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摘  要 

微生物晶片資料通常包含的基因數非常多(數千個)，但相對的腫瘤樣

本數不到 100 個。從這些大量的基因中去挑選對於分類具有顯著關係的基

因稱為基因選取(gene or feature selection)。我們在本文中回顧了一些基因選

取的方法以及統計學家對於"大 p 小 n "問題的處裡。我們著重的方法是

Support Vector Machines (SVMs)，將從模擬實驗去探討線性以及非線性分類

問題。對於線性分類問題，我們主要探討基因之間相關性的影響和資料具

有部份重疊(overlap)的情況;對於非線性分類問題，我們使用兩種基因選

取方法,並比較其重要基因的選取結果及分類精確度。 
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ABSTRACT 
 

Microarray data contains large number of p genes (usually several thousands) and small 

number of n patients (usually nearly 100 or less). The problem of identifying the features best 

discriminate among the classes to improve the ability of a classifier is known as feature 

selection. Some current feature selection methods and the problem of dealing with "large p, 

small n" are reviewed. The Support Vector Machines (SVMs) has proofed excellent 

performance in practice as a classification methodology. For linear classification problem, this 

paper studies the following two issues: (i) the number of one gene ' s surrogates somehow 

affects the importance of the gene; (ii) the case of overlapping classes. For nonlinear 

classification problem, we utilize two procedures: 1. mapping the original nonlinear separable 

data to the high dimension space, and then use SVM RFE with linear kernel to find crucial 

genes; 2. using SVM RFE with nonlinear kernel. Then we compare these two methods on 

nonlinear toy problem. 
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1  Introduction 

Nowadays, the developments of DNA microarrays enable biologists simultaneously to 

measure thousands of gene expression data and classify samples belonging to different classes. 

Leukemia dataset containing two types of acute myeloid leukemia (AML) and acute 

lymphoblastic leukemia (ALL) was originally studied by Golub et al. (1999). Support Vector 

Machines is a new, powerful, and supervising technology to be used in many real-word 

applications and proofed excellent performance such as the classification problem of 

microarrays gene expression data (or microarrays data analysis), text categorization, hand- 

written character recognition, image classification or biological sequence analysis(Markowetz, 

Edler, and Vingron, 2003). It also successively extended by a number of other researches. The 

SVM paradigm has a nice geometrical interpretation in the binary case. It creates a maximal 

margin separating hyperplane between the two classes {+} or {-} from the information of 

pattern vectors x . When the dataset is linearly separable, it is possible to construct the 

optimal hyperplane. SVMs can also use kernel functions which map original nonlinear 

separable datasets into a higher dimension feature space to deal with nonlinear classification 

problem. In this paper, we will discuss two typical problems associated with microarray data 

analysis: 

pℜ∈

(a) Classification analysis 

We focus on two-class classification problem. Let the training data set is given 

as  with  The training examples are used 

to construct a decision function . Define a separating hyperplane by . New 

observations of the test set are classified according to the decision function: 

),,(,),,(),,( 2211 nn yyy xxx L }.1,1{, −+∈ℜ∈ i
p
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where is an input observation in the test set. rx

(b) Gene selection (or feature selection) 

The problem in gene expression data is that the number of p genes is very large (usually 

several thousands) and the number of n patients is comparatively scarce (usually nearly 100 or 

less), but many of the genes are irrelevant or even noises to the classification problem. In 

statistics, this problem is called "curse of dimensionality". For the problem of "large p, small 

n", the accuracy is very high in assigning the label of the training sample, but very low in the 

test sample. Guyon et al. (2002) also demonstrate that the feature selected matter more than 

the classifier used. For the reason of generalization performance of a classifier, economical, 

and computational considerations, we would like to select a subset of relevant and distinct 

features which best discriminate among the classes to improve the ability of a classifier. A 

recently proposed gene selection method, specially tested on microarrays expression data, is 

called Recursive Feature Elimination (RFE). The idea is using the weights of a classifier to 

produce a feature ranking. 

In this paper, we investigate the Support Vector Machines criteria for feature selection in 

application to classification problems. This is SVMs based on RFE algorithm (Guyon et al., 

2002). For linear classification problem, we are interested in getting more insights on (i) the 

number of one gene’s surrogates somehow affect the importance of the gene; (ii) the case of 

overlapping classes. For nonlinear classification problem, we use two procedures: one is to 

map the original nonlinear separable data to the high dimension space, and then use SVM 

RFE with linear kernel to find crucial genes; another is to use SVM RFE with nonlinear 

kernel. We compare the classification performance of these two methods on nonlinearly toy 

problem. The distribution of the simulation data (toy problem) are provided in Weston et al 

(2000). We also discuss the effect of normalization, and which kernel is appropriate for 
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different data structure and decision rules. 

The paper is organized as follows. In Section 2 we review the literature about gene 

selection and classification problem, in section 3 we describe SVMs and in section 4 we 

introduce feature selection using SVMs. In Section 5 we present several simulation results for 

linear and nonlinear classification problems. Finally, section 6 contains the summary of the 

reviews, conclusions and future research directions. 

 

2   Literature Review 

In the current (recent) literature, two basic approaches for feature selection are proposed: 

filter methods and wrapper methods. The signal-to-noise (S2N) in Golub et al. (1999) is a 

filter method. The correlation coefficients used as ranking criteria is 

 piw
ii

ii
i ,,1, L=

−++
−−+

=
)()(
)()(

σσ
µµ

 (1)

where iµ  and iσ  represents the mean and standard deviation of the gene expression values 

of gene i of class (+) or class (-). Furey et al. (2000) used the absolute value of  as 

ranking criterion. Recently, Pavlidis (2000) used 

swi '

 pi
ii

ii ,,1,22

2

L=
−++
−−+
)()(
))()((

σσ
µµ

 (2)

as ranking criterion, which is similar to Fisher’s criterion score. For the perspective of 

classification, it is important to select distinct but still highly informative features. With the 

filter method, we may identify a large number of relevant genes, and the identified set likely 

has heavy redundancy. On the other hand, the selected genes are highly correlated to each 

other (Krishnapuram, Carin, Hartemink, 2004). Recursive Feature Elimination (RFE), which 

has been proposed by Guyon et al. (2002) is a wrapper method. This method is based on a 

backward sequential selection in Rakotomamonjy, et al. (2003), starting with all the features, 

and removing one feature or chunks of features at a time. In Guyon et al. (2002), they also 
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generalized SVM RFE to nonlinear case. (Fujarewicz, and Wiench, et al. 2003) use recursive 

feature elimination(RFE), recursive feature replacement(RFR), neighborhood analysis and 

pure Sebestyen criterion four gene selection methods to find differently expressed genes for 

the tumor/normal classification of colon tissues, showing that the RFE and RFR methods 

work much better than other two methods, and from the results of leave-one-out 

cross-validation (LOOCV), RFR gives better performance for smaller gene subsets; RFE is 

slightly better for larger gene subsets. For the toy experiment, the datasets were described in 

Weston et al. (2000). Weston et al. (2000) utilize the toy data to compare the performance of 

different feature selection methods including standard SVMs, their algorithms and three 

classical filter methods. Their method is based on finding those features which minimize 

bounds on the leave-one-out error. This search can be efficiently performed via gradient 

descent. The three filter methods choose the crucial features based on Pearson correlation 

coefficients, the Fisher criterion score, and the Kolmogorov-Smirnov test. Grandvalet, and 

Canu, (2002); Rakotomamonjy, (2003) also compare their feature selection approaches to 

standard SVMs on these datasets (toy). From these literatures, it is inappropriate to use 

standard SVMs dealing with nonlinear classification problems. Furthermore, multicategory 

problems are often regarded as a series of binary problems. Lee et al. (2001) proposed 

multicategory Support Vector Machines (MSVM), which extend the binary SVM to the 

multicategory case. Lee & Lee (2002) applied the MSVM to analyze the published multiple 

cancer types of leukemia dataset in Golub et al. (1999) and small round blue cell tumors 

(SRBCTs) of childhood data set in Khan et al. (2001). The leukemia data were separated into 

three classes including AML, ALL B-cell and ALL T-cell; the SRBCTs data were separated 

into four classes including neuroblastoma(NB), rhabdo-myosarcoma (RMS), non-Hodgkin 

lymphoma (NHL) and the Ewing family of tumors (EWS). 

Next, we review some research works on the role of kernels when using a SVM. It is 

difficult to find an appropriate kernel function for a particular problem. Many literatures only 
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report results on the kernel that performed best on their test set. For examples of notably face 

and pedestrian diction, the results of using Gaussian kernel with appropriate settings of the 

width parametersσ will be better than any other kernel in Rifkin et al. (2002). From (Guyon, 

Weston, Barnhill, and Vapnik, 2002), they use the polynomial kernel of degree 2 for the 

example of XOR problem. Even if a strong theoretical method for selecting a kernel is 

developed, unless this can be validated using independent test sets on a large number of 

problems. Methods such as bootstrapping and cross-validation will remain the preferred 

method for kernel selection, in GUNN et al. (1998). 

SVMs involve many hyperparameters including degree d of a polynomial kernel, 

Gaussian kernel parameterσ , and penalized parameter C. It is crucial to choose appropriate 

values of these parameters to achieve the best generalization performance. The appropriate 

Kernel parameter implicitly defines the structure of high dimensional feature space where a 

maximal margin hyperplane will be found. If the kernels are too poor, then the system can not 

separate the data, Cristianini et al. (1998). Cristianini et al. (1998) presented an algorithm 

which can automatically learn the kernel parameter. Rakotomamonjy et al. (2003) use 

nonlinear toy problem to represent the influence of the two parametersσ and C on the test 

error, as 3=σ , the best performance for C=100; as C=100, the best performance for 3=σ . 

 

3   Support Vector Machines 

This section is an overview of linear and nonlinear classification method called Support 

Vector Machines. The general classification problem can be considered as the two-class 

problem. The goal is to separate the two classes from available examples. If the data is 

linearly separable all the support vectors will lie on the margin and hence the number of 

support vectors can be very small, in GUNN et al. (1998). 

 5



Margin 

Optimal 

hyperplane 
 

Figure 1: separable case with a maximal margin. 

 

3.1  Linear Classifier for Linearly Separable Data 

Let the training set is with Using 

the given training examples during the learning stage, the machine finds the parameters 

 and b of a decision function given as 

),,(,),,(),,( 2211 nn yyy xxx L }.1,1{, −+∈ℜ∈ i
p

i yx  

T
pwww ][ 21 L=w ),,( bd wx

 ∑
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+=+=
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i
ii

T bxwbbd
1

),,( xwwx  (3)

where , and the scalar b is called a bias. Define a hyperplane by pR∈wx,

 }0),,(:{ =bd wxx  (4)

If , then pattern belongs to class 1 0),,( >bd wx r rx )1.,.( +=r

r wx r

yei  

If d , then pattern belongs to class 2  0),,( <b rx )1.,.( −=yei

The optimal hyperplane is found based on creating the biggest margin between the 

training points for class 1 and class -1, see Figure 1. In order to find the optimal separating 

hyperplane, a learning machine should 

 Minimize w  
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    subject to  niby i
T

i ,,1,1][ L=≥+xw (5)

Such an optimization problem is solved by the Lagrange function 

 ∑
=

−+=
n
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2
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T
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T αα  (6)

where the iα are Lagrange multipliers. 

The corresponding dual objective function is 

 .
2
1)(

1,1
j

T
i

n
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n

i
id yyL xx∑∑

==

−= αααα  (7)

And the optimal hyperplane is found by maximizing 

 )(αdL  subject to  ∑
=

=
n

i
ii y

1

,0α nii ,,1,0 K=≥α  (8)

Solutions of this dual optimization problem are easy to be solved, and we can determine 

the parameters w and b of the optimal hyperplane as follows. 

*
iα

 niy
n

i
iii ,,1,

1

** K== ∑
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T
s
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Ns
yN

b
1

** ,,1,))1((1
Kwx  (9)

where  denotes the number of support vectors. SVN

Finally, we substitute parameters (9) into (3) to obtain an optimal hyperplane and an 

indicator function :  

)(x*d

fi

 ∑
=

+=+=
n

i
i

T
ii

T bybd
1

***** xxxw(x) α  

 )).(()( * xx dsigni f =  (10)
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Figure 2: soft decision boundaries with data overlapping 

3.2  Linear Classifier for Overlapping Classes 

In practice, the datasets we want to work are not necessary linearly separable. When the 

training data sets are inseparable, we can still find a classifier with a maximal margin, 

allowing some data on the ‘wrong’ side of a decision boundary. See Figure 2, the points 

labeled iξ  are on the wrong side. Then the problem becomes 

 minimize w  

 subject to  and,   niby ii
T

i ,,1,1] K=−≥+ ξx[w

 .,0 ∑ ≤≥ constatii ξξ  (11)

Note that  is the total proportional amount by which predictions fall on the wrong side 

of their margin. 

∑ iξ

For convenient computation, we re-express the problem as 

 )(
2
1min

1, ∑
=

+
n

i
i

T

bw
C ξww  

 subject to  niby iii
T

i ,,1,0,1][ K=≥−≥+ ξξxw (12)

where C is a given constant. 
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The corresponding dual problem is as follows: 

 j
T
i

n

i

n

ji
jijii yy xx∑ ∑

= =
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α

 

 subject to  ∑
=

=≤≤=
n

i
iii niCy

1
.,,1,0,0 Kαα (13)

where C is the penalty parameter, determined by the user. Solutions of this dual 

optimization problem are easy to be solved, and we can determine the parameters w and b of 

the optimal hyperplane as (9). Finally, we obtain an optimal hyperplane and an indicator 

function as (10). Note that the linearly separable case without data overlapping, this upper 

bound C = . 

*
iα

)(x*d

fi

∞

 

3.3  Nonlinear Classifier for Nonlinearly Separable Data 

The best way to understand SVMs is using the example of linear decision rule (Ben-dor 

et al., 2000). In subsection 3.1 and 3.2, we describe optimal hyperplane classifiers and 

compute linear boundaries in the input feature space. One can make the method more flexible 

by enlarging the feature space using some basic transformation. Let F be the enlarged feature 

space. The idea is to map inputs vectors into vectors = F: pℜ∈x fℜ∈z

 fT
f

p ℜ∈=→ℜ∈ )](,),(),([)( 21 xzxzxzxzx K  (14)

By performing such a mapping, two classes are easier to be separated by the optimal 

separating plane in the enlarged feature space F. A linear boundary in the enlarged feature 

space F corresponds to a nonlinear boundary in the original space X. 

We linearly separate images of x by applying the linear SVM formulation. The linear 

classifier (indictor function)  in a feature space F will create a 

nonlinear separating hyperplane in the original input space given by 

))(()( ** bsigni T
f += xzwx
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1

* bysigni
n

i
iif += ∑

=

xzxzx iα  (15)

Boser at al. (1992) observed that it is not necessary to know the feature space F explicitly 

but to calculate the inner products between support vectors of the feature space F for 

constructing optimal hyperplane. On the other hand, we need not specify the transformation 

z(x) at all, but require only knowledge of the kernel function )'x(z),x(z)x',x( =K . Thus 

replacing )(),( xzxz i by in (14), the separating rule becomes: ),( iK xx

 ∑
=

+=
n

i
iiif bKysigni

1

** ).),(()( xxx α  (16)

where is the solution to the optimization problem *
iα

 ∑ ∑
= =

−
n

i

n

ji
jijijii Kyy

1 1,

),(
2
1max xxααα

α
 

 subject to 
 
 ∑

=

=≥≥=
n

i
iii niCy

1
.,,1,0,0 Kαα (17)

where C is the margin parameter. When the training data sets are linearly separable for just a 

few features, the classification is rather insensitive to the value of C. For convenience, we let 

C=100 in the linear case study. 

 
 
 

3.4  Popular Kernel and Standard Type of Classification 

We can map the pattern vectors x  to a high dimension space H, and separate there 

by using a linear kernel function. Given a mapping  from input space to an 

feature space H, the function is called a kernel function, that is for all 

x, ,

pℜ∈

Hp →ℜΦ : pℜ

ℜ→ℜ×ℜ ppK :

pℜ∈z
H

K )(),(),( zxzx ΦΦ= . The most commonly used kernels are as follows: 
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Kernel Functions Type of Classifier 

d
i

T
iK ]1+= )x[(x)x(x,  polynomial of degree d 

]
)xx()xx(

exp[)x,x( 22σ
i

T
i

iK
−−

−=  Gaussian RBF (Radial basis function) 

whereσ is the width parameter 

*])xxtanh[()x,x( bK i
T

i +=  Multilayer perceptron 

* Only for certain values of b 

 

4  Feature Selection Methods for Kernel Machines 

SVM RFE is an application of RFE using the weight magnitude w as ranking criterion. 

w is a vector with p components, each corresponding to expression of a particular gene as 

ranking criterion. In sec. 4.1 and 4.2, we introduce linear and nonlinear case, respectively. 

 

4.1  Linear Case 

When our training dataset are linear separable (linear classification problem) then using a 

linear SVM, SVM RFE use the weight magnitude as ranking criterion. The idea is, starting 

with all the available genes, build an optimal SVM model, and remove the feature whose 

associated weight is smallest in absolute value. Repeat this criterion from the surviving genes 

until only the desired numbers of features remain (Zhang, and Wong, 2001). The criterion is 

using the following iterative procedure (Guyon et al., 2002):  

1. Train the classifier with SVM (optimize the weights ). iw

2. Compute the weights for all features. 

3. Remove the feature with the smallest absolute weight. 

 11



4.2  Nonlinear Case 

When data is nonlinear separable (nonlinear classification problem), we can use the 

following two procedures. 

(i) nonlinear SVMs 

The basic idea is to remove those features that affect the margin the least, because of the 

reason that maximizing the margin is the object of the SVM. Thus we can generalize SVM 

RFE to the nonlinear case and other kernel methods. The following iterative procedure 

contains two steps proposed by Guyon et al. (2002): 

The first step is to train SVM classifier, optimize 

 ααα,
,

HKyyL TT
ji

n

ji
jiji

n

i
id 2

1)(
2
1)(

11
−=−= ∑∑

==

1xxαααα  

 subject to ∑ =≤≤
k kkk yC 0,0 αα  (18)

where  (n by 1 vector). T
jiji KyyH ],,[1,)x,x( 11L==

The minimized cost function is (Vapnik, 1998) 

 1*** ααα −= HJ T

2
1  (19)

The second step is to compute DJ (i) for all features 

 *)( αααα iHHiDJ TT
−−= ***)(

2
1

2
1  (20)

and then remove the feature with the smallest DJ (i). 

In the linear case, jij xxxx ⋅=),( iK , .2w=αα HT  Therefore 2)(
2
1)( wiiDJ = , this is 

identical to linear SVMs in section 4.1. 

 

(ii) First, we map the original data to a feature space of high or infinite dimensional space, and 

regard as a linear separable case in that space. Therefore we can use same criterion as in the 

sub-section 4.1 to select crucial genes. The drawback of this method is that we may generate 
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too many irrelevant genes. Taking the expression vector ][ 321 xxx=x  for example: If our 

dataset is second-order polynomial separable (in input space, the decision rule d(x) is a 

second-order polynomial), then we use the following mapping functionΦ (x): 

],[)(: 323121
2
3

2
2

2
1321 xxxxxxxxxxxx=→ xzxΦ  

We train this new expression vector z(x) in SVM RFE with linear kernel to select crucial 

features (genes). 

 

5   Simulation Studies 

5.1  Linear problem 

5.1.1  Overlapping Classes  

For training data sets without overlapping are rare in practice. In the following 

simulation, we study the case of overlapping classes in feature space. 

We simulate i.i.d. 1024,,1,,1),1,0(~, KK == jniNx ji  for training data set, 

representing microarray data with n subjects and the expression levels of 1024 genes, and i.i.d. 

 for test data set.  1024,,1,1000,1),1,0(~, KK == jiNx ji

We define the Cauchy c.d.f. as 25.0),
2

)((tan1)( 1 =+= − σπ
σπ
xxF  which is an 

increasing function and satisfies 1)(,2/1)0(,0)( =∞==−∞ FFF . Note that the larger theσ , 

the more the overlapping classes. Let sxx =+ 21 , P(y = 1) = F (s), and P(y = -1) = 1 – F (s). 

In the simulation, we use SVM to train with linear kernel, RFE to eliminate gene 

one by one, and let C=100. Tables 1-6 give the results of the study. Table 1 give the gene 

selection results for training set size n=30, 40, 50, and 100. The table is the rankings in the 

first SVM training (with 1024 genes) and the reverse deleting order of gene1 and gene2. For 

instance, a reverse deleting order of 2 means the gene is the last one deleted, 1 means the gene 

}{ , jix
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stays to the end, and “x“ means the gene is deleted before the last 20 iterations. For n=30, the 

correct two features were selected about 1/5 times; for n=100, the correct two features were 

selected about 4/5 times. The results show that if n is larger, it is easier to select the crucial 

genes (gene1 and gene2) by SVMs with linear kernel for overlapping classes. Table 2 give the 

numbers of patients in class {+} and class {-} for various training set size. Tables 3-6 provide 

the training/test classification accuracy rate for the study. 

 

5.1.2  Correlated Data 

In this simulation study, we study the number of one gene’s surrogates somehow affect 

the importance of the gene. 

We generate pjix ji ,,1,40,,1,, KK ==  

( p = 20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000 ) 

,1,ix  with  ),1,0(2 Nx
dii

i

...

, ~ jiiji xx ,2,, ~ ε+  for 2033 ,,,, KK == mmj , 

where  and  representing microarray data of 40 

patients and p genes. The decision rule used in the study is: if

),10,0( 5−N
dii

ji

...

, ~ε ),1,0(1 Nxx
dii

pimi

...

,, ~,,K+

021 >+ xx then }1{ +∈ classy , 

otherwise  .}1{ −∈ classy

For the simulation, we use SVM method to train with linear kernel, RFE to 

eliminate gene one by one with C=100. Figure 1 gives the results of the study. The number 

of  surrogates is represented on the x-axis. The average of ( weight / weight) and 

standard deviation over 50 random trials are represented on y-axis. We observe that these 

correlated genes with gene 2 may dilute the performance of gene 2. For the smaller p, the plot 

presents smooth decreasing concave curve; for the larger p, this is nearly a linear decreasing 

curve. 

}{ , jix

sx '2 sx '2 sx '1
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5.2  Nonlinear problem 

5.2.1 Compare several different cases using nonlinear SVMs 

In the following simulations, we study the effect of normalization for nonlinear 

classification problem and compare the performance of two different kernel functions: 

polynomial kernel of degree 2 and RBF kernel with parameter 3=σ . We simulate the 

independent training data 1001401, ,,j,,ix ji LL ==, , and test data  

, representing microarray data with (40/1000) subjects and the expression levels 

of their 100 genes. 

10001, ,,ix ji L=,

100,,1L=j

Our data set is generated from the following distributions: 

(i) N (0, 1) 

(ii) Uniform (-0.5, 0.5) 

(iii) N (0, 10) 

(iv) Uniform (-10, 10) 

(v) N (2, 1) 

(vi) Uniform (1, 3) 

The following decision rules are used in the study: 

(a) decision rule: if thencxx >21 ∈y class{+}, otherwise ∈y class{ - }; 

(b) decision rule: if thencxx >+ 2
2
1 ∈y class{+}, otherwise ∈y class{ - }; 

(c) decision rule: if thencxx >+ 2
2

2
1 ∈y class{+}, otherwise ∈y class{ - }; 

(d) decision rule: 

if then class{+}, otherwisecxxxx >++ 2
221

2
1 ∈y ∈y class{ - }; 

where c is some constant, we choose it to balance the proportion of two classes. 

For the study, we use the criterion in section 4.2 (i): nonlinear SVMs, eliminate gene one 
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by one, and C=100. For normalization, we discuss three different cases: normalizing for 

each j (gene) then normalizing it for each i (subject); normalizing only for each j (gene); 

not normalizing data. Tables 7-22 give the gene selection results of each case. 

}{ , jix

}{ , jix

From Table 7, we observe the following: 

  For the case of decision rule (a) and simulation data structure (i): 

With two degree polynomial and RBF kernels, we could not select crucial genes by 

our three normalization cases. 

  For the case of decision rule (a) and simulation data structure (ii): 

With using polynomial kernel of degree 2, it seems normalizing data for each j (gene) 

then normalizing it for each i (subject), and normalizing data only for each j (gene) 

perform better than not normalizing data. With RBF kernel, it seems normalizing data 

only for each j (gene) performs better. 

  For the case of decision rule (a) and simulation data structure (iii): 

With two degree polynomial and RBF kernels, it seems normalizing data for each j 

(gene) then normalizing it for each i (subject) performs better than other two cases. 

  For the case of decision rule (a) and simulation data structure (iv): 

      With two degree polynomial kernel, we all select crucial genes by three different 

normalization cases, but the gene selection results are not good with RBF kernel. 

  For the case of decision rule (a) and simulation data structure (v) and (vi): 

With two degree polynomial kernel, it seems not normalizing data performs better 

than other two cases. With RBF kernel, three normalization cases are all satisfactory. 

From Table 11, we observe the following: 

  For the case of decision rule (b) and simulation data structure (i): 

With polynomial kernel of degree two, we only select gene1 by normalizing data for 

each j (gene) then normalizing it for each i (subject). With RBF kernel, we only select 

 16



gene2 by our three normalization cases. 

  For the case of decision rule (b) and simulation data structure (ii): 

   With polynomial kernel of degree two, we only select gene2 by the case of not 

normalizing data. With RBF kernel, we only select gene2 by our three normalization 

cases. 

  For the case of decision rule (b) and simulation data structure (iii): 

   With two degree polynomial and RBF kernels, we could not select crucial genes by 

our three normalization cases. 

  For the case of decision rule (b) and simulation data structure (iv): 

   With polynomial kernel of degree two, we only select gene1 by our three 

normalization cases. With RBF kernel we could not select crucial genes by our three 

normalization cases. 

  For the case of decision rule (b) and simulation data structure (v): 

With two degree polynomial kernel, we could not select crucial genes by our three 

normalization cases. With RBF kernel we only select gene1 by our three normalization 

cases. 

  For the case of decision rule (b) and simulation data structure (vi): 

   With two degree polynomial kernel, we could not select crucial genes by our three 

normalization cases. With RBF kernel, three normalization cases are all satisfactory. 

From Table 15, we observe the following: 

  For the case of decision rule (c) and simulation data structure (i) and (ii): 

   With two degree polynomial and RBF kernels, we could not select crucial genes by 

our three normalization cases. 

  For the case of decision rule (c) and simulation data structure (iii): 

With two degree polynomial kernel, we only select gene1 by normalizing data for each 

j (gene) then normalizing it for each i (subject). With RBF kernel, we could not select 
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crucial genes by our three normalization cases. 

  For the case of decision rule (c) and simulation data structure (iv): 

      With two degree polynomial kernel, we could not select crucial genes by our three 

normalization cases. With RBF kernel, we only select gene1 by normalizing data for 

each j (gene). 

  For the case of decision rule (c) and simulation data structure (v) and (vi): 

   With two degree polynomial kernel, it seems not normalizing data performs better 

than other two normalization cases. For RBF kernel, three normalization cases are all 

satisfactory. 

From Table 19, we observe the following: 

  For the case of decision rule (d) and simulation data structure (i), (ii), (iii) and (iv): 

With two degree polynomial and RBF kernels, we could not select crucial genes by 

our three normalization cases. 

  For the case of decision rule (d) and simulation data structure (v) and (vi): 

   With two degree polynomial kernel, it seems not normalizing data performs better 

than other two normalization cases. For RBF kernel, three normalization cases are all 

satisfactory. 

Therefore, the choices of appropriate kernel functions are different for each type of 

decision rule and data structure. Tables8, 12, 16, 20 give the number of patients in class {+} 

and class {-} of the training and testing datasets. Tables 9, 10, 13, 14, 17, 18, 21, 22 provide 

the training/test classification accuracy rate for the study. 
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5.2.2  Toy experiment 

In this simulation study, we performed experiments on an example of nonlinear 

classification problem, the nonlinear toy problem provided in Weston et al. (2000). 

Two features out of 52 are relevant. We utilize two methods described in sec.4.2 for the 

problem. The first method is the nonlinear kernel version of SVM RFE, we use a polynomial 

kernel of degree 2; The second method contains the following steps: we first map the data to 

higher dimensional space by a polynomial kernel of degree two, and then use SVM RFE with 

a linear kernel, see sec.4.2 (ii). With these two methods, we all normalize the data for each 

gene, then normalize it for each subject, and let C=100. The number of times of the correct 

features were selected over 30 random trials for various training set sizes with first method is 

shown in Table 23 and the times of the correct features were selected over 30 random trials 

for various training set sizes with second method is shown in Table 24. The classification 

performance (average test error on 500 examples over 30 random trials) of using these two 

methods is shown in Table 25 and Figure 2. From these results, we observe that the average 

performance of the second method is better than the first method for smaller training set size, 

but almost equally for larger training set size. In the first method, for n=10 training examples, 

we selected average 25.3 features to obtain two relevant features; for n=100, an average of 

2.17 features are selected to obtain two relevant features. In the second method, for n=10, we 

selected average 10.23 features to obtain the relevant feature ( 21 xx × ); for n=100, an average 

of 1.33 features are selected to obtain relevant feature ( 21 xx × ). The results also show that 

these two methods are better than other feature selection methods using in Weston et al. 

(2000); Grandvalet, and Canu, (2002); Rakotomamonjy et al. (2003) for dealing the nonlinear 

toy problem. 
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6   Conclusion and Future Research 

In our study, we review some literature about Support Vector Machine, which has shown 

great performance in practice as a classification methodology. In Sec.5, we experiment on 

linear and nonlinear classification problems utilizing SVMs. 

From the simulation results of linear classification problem we observe that 

  For overlapping classes, when the training set size is large, it is easy to select crucial 

genes by utilizing linear SVM RFE, and the performance of classification is also good. 

  Numbers of one gene’s surrogates would affect the importance of the gene. 

From the simulation results of nonlinear classification problem we observe that 

  The performance of classification is better with utilizing nonlinear SVM RFE criteria 

and our method (sec.4.2(ii)) than other feature selection methods utilized in Weston et 

al. (2000); Grandvalet, and Canu, (2002); Rakotomamonjy et al. (2003) for dealing the 

nonlinear toy problem. 

  The drawback of the gene selection method described in sec.4.2 (ii) is that it is 

inappropriate to be utilized for large number of genes, but better (easy to select crucial 

genes) for small genes. Therefore we could combine other supervising learning 

methods with our method. 

We propose a simple gene selection procedure for the case of nonlinear separable data. 

The procedure is applied to nonlinear toy problem. Many interesting problems are worth 

future study, such as finding a technique for choosing the kernel functions; finding other 

better feature selection methods; the choices of appropriate hyperparameters including degree 

d of a polynomial kernel, Gaussian kernel parameterσ , and penalized parameter C; extending 

the binary SVM to the multicategory case. These problems are potential topics for future 

research. 
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Table 1:  The rankings of gene1 and gene2 in the first SVM training (with 1024 genes) and 
the reverse deleting order by RFE and the two genes stay to the end (overlapping classes), n is 
the training set size. 
 

n Step gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

30 

first ranking 

rev-del order 

last 2 genes

46 

x 

993 

1 

4 

290

2 

6 

2 

1 

1 

259

12 

x 

518 

4 

14 

906

4 

1 

1 

1 

2 

2 

6   

15 

746 

1 

11 

736 

40 

first ranking 

rev-del order 

last 2 genes

1 

1 

1 

107

x 

585

5 

2 

2 

6 

1 

1 

5 

1 

1 

20 

2 

2 

1 

1 

1 

7 

2 

2 

4 

x 

495 

9 

18 

195 

50 

first ranking 

rev-del order 

last 2 genes

4 

2 

2 

1 

1 

1 

89 

x 

2 

1 

1 

453

5 

9 

776 

1 

10 

894

1 

1 

1 

2 

2 

2 

1 

9 

796 

2 

8 

685 

100 

first ranking 

rev-del order 

last 2 genes

2 

2 

2 

1 

1 

1 

1 

1 

1 

2 

2 

2 

1 

2 

2 

2 

1 

1 

1 

1 

1 

3 

5 

721 

1 

2 

2 

2 

1 

1 

 
 
 
Table 2:  The number of patients in positive (+) class and negative (-) class of the training 
and testing datasets. 
 

n 
data 

set 
(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

30 
train 

test 

15 

503 

15 

497 

20 

523 

10 

477 

14 

481 

16 

519 

17 

501 

13 

499 

18 

487 

12 

513 

40 
train 

test 

20 

502 

20 

498 

22 

506 

18 

494 

19 

512 

21 

488 

26 

494 

14 

506 

22 

491 

18 

509 

50 
train 

test 

26 

520 

24 

480 

26 

493 

24 

507 

26 

518 

24 

482 

25 

508 

25 

492 

27 

500 

23 

500 

100 
train 

test 

51 

506 

49 

494 

55 

508 

45 

492 

49 

493 

51 

507 

47 

511 

53 

489 

55 

481 

45 

519 
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Table 3:  The (training/testing) classification accuracy rate, the first column is the number of 
genes still in the training set. The training set size is 30 examples, and the test set size is 1000 
examples. 
 

# genes still in 

the training set 
accuracy rate (n=30) 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

3 

2 

1 

1/0.505 

1/0.506 

1/0.509 

1/0.535 

1/0.574 

1/0.582 

1/0.547 

1/0.597 

1/0.592 

0.9/0.537 

0.833/0.517 

0.7/0.537 

1/0.521 

1/0.521 

1/0.530 

1/0.536 

1/0.557 

1/0.579 

1/0.626 

1/0.615 

1/0.623 

0.933/0.651 

0.9/0.677 

0.867/0.733 

1/0.546 

1/0.543 

1/0.540 

1/0.547 

1/0.553 

1/0.556 

1/0.518 

1/0.462 

1/0.492 

1/0.492 

0.867/0.482 

0.767/0.468 

1/0.540 

1/0.541 

1/0.537 

1/0.570 

1/0.570 

1/0.580 

1/0.588 

1/0.618 

1/0.792 

0.967/0.815 

0.9/0.855 

0.767/0.718 

1/0.522 

1/0.527 

1/0.530 

1/0.537 

1/0.564 

1/0.600 

1/0.593 

1/0.505 

1/0.502 

1/0.509 

0.867/0.517 

0.833/0.499 

 
Table 4:  The (training/testing) classification accuracy rate, the first column is the number of 
genes still in the training set. The training set size is 40 examples, and the test set size is 1000 
examples. 
 

# genes still in 

the training 

set 

accuracy rate (n=40) 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

3 

2 

1 

1/0.506 

1/0.510 

1/0.543 

1/0.544 

1/0.565 

1/0.564 

1/0.559 

1/0.566 

0.975/0.618 

0.875/0.635 

0.8/0.683 

0.8/0.719 

1/0.514 

1/0.519 

1/0.508 

1/0.526 

1/0.534 

1/0.559 

1/0.645 

1/0.660 

0.975/0.768 

0.85/0.797 

0.85/0.877 

0.625/0.739 

1/0.527 

1/0.526 

1/0.526 

1/0.552 

1/0.556 

1/0.588 

1/0.662 

1/0.658 

1/0.735 

0.9/0.821 

0.9/0.864 

0.725/0.704 

1/0.505 

1/0.507 

1/0.510 

1/0.529 

1/0.546 

1/0.585 

1/0.613 

1/0.641 

0.95/0.698 

0.875/0.781 

0.875/0.839 

0.75/0.678 

1/0.526 

1/0.525 

1/0.535 

1/0.531 

1/0.542 

1/0.557 

1/0.491 

1/0.510 

1/0.494 

0.875/0.492 

0.8/0.471 

0.675/0.466 
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Table 5:  The (training/testing) classification accuracy rate, the first column is the number of 
genes still in the training set. The training set size is 50 examples, and the test set size is 1000 
examples. 
 

# genes still in 

the training set 
accuracy rate (n=50) 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

3 

2 

1 

1/0.566 

1/0.568 

1/0.575 

1/0.578 

1/0.603 

1/0.616 

1/0.624 

1/0.701 

0.98/0.816 

0.96/0.798 

0.9/0.861 

0.8/0.689 

1/0.557 

1/0.558 

1/0.562 

1/0.559 

1/0.536 

1/0.554 

1/0.555 

1/0.579 

0.94/0.613 

0.92/0.618 

0.8/0.651 

0.74/0.72 

1/0.542 

1/0.557 

1/0.570 

1/0.563 

1/0.567 

1/0.569 

1/0.575 

1/0.509 

0.86/0.502 

0.84/0.499 

0.8/0.473 

0.8/0.49 

1/0.542 

1/0.541 

1/0.568 

1/0.586 

1/0.598 

1/0.593 

1/0.601 

1/0.756 

1/0.791 

0.96/0.831 

0.92/0.869 

0.84/0.72 

1/0.535 

1/0.541 

1/0.536 

1/0.545 

1/0.567 

1/0.597 

1/0.605 

1/0.551 

0.94/0.493 

0.8/0.492 

0.82/0.481 

0.68/0.497 

 
 
Table 6:  The (training/testing) classification accuracy rate, the first column is the number of 
genes still in the training set. The training set size is 100 examples, and the test set size is 
1000 examples. 
 

# genes still in 

the training set 
accuracy rate (n=100) 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

3 

2 

1 

1/0.578 

1/0.553 

1/0.570 

1/0.561 

1/0.583 

1/0.614 

1/0.690 

0.97/0.723 

0.88/0.831 

0.91/0.831 

0.86/0.872 

0.72/0.691 

1/0.561 

1/0.553 

1/0.557 

1/0.6 

1/0.621 

1/0.643 

1/0.669 

1/0.723 

0.92/0.86 

0.93/0.858 

0.92/0.882 

0.72/0.711 

1/0.572 

1/0.574 

1/0.591 

1/0.583 

1/0.633 

1/0.670 

1/0.659 

0.94/0.709 

0.92/0.804 

0.87/0.851 

0.92/0.873 

0.74/0.717 

1/0.536 

1/0.551 

1/0.548 

1/0.558 

1/0.577 

1/0.590 

1/0.631 

0.94/0.687 

0.87/0.655 

0.8/0.644 

0.8/0.665 

0.75/0.712 

1/0.559 

1/0.559 

1/0.551 

1/0.555 

1/0.564 

1/0.602 

1/0.662 

0.93/0.675 

0.92/0.775 

0.87/0.779 

0.84/0.833 

0.65/0.715 
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Figure 1:  The number of surrogates is represented on the x-axis. The average of 
( weight / weight) and standard deviation over 50 random trials are represented on 
y-axis. 

sx '2
sx '2 sx '1
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Table 7:  The rankings of gene1 and gene2 in the first training (with 100 genes) and the 
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel 
with parameter 3=σ and the two genes stay to the end (Decision function , six kinds 
of different data structures, and three different normalization cases ). 

cxx =21

 

 

c 0 0 0 0 2.5 4 

data N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

poly-2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalizing (gene →subject) 

first ranking 67 65 5 18 16 51 47 8 99 30 100 92 

rev-del order 63 64 1 2 2 1 1 2 99 44 100 92 

last two genes 52 49 1 2 2 1 1 2 50 37 85 45 

Normalize (gene) 

first ranking 69 73 1 16 25 83 33 3 95 33 100 97 

rev-del order 80 81 1 2 64 76 2 1 96 3 100 94 

last two genes 79 77 1 2 22 23 2 1 29 69 60 72 

not normalizing data 

first ranking 81 90 3 94 70 41 7 19 1 10 2 1 

rev-del order 89 91 17 94 73 58 2 1 5 1 1 3 

last two genes 100 35 65 54 37 7 2 1 2 3 1 20 

rbf-3 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalizing (gene →subject) 

first ranking 29 31 3 22 16 39 51 12 1 3 2 1 

rev-del order 20 19 1 35 2 1 24 23 3 2 1 2 

last two genes 92 57 1 21 2 1 23 16 9 2 1 2 

Normalizing (gene) 

first ranking 29 49 2 37 30 19 30 7 1 14 2 1 

rev-del order 10 9 2 1 26 25 24 23 1 2 1 2 

last two genes 6 61 2 1 22 23 16 3 1 2 1 2 

not normalizing data 

first ranking 32 38 10 66 100 99 100 99 1 18 2 1 

rev-del order 23 15 10 52 100 99 100 99 1 2 2 1 

last two genes 87 84 4 63 85 97 92 81 1 2 2 1 
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Table 8:  The number of subjects in positive (+) class and negative (-) class of the training 
and testing datasets. 
 
 

Data 

set 
(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

train 

test 

20 

491 

20 

509 

21 

498 

19 

502

24 

492

16 

508

19 

483

21 

517

20 

646

20 

354 

19 

448 

21 

552

 
 
 
 
 
 

Table 9:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . Kernel: two 
degree polynomial. 

cxx =21

 
 

# gene 

selected 

accuracy rate 

Normalization: gene → subject 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.522 

1/0.494 

1/0.506 

1/0.494 

1/0.515 

1/0.512 

0.975/0.534 

0.8/0.515 

0.775/0.516 

0.7/0.511 

1/0.501 

1/0.528 

1/0.583 

1/0.606 

1/0.713 

1/0.708 

1/0.783 

1/0.855 

0.975/0.876 

0.65/0.481 

1/0.508 

1/0.497 

1/0.524 

1/0.580 

1/0.657 

1/0.633 

1/0.634 

1/0.833 

0.975/0.775 

0.625/0.493 

1/0.499 

1/0.521 

1/0.573 

1/0.587 

1/0.685 

1/0.689 

1/0.759 

1/0.801 

0.95/0.923 

0.625/0.502 

1/0.485 

1/0.501 

1/0.460 

1/0.486 

1/0.493 

1/0.460 

1/0.472 

0.85/0.448 

0.7/0.424 

0.55/0.566 

1/0.522 

1/0.507 

1/0.482 

1/0.496 

1/0.471 

1/0.489 

1/0.487 

0.825/0.484 

0.7/0.485 

0.575/0.512 
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# gene 

selected 

accuracy rate 

Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.512 

1/0.494 

1/0.499 

1/0.488 

1/0.489 

1/0.470 

0.825/0.502 

0.8/0.493 

0.675/0.514 

0.6/0.483 

1/0.508 

1/0.539 

1/0.559 

1/0.609 

1/0.709 

1/0.745 

1/0.836 

1/0.832 

1/0.865 

0.625/0.484 

1/0.504 

1/0.502 

1/0.494 

1/0.500 

1/0.484 

1/0.499 

1/0.480 

0.8/0.508 

0.8/0.504 

0.675/0.487 

1/0.494 

1/0.531 

1/0.567 

1/0.594 

1/0.721 

1/0.768 

1/0.809 

1/0.869 

1/0.930 

0.6/0.497 

1/0.476 

1/0.493 

1/0.498 

1/0.546 

1/0.567 

1/0.546 

1/0.512 

0.825/0.524 

0.7/0.491 

0.675/0.474 

1/0.519 

1/0.505 

1/0.475 

1/0.506 

1/0.507 

1/0.502 

0.95/0.512 

0.825/0.499 

0.775/0.483 

0.65/0.524 

 
 
 
 
 
 

# gene 

selected 

accuracy rate 

Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.526 

1/0.486 

1/0.500 

1/0.486 

1/0.500 

1/0.484 

0.95/0.508 

0.85/0.509 

0.725/0.484 

0.575/0.485 

1/0.503 

1/0.483 

1/0.501 

1/0.484 

1/0.495 

0.975/0.476 

0.9/0.486 

0.775/0.490 

0.725/0.498 

0.65/0.47 

1/0.495 

1/0.481 

1/0.486 

1/0.459 

1/0.490 

1/0.480 

0.925/0.499 

0.7/0.497 

0.7/0.494 

0.6/0.492 

1/0.500 

1/0.543 

1/0.559 

1/0.649 

1/0.733 

1/0.799 

1/0.908 

1/0.954 

1/0.966 

0.6/0.495 

1/0.593 

1/0.602 

1/0.692 

1/0.730 

1/0.853 

1/0.853 

0.95/0.557 

0.85/0.548 

0.775/0.652 

0.725/0.745 

1/0.655 

1/0.672 

1/0.690 

1/0.751 

1/0.740 

1/0.779 

1/0.929 

1/0.941 

0.8/0.735 

0.8/0.743 
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Table 10:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . Kernel: 
RBF 

cxx =21

 
 

# gene 

selected 

accuracy rate 

Normalization: gene → subject 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.516 

1/0.504 

1/0.508 

1/0.501 

1/0.500 

1/0.486 

0.9/0.494 

0.75/0.493 

0.675/0.488 

0.575/0.477 

1/0.506 

1/0.521 

1/0.505 

1/0.497 

1/0.509 

1/0.510 

0.875/0.508 

0.85/0.496 

0.725/0.499 

0.65/0.482 

1/0.504 

1/0.493 

1/0.499 

1/0.502 

1/0.630 

0.975/0.672 

0.975/0.674 

0.925/0.733 

0.9/0.785 

0.625/0.503 

1/0.510 

1/0.516 

1/0.522 

1/0.491 

1/0.474 

1/0.510 

0.975/0.499 

0.875/0.52 

0.675/0.528 

0.65/0.522 

1/0.592 

1/0.654 

1/0.68 

1/0.673 

1/0.689 

1/0.750 

1/0.854 

0.95/0.865 

0.8/0.595 

0.65/0.5 

1/0.631 

1/0.654 

1/0.702 

1/0.765 

1/0.825 

1/0.854 

1/0.899 

1/0.928 

1/0.929 

0.8/0.743 

 
 

 
# gene 

selected 

accuracy rate 

Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.509 

1/0.518 

1/0.491 

1/0.513 

1/0.513 

1/0.505 

0.95/0.497 

0.825/0.509 

0.75/0.499 

0.625/0.488 

1/0.499 

1/0.507 

1/0.501 

1/0.526 

1/0.663 

0.975/0.667 

0.95/0.845 

0.95/0.841 

0.95/0.837 

0.6/0.498 

1/0.492 

1/0.488 

1/0.489 

1/0.484 

1/0.489 

0.975/0.482 

0.925/0.505 

0.9/0.501 

0.8/0.501 

0.65/0.498 

1/0.503 

1/0.529 

1/0.53 

1/0.493 

1/0.496 

1/0.504 

0.95/0.496 

0.875/0.499 

0.725/0.495 

0.6/0.515 

1/0.549 

1/0.613 

1/0.629 

1/0.671 

1/0.724 

1/0.784 

1/0.880 

0.975/0.877 

1/0.912 

0.775/0.708 

1/0.628 

1/0.66 

1/0.693 

1/0.729 

1/0.777 

1/0.907 

1/0.905 

1/0.971 

1/0.97 

0.8/0.743 
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# gene 

selected 

accuracy rate 

Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 

50 

25 

12 

6 

5 

4 

3 

2 

1 

1/0.507 

1/0.515 

1/0.509 

1/0.498 

1/0.513 

0.95/0.488 

0.925/0.485 

0.8/0.516 

0.625/0.499 

0.55/0.495 

1/0.492 

1/0.500 

1/0.482 

1/0.476 

0.95/0.483 

0.925/0.488 

0.8/0.488 

0.7/0.490 

0.625/0.497 

0.675/0.5 

1/0.464 

1/0.497 

1/0.483 

1/0.498 

1/0.503 

1/0.506 

1/0.487 

1/0.510 

1/0.500 

0.7/0.495 

1/0.499 

1/0.491 

1/0.486 

1/0.524 

1/0.506 

1/0.501 

1/0.500 

1/0.474 

0.975/0.494

0.7/0.491 

1/0.561 

1/0.655 

1/0.638 

1/0.735 

1/0.746 

1/0.805 

1/0.923 

0.975/0.917 

1/0.975 

0.775/0.75 

1/0.638 

1/0.667 

1/0.691 

1/0.758 

1/0.884 

1/0.915 

1/0.951 

0.975/0.959 

0.975/0.982 

0.775/0.745 
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Table 11: The rankings of gene1 and gene2 in the first training (with 100 genes) and the 
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel 
with parameter 3=σ and the two genes stay to the end (Decision function , six 
kinds of different data structures, and three different normalization cases ).  

cxx =+ 2
2
1

 

 
c 0.5 0 40 30 6 6 

data N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

(poly-2) gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalize (gene → subject) 

first ranking 53 93 98 90 45 42 37 54 99 68 100 88 

rev-del order 1 92 98 93 70 6 1 34 99 33 100 93 

last two genes 1 33 72 77 60 18 1 20 27 91 42 50 

Normalize (gene) 

first ranking 57 94 97 82 48 83 26 62 95 67 100 92 

rev-del order 21 95 96 85 47 31 1 52 96 54 100 94 

last two genes 78 36 93 41 6 60 1 4 15 33 63 62 

not normalizing data 

first ranking 78 49 93 1 87 57 66 10 1 19 1 3 

rev-del order 64 50 86 1 91 48 1 66 3 5 3 7 

last two genes 100 77 2 65 61 94 1 54 100 41 53 82 

(rbf-3) gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

normalize (gene → subject) 

first ranking 95 1 99 1 81 6 72 82 1 69 1 5 

rev-del order 98 1 99 1 72 11 62 71 1 46 1 4 

last two genes 2 100 2 4 12 18 76 73 1 25 1 24 

normalize(gene) 

first ranking 90 1 100 1 68 60 93 91 1 65 1 8 

rev-del order 95 1 100 1 88 6 69 77 1 66 1 2 

last two genes 2 3 2 4 18 60 64 67 1 25 1 2 

not normalizing data 

first ranking 90 1 89 1 100 99 100 99 1 67 1 5 

rev-del order 77 1 91 1 100 99 100 99 1 65 1 6 

last two genes 2 71 2 4 96 90 76 100 1 34 1 96 
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Table 12:  The number of subjects in positive (+) class and negative (-) class of the training 
and testing datasets. 
 
 

Data 

set 
(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (-) (+) 

train 

test 

24 

586 

16 

414 

27 

566 

13 

434

20 

518

20 

482

21 

431

19 

569

14 

507

26 

493 

21 

507 

19 

493

 
 
 
 
 
 

Table 13:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . Kernel: 
two degree polynomial. 

cxx >+ 2
2
1

 
 

# gene accuracy rate 

selected Normalization: gene → subjec 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.560 1/0.556 1/0.475 1/0.494 1/0.542 1/0.513 

50 1/0.533 1/0.532 1/0.475 1/0.505 1/0.524 1/0.496 

25 1/0.531 1/0.526 1/0.481 1/0.524 1/0.52 1/0.472 

12 1/0.550 1/0.528 1/0.490 1/0.553 1/0.51 1/0.487 

6 1/0.568 1/0.504 1/0.493 1/0.651 1/0.527 1/0.492 

5 1/0.565 1/0.510 1/0.490 1/0.686 1/0.510 1/0.504 

4 0.975/0.589 1/0.509 1/0.487 1/0.783 0.975/0.505 1/0.513 

3 0.825/0.637 0.95/0.534 0.975/0.484 1/0.881 0.875/0.498 0.85/0.523

2 0.75/0.683 0.775/0.528 0.75/0.507 1/0.91 0.85/0.506 0.725/0.508

1 0.775/0.69 0.675/0.566 0.525/0.527 0.975/0.912 0.675/0.484 0.675/0.471
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# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.552 1/0.549 1/0.488 1/0.482 1/0.542 1/0.511 

50 1/0.531 1/0.534 1/0.522 1/0.505 1/0.515 1/0.488 

25 1/0.521 1/0.563 1/0.495 1/0.535 1/0.495 1/0.507 

12 1/0.53 1/0.493 1/0.499 1/0.553 1/0.494 1/0.499 

6 1/0.511 1/0.508 1/0.518 1/0.650 1/0.493 1/0.485 

5 1/0.515 1/0.509 1/0.503 1/0.647 1/0.489 1/0.483 

4 1/0.513 0.975/0.515 0.95/0.485 1/0.766 0.975/0.505 1/0.495 

3 0.75/0.522 0.775/0.539 0.775/0.499 1/0.857 0.95/0.492 0.875/0.492

2 0.725/0.529 0.725/0.54 0.725/0.51 0.95/0.939 0.675/0.498 0.75/0.513

1 0.6/0.586 0.675/0.566 0.475/0.5 0.95/0.936 0.65/0.493 0.625/0.516

 

 

 

 

 

      

# gene accuracy rate 

selected Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.545 1/0.602 1/0.495 1/0.482 1/0.628 1/0.669 

50 1/0.527 1/0.636 1/0.493 1/0.496 1/0.641 1/0.666 

25 1/0.481 1/0.697 1/0.504 1/0.547 1/0.68 1/0.705 

12 1/0.472 1/0.792 1/0.478 1/0.557 1/0.746 1/0.764 

6 1/0.485 1/0.812 1/0.502 1/0.693 1/0.777 1/0.843 

5 1/0.497 1/0.868 1/0.471 1/0.781 1/0.764 1/0.876 

4 0.975/0.489 1/0.893 0.925/0.5 1/0.851 1/0.888 1/0.883 

3 0.85/0.523 1/0.895 0.775/0.482 1/0.786 1/0.897 1/0.890 

2 0.825/0.526 0.975/0.937 0.75/0.487 1//0.924 0.675/0.503 0.7/0.5 

1 0.725/0.536 0.925/0.939 0.625/0.504 0.975/0.958 0.65/0.493 0.675/0.513
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Table 14:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . Kernel: 
RBF 

cxx >+ 2
2
1

 
 

# gene accuracy rate 

selected Normalization: gene → subjec 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.599 1/0.590 1/0.508 1/0.521 1/0.552 1/0.67 

50 1/0.588 1/0.576 1/0.478 1/0.469 1/0.499 1/0.686 

25 1/0.655 1/0.663 1/0.503 1/0.488 1/0.603 1/0.750 

12 1/0.679 1/0.746 1/0.502 1/0.496 1/0.680 1/0.758 

6 1/0.681 1/0.764 1/0.472 1/0.507 1/0.675 1/0.767 

5 1/0.689 1/0.779 1/0.473 1/0.500 1/0.759 1/0.834 

4 1/0.685 1/0.785 0.95/0.46 0.975/0.515 1/0.791 1/0.865 

3 0.9750.761 1/0.791 0.775/0.458 0.925/0.508 1/0.807 0.975/0.881 

2 0.925/0.769 1/0.810 0.75/0.442 0.75/0.499 0.975/0.792 0.925/0.925 

1 0.85/0.781 0.925/0.915 0.625/0.48 0.625/0.487 0.975/0.802 0.9/0.936 

  
 

 
    

# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.595 1/0.587 1/0.506 1/0.494 1/0.550 1/0.674 

50 1/0.587 1/0.583 1/0.517 1/0.462 1/0.496 1/0.725 

25 1/0.660 1/0.674 1/0.514 1/0.487 1/0.605 1/0.743 

12 1/0.673 1/0.732 1/0.510 1/0.507 1/0.683 1/0.833 

6 1/0.660 1/0.777 1/0.514 1/0.494 1/0.690 1/0.852 

5 1/0.685 1/0.785 1/0.486 1/0.492 1/0.760 1/0.892 

4 1/0.652 1/0.806 0.95/0.494 0.925/0.475 1/0.779 1/0.898 

3 0.95/0.718 1/0.836 0.875/0.483 0.8/0.501 1/0.794 1/0.898 

2 0.875/0.77 1/0.834 0.725/0.495 0.75/0.462 0.975/0.774 1/0.937 

1 0.85/0.783 0.925/0.909 0.525/0.514 0.625/0.521 0.975/0.808 0.925/0.939 
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# gene accuracy rate 

selected Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.592 1/0.624 1/0.580 1/0.500 1/0.569 1/0.692 

50 1/0.588 1/0.657 1/0.480 1/0.480 1/0.508 1/0.717 

25 1/0.657 1/0.675 1/0.502 1/0.476 1/0.632 1/0.765 

12 1/0.700 1/0.728 1/0.498 1/0.497 1/0.701 1/0.887 

6 1/0.747 1/0.815 1/0.487 1/0.480 1/0.832 1/0.866 

5 1/0.716 1/0.887 1/0.506 1/0.469 1/0.840 1/0.865 

4 1/0.717 1/0.886 1/0.500 1/0.480 1/0.833 0.925/0.896 

3 0.975/0.741 0.975/0.881 1/0.513 1/0.504 1/0.828 0.925/0.931 

2 0.925/0.747 1/0.89 1/0.501 0.95/0.506 1/0.893 10.9250.932

1 0.9/0.774 0.95/0.936 0.85/0.505 0.75/0.491 0.975/0.91 0.925/0.945 
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Table 15: The rankings of gene1 and gene2 in the first training (with 100 genes) and the 
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel 
with parameter 3=σ and the two genes stay to the end (Decision function , six 
kinds of different data structures, and three different normalization cases ).  

cxx =+ 2
2

2
1

 

 
c 1 0.1 100 60 8 8 

data N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

poly-2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalize (gene → subject) 

first ranking 41 37 50 89 28 69 65 4 32 76 80 98 

rev-del order 46 52 43 89 1 29 85 32 64 49 73 98 

last two genes 65 45 94 61 1 55 27 57 65 25 14 5 

Normalize (gene) 

first ranking 57 48 39 84 35 79 51 5 25 69 82 97 

rev-del order 68 62 27 83 37 53 71 7 31 1 81 97 

last two genes 20 88 65 61 22 55 50 64 2 86 14 5 

not normalizing 

first ranking 81 93 43 91 79 33 30 28 3 1 2 1 

rev-del order 77 94 38 91 81 29 33 41 5 4 1 3 

last two genes 35 89 98 20 15 8 54 17 90 42 1 67 

rbf-3 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalize (gene → subject) 

first ranking 100 92 87 89 79 99 62 8 5 1 4 1 

rev-del order 95 100 77 64 93 99 75 76 2 1 2 1 

last two genes 67 40 88 87 31 6 38 25 2 1 2 1 

Normalize (gene) 

first ranking 59 57 88 57 63 99 39 29 5 1 3 1 

rev-del order 28 30 77 54 68 70 1 87 2 1 4 1 

last two genes 8 78 74 53 96 10 1 54 2 1 2 12 

no normalize 

first ranking 63 64 86 36 100 99 100 99 4 1 4 1 

rev-del order 27 28 73 19 100 99 100 99 2 1 2 1 

last two genes 12 41 56 97 82 96 97 82 2 1 2 1 
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Table 16:  The number of patients in positive(+) class and negative(-) class of the training 
and testing datasets. 
 

 
Data 

set 
(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

train 

test 

23 

626 

17 

374 

25 

686 

15 

314

24 

608

16 

392

19 

528

21 

472

17 

560

23 

440 

23 

584 

17 

416

 
 
 
 
Table 17:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function :. Kernel: 
two degree polynomial. 

cxx =+ 2
2

2
1

 
 

# gene accuracy rate 

selected Normalization: gene → subjec 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.570 1/0.603 1/0.532 1/0.513 1/0.512 1/0.541 

50 1/0.557 1/0.591 1/0.560 1/0.517 1/0.526 1/0.542 

25 1/0.537 1/0.551 1/0.556 1/0.475 1/0.471 1/0.543 

12 1/0.512 1/0.545 1/0.544 1/0.488 1/0.495 1/0.501 

6 1/0.516 1/0.525 1/0.561 1/0.506 1/0.485 1/0.518 

5 1/0.499 1/0.521 1/0.579 1/0.511 1/0.487 1/0.504 

4 1/0.509 1/0.553 0.875/0.633 1/0.501 1/0.479 1/0.524 

3 0.8/0.575 0.95/0.538 0.85/0.646 0.925/0.494 0.8/0.462 0.925/0.553 

2 0.7/0.59 0.825/0.544 0.725/0.699 0.825/0.49 0.725/0.475 0.8/0.502 

1 0.625/0.604 0.65/0.56 0.675/0.665 0.75/0.496 0.65/0.45 0.575/0.584 
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# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.551 1/0.602 1/0.533 1/0.523 1/0.514 1/0.534 

50 1/0.527 1/0.578 1/0.547 1/0.504 1/0.53 1/0.540 

25 1/0.550 1/0.549 1/0.558 1/0.51 1/0.536 1/0.530 

12 1/0.521 1/0.529 1/0.517 1/0.541 1/0.575 1/0.512 

6 1/0.507 1/0.539 1/0.468 1/0.522 1/0.625 1/0.503 

5 1/0.504 1/0.519 1/0.463 1/0.522 1/0.641 1/0.513 

4 1/0.480 1/0.518 0.925/0.506 0.925/0.511 1/0.645 1/0.542 

3 0.825/0.479 0.875/0.546 0.8/0.509 0.75/0.471 0.95/0.654 0.9/0.519 

2 0.65/0.558 0.775/0.587 0.625/0.57 0.675/0.476 0.9/0.646 0.775/0.502 

1 0.575/0.62 0.6/0.579 0.6/0.608 0.575/0.496 0.9/0.7 0.575/0.584 

 

 

 

 

 

 

     

# gene accuracy rate 

selected Normalization: not normalizingdata 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.542 0.616 1/0.518 1/0.502 1/0.599 1/0.670 

50 1/0.530 0.602 1/0.525 1/0.519 1/0.631 1/0.695 

25 1/0.527 0.573 1/0.532 1/0.515 1/0.670 1/0.693 

12 1/0.543 0.553 1/0.519 1/0.501 1/0.751 1/0.756 

6 1/0.511 0.550 1/0.495 1/0.510 1/0.801 1/0.811 

5 1/0.509 0.554 1/0.510 1/0.474 1/0.783 1/0.828 

4 0.825/0.526 0.578 0.975/0.487 1/0.519 1/0.639 1/0.940 

3 0.725/0.564 0.595 0.85/0.511 0.950.511 0.85/0.492 1/0.938 

2 0.625/0.594 0.528 0.775/0.53 0.75/0.516 0.7/0.502 0.8/0.69 

1 0.6/0.625 0.561 0.625/0.556 0.65/0.518 0.675/0.521 0.75/0.717 
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Table 18:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function :. Kernel: 
RBF. 

cxx =+ 2
2

2
1

 
# gene accuracy rate 

selected Normalization: gene → subjec 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.574 1/0.629 1/0.579 1/0.527 1/0.477 1/0.632 

50 1/0.626 1/0.673 1/0.608 1/0.526 1/0.608 1/0.686 

25 1/0.604 1/0.649 1/0.594 1/0.514 1/0.688 1/0.734 

12 1/0.581 1/0.594 1/0.554 1/0.520 1/0.709 1/0.760 

6 1/0.539 1/0.597 1/0.566 1/0.508 1/0.725 1/0.856 

5 1/0.550 1/0.579 1/0.558 1/0.499 1/0.713 1/0.844 

4 0.95/0.528 0.95/0.575 0.975/0.57 1/0.512 1/0.780 1/0.833 

3 0.925/0.551 0.825/0.616 0.85/0.567 0.925/0.492 1/0.813 1/0.827 

2 0.825/0.511 0.7/0.626 0.725/0.549 0.675/0.493 1/0.855 1/0.924 

1 0.8/0.548 0.675/0.679 0.625/0.562 0.525/0.502 0.9/0.694 0.875/0.729 

 

 

 

        

# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.446 1/0.591 1/0.554 1/0.515 1/0.483 1/0.636 

50 1/0.419 1/0.668 1/0.608 1/0.513 1/0.626 1/0.659 

25 1/0.519 1/0.622 1/0.594 1/0.514 1/0.729 1/0.725 

12 1/0.507 1/0.573 1/0.550 1/0.537 1/0.723 1/0.783 

6 1/0.515 1/0.568 1/0.548 1/0.594 1/0.724 1/0.814 

5 0.975/0.515 1/0.554 1/0.542 1/0.608 1/0.717 1/0.837 

4 0.9/0.509 0.975/0.559 0.9/0.55 0975/0.675 1/0.745 1/0.840 

3 0.8/0.569 0.85/0.601 0.85/0.557 0.925/0.684 1/0.772 0.95/0.645 

2 0.775/0.584 0.75/0.579 0.7/0.566 0.9/0.72 1/0.871 0.925/0.666 

1 0.7/0.565 0.725/0.598 0.625/0.609 0.9/0.757 0.9/0.707 0.875/0.733 
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# gene accuracy rate 

selected Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.462 1/0.603 1/0.640 1/0.516 1/0.49 1/0.632 

50 1/0.411 1/0.576 1/0.484 1/0.514 1/0.65 1/0.691 

25 1/0.53 1/0.548 1/0.512 1/0.509 1/0.732 1/0.75 

12 1/0.549 1/0.532 1/0.507 1/0.524 1/0.752 1/0.774 

6 1/0.534 0.925/0.532 1/0.535 1/0.505 1/0.741 1/0.772 

5 0.975/0.543 0.9/0.543 1/0.547 1/0.513 1/0.722 1/0.783 

4 0.975/0.559 0.85/0.533 1/0.518 1/0.5 1/0.761 1/0.804 

3 0.8/0.546 0.8/0.578 1/0.492 1/0.485 1/0.789 1/0.903 

2 0.7/0.55 0.725/0.553 1/0.514 0.975/0.488 1/0.955 1/0.979 

1 0.5/0.486 0.725/0.524 0.8/0.508 0.7/0.51 0.90.715 0.85/0.744 
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Table 19:  The rankings of gene1 and gene2 in the first training (with 100 genes) and the 
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel 
with parameter 3=σ and the two genes stay to the end (Decision function , 
six kinds of different data structures, and three different normalization cases ).  

cxxxx =++ 2
221

2
1

 

 
c 1 0.1 100 60 10 12 

data N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

poly-2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalize (gene → subject) 

first ranking 65 50 58 64 65 12 31 46 74 92 81 94

rev-del order 69 70 80 81 53 62 68 15 65 90 85 92

last two genes 36 4 15 76 73 95 54 35 44 25 97 52

Normalize (gene)  

first ranking 79 67 48 53 69 38 15 57 53 90 88 97

rev-del order 84 83 25 76 47 35 5 14 35 83 64 97

last two genes 38 94 35 42 96 71 91 79 77 5 52 97

not normalizing 

first ranking 86 89 60 98 87 12 7 83 1 2 2 1

rev-del order 88 90 53 98 88 9 35 88 1 5 6 2

last two genes 85 58 15 94 94 61 20 85 1 55 33 2

rbf-3 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2 gene1 gene2

Normalize (gene → subject) 

first ranking 95 99 86 59 76 97 75 94 2 1 2 1

rev-del order 93 98 72 39 84 97 44 97 2 1 2 1

last two genes 71 20 66 48 98 49 26 33 2 1 2 1

Normalize (gene)  

first ranking 79 70 91 69 73 91 24 100 2 1 3 1

rev-del order 54 52 75 41 88 96 46 100 2 1 2 1

last two genes 8 85 44 97 40 6 36 62 2 1 2 1

not normalizing 

first ranking 81 74 88 83 100 99 100 99 2 1 2 1

rev-del order 45 50 91 92 100 99 100 99 2 1 1 2

last two genes 4 20 45 80 82 96 96 85 2 1 1 2
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Table 20:  The number of patients in positive(+) class and negative(-) class of the training 
and testing datasets. 
 
 

Data 

set 
(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 

train 

test 

23 

582 

17 

418 

22 

638 

18 

362

24 

575

16 

425

22 

450

18 

550

17 

620

23 

380 

22 

536 

18 

464

 
 
 
 
 
Table 21:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . 

Kernel: two degree polynomial. 
cxxxx =++ 2

221
2
1

 
 

# gene accuracy rate 

selected Normalization: gene → subject 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.534 1/0.527 1/0.548 1/0.485 1/0.486 1/0.506 

50 1/0.539 1/0.511 1/0.531 1/0.491 1/0.443 1/0.509 

25 1/0.514 1/0.535 1/0.541 1/0.510 1/0.471 1/0.503 

12 1/0.488 1/0.496 1/0.524 1/0.510 1/0.475 1/0.491 

6 1/0.509 1/0.513 1/0.491 1/0.519 1/0.491 1/0.500 

5 1/0.492 1/0.489 1/0.503 1/0.482 1/0.512 1/0.516 

4 1/0.503 1/0.488 0.8750.497 0.9/0.502 1/0.513 1/0.510 

3 0.975/0.489 0.95/0.486 0.725/0.516 0.9/0.512 0.8250.499 0.8/0.518 

2 0.775/0.482 0.75/0.451 0.65/0.533 0.65/0.5 0.8/0.464 0.725/0.505 

1 0.575/0.582 0.725/0.529 0.625/0.561 0.6/0.484 0.70.441 0.6/0.528 
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# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.526 1/0.541 1/0.542 1/0.488 1/0.486 1/0.504 

50 1/0.526 1/0.541 1/0.534 1/0.519 1/0.473 1/0.489 

25 1/0.521 1/0.513 1/0.518 1/0.521 1/0.469 1/0.536 

12 1/0.527 1/0.484 1/0.521 1/0.525 1/0.484 1/0.499 

6 1/0.489 1/0.489 1/0.512 1/0.549 1/0.482 1/0.509 

5 1/0.536 1/0.498 1/0.523 1/0.551 1/0.503 1/0.518 

4 0.925/0.516 1/0.523 1/0.508 1/0.490 1/0.511 1/0.511 

3 0.725/0.484 0.85/0.545 0.875/0.499 0.925/0.484 0.875/0.513 0.85/0.497 

2 0.725/0.542 0.8/0.538 0.7/0.519 0.7250.496 0.675/0.54 0.725/0.513 

1 0.55/0.586 0.75/0.542 0.65/0.548 0.55/0.46 0.575/0.38 0.625/0.521 

      

 

 

 

   

# gene accuracy rate 

selected Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.518 1/0.551 1/0.533 1/0.476 1/0.567 1/0.669 

50 1/0.509 1/0.553 1/0.507 1/0.477 1/0.603 1/0.673 

25 1/0.499 1/0.521 1/0.545 1/0.510 1/0.638 1/0.689 

12 1/0.518 1/0.512 1/0.562 1/0.508 1/0.725 1/0.706 

6 1/0.526 1/0.520 1/0.524 1/0.508 1/0.795 1/0.729 

5 1/0.506 1/0.529 1/0.524 1/0.483 1/0.822 1/0.653 

4 1/0.501 1/0.499 0.975/0.493 1/0.470 1/0.620 1/0.670 

3 0.9/0.479 0.9/0.546 0.775/0.503 0.9/0.48 0.90.651 0.95/0.68 

2 0.75/0.493 0.8/0.546 0.775/0.514 0.675/0.486 0.875/0.675 0.95/0.702 

1 0.575/0.582 0.75/0.536 0.6/0.575 0.55/0.45 0.8/0.697 0.675/0.484 
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Table 22:  The (training/testing) classification accuracy rate for three different normalization 
cases, the first column is the number of genes still in the training set. The training set size is 
40 examples, and the test set size is 1000 examples. Decision function: . 

Kernel: RBF. 
cxxxx =++ 2

221
2
1

 
 

# gene accuracy rate 

selected Normalization: gene → subjec 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.531 1/0.516 1/0.554 1/0.502 1/0.542 1/0.601 

50 1/0.582 1/0.560 1/0.577 1/0.523 1/0.400 1/0.647 

25 1/0.564 1/0.519 1/0.571 1/0.499 1/0.590 1/0.698 

12 1/0.548 1/0.503 1/0.546 1/0.516 1/0.627 1/0.757 

6 1/0.528 1/0.511 1/0.544 1/0.510 1/0.740 1/0.836 

5 0.975/0.512 0.975/0.523 0.975/0.541 1/0.502 1/0.731 1/0.873 

4 0.975/0.51 0.975/0.495 0.925/0.526 0.95/0.504 1/0.760 1/0.875 

3 0.9/0.527 0.9/0.518 0.9/0.533 0.9250.484 1/0.820 1/0.886 

2 0.775/0.482 0.8/0.552 0.8/0.528 0.775/0.496 1/0.834 0.975/0.906 

1 0.65/0.578 0.725/0.531 0.65/0.566 0.55/0.45 0.850.625 0.9/0.716 

 

 

 

         

# gene accuracy rate 

selected Normalization: gene 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.473 1/0.536 1/0.555 1/0.511 1/0.487 1/0.613 

50 1/0.537 1/0.532 1/0.575 1/0.505 1/0.402 1/0.646 

25 1/0.518 1/0.528 1/0.577 1/0.486 1/0.566 1/0.693 

12 1/0.515 1/0.521 1/0.554 1/0.498 1/0.643 1/0.761 

6 1/0.555 1/0.509 1/0.521 1/0.499 1/0.739 1/0.767 

5 1/0.559 1/0.522 0.975/0.533 1/0.513 1/0.755 1/0.808 

4 0.95/0.55 0.95/0.531 1/0.534 0.975/0.51 1/0.832 1/0.816 

3 0.85/0.555 0.875/0.507 0.925/0.518 0.85/0.487 1/0.833 1/0.95 

2 0.8/0.568 0.75/0.511 0.825/0.51 0.75/0.495 1/0.844 1/0.948 

1 0.75/0.543 0.65/0.508 0.625/0.564 0.725/0.495 0.85/0.649 0.875/0.723 
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# gene accuracy rate 

selected Normalization: not normalizing data 

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3) 

100 1/0.475 1/0.531 1/0.064 1/0.525 1/0.488 1/0.611 

50 1/0.521 1/0.544 1/0.5 1/0.511 1/0.418 1/0.66 

25 1/0.536 1/0.522 1/0.515 1/0.513 1/0.613 1/0.721 

12 1/0.521 1/0.528 1/0.532 1/0.497 1/0.658 1/0.767 

6 1/0.496 0.925/0.523 1/0.518 1/0.529 1/0.863 1/0.865 

5 1/0.481 0.8/0.569 1/0.533 1/0.536 1/0.853 1/0.85 

4 0.925/0.521 0.8/0.551 1/0.548 1/0.51 1/0.912 1/0.932 

3 0.775/0.516 0.75/0.575 1/0.527 1/0.486 1/0.928 1/0.951 

2 0.75/0.536 0.75/0.568 1/0.535 1/0.497 1/0.942 0.975/0.974 

1 0.575/0.582 0.625/0.534 1/0.494 0.7250.508 0.85/0.658 0.8/0.762 

 
 
Table 23:  Results obtained in [19], Weston et al. The times of the correct features were 
selected over 30 random trials for various training set sizes using nonlinear SVMs with a 
polynomial kernel of degree 2. 
 
 

Training 

set size 
10 20 30 40 50 75 100 

Times 2/30 19/30 27/30 28/30 26/30 30/30 28/30 

 
 
Table 24:  Results obtained in [19], Weston et al. The times of the correct feature was 
selected over 30 random trials for various training set sizes using our criteria in sec.4.2 (ii). 
The second row means the times of the correct feature was selected in the reverse order 2 
training, and the third row means the times of the correct feature was selected in the last 
training. 
 
 

Training 

set size 
10 20 30 40 50 75 100 

Times 

(top two) 
7/30 25/30 28/30 28/30 30/30 29/30 30/30 

Times 

(top one) 
4/30 20/30 22/30 22/30 23/30 24/30 26/30 
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Table 25:  Results obtained in [19]. The table shows the average test error rate and standard 
deviation on a test set of 500 examples over 30 random trials using two different feature 
selection methods. We plot them in Figure 2. 
 

Training 

set size 
Nonlinear SVMs 

(kernel:poly-2) 

Map data to higher-dim 

space 

(top two) 

Map data to higher-dim 

space 

(top one) 

10 0.46007±0.09707 0.40913±0.13741 0.42127±0.14760 

20 0.19707±0.16651 0.16120±0.13818 0.14313±0.14520 

30 0.13780±0.12436 0.11500±0.05338 0.08673±0.04508 

40 0.10233±0.05609 0.08907±0.05214 0.08580±0.04334 

50 0.10073±0.09191 0.08660±0.03668 0.07773±0.04640 

75 0.07073±0.03637 0.07313±0.04836 0.07680±0.04870 

100 0.06213±0.03211 0.05560±0.03456 0.06093±0.02692 

 
 
 
Figure 2:  Results obtained in [19]. The x-axis is the training set size, and the y-axis is the 
average test error rate on a test set of 500 examples over 30 random trials.  
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