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ABSTRACT

Microarray data contains large number of p genes (usually several thousands) and small
number of n patients (usually nearly 100 orless). The problem of identifying the features best
discriminate among the classes:to Improve the ability of a classifier is known as feature
selection. Some current feature selection methods and the problem of dealing with “large p,
small n" are reviewed. The Support ‘Vector Machines (SVMs) has proofed excellent
performance in practice as a classification methodology. For linear classification problem, this
paper studies the following two issues: (i) the number of one gene s surrogates somehow
affects the importance of the gene; (ii) the case of overlapping classes. For nonlinear
classification problem, we utilize two procedures: 1. mapping the original nonlinear separable
data to the high dimension space, and then use SVM RFE with linear kernel to find crucial
genes; 2. using SVM RFE with nonlinear kernel. Then we compare these two methods on

nonlinear toy problem.
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1 Introduction

Nowadays, the developments of DNA microarrays enable biologists simultaneously to
measure thousands of gene expression data and classify samples belonging to different classes.
Leukemia dataset containing two types of acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) was originally studied by Golub et al. (1999). Support Vector
Machines is a new, powerful, and supervising technology to be used in many real-word
applications and proofed excellent performance such as the classification problem of
microarrays gene expression data (or microarrays data analysis), text categorization, hand-
written character recognition, image classification or biological sequence analysis(Markowetz,
Edler, and Vingron, 2003). It also successively extended by a number of other researches. The
SVM paradigm has a nice geometrical interpretation, in the binary case. It creates a maximal
margin separating hyperplane between the two classes {+} or {-} from the information of
pattern vectors Xe R”. When thé dataset is-linearly separable, it is possible to construct the
optimal hyperplane. SVMs can also“use kernel functions which map original nonlinear
separable datasets into a higher dimension feature space to deal with nonlinear classification
problem. In this paper, we will discuss two typical problems associated with microarray data
analysis:

(a) Classification analysis

We focus on two-class classification problem. Let the training data set is given
as(X;,Y,), (X5, ¥5), (X, Y,), withx, e RP,y, € {+1,—1}. The training examples are used

to construct a decision functiond(X). Define a separating hyperplane by {x:d(X)=0}. New

observations of the test set are classified according to the decision function:



diX,)>0=>y, =+1
dix,)<0=>y, =-1
d(X,) = 0= X, € decision boundary

where X, is an input observation in the test set.
(b) Gene selection (or feature selection)

The problem in gene expression data is that the number of p genes is very large (usually
several thousands) and the number of n patients is comparatively scarce (usually nearly 100 or
less), but many of the genes are irrelevant or even noises to the classification problem. In
statistics, this problem is called "curse of dimensionality". For the problem of "large p, small
n", the accuracy is very high in assigning the label of the training sample, but very low in the
test sample. Guyon et al. (2002) also demonstrate that the feature selected matter more than
the classifier used. For the reason of generalization performance of a classifier, economical,
and computational considerations, we would like-to select a subset of relevant and distinct
features which best discriminate-among'the classes to improve the ability of a classifier. A
recently proposed gene selection-method, specially tested on microarrays expression data, is
called Recursive Feature Elimination (RFE). The'idea is using the weights of a classifier to
produce a feature ranking.

In this paper, we investigate the Support Vector Machines criteria for feature selection in
application to classification problems. This is SVMs based on RFE algorithm (Guyon et al.,
2002). For linear classification problem, we are interested in getting more insights on (i) the
number of one gene’s surrogates somehow affect the importance of the gene; (ii) the case of
overlapping classes. For nonlinear classification problem, we use two procedures: one is to
map the original nonlinear separable data to the high dimension space, and then use SVM
RFE with linear kernel to find crucial genes; another is to use SVM RFE with nonlinear
kernel. We compare the classification performance of these two methods on nonlinearly toy
problem. The distribution of the simulation data (toy problem) are provided in Weston et al
(2000). We also discuss the effect of normalization, and which kernel is appropriate for
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different data structure and decision rules.

The paper is organized as follows. In Section 2 we review the literature about gene
selection and classification problem, in section 3 we describe SVMs and in section 4 we
introduce feature selection using SVMs. In Section 5 we present several simulation results for
linear and nonlinear classification problems. Finally, section 6 contains the summary of the

reviews, conclusions and future research directions.

2  Literature Review

In the current (recent) literature, two basic approaches for feature selection are proposed:
filter methods and wrapper methods. The signal-to-noise (S2N) in Golub et al. (1999) is a

filter method. The correlation coefficients used-as ranking criteria is

)l s
Wi_o_i(+)+o_i(_)a|_1= > P (1)

where u, and o, represents the‘mean and standard deviation of the gene expression values

of gene i of class (+) or class (-). Furey et al. (2000) used the absolute value of w,'s as

ranking criterion. Recently, Pavlidis (2000) used
(p(+)= (=)’

oi(+)' +0,(=)"

=1---,p 2)
as ranking criterion, which is similar to Fisher’s criterion score. For the perspective of
classification, it is important to select distinct but still highly informative features. With the
filter method, we may identify a large number of relevant genes, and the identified set likely
has heavy redundancy. On the other hand, the selected genes are highly correlated to each
other (Krishnapuram, Carin, Hartemink, 2004). Recursive Feature Elimination (RFE), which
has been proposed by Guyon et al. (2002) is a wrapper method. This method is based on a
backward sequential selection in Rakotomamonjy, et al. (2003), starting with all the features,
and removing one feature or chunks of features at a time. In Guyon et al. (2002), they also
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generalized SVM RFE to nonlinear case. (Fujarewicz, and Wiench, et al. 2003) use recursive
feature elimination(RFE), recursive feature replacement(RFR), neighborhood analysis and
pure Sebestyen criterion four gene selection methods to find differently expressed genes for
the tumor/normal classification of colon tissues, showing that the RFE and RFR methods
work much better than other two methods, and from the results of leave-one-out
cross-validation (LOOCYV), RFR gives better performance for smaller gene subsets; RFE is
slightly better for larger gene subsets. For the toy experiment, the datasets were described in
Weston et al. (2000). Weston et al. (2000) utilize the toy data to compare the performance of
different feature selection methods including standard SVMs, their algorithms and three
classical filter methods. Their method is based on finding those features which minimize
bounds on the leave-one-out error. This search can be efficiently performed via gradient
descent. The three filter methods choose the crucial features based on Pearson correlation
coefficients, the Fisher criterion-score, and the Kolmogorov-Smirnov test. Grandvalet, and
Canu, (2002); Rakotomamonjy, «(2003)“also.compare their feature selection approaches to
standard SVMs on these datasets (toy). From these literatures, it is inappropriate to use
standard SVMs dealing with nonlinear classification problems. Furthermore, multicategory
problems are often regarded as a series of binary problems. Lee et al. (2001) proposed
multicategory Support Vector Machines (MSVM), which extend the binary SVM to the
multicategory case. Lee & Lee (2002) applied the MSVM to analyze the published multiple
cancer types of leukemia dataset in Golub et al. (1999) and small round blue cell tumors
(SRBCTs) of childhood data set in Khan et al. (2001). The leukemia data were separated into
three classes including AML, ALL B-cell and ALL T-cell; the SRBCTs data were separated
into four classes including neuroblastoma(NB), rhabdo-myosarcoma (RMS), non-Hodgkin
lymphoma (NHL) and the Ewing family of tumors (EWS).

Next, we review some research works on the role of kernels when using a SVM. It is
difficult to find an appropriate kernel function for a particular problem. Many literatures only
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report results on the kernel that performed best on their test set. For examples of notably face
and pedestrian diction, the results of using Gaussian kernel with appropriate settings of the
width parameters o will be better than any other kernel in Rifkin et al. (2002). From (Guyon,
Weston, Barnhill, and Vapnik, 2002), they use the polynomial kernel of degree 2 for the
example of XOR problem. Even if a strong theoretical method for selecting a kernel is
developed, unless this can be validated using independent test sets on a large number of
problems. Methods such as bootstrapping and cross-validation will remain the preferred
method for kernel selection, in GUNN et al. (1998).

SVMs involve many hyperparameters including degree d of a polynomial kernel,
Gaussian kernel parameter o, and penalized parameter C. It is crucial to choose appropriate
values of these parameters to achieve the best generalization performance. The appropriate
Kernel parameter implicitly defines:the structure of high dimensional feature space where a
maximal margin hyperplane will-be found. If the Kernels are too poor, then the system can not
separate the data, Cristianini et-al. (1998). Cristianini et al. (1998) presented an algorithm
which can automatically learn thé:kernel parameter. Rakotomamonjy et al. (2003) use
nonlinear toy problem to represent the influence of the two parameters o and C on the test

error, as o = 3, the best performance for C=100; as C=100, the best performance foro =3.

3  Support Vector Machines

This section is an overview of linear and nonlinear classification method called Support
Vector Machines. The general classification problem can be considered as the two-class
problem. The goal is to separate the two classes from available examples. If the data is
linearly separable all the support vectors will lie on the margin and hence the number of

support vectors can be very small, in GUNN et al. (1998).



Optimal
hyperplane

Figure 1: separable case with a maximal margin.

3.1 Linear Classifier for Linearly Separable Data

Let the training set is (X,,¥;),(X55 Y5 )= 5(Xs1Y, ), with X, e RP,y, € {+1,—1}. Using
the given training examples during the learning stage, the machine finds the parameters

W=[W,W, W, 1" and b of a decision function d(x,w, b) given as

p
d(x,w,b) =w'x+b=> wx +b (3)

i=1

where X,w € R", and the scalar b is called a bias. Define a hyperplane by

{x:d(x,w,b) =0} 4)

Ifd(x,,w,b) > 0, then pattern X, belongs to class 1 (i.e.,y, =+1)

Ifd(x,,w,b) <0, then pattern X, belongs to class 2 (i.e.,y, =-1)

The optimal hyperplane is found based on creating the biggest margin between the
training points for class 1 and class -1, see Figure 1. In order to find the optimal separating

hyperplane, a learning machine should

Minimize ||W||



subjectto y,[w'x; +b]>1, i=1--,n (5)
Such an optimization problem is solved by the Lagrange function

L(W,b,a):%WTW-Zn:ai{yi[WTXi +b]-1}, (6)

i=1

where the ¢; are Lagrange multipliers.

The corresponding dual objective function is

n 1 n
Ld(a):zai_EZYiyJ'aiajxiTXj- (7
=

i,j=l

And the optimal hyperplane is found by maximizing

Ls(a) subjectto > a;y; =0, a; 20,i=1,...,n (8)

i=1

Solutions ai* of this dual optimization problem are easy to be solved, and we can determine

the parameters W and b of the optimal-hyperplane as follows.

W=D g yiX i =1.,n
i=1
I N
b = (2(__XIW ))> s:L""NSV (9)
NSV s=1 S

where N, denotes the number of support vectors.

Finally, we substitute parameters (9) into (3) to obtain an optimal hyperplaned”(x)and an

indicator functioni, :

d"(X)=w" x+b" = D Vi XX +b”

i=l

i, (x)=sign(d”(x)). (10)



Optimal
o hyperplane

Figure 2: soft decision boundaries with data overlapping

3.2 Linear Classifier for Overlapping Classes

In practice, the datasets we want to work are not necessary linearly separable. When the
training data sets are inseparable; we canwstill find a classifier with a maximal margin,

allowing some data on the ‘wrong’ side of a decision boundary. See Figure 2, the points

labeled &, are on the wrong side: Thenthe problem becomes

minimize ||W||
subjecttoy,[w'x, +b]>1-¢,,i=1,...,n and,
& >0,) & <constat. (11)
Note that Zfi is the total proportional amount by which predictions fall on the wrong side

of their margin.

For convenient computation, we re-express the problem as
mibn%WTW +COé&)
. i=1
subjecttoy,[w'x; +b]>1-&,,& >0, i=1...,n (12)

where C is a given constant.



The corresponding dual problem is as follows:

maXiai _%Zn:aiaiyiijrxj
¢ i

i,j=1

subjectto > ey, =0,0<a; <C, i=1L...,n. (13)

=)
where C is the penalty parameter, determined by the user. Solutions & i* of this dual
optimization problem are easy to be solved, and we can determine the parameters w and b of

the optimal hyperplane as (9). Finally, we obtain an optimal hyperplaned “(x) and an indicator

functioni, as (10). Note that the linearly separable case without data overlapping, this upper

bound C =0 .

3.3 Nonlinear Classifier for.Nonlinearly Separable Data

The best way to understand-SVMs is using the example of linear decision rule (Ben-dor
et al., 2000). In subsection 3.1 and,3:2, we_describe optimal hyperplane classifiers and
compute linear boundaries in the input feature space. One can make the method more flexible
by enlarging the feature space using some basic transformation. Let F be the enlarged feature

space. The idea is to map inputs vectors X € R into vectorsz € R =F:

XeRP = 2(X) =[2,(X),2,(X),....,2 (X)]" e R’ (14)

By performing such a mapping, two classes are easier to be separated by the optimal
separating plane in the enlarged feature space F. A linear boundary in the enlarged feature
space F corresponds to a nonlinear boundary in the original space X.

We linearly separate images of X by applying the linear SVM formulation. The linear
classifier (indictor function) i, (X)= Sign(W*TZ(X)er*) in a feature space F will create a

nonlinear separating hyperplane in the original input space given by



i, (%) = sign(Y e v, (2(x,),2(x)) +b"). (15)
i=l
Boser at al. (1992) observed that it is not necessary to know the feature space F explicitly

but to calculate the inner products between support vectors of the feature space F for

constructing optimal hyperplane. On the other hand, we need not specify the transformation

z(X) at all, but require only knowledge of the kernel function K(x,Xx") :<Z(X),Z(X')>. Thus
replacing(z(X;),z(X)) by K(x,X;) in (14), the separating rule becomes:

i, () = sign(> Y, K (%) +b"). (16)

i=1

where ai* is the solution to the optimization problem

m(leZO(i _%ZaiajyiyjK(xiJXj)
i1

i,j=1

subjectto Diary, =0, .C2a, 20,i=1...,n. (17)

i=1

where C is the margin parametet. When the training data sets are linearly separable for just a
few features, the classification is‘rather: insensitive to the value of C. For convenience, we let

C=100 in the linear case study.

3.4 Popular Kernel and Standard Type of Classification

We can map the pattern vectors Xxe R” to a high dimension space H, and separate there
by using a linear kernel function. Given a mapping® : R” — H from input space R’ to an

feature space H, the functionK : R? xRP — Ris called a kernel function, that is for all

X,ze R?,K(x,2) = <CD(X),CD(Z)>H . The most commonly used kernels are as follows:

10



Kernel Functions Type of Classifier

K(x,x,)=[(x"x,)+ 1]¢ polynomial of degree d

(x=x)" (x=x, )] Gaussian RBF (Radial basis function)

K(X,X;) =exp[- =

where o is the width parameter

K(x,x,)=tanh[(x"x,) +b]’ Multilayer perceptron

* Only for certain values of b

4 Feature Selection Methods for Kernel Machines

SVM REFE is an application of REE,using the weight magnitude w as ranking criterion.
w is a vector with p components; each, €orresponding to expression of a particular gene as

ranking criterion. In sec. 4.1 and 4.2, we introduce linear and nonlinear case, respectively.

4.1 Linear Case

When our training dataset are linear separable (linear classification problem) then using a
linear SVM, SVM RFE use the weight magnitude as ranking criterion. The idea is, starting
with all the available genes, build an optimal SVM model, and remove the feature whose
associated weight is smallest in absolute value. Repeat this criterion from the surviving genes
until only the desired numbers of features remain (Zhang, and Wong, 2001). The criterion is
using the following iterative procedure (Guyon et al., 2002):

1. Train the classifier with SVM (optimize the weights w; ).
2. Compute the weights for all features.

3. Remove the feature with the smallest absolute weight.

11



4.2 Nonlinear Case

When data is nonlinear separable (nonlinear classification problem), we can use the
following two procedures.
(1) nonlinear SVMs

The basic idea is to remove those features that affect the margin the least, because of the
reason that maximizing the margin is the object of the SVM. Thus we can generalize SVM
RFE to the nonlinear case and other kernel methods. The following iterative procedure
contains two steps proposed by Guyon et al. (2002):

The first step is to train SVM classifier, optimize

D 1 1
Ly(a) = e, —5ZyiyjaiajK(xi,xj)=ozT 1—§aT Ha
i=l1 i

i,j=1
subjectto 0<@KC; D Y, =0 (18)
where H =y, y;K(x;,x;), 1=[1:-- 1] «n'by 1 vector).
The minimized cost function is (Vapnik;.1998)
1 *T * *
J=§a Ha —a 1l (19)
The second step is to compute DJ (i) for all features
. I .1 . o
DJ(|)=Ea Ha —Ea H(-1)a (20)
and then remove the feature with the smallest DJ (i).
irNj

In the linear case, K(X;,X;) = X; - X;, a'Ha = ||W||2 Therefore DJ(i) = %(Wi)z, this is

identical to linear SVMs in section 4.1.

(i1) First, we map the original data to a feature space of high or infinite dimensional space, and
regard as a linear separable case in that space. Therefore we can use same criterion as in the
sub-section 4.1 to select crucial genes. The drawback of this method is that we may generate

12



too many irrelevant genes. Taking the expression vectorXx=[X, X, X,] for example: If our

dataset is second-order polynomial separable (in input space, the decision rule d(X) is a

second-order polynomial), then we use the following mapping function ® (X):
D:X—>Z(X)=[X X, X3 X7 X5 X5 XX, X X; X, %],

We train this new expression vector z(X) in SVM RFE with linear kernel to select crucial

features (genes).

5 Simulation Studies

5.1 Linear problem

5.1.1 Overlapping Classes
For training data sets without overlapping are rare in practice. In the following

simulation, we study the case of overlapping classes in'feature space.

We simulate iid. X ; ~N(Q,),i=1,..n.j=1,...,024 for training data set,

representing microarray data with n subjects and the expression levels of 1024 genes, and i.i.d.

X ~ N(0,1),i=1,...1000, j =1,...,1024 for test data set.

We define the Cauchy c.d.f. as F(x):l(tan_l(l)+%),azo.25 which is an
V4 o

increasing function and satisfies F(—o) = 0,F(0) =1/2,F () =1. Note that the larger theo,
the more the overlapping classes. LetX; + X, =S, P(y=1)=F (s),and P(y=-1)=1-F (9).

In the simulation, we use SVM to train{x, ;} with linear kernel, RFE to eliminate gene

one by one, and let C=100. Tables 1-6 give the results of the study. Table 1 give the gene
selection results for training set size n=30, 40, 50, and 100. The table is the rankings in the
first SVM training (with 1024 genes) and the reverse deleting order of genel and gene2. For
instance, a reverse deleting order of 2 means the gene is the last one deleted, 1 means the gene

13



stays to the end, and “x* means the gene is deleted before the last 20 iterations. For n=30, the
correct two features were selected about 1/5 times; for n=100, the correct two features were
selected about 4/5 times. The results show that if n is larger, it is easier to select the crucial
genes (genel and gene2) by SVMs with linear kernel for overlapping classes. Table 2 give the
numbers of patients in class {+} and class {-} for various training set size. Tables 3-6 provide

the training/test classification accuracy rate for the study.

5.1.2 Correlated Data

In this simulation study, we study the number of one gene’s surrogates somehow affect

the importance of the gene.

We generate X; ;,i =1,...,40, j=1,...,p
(p=20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000 )

i.i.d.
Xi;, with X, ~ N(0, 1), X ;~X,+¢&; for j=3,...m m=3,.,20,

ii.d. ia.d.
where & ; ~ N(O, 107), and X X;, ~ N(0, 1), representing microarray data of 40

i,m+19°°°

patients and p genes. The decision rule used in the study is: if X, + X, >0theny e class{ +1 },

otherwisey e class{ —1 }.

For the simulation, we use SVM method to train{X; ;} with linear kernel, RFE to

eliminate gene one by one with C=100. Figure 1 gives the results of the study. The number
of X,’s surrogates is represented on the x-axis. The average of (X,'s weight / x,"s weight) and
standard deviation over 50 random trials are represented on y-axis. We observe that these
correlated genes with gene 2 may dilute the performance of gene 2. For the smaller p, the plot
presents smooth decreasing concave curve; for the larger p, this is nearly a linear decreasing

curve.
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5.2 Nonlinear problem

5.2.1 Compare several different cases using nonlinear SVMs

In the following simulations, we study the effect of normalization for nonlinear
classification problem and compare the performance of two different kernel functions:

polynomial kernel of degree 2 and RBF kernel with parametero =3. We simulate the

independent training data X =1,--40 j=1,---100 , and test data X, ., i=1,---,1000

ijol ij>
j=1,---,100, representing microarray data with (40/1000) subjects and the expression levels
of their 100 genes.
Our data set is generated from the following distributions:
(i) N(@O,1)
(i))  Uniform (-0.5, 0.5)
(iii)) N (0, 10)
(iv)  Uniform (-10, 10)
(v) N(@,1)
(vi)  Uniform (1, 3)
The following decision rules are used in the study:
(a) decision rule: if XX, > Cthen y e class{+}, otherwise y e class{ - };
(b) decision rule: if X, + X, > ctheny e class{+}, otherwise y eclass{ - };
(c) decision rule: ifx; + X > ctheny eclass{+}, otherwise y e class{ - };
(d) decision rule:
if X} +XX, +X; >ctheny eclass{+}, otherwise y eclass{ - };
where C is some constant, we choose it to balance the proportion of two classes.

For the study, we use the criterion in section 4.2 (i): nonlinear SVMs, eliminate gene one

15



by one, and C=100. For normalization, we discuss three different cases: normalizing {X; ; } for

each j (gene) then normalizing it for each i (subject); normalizing {X; ; } only for each j (gene);

not normalizing data. Tables 7-22 give the gene selection results of each case.

From Table 7, we observe the following:

For the case of decision rule (a) and simulation data structure (i):

With two degree polynomial and RBF kernels, we could not select crucial genes by
our three normalization cases.

For the case of decision rule (a) and simulation data structure (ii):

With using polynomial kernel of degree 2, it seems normalizing data for each j (gene)
then normalizing it for each i (subject), and normalizing data only for each j (gene)
perform better than not normalizing data., With RBF kernel, it seems normalizing data
only for each j (gene) performs better.

For the case of decision rule (a) and simulation‘data structure (iii):

With two degree polynomial.and RBF kernels, it seems normalizing data for each j
(gene) then normalizing it for each i (subject) performs better than other two cases.
For the case of decision rule (a) and simulation data structure (iv):

With two degree polynomial kernel, we all select crucial genes by three different
normalization cases, but the gene selection results are not good with RBF kernel.

For the case of decision rule (a) and simulation data structure (v) and (vi):

With two degree polynomial kernel, it seems not normalizing data performs better

than other two cases. With RBF kernel, three normalization cases are all satisfactory.

From Table 11, we observe the following:

For the case of decision rule (b) and simulation data structure (i):
With polynomial kernel of degree two, we only select genel by normalizing data for

each j (gene) then normalizing it for each i (subject). With RBF kernel, we only select
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gene2 by our three normalization cases.

® For the case of decision rule (b) and simulation data structure (ii):
With polynomial kernel of degree two, we only select gene2 by the case of not
normalizing data. With RBF kernel, we only select gene2 by our three normalization
cases.

® For the case of decision rule (b) and simulation data structure (iii):
With two degree polynomial and RBF kernels, we could not select crucial genes by
our three normalization cases.

® For the case of decision rule (b) and simulation data structure (iv):
With polynomial kernel of degree two, we only select genel by our three
normalization cases. With RBF kernel we could not select crucial genes by our three
normalization cases.

® For the case of decision rule (b) and'simulation data structure (v):
With two degree polynomial kernel,.we could not select crucial genes by our three
normalization cases. With RBE kernel we only select genel by our three normalization
cases.

® For the case of decision rule (b) and simulation data structure (vi):
With two degree polynomial kernel, we could not select crucial genes by our three
normalization cases. With RBF kernel, three normalization cases are all satisfactory.

From Table 15, we observe the following:

® For the case of decision rule (c¢) and simulation data structure (i) and (i1):
With two degree polynomial and RBF kernels, we could not select crucial genes by
our three normalization cases.

® For the case of decision rule (c¢) and simulation data structure (iii):
With two degree polynomial kernel, we only select genel by normalizing data for each
J (gene) then normalizing it for each i (subject). With RBF kernel, we could not select
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crucial genes by our three normalization cases.
® For the case of decision rule (c¢) and simulation data structure (iv):
With two degree polynomial kernel, we could not select crucial genes by our three
normalization cases. With RBF kernel, we only select genel by normalizing data for
each j (gene).
® For the case of decision rule (¢) and simulation data structure (v) and (vi):
With two degree polynomial kernel, it seems not normalizing data performs better
than other two normalization cases. For RBF kernel, three normalization cases are all
satisfactory.
From Table 19, we observe the following:
® For the case of decision rule (d) and simulation data structure (i), (ii), (iii) and (iv):
With two degree polynomial and RBF kernels, we could not select crucial genes by
our three normalization cases.
® For the case of decision rule (d)-and simulation data structure (v) and (vi):
With two degree polynomidl kernel, it:seems not normalizing data performs better
than other two normalization cases. For RBF kernel, three normalization cases are all
satisfactory.
Therefore, the choices of appropriate kernel functions are different for each type of
decision rule and data structure. Tables8, 12, 16, 20 give the number of patients in class {+}
and class {-} of the training and testing datasets. Tables 9, 10, 13, 14, 17, 18, 21, 22 provide

the training/test classification accuracy rate for the study.
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5.2.2 Toy experiment

In this simulation study, we performed experiments on an example of nonlinear
classification problem, the nonlinear toy problem provided in Weston et al. (2000).

Two features out of 52 are relevant. We utilize two methods described in sec.4.2 for the
problem. The first method is the nonlinear kernel version of SVM RFE, we use a polynomial
kernel of degree 2; The second method contains the following steps: we first map the data to
higher dimensional space by a polynomial kernel of degree two, and then use SVM RFE with
a linear kernel, see sec.4.2 (i1). With these two methods, we all normalize the data for each
gene, then normalize it for each subject, and let C=100. The number of times of the correct
features were selected over 30 random trials for various training set sizes with first method is
shown in Table 23 and the times of the correct features were selected over 30 random trials
for various training set sizes with second method, is-shown in Table 24. The classification
performance (average test error on 500-examples over 30 random trials) of using these two
methods is shown in Table 25 and Figure 2. From these results, we observe that the average
performance of the second method is better than the first method for smaller training set size,
but almost equally for larger training set size. In the first method, for n=10 training examples,
we selected average 25.3 features to obtain two relevant features; for n=100, an average of
2.17 features are selected to obtain two relevant features. In the second method, for n=10, we
selected average 10.23 features to obtain the relevant feature (X, x X, ); for n=100, an average
of 1.33 features are selected to obtain relevant feature (X, x X,). The results also show that
these two methods are better than other feature selection methods using in Weston et al.
(2000); Grandvalet, and Canu, (2002); Rakotomamonyjy et al. (2003) for dealing the nonlinear

toy problem.
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6  Conclusion and Future Research

In our study, we review some literature about Support Vector Machine, which has shown
great performance in practice as a classification methodology. In Sec.5, we experiment on
linear and nonlinear classification problems utilizing SVMs.

From the simulation results of linear classification problem we observe that
® For overlapping classes, when the training set size is large, it is easy to select crucial
genes by utilizing linear SVM RFE, and the performance of classification is also good.
® Numbers of one gene’s surrogates would affect the importance of the gene.
From the simulation results of nonlinear classification problem we observe that
® The performance of classification is better with utilizing nonlinear SVM RFE criteria
and our method (sec.4.2(i1)):than other:feature selection methods utilized in Weston et
al. (2000); Grandvalet, and Canu, (2002); Rakotomamonjy et al. (2003) for dealing the
nonlinear toy problem.
® The drawback of the gene selection imethod described in sec.4.2 (ii) is that it is
inappropriate to be utilized for large number of genes, but better (easy to select crucial
genes) for small genes. Therefore we could combine other supervising learning
methods with our method.

We propose a simple gene selection procedure for the case of nonlinear separable data.
The procedure is applied to nonlinear toy problem. Many interesting problems are worth
future study, such as finding a technique for choosing the kernel functions; finding other
better feature selection methods; the choices of appropriate hyperparameters including degree
d of a polynomial kernel, Gaussian kernel parameter o, and penalized parameter C; extending
the binary SVM to the multicategory case. These problems are potential topics for future

research.
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Table 1: The rankings of genel and gene2 in the first SVM training (with 1024 genes) and
the reverse deleting order by RFE and the two genes stay to the end (overlapping classes), n is

the training set size.

n Step |genel gene2 |genel gene2 |genel gene2 |genel gene2 |genel gene2
first ranking 46 1 2 1 12 4 4 1 6 1
30 | rev-del order X 4 6 1 X 14 1 2 15 11
last 2 genes | 993 290 2 259 518 906 1 2 746 736
first ranking 1 107 5 6 5 20 1 7 4 9
40 | rev-del order 1 X 2 1 1 2 1 2 X 18
last 2 genes 1 585 2 1 1 2 1 2 495 195
first ranking 4 1 89 1 5 1 1 2 1 2
50 | rev-del order 2 1 X 1 9 10 1 2 9 8
last 2 genes 2 1 2 453 776 894 1 2 796 685
first ranking 2 1 1 2 1 2 1 3 1 2
100 | rev-del order 2 1 1 2 2 1 1 5 2 1
last 2 genes 2 1 1 D 2 1 1 721 2 1

Table 2: The number of patients in positive (+) class and negative (-) class of the training

and testing datasets.

data
N ) ) () ¢) () ¢) () ¢) () )
train 15 15 20 10 14 16 17 13 18 12
% test | 503 497 523 4717 481 519 501 499 487 513
train | 20 20 22 18 19 21 26 14 22 18
40 test | 502 498 506 494 512 488 494 506 491 509
train | 26 24 26 24 26 24 25 25 27 23
% test | 520 480 493 507 518 482 508 492 500 500
train | 51 49 55 45 49 51 47 53 55 45
109 test | 506 494 508 492 493 507 511 489 481 519
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Table 3: The (training/testing) classification accuracy rate, the first column is the number of

genes still in the training set. The training set size is 30 examples, and the test set size is 1000

examples.
# genes still in
the training sct accuracy rate (n=30)
1024 1/0.505 1/0.521 1/0.546 1/0.540 1/0.522
512 1/0.506 1/0.521 1/0.543 1/0.541 1/0.527
256 1/0.509 1/0.530 1/0.540 1/0.537 1/0.530
128 1/0.535 1/0.536 1/0.547 1/0.570 1/0.537
64 1/0.574 1/0.557 1/0.553 1/0.570 1/0.564
32 1/0.582 1/0.579 1/0.556 1/0.580 1/0.600
16 1/0.547 1/0.626 1/0.518 1/0.588 1/0.593
8 1/0.597 1/0.615 1/0.462 1/0.618 1/0.505
4 1/0.592 1/0.623 1/0.492 1/0.792 1/0.502
3 0.9/0.537 0.933/0.651 1/0.492 0.967/0.815 1/0.509
2 0.833/0.517 0.9/0:677 0.867/0.482 0.9/0.855 0.867/0.517
1 0.7/0.537 0:867/0.733 0.767/0.468 0.767/0.718 0.833/0.499

Table 4: The (training/testing) classification accuracy rate, the first column is the number of

genes still in the training set. The-training set'size is'40 examples, and the test set size is 1000

examples.
# genes still in
the training accuracy rate (n=40)
set
1024 1/0.506 1/0.514 1/0.527 1/0.505 1/0.526
512 1/0.510 1/0.519 1/0.526 1/0.507 1/0.525
256 1/0.543 1/0.508 1/0.526 1/0.510 1/0.535
128 1/0.544 1/0.526 1/0.552 1/0.529 1/0.531
64 1/0.565 1/0.534 1/0.556 1/0.546 1/0.542
32 1/0.564 1/0.559 1/0.588 1/0.585 1/0.557
16 1/0.559 1/0.645 1/0.662 1/0.613 1/0.491
8 1/0.566 1/0.660 1/0.658 1/0.641 1/0.510
4 0.975/0.618 0.975/0.768 1/0.735 0.95/0.698 1/0.494
3 0.875/0.635 0.85/0.797 0.9/0.821 0.875/0.781 0.875/0.492
2 0.8/0.683 0.85/0.877 0.9/0.864 0.875/0.839 0.8/0.471
1 0.8/0.719 0.625/0.739 0.725/0.704 0.75/0.678 0.675/0.466
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Table 5: The (training/testing) classification accuracy rate, the first column is the number of
genes still in the training set. The training set size is 50 examples, and the test set size is 1000
examples.

# genes still in
the training sct accuracy rate (n=50)
1024 1/0.566 1/0.557 1/0.542 1/0.542 1/0.535
512 1/0.568 1/0.558 1/0.557 1/0.541 1/0.541
256 1/0.575 1/0.562 1/0.570 1/0.568 1/0.536
128 1/0.578 1/0.559 1/0.563 1/0.586 1/0.545
64 1/0.603 1/0.536 1/0.567 1/0.598 1/0.567
32 1/0.616 1/0.554 1/0.569 1/0.593 1/0.597
16 1/0.624 1/0.555 1/0.575 1/0.601 1/0.605
8 1/0.701 1/0.579 1/0.509 1/0.756 1/0.551
4 0.98/0.816 0.94/0.613 0.86/0.502 1/0.791 0.94/0.493
3 0.96/0.798 0.92/0.618 0.84/0.499 0.96/0.831 0.8/0.492
2 0.9/0.861 0.8/0:651 0.8/0.473 0.92/0.869 0.82/0.481
1 0.8/0.689 0.74/0.72 0.8/0.49 0.84/0.72 0.68/0.497

Table 6: The (training/testing) classification-accuraey rate, the first column is the number of

genes still in the training set. The training set size is 100 examples, and the test set size is

1000 examples.
# genes still in
accuracy rate (n=100)
the training set
1024 1/0.578 1/0.561 1/0.572 1/0.536 1/0.559
512 1/0.553 1/0.553 1/0.574 1/0.551 1/0.559
256 1/0.570 1/0.557 1/0.591 1/0.548 1/0.551
128 1/0.561 1/0.6 1/0.583 1/0.558 1/0.555
64 1/0.583 1/0.621 1/0.633 1/0.577 1/0.564
32 1/0.614 1/0.643 1/0.670 1/0.590 1/0.602
16 1/0.690 1/0.669 1/0.659 1/0.631 1/0.662
8 0.97/0.723 1/0.723 0.94/0.709 0.94/0.687 0.93/0.675
4 0.88/0.831 0.92/0.86 0.92/0.804 0.87/0.655 0.92/0.775
3 0.91/0.831 0.93/0.858 0.87/0.851 0.8/0.644 0.87/0.779
2 0.86/0.872 0.92/0.882 0.92/0.873 0.8/0.665 0.84/0.833
1 0.72/0.691 0.72/0.711 0.74/0.717 0.75/0.712 0.65/0.715
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Figure 1:

(X,"s weight /X,’sweight) and standard deviation over 50 random trials are represented on

y-axis.
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Table 7: The rankings of genel and gene2 in the first training (with 100 genes) and the
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel

with parameter o = 3 and the two genes stay to the end (Decision function XX, =C, six kinds

of different data structures, and three different normalization cases ).

c 0 0 0 0 2.5 4
data N(O,1) |Uni(-0505)| N(0,20) |Uni(-10,10)| N(2,1) Uni(1,3)

poly-2 genel gene2|genel gene2|genel gene2|genel gene2|genel gene2|genel gene2

Normalizing (gene —subject)
first ranking | 67 65 5 18 16 51 47 8 99 30 | 100 92
rev-del order | 63 64 1 2 2 1 1 2 99 44 | 100 92

last two genes | 52 49 1 2 2 1 1 2 50 37 85 45

Normalize (gene)
first ranking | 69 73 1 16 25 83 33 3 95 33 | 100 97
rev-del order | 80 81 1 2 64 76 2 1 96 3 100 94

last two genes | 79 77 1 2 22 23 2 1 29 69 60 72

not normalizing data
first ranking | 81 90 3 94 70 41 7 19 1 10 2 1
rev-del order | 89 91 17 94 73 58 2 1 5 1 1 3

last two genes | 100 35 65 54 5! 7 2 1 2 3 1 20

rbf-3 genel gene2|genel ‘gene2|genel gene2 |genel gene2|genel gene2|genel gene2

Normalizing (gene —subject)
first ranking | 29 31 3 22 16 39 51 12 1 3 2 1
rev-del order | 20 19 1 35 2 1 24 23 3 2 1 2

last two genes | 92 57 1 21 2 1 23 16 9 2 1 2

Normalizing (gene)
first ranking | 29 49 2 37 30 19 30 7 1 14 2 1
rev-del order | 10 9 2 1 26 25 24 23 1 2 1 2
last two genes | 6 61 2 1 22 23 16 3 1 2 1 2

not normalizing data
first ranking | 32 38 10 66 | 100 99 | 100 99 1 18 2 1
rev-del order | 23 15 10 52 | 100 99 | 100 99 1 2 2 1
last two genes | 87 84 4 63 85 97 92 81 1 2 2 1
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Table 8:

and testing datasets.

The number of subjects in positive (+) class and negative (-) class of the training

Data
ot (G A C T I o B €O T A G N C I G B O T B G I O T I G B
train 20 20 21 19 24 16 19 21 20 20 19 21
test 491 509 | 498 502 | 492 508 | 483 517 | 646 354 | 448 552
Table 9: The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is
40 examples, and the test set size is 1000:éxamples. Decision function: XX, =c.Kernel: two

degree polynomial.

# gene accuracy rate
selected Normalization:*gene — subject
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.522 1/0.501 1/0.508 1/0.499 1/0.485 1/0.522
50 1/0.494 1/0.528 1/0.497 1/0.521 1/0.501 1/0.507
25 1/0.506 1/0.583 1/0.524 1/0.573 1/0.460 1/0.482
12 1/0.494 1/0.606 1/0.580 1/0.587 1/0.486 1/0.496
6 1/0.515 1/0.713 1/0.657 1/0.685 1/0.493 1/0.471
5 1/0.512 1/0.708 1/0.633 1/0.689 1/0.460 1/0.489
4 0.975/0.534 1/0.783 1/0.634 1/0.759 1/0.472 1/0.487
3 0.8/0.515 1/0.855 1/0.833 1/0.801 0.85/0.448 0.825/0.484
2 0.775/0.516 0.975/0.876 0.975/0.775 0.95/0.923 0.7/0.424 0.7/0.485
1 0.7/0.511 0.65/0.481 0.625/0.493 0.625/0.502 0.55/0.566 0.575/0.512
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# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.512 1/0.508 1/0.504 1/0.494 1/0.476 1/0.519
50 1/0.494 1/0.539 1/0.502 1/0.531 1/0.493 1/0.505
25 1/0.499 1/0.559 1/0.494 1/0.567 1/0.498 1/0.475
12 1/0.488 1/0.609 1/0.500 1/0.594 1/0.546 1/0.506
6 1/0.489 1/0.709 1/0.484 1/0.721 1/0.567 1/0.507
5 1/0.470 1/0.745 1/0.499 1/0.768 1/0.546 1/0.502
4 0.825/0.502 1/0.836 1/0.480 1/0.809 1/0.512 0.95/0.512
3 0.8/0.493 1/0.832 0.8/0.508 1/0.869 0.825/0.524 0.825/0.499
2 0.675/0.514 1/0.865 0.8/0.504 1/0.930 0.7/0.491 0.775/0.483
1 0.6/0.483 0.625/0.484 0.675/0.487 0.6/0.497 0.675/0.474 0.65/0.524
# gene accuracy-rate
selected Normalization: not normalizing data
data set N(0,1) Uni(-0.5,0:5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.526 1/0.503 1/0.495 1/0.500 1/0.593 1/0.655
50 1/0.486 1/0.483 1/0.481 1/0.543 1/0.602 1/0.672
25 1/0.500 1/0.501 1/0.486 1/0.559 1/0.692 1/0.690
12 1/0.486 1/0.484 1/0.459 1/0.649 1/0.730 1/0.751
6 1/0.500 1/0.495 1/0.490 1/0.733 1/0.853 1/0.740
5 1/0.484 0.975/0.476 1/0.480 1/0.799 1/0.853 1/0.779
4 0.95/0.508 0.9/0.486 0.925/0.499 1/0.908 0.95/0.557 1/0.929
3 0.85/0.509 0.775/0.490 0.7/0.497 1/0.954 0.85/0.548 1/0.941
2 0.725/0.484 0.725/0.498 0.7/0.494 1/0.966 0.775/0.652 0.8/0.735
1 0.575/0.485 0.65/0.47 0.6/0.492 0.6/0.495 0.725/0.745 0.8/0.743
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Table 10: The (training/testing) classification accuracy rate for three different normalization
cases, the first column is the number of genes still in the training set. The training set size is
40 examples, and the test set size is 1000 examples. Decision function: X X, =C. Kernel:
RBF

# gene accuracy rate
selected Normalization: gene — subject
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.516 1/0.506 1/0.504 1/0.510 1/0.592 1/0.631
50 1/0.504 1/0.521 1/0.493 1/0.516 1/0.654 1/0.654
25 1/0.508 1/0.505 1/0.499 1/0.522 1/0.68 1/0.702
12 1/0.501 1/0.497 1/0.502 1/0.491 1/0.673 1/0.765
6 1/0.500 1/0.509 1/0.630 1/0.474 1/0.689 1/0.825
5 1/0.486 1/0.510 0.975/0.672 1/0.510 1/0.750 1/0.854
4 0.9/0.494 0.875/0.508 0.975/0.674 0.975/0.499 1/0.854 1/0.899
3 0.75/0.493 0.85/0.496 0.925/0,733 0.875/0.52 0.95/0.865 1/0.928
2 0.675/0.488 0.725/0.499 0.9/0.785 0.675/0.528 0.8/0.595 1/0.929
1 0.575/0.477 0.65/0:482 0:625/0:503 0.65/0.522 0.65/0.5 0.8/0.743
# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.509 1/0.499 1/0.492 1/0.503 1/0.549 1/0.628
50 1/0.518 1/0.507 1/0.488 1/0.529 1/0.613 1/0.66
25 1/0.491 1/0.501 1/0.489 1/0.53 1/0.629 1/0.693
12 1/0.513 1/0.526 1/0.484 1/0.493 1/0.671 1/0.729
6 1/0.513 1/0.663 1/0.489 1/0.496 1/0.724 1/0.777
5 1/0.505 0.975/0.667 0.975/0.482 1/0.504 1/0.784 1/0.907
4 0.95/0.497 0.95/0.845 0.925/0.505 0.95/0.496 1/0.880 1/0.905
3 0.825/0.509 0.95/0.841 0.9/0.501 0.875/0.499 0.975/0.877 1/0.971
2 0.75/0.499 0.95/0.837 0.8/0.501 0.725/0.495 1/0.912 1/0.97
1 0.625/0.488 0.6/0.498 0.65/0.498 0.6/0.515 0.775/0.708 0.8/0.743
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# gene

accuracy rate

selected Normalization: not normalizing data
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.507 1/0.492 1/0.464 1/0.499 1/0.561 1/0.638
50 1/0.515 1/0.500 1/0.497 1/0.491 1/0.655 1/0.667
25 1/0.509 1/0.482 1/0.483 1/0.486 1/0.638 1/0.691
12 1/0.498 1/0.476 1/0.498 1/0.524 1/0.735 1/0.758
6 1/0.513 0.95/0.483 1/0.503 1/0.506 1/0.746 1/0.884
5 0.95/0.488 0.925/0.488 1/0.506 1/0.501 1/0.805 1/0.915
4 0.925/0.485 0.8/0.488 1/0.487 1/0.500 1/0.923 1/0.951
3 0.8/0.516 0.7/0.490 1/0.510 1/0.474 0.975/0.917 0.975/0.959
2 0.625/0.499 0.625/0.497 1/0.500 0.975/0.494 1/0.975 0.975/0.982
1 0.55/0.495 0.675/0.5 0.7/0.495 0.7/0.491 0.775/0.75 0.775/0.745
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Table 11: The rankings of genel and gene2 in the first training (with 100 genes) and the
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel
with parameter o = 3and the two genes stay to the end (Decision function X} +X, =C, six

kinds of different data structures, and three different normalization cases ).

c 0.5 0 40 30 6 6
data N(0,1) |Uni(-050.5)| N(0,10) |Uni(-10,10)| N(2.1) Uni(1,3)

(poly-2) genel gene2 |genel gene?|genel gene2|genel gene2|genel gene?|genel gene2

Normalize (gene — subject)
first ranking 53 93 98 90 45 42 37 54 99 68 | 100 88
rev-del order 1 92 98 93 70 6 1 34 99 33 | 100 93

last two genes 1 33 72 77 60 18 1 20 27 91 42 50

Normalize (gene
first ranking 57 94 97 82 48 83 26 62 95 67 | 100 92
rev-del order | 21 95 96 85 47 31 1 52 96 54 | 100 94

last two genes | 78 36 93 41 6 60 1 4 15 33 63 62

~

not normalizing data
first ranking 78 49 93 1 87 57 66 10 1 19 1 3
rev-del order | 64 50 86 1 91 48 1 66 3 5 3 7

last two genes | 100 77 2 65 61 94 1 54 | 100 41 53 82

(rbf-3) genel gene2|genel “gene2 |genel-gene? |genel gene2|genel gene2|genel gene2

normalize (gene — subject)
first ranking 95 1 99 | 81 6 72 82 1 69 1 5
rev-del order | 98 1 99 1 72 11 62 71 1 46 1 4

last two genes | 2 100 2 4 12 18 76 73 1 25 1 24

normalize(gene)
first ranking 90 1 100 1 68 60 93 91 1 65 1 8
rev-del order | 95 1 100 1 88 6 69 77 1 66 1 2
last two genes | 2 3 2 4 18 60 64 67 1 25 1 2

not normalizing data
first ranking 90 1 89 1 100 99 | 100 99 1 67 1 5
rev-del order | 77 1 91 1 100 99 | 100 99 1 65 1 6

last two genes 2 71 2 4 96 90 76 100 1 34 1 96

35



Table 12: The number of subjects in positive (+) class and negative (-) class of the training

and testing datasets.

Data
. (G0 A G T I G0 B € T I G A © I I €. B C I B G B O B B G B O
S€
train 24 16 27 13 20 20 21 19 14 26 21 19
test 586 414 | 566 434 | 518 482 | 431 569 | 507 493 | 507 493
Table 13: The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is
40 examples, and the test set size is 1000réxamples. Decision function: X, + X, > ¢. Kernel:

two degree polynomial.

# gene accuracy rate
selected Normalization: gene — subjec
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.560 1/0.556 1/0.475 1/0.494 1/0.542 1/0.513
50 1/0.533 1/0.532 1/0.475 1/0.505 1/0.524 1/0.496
25 1/0.531 1/0.526 1/0.481 1/0.524 1/0.52 1/0.472
12 1/0.550 1/0.528 1/0.490 1/0.553 1/0.51 1/0.487
6 1/0.568 1/0.504 1/0.493 1/0.651 1/0.527 1/0.492
5 1/0.565 1/0.510 1/0.490 1/0.686 1/0.510 1/0.504
4 0.975/0.589 1/0.509 1/0.487 1/0.783 0.975/0.505 1/0.513
3 0.825/0.637 0.95/0.534 0.975/0.484 1/0.881 0.875/0.498  0.85/0.523
2 0.75/0.683 0.775/0.528 0.75/0.507 1/0.91 0.85/0.506  0.725/0.508
1 0.775/0.69 0.675/0.566 0.525/0.527 0.975/0.912 0.675/0.484  0.675/0.471
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# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.552 1/0.549 1/0.488 1/0.482 1/0.542 1/0.511
50 1/0.531 1/0.534 1/0.522 1/0.505 1/0.515 1/0.488
25 1/0.521 1/0.563 1/0.495 1/0.535 1/0.495 1/0.507
12 1/0.53 1/0.493 1/0.499 1/0.553 1/0.494 1/0.499
6 1/0.511 1/0.508 1/0.518 1/0.650 1/0.493 1/0.485
5 1/0.515 1/0.509 1/0.503 1/0.647 1/0.489 1/0.483
4 1/0.513 0.975/0.515 0.95/0.485 1/0.766 0.975/0.505 1/0.495
3 0.75/0.522 0.775/0.539 0.775/0.499 1/0.857 0.95/0.492  0.875/0.492
2 0.725/0.529 0.725/0.54 0.725/0.51 0.95/0.939 0.675/0.498  0.75/0.513
1 0.6/0.586 0.675/0.566 0.475/0.5 0.95/0.936 0.65/0.493  0.625/0.516
# gene accuracy-rate
selected Normalization: not nermalizing data
data set N(0,1) Uni(-0.5;0:5) IN(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.545 1/0.602 1/0.495 1/0.482 1/0.628 1/0.669
50 1/0.527 1/0.636 1/0.493 1/0.496 1/0.641 1/0.666
25 1/0.481 1/0.697 1/0.504 1/0.547 1/0.68 1/0.705
12 1/0.472 1/0.792 1/0.478 1/0.557 1/0.746 1/0.764
6 1/0.485 1/0.812 1/0.502 1/0.693 1/0.777 1/0.843
5 1/0.497 1/0.868 1/0.471 1/0.781 1/0.764 1/0.876
4 0.975/0.489 1/0.893 0.925/0.5 1/0.851 1/0.888 1/0.883
3 0.85/0.523 1/0.895 0.775/0.482 1/0.786 1/0.897 1/0.890
2 0.825/0.526 0.975/0.937 0.75/0.487 1//0.924 0.675/0.503 0.7/0.5
1 0.725/0.536 0.925/0.939 0.625/0.504 0.975/0.958 0.65/0.493  0.675/0.513
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Table 14: The (training/testing) classification accuracy rate for three different normalization
cases, the first column is the number of genes still in the training set. The training set size is
40 examples, and the test set size is 1000 examples. Decision function: X; +X, > c. Kernel:
RBF

# gene accuracy rate
selected Normalization: gene — subjec
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.599 1/0.590 1/0.508 1/0.521 1/0.552 1/0.67
50 1/0.588 1/0.576 1/0.478 1/0.469 1/0.499 1/0.686
25 1/0.655 1/0.663 1/0.503 1/0.488 1/0.603 1/0.750
12 1/0.679 1/0.746 1/0.502 1/0.496 1/0.680 1/0.758
6 1/0.681 1/0.764 1/0.472 1/0.507 1/0.675 1/0.767
5 1/0.689 1/0.779 1/0.473 1/0.500 1/0.759 1/0.834
4 1/0.685 1/0.785 0.95/0.46 0.975/0.515 1/0.791 1/0.865
3 0.9750.761 1/0.791 0177570.458 0.925/0.508 1/0.807 0.975/0.881
2 0.925/0.769 1/0.810 0.75/0.442 0.75/0.499 0.975/0.792 0.925/0.925
1 0.85/0.781 0.925/0:915 0:625/0.48 0.625/0.487 0.975/0.802 0.9/0.936
# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.595 1/0.587 1/0.506 1/0.494 1/0.550 1/0.674
50 1/0.587 1/0.583 1/0.517 1/0.462 1/0.496 1/0.725
25 1/0.660 1/0.674 1/0.514 1/0.487 1/0.605 1/0.743
12 1/0.673 1/0.732 1/0.510 1/0.507 1/0.683 1/0.833
6 1/0.660 1/0.777 1/0.514 1/0.494 1/0.690 1/0.852
5 1/0.685 1/0.785 1/0.486 1/0.492 1/0.760 1/0.892
4 1/0.652 1/0.806 0.95/0.494 0.925/0.475 1/0.779 1/0.898
3 0.95/0.718 1/0.836 0.875/0.483 0.8/0.501 1/0.794 1/0.898
2 0.875/0.77 1/0.834 0.725/0.495 0.75/0.462 0.975/0.774 1/0.937
1 0.85/0.783 0.925/0.909 0.525/0.514 0.625/0.521 0.975/0.808 0.925/0.939
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# gene accuracy rate
selected Normalization: not normalizing data
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.592 1/0.624 1/0.580 1/0.500 1/0.569 1/0.692
50 1/0.588 1/0.657 1/0.480 1/0.480 1/0.508 1/0.717
25 1/0.657 1/0.675 1/0.502 1/0.476 1/0.632 1/0.765
12 1/0.700 1/0.728 1/0.498 1/0.497 1/0.701 1/0.887
6 1/0.747 1/0.815 1/0.487 1/0.480 1/0.832 1/0.866
5 1/0.716 1/0.887 1/0.506 1/0.469 1/0.840 1/0.865
4 1/0.717 1/0.886 1/0.500 1/0.480 1/0.833 0.925/0.896
3 0.975/0.741 0.975/0.881 1/0.513 1/0.504 1/0.828 0.925/0.931
2 0.925/0.747 1/0.89 1/0.501 0.95/0.506 1/0.893 10.9250.932
1 0.9/0.774 0.95/0.936 0.85/0.505 0.75/0.491 0.975/0.91 0.925/0.945
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Table 15: The rankings of genel and gene2 in the first training (with 100 genes) and the
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel
with parameter o = 3and the two genes stay to the end (Decision function X, +X; =C, six

kinds of different data structures, and three different normalization cases ).

c 1 0.1 100 60 8 8
data N(@©,1) |Uni(-0.5,0.5)| N(0,10) | Uni(-10,10) | N(2,1) Uni(1,3)

poly-2 genel gene2|genel gene2|genel gene2|genel gene?|genel gene?|genel gene2

Normalize (gene — subject)
first ranking | 41 37 50 89 28 69 65 4 32 76 80 98
rev-del order | 46 52 43 89 1 29 85 32 64 49 73 98

last two genes | 65 45 94 61 1 55 27 57 65 25 14 5

Normalize (gene
first ranking 57 48 39 84 35 79 51 5 25 69 82 97
rev-del order | 68 62 27 83 37 53 71 7 31 1 81 97

last two genes | 20 88 65 61 22 55 50 64 2 86 14 5

~

not normalizing
first ranking 81 93 43 91 79 33 30 28 3 1 2 1
rev-del order | 77 94 38 91 81 29 33 41 5 4 1 3

last two genes | 35 89 98 20 15 8 54 17 90 42 1 67

rbf-3 genel gene2|genel “gene2 | genelgene? |genel gene2|genel gene2|genel gene2

Normalize (gene — subject)
first ranking | 100 92 87 89 79 99 62 8 5 1 4 1
rev-delorder | 95 100 | 77 64 93 99 75 76 2 1 2 1

last two genes | 67 40 88 87 31 6 38 25 2 1 2 1

Normalize (gene
first ranking 59 57 88 57 63 99 39 29 5 1 3 1
rev-del order | 28 30 77 54 68 70 1 87 2 1 4 1

last two genes | 8 78 74 53 96 10 1 54 2 1 2 12

S~

no normalize
first ranking 63 64 86 36 | 100 99 | 100 99 4 1 4 1
rev-del order | 27 28 73 19 | 100 99 | 100 99 2 1 2 1
last two genes | 12 41 56 97 82 96 97 82 2 1 2 1
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Table 16: The number of patients in positive(+) class and negative(-) class of the training

and testing datasets.

Data
. B 6 H 6O 6 H 6 ®H e ® G
S€
train 23 17 25 15 24 16 19 21 17 23 23 17
test 626 374 | 686 314 | 608 392 | 528 472 | 560 440 | 584 416
Table 17: The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is
40 examples, and the test set size is 1000 examples. Decision functionx; + X; = ¢ :. Kernel:

two degree polynomial.

# gene accuracy rate
selected Normalization: gene — subjec
data set N(0,1) Uni(-0.5;0..5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.570 1/0.603 1/0.532 1/0.513 1/0.512 1/0.541
50 1/0.557 1/0.591 1/0.560 1/0.517 1/0.526 1/0.542
25 1/0.537 1/0.551 1/0.556 1/0.475 1/0.471 1/0.543
12 1/0.512 1/0.545 1/0.544 1/0.488 1/0.495 1/0.501
6 1/0.516 1/0.525 1/0.561 1/0.506 1/0.485 1/0.518
5 1/0.499 1/0.521 1/0.579 1/0.511 1/0.487 1/0.504
4 1/0.509 1/0.553 0.875/0.633 1/0.501 1/0.479 1/0.524
3 0.8/0.575 0.95/0.538 0.85/0.646 0.925/0.494 0.8/0.462 0.925/0.553
2 0.7/0.59 0.825/0.544 0.725/0.699 0.825/0.49 0.725/0.475 0.8/0.502
1 0.625/0.604 0.65/0.56 0.675/0.665 0.75/0.496 0.65/0.45 0.575/0.584
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# gene

accuracy rate

selected Normalization: gene
data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.551 1/0.602 1/0.533 1/0.523 1/0.514 1/0.534
50 1/0.527 1/0.578 1/0.547 1/0.504 1/0.53 1/0.540
25 1/0.550 1/0.549 1/0.558 1/0.51 1/0.536 1/0.530
12 1/0.521 1/0.529 1/0.517 1/0.541 1/0.575 1/0.512
6 1/0.507 1/0.539 1/0.468 1/0.522 1/0.625 1/0.503
5 1/0.504 1/0.519 1/0.463 1/0.522 1/0.641 1/0.513
4 1/0.480 1/0.518 0.925/0.506 0.925/0.511 1/0.645 1/0.542
3 0.825/0.479 0.875/0.546 0.8/0.509 0.75/0.471 0.95/0.654 0.9/0.519
2 0.65/0.558 0.775/0.587 0.625/0.57 0.675/0.476 0.9/0.646 0.775/0.502
1 0.575/0.62 0.6/0.579 0.6/0.608 0.575/0.496 0.9/0.7 0.575/0.584
# gene accuracy rate
selected Normalization: not-normalizingdata
data set N(0,1) Uni(-0.5;0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.542 0.616 1/0.518 1/0.502 1/0.599 1/0.670
50 1/0.530 0.602 1/0.525 1/0.519 1/0.631 1/0.695
25 1/0.527 0.573 1/0.532 1/0.515 1/0.670 1/0.693
12 1/0.543 0.553 1/0.519 1/0.501 1/0.751 1/0.756
6 1/0.511 0.550 1/0.495 1/0.510 1/0.801 1/0.811
5 1/0.509 0.554 1/0.510 1/0.474 1/0.783 1/0.828
4 0.825/0.526 0.578 0.975/0.487 1/0.519 1/0.639 1/0.940
3 0.725/0.564 0.595 0.85/0.511 0.950.511 0.85/0.492 1/0.938
2 0.625/0.594 0.528 0.775/0.53 0.75/0.516 0.7/0.502 0.8/0.69
1 0.6/0.625 0.561 0.625/0.556 0.65/0.518 0.675/0.521 0.75/0.717

42



Table 18:

The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is

40 examples, and the test set size is 1000 examples. Decision function X, + X5 = ¢ :. Kernel:

RBF.
# gene accuracy rate
selected Normalization: gene — subjec
data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.574 1/0.629 1/0.579 1/0.527 1/0.477 1/0.632
50 1/0.626 1/0.673 1/0.608 1/0.526 1/0.608 1/0.686
25 1/0.604 1/0.649 1/0.594 1/0.514 1/0.688 1/0.734
12 1/0.581 1/0.594 1/0.554 1/0.520 1/0.709 1/0.760
6 1/0.539 1/0.597 1/0.566 1/0.508 1/0.725 1/0.856
5 1/0.550 1/0.579 1/0.558 1/0.499 1/0.713 1/0.844
4 0.95/0.528 0.95/0.575 0.975/0.57 1/0.512 1/0.780 1/0.833
3 0.925/0.551 0.825/0.616 0.85/0.567 0.925/0.492 1/0.813 1/0.827
2 0.825/0.511 0.7/0.626 01725/0,549 0.675/0.493 1/0.855 1/0.924
1 0.8/0.548 0.675/0.679 0.625/0.562 0.525/0.502 0.9/0.694 0.875/0.729
# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.446 1/0.591 1/0.554 1/0.515 1/0.483 1/0.636
50 1/0.419 1/0.668 1/0.608 1/0.513 1/0.626 1/0.659
25 1/0.519 1/0.622 1/0.594 1/0.514 1/0.729 1/0.725
12 1/0.507 1/0.573 1/0.550 1/0.537 1/0.723 1/0.783
6 1/0.515 1/0.568 1/0.548 1/0.594 1/0.724 1/0.814
5 0.975/0.515 1/0.554 1/0.542 1/0.608 1/0.717 1/0.837
4 0.9/0.509 0.975/0.559 0.9/0.55 0975/0.675 1/0.745 1/0.840
3 0.8/0.569 0.85/0.601 0.85/0.557 0.925/0.684 1/0.772 0.95/0.645
2 0.775/0.584 0.75/0.579 0.7/0.566 0.9/0.72 1/0.871 0.925/0.666
1 0.7/0.565 0.725/0.598 0.625/0.609 0.9/0.757 0.9/0.707 0.875/0.733
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# gene

accuracy rate

selected Normalization: not normalizing data
data set N(0,1) Uni(-0.5,0 .5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.462 1/0.603 1/0.640 1/0.516 1/0.49 1/0.632
50 1/0.411 1/0.576 1/0.484 1/0.514 1/0.65 1/0.691
25 1/0.53 1/0.548 1/0.512 1/0.509 1/0.732 1/0.75
12 1/0.549 1/0.532 1/0.507 1/0.524 1/0.752 1/0.774
6 1/0.534 0.925/0.532 1/0.535 1/0.505 1/0.741 1/0.772
5 0.975/0.543 0.9/0.543 1/0.547 1/0.513 1/0.722 1/0.783
4 0.975/0.559 0.85/0.533 1/0.518 1/0.5 1/0.761 1/0.804
3 0.8/0.546 0.8/0.578 1/0.492 1/0.485 1/0.789 1/0.903
2 0.7/0.55 0.725/0.553 1/0.514 0.975/0.488 1/0.955 1/0.979
1 0.5/0.486 0.725/0.524 0.8/0.508 0.7/0.51 0.90.715 0.85/0.744
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Table 19: The rankings of genel and gene2 in the first training (with 100 genes) and the
reverse deleting by nonlinear SVM RFE with a polynomial kernel of degree 2 and RBF kernel
with parameter o = 3and the two genes stay to the end (Decision function X + XX, + X; =c¢,

six kinds of different data structures, and three different normalization cases ).

c 1 0.1 100 60 10 12
data N(O,1) |Uni(-0505)| N(0,20) |Uni(-10,10)| N(2,1) Uni(1,3)

poly-2 genel gene2 |genel gene2 |genel gene2 |genel gene2 |genel gene2 |genel gene2

Normalize (gene — subject)
first ranking 65 50 58 64 65 12 31 46 74 92 81 94
rev-del order 69 70 80 81 53 62 68 15 65 90 85 92

last two genes 36 4 15 76 73 95 54 35 44 25 97 52

Normalize (gen
first ranking 79 67 48 53 69 38 15 57 53 90 88 97
rev-del order 84 83 25 76 47 35 5 14 35 83 64 97

last two genes 38 94 35 42 96 71 91 79 77 5 52 97

(¢
~—~

not normalizing
first ranking 86 89 60 98 87 12 7 83 1 2 2 1
rev-del order 88 90 53 98 88 9 35 88 1 5 6 2
last two genes 85 58 15 94 94 61 20 85 1 55 33 2

rbf-3 genel gene2 |genel gene2 |genel gene? [genel gene2 |genel gene2 |genel gene2

Normalize (gene — subject)
first ranking 95 99 86 59 76 97 75 94 2 1 2 1
rev-del order 93 98 72 39 84 97 44 97 2 1 2 1

last two genes 71 20 66 48 98 49 26 33 2 1 2 1

Normalize (gene)
first ranking 79 70 91 69 73 91 24 100 2 1 3 1
rev-del order 54 52 75 41 88 96 46 100 2 1 2 1

last two genes 8 85 44 97 40 6 36 62 2 1 2 1

not normalizing
first ranking 81 74 88 83| 100 99| 100 99 2 1 2 1
rev-del order 45 50 91 92| 100 99| 100 99 2 1 1 2
last two genes 4 20 45 80 82 96 96 85 2 1 1 2
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Table 20: The number of patients in positive(+) class and negative(-) class of the training

and testing datasets.

Data
. (+) ) (+) ) (+) ) (+) ) (+) ) () )
SE€
train 23 17 22 18 24 16 22 18 17 23 22 18
test 582 418 638 362 575 425 450 550 620 380 536 464
Table 21: The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is

40 examples, and the test set size is 1000 examples. Decision function: X, +X,X, +X; =C.

Kernel: two degree polynomial.

# gene accuracy rate
selected Normalization: gene — subject
data set N(0,1) Uni(-0.5,0:5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.534 1/0.527 1/0.548 1/0.485 1/0.486 1/0.506
50 1/0.539 1/0.511 1/0.531 1/0.491 1/0.443 1/0.509
25 1/0.514 1/0.535 1/0.541 1/0.510 1/0.471 1/0.503
12 1/0.488 1/0.496 1/0.524 1/0.510 1/0.475 1/0.491
6 1/0.509 1/0.513 1/0.491 1/0.519 1/0.491 1/0.500
5 1/0.492 1/0.489 1/0.503 1/0.482 1/0.512 1/0.516
4 1/0.503 1/0.488 0.8750.497 0.9/0.502 1/0.513 1/0.510
3 0.975/0.489 0.95/0.486 0.725/0.516 0.9/0.512 0.8250.499 0.8/0.518
2 0.775/0.482 0.75/0.451 0.65/0.533 0.65/0.5 0.8/0.464 0.725/0.505
1 0.575/0.582 0.725/0.529 0.625/0.561 0.6/0.484 0.70.441 0.6/0.528
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# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.526 1/0.541 1/0.542 1/0.488 1/0.486 1/0.504
50 1/0.526 1/0.541 1/0.534 1/0.519 1/0.473 1/0.489
25 1/0.521 1/0.513 1/0.518 1/0.521 1/0.469 1/0.536
12 1/0.527 1/0.484 1/0.521 1/0.525 1/0.484 1/0.499
6 1/0.489 1/0.489 1/0.512 1/0.549 1/0.482 1/0.509
5 1/0.536 1/0.498 1/0.523 1/0.551 1/0.503 1/0.518
4 0.925/0.516 1/0.523 1/0.508 1/0.490 1/0.511 1/0.511
3 0.725/0.484 0.85/0.545 0.875/0.499 0.925/0.484 0.875/0.513 0.85/0.497
2 0.725/0.542 0.8/0.538 0.7/0.519 0.7250.496 0.675/0.54 0.725/0.513
1 0.55/0.586 0.75/0.542 0.65/0.548 0.55/0.46 0.575/0.38 0.625/0.521
# gene accuracy rate
selected Nosmalization:mot normalizing data
data set N(0,1) Uni(-0:5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.518 1/0:551 1/0.533 1/0.476 1/0.567 1/0.669
50 1/0.509 1/0.553 170.507 1/0.477 1/0.603 1/0.673
25 1/0.499 1/0.521 1/0:545 1/0.510 1/0.638 1/0.689
12 1/0.518 1/0.512 1/0.562 1/0.508 1/0.725 1/0.706
6 1/0.526 1/0.520 1/0.524 1/0.508 1/0.795 1/0.729
5 1/0.506 1/0.529 1/0.524 1/0.483 1/0.822 1/0.653
4 1/0.501 1/0.499 0.975/0.493 1/0.470 1/0.620 1/0.670
3 0.9/0.479 0.9/0.546 0.775/0.503 0.9/0.48 0.90.651 0.95/0.68
2 0.75/0.493 0.8/0.546 0.775/0.514 0.675/0.486 0.875/0.675 0.95/0.702
1 0.575/0.582 0.75/0.536 0.6/0.575 0.55/0.45 0.8/0.697 0.675/0.484
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Table 22: The (training/testing) classification accuracy rate for three different normalization

cases, the first column is the number of genes still in the training set. The training set size is

40 examples, and the test set size is 1000 examples. Decision function: X/ + XX, +X; =C.

Kernel: RBF.
# gene accuracy rate
selected Normalization: gene — subjec
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.531 1/0.516 1/0.554 1/0.502 1/0.542 1/0.601
50 1/0.582 1/0.560 1/0.577 1/0.523 1/0.400 1/0.647
25 1/0.564 1/0.519 1/0.571 1/0.499 1/0.590 1/0.698
12 1/0.548 1/0.503 1/0.546 1/0.516 1/0.627 1/0.757
6 1/0.528 1/0.511 1/0.544 1/0.510 1/0.740 1/0.836
5 0.975/0.512 0.975/0.523 0.975/0.541 1/0.502 1/0.731 1/0.873
4 0.975/0.51 0.975/0.495 0.925/0.526 0.95/0.504 1/0.760 1/0.875
3 0.9/0.527 0.9/0.518 019/0.533 0.9250.484 1/0.820 1/0.886
2 0.775/0.482 0.8/0.552 0.8/0.528 0.775/0.496 1/0.834 0.975/0.906
1 0.65/0.578 0.725/0.531 0.65/0.566 0.55/0.45 0.850.625 0.9/0.716
# gene accuracy rate
selected Normalization: gene
data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.473 1/0.536 1/0.555 1/0.511 1/0.487 1/0.613
50 1/0.537 1/0.532 1/0.575 1/0.505 1/0.402 1/0.646
25 1/0.518 1/0.528 1/0.577 1/0.486 1/0.566 1/0.693
12 1/0.515 1/0.521 1/0.554 1/0.498 1/0.643 1/0.761
6 1/0.555 1/0.509 1/0.521 1/0.499 1/0.739 1/0.767
5 1/0.559 1/0.522 0.975/0.533 1/0.513 1/0.755 1/0.808
4 0.95/0.55 0.95/0.531 1/0.534 0.975/0.51 1/0.832 1/0.816
3 0.85/0.555 0.875/0.507 0.925/0.518 0.85/0.487 1/0.833 1/0.95
2 0.8/0.568 0.75/0.511 0.825/0.51 0.75/0.495 1/0.844 1/0.948
1 0.75/0.543 0.65/0.508 0.625/0.564 0.725/0.495 0.85/0.649 0.875/0.723
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# gene accuracy rate

selected Normalization: not normalizing data

data set N(0,1) Uni(-0.5,0.5) N(0,10) Uni(-10,10) N(2,1) Uni(1,3)
100 1/0.475 1/0.531 1/0.064 1/0.525 1/0.488 1/0.611
50 1/0.521 1/0.544 1/0.5 1/0.511 1/0.418 1/0.66
25 1/0.536 1/0.522 1/0.515 1/0.513 1/0.613 1/0.721
12 1/0.521 1/0.528 1/0.532 1/0.497 1/0.658 1/0.767
6 1/0.496 0.925/0.523 1/0.518 1/0.529 1/0.863 1/0.865
5 1/0.481 0.8/0.569 1/0.533 1/0.536 1/0.853 1/0.85
4 0.925/0.521 0.8/0.551 1/0.548 1/0.51 1/0.912 1/0.932
3 0.775/0.516 0.75/0.575 1/0.527 1/0.486 1/0.928 1/0.951
2 0.75/0.536 0.75/0.568 1/0.535 1/0.497 1/0.942 0.975/0.974
1 0.575/0.582 0.625/0.534 1/0.494 0.7250.508 0.85/0.658 0.8/0.762

Table 23: Results obtained in [19], Weston et al. The times of the correct features were

selected over 30 random trials for various training set sizes using nonlinear SVMs with a

polynomial kernel of degree 2.

Training
10 20 30 40 50 75 100
set size
Times 2/30 19/30 27/30 28/30 26/30 30/30 28/30

Table 24: Results obtained in [19], Weston et al. The times of the correct feature was

selected over 30 random trials for various training set sizes using our criteria in sec.4.2 (ii).

The second row means the times of the correct feature was selected in the reverse order 2

training, and the third row means the times of the correct feature was selected in the last

training.

Training

set size

10

20

30

40

50

75

100

Times

(top two)

7/30

25/30

28/30

28/30

30/30

29/30

30/30

Times

(top one)

4/30

20/30

22/30

22/30

23/30

24/30

26/30
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Table 25:

deviation on a test set of 500 examples over 30 random trials using two different feature

Results obtained in [19]. The table shows the average test error rate and standard

selection methods. We plot them in Figure 2.

Training Map data to higher-dim Map data to higher-dim
Nonlinear SVMs
set size space space
(kernel:poly-2)
(top two) (top one)
10 0.46007+0.09707 0.40913+0.13741 0.42127£0.14760
20 0.19707£0.16651 0.16120+0.13818 0.14313£0.14520
30 0.13780£0.12436 0.11500+0.05338 0.08673+0.04508
40 0.10233+0.05609 0.0890710.05214 0.08580+0.04334
50 0.10073£0.09191 0.08660+0.03668 0.07773£0.04640
75 0.07073+0.03637 0.07313+0.04836 0.07680+£0.04870
100 0.06213+0.03211 0.05560+0.03456 0.06093+0.02692
Figure 2: Results obtained in [19]. The x=axisis the.training set size, and the y-axis is the

average test error rate on a test set of 500 examples over 30 random trials.
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