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Supply chain management integrates the intra- and inter-corporate processes as a whole system.
Through information technology, companies can efficiently manage the product flow and information
related to the issues such as production capacity, customer demand and inventory at lower costs. Infor-
mation sharing can significantly improve the performance of the supply chain, how the different combi-
nation of information sharing affects the performance is not yet understood. This study designs different
information-sharing scenarios to analyze the supply chain performance through a simulation model.
Since there are not only desirable measures but also undesirable measures in supply chains, the usual
data envelopment analysis (DEA) model allows measuring performance for complete weight flexibility.
In this paper, a cross-efficiency DEA approach is applied to solve this problem. We identify the most effi-
cient scenario and estimate the each efficiency of information-sharing scenarios. Contrary to the previous
findings in the literature suggesting sharing as much as information possible to increase benefits, the
results of this study show that the scenario of demand information sharing is the most efficient one.
In addition, sharing information on capacity and demand, and full information sharing in general are
good practices. Sharing only information on capacity and/or inventory information, without sharing
information on demand, interferes with production at manufacturers, and causes misunderstandings,
which can magnify the bullwhip effect.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A supply chain is a logistics network, which consists of all stages
(e.g. order processing, purchasing, inventory control, manufactur-
ing, and distribution) involved in producing and delivering a final
product or service. The entire chain connects customers, retailers,
distributors, manufacturers and/or suppliers, beginning with the
creation of raw material or component parts by suppliers and end-
ing with consumption of the product by customers. Supply chain
management (SCM) is related to the coordination of materials,
products and information flows among suppliers, manufacturers,
distributors, retailers and customers (Simchi-Levi, Kaminsky, &
Simchi-Levi, 2000). SCM often needs the integration of inter- and
intra-organizational relationships and coordination of different
types of flows within the entire chain. With sharing information
between trading partners and coordinating their replenishment
and production decisions under demand uncertainty, it could be
possible to further reduce costs and improve customer service le-
vel. The performance of a supply chain could be influenced by
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many factors, among which information sharing is the crucial
one. Inter-company integration and coordination via information
technology play a key role in improving supply chain performance.
The application of current information technology, such as elec-
tronic data interchange (EDI) and the internet has helped compa-
nies to share information and has improved supply chain order
fulfillment performance. Sharing both supply and demand infor-
mation substantially reduces inventory costs in make-to-stock or
assemble-to-order production. Sharing supply information also
substantially reduced order cycle time in an assemble-to-order
environment (Strader, Lin, & Shaw, 1999).

A supply chain is fully coordinated when all decisions are
aligned to approach global system objectives. Lack of coordination
occurs when decision makers have incomplete information or
incentives that are not compatible with system-wide objectives.
Even under conditions of full information availability, the perfor-
mance of the supply chain can be sub-optimal when each decision
maker optimizes one’s individual objective (Sahin & Robinson,
2002). One line of related research analyzes the benefits of sharing
customer demand information with members of the supply chain.
Bourland, Powell, and Pyke (1996) analyze the savings in inventory
cost that can be realized when a manufacturer shares point-of-sale
(POS) data with suppliers. Ernst and Kamrad (1997) consider a sup-
ply chain in which manufacturers and retailers share demand
information and analyze the impact of information sharing on
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service level. Lee, Padmanabhan, and Whang (1997) prove that de-
mand variability can be amplified in the supply chain as the orders
are passed from retailers to distributors. Therefore, accurate fore-
casts can significantly influence the performance of the supply
chain in terms of inventory cost, backorders or loss of sales, and
good will. Inaccurate forecasts can also cause low utilization of
capacity and other problems in production. Cachon and Fisher
(2000) and Lee et al. (2000) analyze the benefits of sharing real-
time information on demand and/or inventory levels between sup-
pliers and customers. Cachon and Fisher (2000) study the value of
sharing demand and inventory data. The authors compare a tradi-
tional information policy that does not use information-sharing
with a full information policy. Lee, So, and Tang (2000) analyze
the benefits of demand-side information sharing with a two-eche-
lon supply chain. They suggest that this kind of information shar-
ing alone could provide significant inventory reduction and cost
savings to the manufacturer. Thonemann (2002) derives a better
understanding of the benefits of advance demand information
(ADI) to identify conditions under which sharing ADI results in sig-
nificant cost savings. A typical model is used to capture the basic
aspects of a supply chain in which ADI is shared. This enables them
to derive analytical results and to gain structural insight into the
ADI-sharing problem. The results can be used by decision makers
to analyze the cost savings that can be achieved by ADI and help
them determine if sharing ADI is beneficial for their supply chain.

Another line of related research analyzes the impact of informa-
tion sharing on the bullwhip effect and/or the performance of a
supply chain. Metters (1997) studies the impact of the bullwhip ef-
fect on profitability by establishing an empirical lower bound on
the cost excess of the bullwhip effect. Results indicate that the
importance of the bullwhip effect to a firm differs greatly between
specific business environments, and eliminating the bullwhip ef-
fect can increase product profitability by 10–30% under some con-
ditions. Chen, Drezner, Ryan, and Simchi-Levi (2000a) Chen, Ryan,
and Simchi-Levi (2000b) quantify the bullwhip effect for a simple,
two-echelon supply chain consisting of a single retailer and a sin-
gle manufacturer. They assume that demand follows an AR(1) pro-
cess, and the retailer uses a moving-average model for demand
forecast and a simple order-up-to inventory policy for replenish-
ment. They conclude that the variance of the orders is always high-
er than the variance in demand. Furthermore, the magnitude of the
variance is significantly influenced by the number of observations
used in the moving-average, the lead time between the retailer and
the manufacturer, and the correlation coefficient in the demand
function. They extend the analytical model to a multiple-echelon
supply chain and find that the bullwhip effect could be reduced,
but not completely eliminated, by sharing demand among all par-
ties in the supply chain. Chen et al. (2000a, 2000b) investigate the
impact of forecast methods and demand patterns on the bullwhip
effect. They compare an exponential- smoothing forecasting model
and a moving-average model, in which the demand is correlated
with a linear trend. They find that reduction in ordering lead time
and using more demand information in forecasting (a smoother
forecast) could decrease the bullwhip effect. Another finding is that
negatively correlated demand could lead to a larger increase in or-
der variability than positively correlated demand, and that a retai-
ler forecasting demand with a linear trend will have more variable
orders than a retailer forecasting i.i.d. demand. These two papers
evaluate the magnitude of the variance amplifications in the sup-
ply chain by considering alternative demand processes and fore-
casting models for a simple supply chain structure. However,
they do not consider the impact of the variance amplifications on
the costs and service levels of the supply chain, nor do they con-
sider the costs of either inventory, ordering or setup, or production
decisions by the manufacturers. Zhao, Xie, and Leung (2002a) pres-
ent the impact of information sharing and ordering coordination
on the performance of a supply chain with one capacity-limited
supplier and multiple retailers under demand uncertainty. Zhao,
Xie, and Leung (2002b) also present the impact of forecasting mod-
el selection on the value of information sharing in a supply chain
with one capacitated supplier and multiple retailers. Using a com-
puter simulation model, this study examines demand forecasting
and inventory replenishment decisions by the retailers and pro-
duction decisions by the supplier under different demand patterns
and capacity tightness. The simulation output indicates that the
selection of the forecasting model significantly influences the per-
formance of the supply chain and the value of information sharing.
Furthermore, demand patterns faced by retailers and capacity
tightness faced by the suppliers also significantly influence the va-
lue of information sharing. The results also show that substantial
cost savings can be achieved through information sharing and then
motivating trading partners to share information in the supply
chain.

Information sharing can significantly improve the performance
of a supply chain. Additionally, companies can redesign their sup-
ply chain strategies through information sharing to increase profit.
Many studies demonstrate the positive impact of information shar-
ing on a supply chain. However, few studies focus on how the dif-
ferent combinations of information sharing affect the performance
of a supply chain. Provided that the entities of supply chain are
aware about how they can benefit from the information sharing,
they are more willing to share the necessary information. The pur-
pose of this paper is to examine how the different information
sharing among the entities influences the performance of the sup-
ply chain, and to address the problem of selecting the most appro-
priate information sharing for the supply chain partners. This study
designs different information-sharing scenarios to analyze the sup-
ply chain performance. To measure the performance of each sce-
nario, it is necessary to consider not only the desirable indices
but also undesirable indices. Thus, the usual data envelopment
analysis (DEA) model is applied to measure the performance for
complete weight flexibility.

The remainder of the paper is organized as follows. In the next
section, the information-sharing scenarios are specified. A brief
introduction of cross-efficiency DEA and the analysis for evaluating
performance are described in the following section. The analysis
and results are demonstrated in Section 4. In the final section, some
conclusions and recommendations for further research follow.
2. Information-sharing scenarios

We develop a supply chain simulation model (shown in Fig. 1)
which considers a multi-echelon supply chain (i.e. retailers, dis-
tributors, manufacturers and suppliers) and nine information-
sharing scenarios. In the first information-sharing scenario,
denoted by N, no information will be shared between the entities.
The second scenario is partial information sharing, which consists
of six combinations: (1) C: capacity information sharing; (2) D: de-
mand information sharing; (3) I: inventory information sharing;
(4) D&C: demand and capacity information sharing; (5) D&I: de-
mand and inventory information sharing; (6) C&I: capacity and
inventory information sharing. The third scenario, denoted by F
is full information sharing with capacity, demand and inventory.
The fourth scenario is strategic alliance of supply chain (vendor
managed inventory, VMI, is adopted herein).

To compare the performance of each information-sharing sce-
nario, a simulation tool, Rockwell Software Arena v5.0, is utilized
to analyze performance indices (shown in Table 3). Input parame-
ters such as initial inventory level, inventory policy, lead times of
production and transportation, customer demand rate, and unit
production time are shown in Tables 1 and 2.
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4. D&C: demand and capacity
5. D&I: demand and inventory
6. C&I: capacity and inventory
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1. Shortage costs
2. Holding costs
3. Order costs
4. Total costs
5. Fulfillment rate
6. Customer service level
7. Order cycle time

Performance Index

Cross-efficiency Evaluation by DEA

Ranking:
1. D: demand
2. F: full Information 
3. D&C: demand and capacity 
4. D&I: demand and inventory 
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6. I: inventory 
7. C: capacity
8. C&I: capacity and inventory 

Fig. 1. Supply chain simulation model.
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The above simulation results of performance indices include to-
tal costs (consisting of inventory holding cost, shortage cost and or-
der cost), fulfillment rate, customer service level and order cycle
time. From the performance measures of each scenario illustrated
in Table 3, we cannot easily determine the most appropriate sce-
nario with respect to the performance data of these eight informa-
tion-sharing scenarios, except for the scenario of VMI, since each
performance measure is relatively prominent. This can be seen as
a problem of discrete alternative multiple criteria evaluation,
which is formulated by considering a set of alternatives and a set
of criteria. The aggregation and comparison of various alternatives
are based on the values for each criterion. In most approaches, the
multi-criteria evaluation for an alternative is represented by a vec-
tor of the performance of the alternative on each criterion. This
information is then used within the outranking methods to carry
out relative rankings and performance evaluations among the val-
ues of the alternatives for a given criteria.

Salminen, Hokkanen, and Lahdelma (1998) compare a number
of models and tools based on outranking approaches for multiple
criteria decision making (MCDM) and a multi-attribute rating



Table 1
Initial inventory level and inventory policy.

Inventory Retailer 1 Retailer 2 Retailer 3 Distributor Manufacturer

Initial inventory level 40 40 40 130 200
Inventory policy (s, S): s 21 24 21 61 83
Inventory policy (s, S): S 39 43 39 129 153

Table 2
Parameters for simulation.

Parameters Inputs

Iteration 30
Simulation time 120 days
Interval distribution of

customer order
Exponential distribution (mean = 0.15 day)

Quantity distribution of
customer order

Discrete distribution (Q = 1 or 4, Prob. = 0.167;
Q = 2 or 3, Prob. = 0.333)

Frequency of
replenishment review

Once daily

Transportation lead times 1 (day)
Production lead times Normal distribution (mean = 0.1 h, standard

deviation = 0.02 h)
Unit holding costs 1
Unit shortage costs 5
Order costs 10 (retailers), 50 (distributors and

manufacturers)
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technique. The outranking techniques were applied with a number
of actual decision makers (DMs) providing preference weights for
each of the major criteria. The outranking approaches typically re-
quire three sets of inputs: preference weights for the criteria, pref-
erence and indifference thresholds and veto thresholds. The usual
approach would be to have the DM provide information relative to
the preference weights and some information on veto thresholds
levels. The determination of this information for large groups
may be cumbersome. The DEA models require little input from
the DM. Doyle (1995) has supported the use of the DEA as a lazy
DM’s methodology for MCDM. This outlook may alternatively be
looked at as a reactive approach to MCDM. That is, the DMs, or
their preferences, play an insignificant role in the ranking of alter-
natives. Meanwhile those usual MCDM weighting methods to
aggregate different criteria into one performance index are more
subjective, thus DEA methodology is utilized to measure cross-effi-
ciency between different information-sharing scenarios.

3. Methodology

This paper presents an atypical application of data envelopment
analysis (DEA) methodology to measure performance of coordina-
tion and information sharing between the supply chain entities at
different information sharing scenarios. The DEA method, first pro-
posed by Charnes, Cooper, and Rhodes (1978), is known as an eval-
uation technique for performance analysis of various entities
whose production activities are characterized by multiple inputs
Table 3
Simulation results of performance indices.

Scenario N C D I

Shortage costs 219.78 66.15 29.44 109
Holding costs 103.06 293.63 233.36 189
Order cost 130 180 130 130
Total costs 452.84 539.78 392.8 429
Fulfillment rate (%) 65.22 75.25 79.26 72.1
Customer service level (%) 61.83 72.62 77.44 68.8
Order cycle time (days) 1.3593 1.1205 1.0568 1.19
and outputs. A reader can see more details of the DEA method in
Boussofiane, Dyson, and Thanassoulis (1991), Charnes, Cooper,
and Lewin (1994), Seiford and Thrall (1990). Nowadays, DEA has
become one of the most popular fields in operations research, with
applications involving a wide range of contexts. The applicability
and practicality of DEA can be easily confirmed in Cooper, Huang,
and Li (1996), Cooper, Thompson, and Thrall (1996) and numerous
previous research efforts. The DEA method is utilized to analyze
the performance with multiple inputs and outputs. Thus, we apply
this method to evaluate SC information sharing performance. In
the supply chain, each unit is permitted to choose the most favor-
able weights to be applied to its standings (in our case, the differ-
ent information-sharing scenarios are compared by analyzing the
resulting performance measures including total cost, order fulfill
rate, customer service level and order cycle time) in the usual
DEA manner. In the evaluation of this simple efficiency score, the
usual DEA model allows for complete weight flexibility. A unit
achieves a relative efficiency score of 1 by heavily weighting few
favorable inputs and outputs, and completely ignoring the other
inputs and outputs. Such units perform well with respect to few in-
put/output measures. Thus, considering the scenarios with an effi-
ciency score of 1 as the candidates with the best combination of
specifications is inappropriate. Cook and Kress (1990) consider a
scheme involving an imposed set of weights, which do not provide
a fair overall assessment. Nevertheless, the problem of choosing
the most favorable weights to be applied to each unit’s standings
is still not resolved. The simple efficiency score obtained from Cook
and Kress’s model is often misleading. To overcome such problems,
a measure more than the simple efficiency score is required in the
decision making process. In this section, we provide a review of ba-
sic DEA and a cross-efficiency ranking extension to the DEA models
and how they may be used to help evaluate discrete alternative
MCDM models.

Traditionally, one method for resolving this problem is for the
poll organizer to impose a predetermined set of weights on each
alternative’s standing. Thus the composite score, Zi, of alternative
i would be given by:

Zi ¼
Xk

j¼1

wjv ij ð1Þ

where v ij represents the value of jth attribute of alternative i
(i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; kÞ, and wj denotes the weight of the jth
attribute.

The CCR model was initially proposed by Charnes et al. (1978).
For each DMU, the CCR model tries to determine the optimal
D&C D&I C&I F VMI

.84 26.088 54.05 95.80 24.79 –

.94 401.25 262.12 371.13 479.88 –
180 130 180 180 –

.77 607.34 446.17 646.94 684.68 241.08
6 79.13 77.04 72.36 79.35 98.50
4 77.26 74.66 76.42 81.30 98.09
61 1.0475 1.0943 1.1762 1.0451 1.0021
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weight of jth attribute of alternative i, wij, using linear program-
ming so as to maximize the composite score Zii which are used
in the objection function (2) to emphasize that this is alternative
i’s own evaluation of its own desirability.

Maximize Zii ¼
Xk

j¼1

wijv ij ð2Þ

Subject to Zip ¼
Xk

j¼1

wijmpj 6 1for all DMUs p; including i ð3Þ

wij P 0 ð4Þ

where Zip denotes cross-efficiency of alternative i’s evaluation of
alternative p’s desirability i.e. DMU p is evaluated by the weights
of DMU i. Constraints (3) represent that no alternative p should
have a desirability greater than 1 under i’s weights.

The optimal weights may vary from one DMU to another. Thus,
the weights in DEA are derived from the data instead of being fixed
in advance, such as given by decision makers. Each DMU is as-
signed a best set of weights with values that may vary from one
DMU to another. Cook and Kress (1990) suggest that each alterna-
tive be allowed to propose its own weights in order to maximize its
own desirability subject to certain reasonable constraints on the
desirability of all the alternatives. Sexton, Silkman, and Hogan
(1986) argue that decision makers do not always have a reasonable
mechanism from which to choose assurance regions. Thus they
recommend the cross-evaluation matrix (CEM) for ranking alterna-
tives. Cross-efficiencies in DEA can effectively be used to surmount
the problems associated with simple efficiency scores. Cross-
efficiencies of a DMU provide information on how well it is per-
forming with the optimal DEA weights of other m� 1 DMUs. The
cross-efficiencies of all the DMUs can be arranged in a CEM as
shown in Table 4. The pth row and ith column of the CEM repre-
sents the cross-efficiency of DMU p with the optimal weights of
DMU i. The usual simple efficiency measurements for each DMU
are found in the leading diagonal of this matrix. The cross-
efficiency method simply calculates the efficiency score of each
DMU m times using the optimal weights evaluated by m LPs.
The cross-efficiency ranking method in the DEA context utilizes
the results of cross-efficiency matrix Zip in order to rank scale the
DMUs. It could be argued that �Zi ¼

Pm
p¼1Zpi=m is more representa-

tive than Zii, the standard DEA efficiency score, since all the ele-
ments of the cross-efficiency matrix are considered, including the
diagonal. While the standard DEA score, Zii, is non-comparable,
since each uses different weights, the �Zi is comparable because it
uses the weights of all units equally (i.e. all the units’ standing).

A limitation with the CEM evaluated from Sexton et al. (1986)
model weights is that the optimal weights obtained from their
model may not be unique. This condition occurs if multiple opti-
mum solutions exist. This ambiguity can be solved by using formu-
lations proposed by Doyle and Green (1994). These formulations
can be categorized into aggressive and benevolent approaches, in
which Doyle and Green (1994) not only maximize the efficiency
Table 4
Matrix of cross-efficiencies for m DMUs.

Rating DMU Rated DMU

1 2 3

1 Z11 Z12 Z13

2 Z21 Z22 Z23

3 Z31 Z32 Z33

..

. ..
. ..

. ..
.

m Zm1 Zm2 Zm3

Averaged peer-appraisal �Z1
�Z2

�Z3
of target DMU, but also take a second goal into account. The second
goal, in the case of aggressive formation, is to minimize the effi-
ciency of the composite DMU constructed from other m� 1 DMUs.
The aggressive formulation is shown below:

Minimize
Xk

j¼1

wij

Xm

p¼1;p – i

mpj

 !
ð5Þ

Subject to Zip 6 1 for all DMUs i – p ð6Þ
Xk

j¼1

wij � mij � Zii ¼ 0 ð7Þ

wij P 0 ð8Þ

where DMU i is the target DMU,
Pk

j¼1 wij
Pm

p¼1;p – impj

� �
is the

weighted attributes of composite DMU, and Zii is the simple effi-
ciency of DMU i obtained from usual DEA.

Maximizing the other DMUs’ cross-efficiencies in the same way
is known as a benevolent formulation:

Maximize
Xk

j¼1

wij

X
p¼1;p–immpj

0
@

1
A ð9Þ

Subject to Zip 6 1for all DMUs i–p ð10Þ
Xk

j¼1

wij � mij � Zii ¼ 0 ð11Þ

wij P 0 ð12Þ

When aggressive models (5)–(8) are solved for alternative i, as
well as obtaining Zii, we are also provided with values Zip which
can be thought of as evaluations of p’s desirability from i’s point
of view within this modeling framework. The values obtained in
a complete run of the model can be organized in a matrix Z in
which the values down a column p ðZ�pÞ represent how alternative
p is appraised by all alternatives, and values across a row i ðZi�Þ rep-
resent how alternative i appraises all alternatives. Thus, this matrix
can be regarded as the summary of a self- and peer-appraisal pro-
cess in which on-diagonal elements represent self-appraisals, and
off-diagonal elements represent peer-appraisals.

Sexton et al. (1986) propose the column averages of Z as suit-
able overall ratings of the alternatives. In essence, each alternative
is being accorded a weight of 1=m in determining any alternative’s
overall rating. In order to mitigate the rank reversal effect, Green,
Doyle, and Cook (1996) relax the assumption that each alternative
be accorded a weight of 1=m in the establishment of overall rat-
ings. They suggest that each alternative apply a weight in propor-
tion to its original overall rating rather than uniformly 1=m.

4. Results and discussions

The data for this study are shown in Table 3. A total of 8 scenar-
ios and six criteria (performance measures) are introduced. The six
performance measures include three minimizing criteria (holding
. . . m Averaged appraisal of peer

. . . Z1m �B1

. . . Z2m �B2

. . . Z3m �B3

. . . ..
. ..

.

. . . Zmm �Bm

. . . �Zm
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cost, shortage cost, order cost and order cycle time). The remaining
criteria (fulfillment rate, customer service level) are defined as the
maximizing criteria. There are many studies which consider treat-
ing minimizing criteria. We begin with a brief summary of these
recent works related to the treatment of minimizing criteria into
four categories. First are some studies which regard them as fol-
lowing weak disposability, such as Färe, Grosskopf, Lovell, and Pas-
urka (1989), Boyd and McClelland (1999), Zofío and Prieto (2001).
Weak disposability indicates that the undesirable outputs can be
reduced only at the expense of a reduction in the other outputs
or an increase in the use of inputs. The second possibility is to envi-
sion them as inputs, such as Haynes, Ratick, and Cummings-Saxton
(1994) and Korhonen and Luptacik (2004). This method considers
both inputs and undesirable outputs (minimizing criteria) to have
the same improvable direction when inefficient DMUs wish to im-
prove their performance, and then, undesirable outputs are treated
as inputs. Thirdly, some studies treat them as desirable outputs by
taking their reciprocal, such as Lovell, Pastor, and Turner (1995),
and the fourth group treats them by subtracting them from some
sufficiently large numbers, such as Seiford and Zhu (2002), Jahan-
shahloo, Hadi Vencheh, Foroughi, and Kazemi Matin (2004). The
translated data in the third and fourth categories have the same
improvable direction with desirable output, and then the efficiency
scores will be obtained by employing a traditional DEA model. In
our study, we treat those minimizing criteria as desirable outputs
by taking their reciprocal, since there is no production relationship
between minimizing criteria and maximizing criteria.

Models (2)–(4) are initially used to obtain the simple efficiency
of all SCM information-sharing scenarios. The standard DEA identi-
fied scenarios N, D, I, D&I, and F to be efficient with a relative effi-
ciency score of 1. The remaining 3 scenarios (C, D&C and C&I)
obtained an efficiency score of less than 1. No specific argument
is advanced for preferring an aggressive over a benevolent ap-
proach. However, since the major interest is in finding the best
SCM information sharing rather than a group of projects to make
up a program, an aggressive approach, in the eye of some neutral
evaluator, may be seen as appropriate in this context. Thus, simple
efficiency scores are then used in aggressive models (5)–(8) to ob-
tain the optimal attribute weights for each scenario. These weights
also minimize the relative efficiency of the composite scenarios
that is constructed from the remaining m� 1 scenarios for each
case. Such a matrix and overall rating is shown in Table 5. It is evi-
dent from this table that scenarios D and F have several high cross-
efficiency values. Some of the simple efficient scenarios such as N
and I have several low cross-efficiency values. The adjusted
weighted column means of the Z matrix can be used to effectively
differentiate among the overall efficient scenarios.

Scenario D&C, which was inefficient with a relative efficiency
score of 0.999 and mean score of 0.819, is rated as a better overall
performer than efficient scenarios N, D&I and I, and as almost equal
Table 5
Cross-efficiency and overall rating for 8 SCM information sharing scenarios.

N C D I

N 1.000 0.351 0.442 0.543
C 0.826 0.949 1.000 0.911
D 0.483 0.557 1.000 0.563
I 1.000 0.722 1.000 1.000
D&C 0.810 0.940 1.000 0.891
D&I 1.000 0.722 1.000 1.000
C&I 0.929 0.925 1.000 0.919
F 0.113 0.375 0.842 0.226
Overall rating 0.759 0.674 0.914 0.742
Ranking 5 7 1 6

Note: N: non-information sharing, C: capacity information sharing, D: demand informatio
sharing, D&I: demand and inventory information sharing, C&I: capacity and inventory i
to scenario F. Based on these results, the optimal choice is scenario
D – a good overall alternative performing well in many dimen-
sions. This methodology allows the decision maker to rank the
SCM information-sharing scenarios based on their overall
performance.

Demand information has a tendency to amplify, delay and oscil-
late from downstream to upstream along the supply chain (For-
rester, 1998; Lee et al., 2000). This information is fundamental
and important to supply chain partnership. Furthermore, demand
information has a major impact on supply chain performance since
it has a direct impact on production scheduling, inventory control
and delivery plans (Thonemann, 2002). Therefore, sharing demand
information is usually taken as the first step for supply chain part-
nership. For example, more than 50% of manufacturers in the per-
sonal computer industry share their demand information with
suppliers (Austin, Lee, & Kopczak, 1997). From our results shown
in Table 5, the scenarios with sharing demand information outper-
form the other scenarios.

The results also show that the no information-sharing scenario
(N) is better than some partial information-sharing scenarios (C, I,
C&I). This seems most unreasonable, but is an interesting and
meaningful result. According to the simulation, sharing only capac-
ity and/or inventory information, without any demand information
sharing, causes interference with production at manufacturers and
misunderstandings, and magnifies the bullwhip effect. The busi-
ness activities are triggered by demand. The activities, such as pro-
duction in the upstream of the supply chain, try to meet the actual
demand of end customers. Better meeting of actual demand results
in better consequent decisions in the supply chain. Therefore, shar-
ing only capacity and/or inventory information, without any de-
mand information sharing, may mislead the sales forecast,
inventory control and production plan.
5. Concluding remarks and further research

After proceeding with international management, enterprises
have to face the challenge of SCM mainly because of the rapid
change in the business environment and severe competition in
market and customers’ diverse demand. Therefore, how to operate
information technology to upgrade the efficiency of a supply chain
has currently become one of the most important issues for enter-
prises. Information sharing is usually taken as a basic treatment
for supply chain collaboration. In a supply chain, more direct and
immediate information results in higher accuracy of forecasts.
The effective SCM is not achievable by any single enterprise, but in-
stead requires a virtual entity by faithfully integrating all involved
partners, who should come up with the insightful commitment of
real-time information sharing and collaborative management.
Thus assessing the effects of different degrees of information
D&C D&I C&I F

0.257 0.393 0.278 0.215
0.996 0.971 0.912 1.000
0.965 0.728 0.474 1.000
0.722 1.000 0.722 0.722
0.999 0.965 0.893 1.000
0.722 1.000 0.722 0.722
0.961 0.958 0.955 1.000
0.950 0.459 0.259 1.000
0.819 0.800 0.631 0.830
3 4 8 2

n sharing, I: inventory information sharing, D&C: capacity and demand information
nformation sharing, F: full information sharing.
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sharing upon multi-echelon supply chain performance has become
an important issue.

Differing information-sharing scenarios are compared by analyz-
ing the resulting performance measures including: inventory hold-
ing costs, shortage costs and order costs of manufacturers, order
filling rates of distributors and retailers, customer service levels,
and order cycle time. The ranking of scenarios according to perfor-
mance measures is often treated in the literature as the problem of
multi-criteria classification of elements of one set. Besides the appli-
cation of multi-criteria analysis, this problem has been solved by
applying different methods such as regression analysis, cluster
methods, and factor analysis. This study aims at using a non-para-
metric approach, DEA, to estimate the efficiency of information-
sharing scenarios in a supply chain with multiple criteria.

Most applications of DEA to multi-criteria analysis have the lim-
itations of the existing methodology intrinsic to DEA. The simple effi-
ciency score obtained from standard DEA is often misleading. It is
difficult to choose the best alternative. In order to rank 5 efficient
alternatives we use an aggressive formulation of Doyle and Green’s
DEA cross-efficiency model (Doyle and Green, 1997). A comparison
of obtained ranks shows that the scenarios were ranked more realis-
tically with the cross-efficiency matrix. The results show that the
scenario of demand information sharing is the most efficient. Be-
sides, the sharing of information on capacity and demand, and full
information sharing in general, are good practices.

The previous findings in the literature suggesting sharing as
much as information possible to increase benefits, we contrarily
advise to share the information as combination. This research
can be extended in several ways. Firstly, different types of inven-
tory policy can be applied to comparing the efficiency of informa-
tion sharing. Secondly, since the results of the simulation show
that the demand information is the key enabler for information
sharing, the demand information, including the interval and quan-
tity distribution of customer orders, can be changed to test the sen-
sitivity of parameters. Third, the preference of each managerial
factor can be further considered, and how the preferences derived
from different managerial factors can be further examined in fu-
ture works.
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