 
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Figure 28: Experiment data are displayed 

Figure 29: PCA loadings of 
experiment data are plotted. 

Figure 31: The BIC plot of k-mean 
clustering in experiment data by PCA is 
displayed. 

Figure 30: The BIC plot of k-mean 
clustering in experiment data by 
regression is displayed. 
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 groups P-Value
Bartlett test 3 58141 0
Bartlett test 4 68401.68 0
Bartlett test 5 68969.65 0
Bartlett test 6 68180.45 0
Bartlett test 7 67808.42 0
Bartlett test 8 67689.87 0
Bartlett test 9 68524.84 0
Bartlett test 10 68193.19 0
Bartlett test 11 67974.98 0
Bartlett test 12 70109.08 0
 

 

 
 
 

Table 4: The results by the Bartlett test are reported. 

Figure 32: The results of 4 clusters in 
experiment data by k-mean clustering are 
shown. 

Figure 33: The results of 5 clusters in 
experiment data by k-mean clustering 
are shown. 

Figure 34: The results of 3 clusters in 
experiment data by normal mixture are 
shown. 

Figure 35: The results of 4 clusters in 
experiment data by normal mixture are 
shown. 
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Figure 36: The results of 5 clusters in 
experiment data by normal mixture are 
shown. 

Figure 37: The results of 6 clusters in 
experiment data by normal mixture are 
shown. 
 

Figure 38: Reduce noises by a median filter. 
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Figure 39: Time-activity curves of  
 experiment data are plotted. 


