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Fixed width mode interval
and its application to quality control.

student : Yi Jun Lin Advisors : Dr. Lin An Chen

Institute of Statistics
National Chiao Tung University

ABSTRACT

The popular used Shewhart control chart is choosing a statistic T and setting its
upper and lower control limits as T's. mean plusing and minusing 3 times of T's
standard deviation. This rule has™been applied* for variables with distributions
continuous or discrete and symmetric or asymmetric. We extend the mode interval of
Huang (2003) to define the fixed width mode interval which is one having largest
coverage probability among the intervals with the same width. Estimation of this new
chart has been discussed in parametric and nonparametric techniques. Moreover, a

real data analysis has also been provided.
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Fixed Width Mode Interval and Its Application to Quality Control

SUMMARY

The popular used Shewhart control chart is choosing a statistic 7" and setting its
upper and lower control limits as T’s mean plusing and minusing 3 times of T”’s stan-
dard deviation. This rule has been applied for variables with distributions continuous
or discrete and symmetric or asymmetric. We extend the mode interval of Huang
(2003) to define the fixed width mode interval which is one having largest coverage
probability among the intervals with the same width. Estimation of this new chart
has been discussed in parametric and nonparametric techniques. Moreover, a real data

analysis has also been provided.

1. Introduction

In statistical applications, we -often face twe problems of estimating an interval for
a random variable or a statistic.ZIn the first problent, we anticipate to find a random
interval that covers (usually) a random variable ‘with a given coverage probability.
This problem usually is done by the ‘so-ealled pivotal quantity method. In the second
problem, we face the problem of estimating an interval that covers the random variable
or statistic in some sense where the two ends of the interval are functions of unknown
parameters. There are two main types of this unknown interval. One is setting covering
the random variable or statistic with a fixed probability. In this problem, searching one
among those with the same coverage probability with shortest width is, in general, a
suitable solution. The other one is a certain interval with a fixed width. This interval of

the type with fixed width is especially interesting in application in industrial statistics.

The popular way in setting an interval of fixed width is selecting T, a statistic T
or random variable, with mean p; and standard deviation o; to form the symmetric
interval (u¢ — ko, pt + ko) of width fixed at 2ko; and centered at mean p; where the
constant k popular is with value 3. We interpret this with two examples applying in
statistical quality control. First, the general form of a Shewhart control chart considers

the sample mean or sample range for statistic 7" and defines the two ends of the interval
1



as upper control limit (UCL) and lower control limit (LCL) as

UCL = Lt + 30't
CL = py
LCL = MUt — 30',5
where CL represents the central line. Since this control chart may be applied on the
manufacturing process no matter what the distribution of the controlling variable is,
this interval does not guarantee the coverage probability with a fixed value.
Second, using the width of this interval, process capability index is very popular rep-
resenting the capability of a manufacturing process. For example, consider a random

variable X and its standard deviation o. The simplest version is defined as

_ USL-LSL

Cp 60

where USL and LSL, respectively, represent the upper and lower specification limits
for the random variable that are determined. by engineer. In this example, the index
uses the 60 of the interval (u — 3o+ 30).

Consider the problem. The following

{{a, a-604)-d-€ R}, (1.1)

provides the class of whole intervals with the same width 60, why should we choose
the symmetric one? Two criterions may be appropriate setting for making decision in
selection. First, we may treat a fixed width interval as an extension of the traditional
concept of location for a distribution of a random variable from a point to an interval.
We then expect that it should fulfill several desired eqivariant properties for a location
parameter. The traditional Shewhart control charts generally do not satisfy some
expected equivariant properties where one is that the constructed intervals may be
out of the support of the statistic T. For example, suppose that we have a sample
mean X computed from a random sample Xi,..., X, drawn from the distribution
Gamma(2,3) where we have its mean p = 6 and standard deviation ¢ = /18. We
then see that the lower control limit LCL is 6 — % which is less than zero when
n < 4 that makes LCL lie out side the support (0,00). Since n < 4 is the very often
case in quality control, we need to avoid this in-practical control limits. Second, for

ensuring that the manufacturing process is running in appropriateness, a control chart



should have control limits that work well in two aspects. 1. When the process is in
control, we expect not to have data points lie outside the control limits which causes
conclusion of possible distributional shift. 2. When the process is out of control, we
expect to have more observations lie outside of the control limits that we can detect the
fact of distributional shift. Searching a quantile interval that fulfill the two criterions
above is our aim in this paper.

Extension of the location point of the mode, we define the fixed width interval that
maximizes the corresponding coverage probability. From the expectation for being
a location interval, we show that it satisfies several desired equivariant properties.
Its estimation and application in constructing a new Shewhart X control chart are
addressed. Finally, nonparametric estimation of this interval has also been discussed.

We define the mode type interval and show that it satisfies several equivariant
properties in Section 2. Examples of mode type intervals for several distributions and
their corresponding point estimations are displayed in Section 2. The application of
this mode interval to the Shewhart X .confrél ehart is introduced in Section 3. Finally,
we introduce a nonparametric estimation fersthe mode type interval and display several

simulation results in Section 4.

2. Population Fixed Width Interval

Suppose that we have a random sample Xjg..t; X,, drawn from distribution with
p.d.f. f(x,0). Let T be a statistic based on the random sample or simply the random
variable X having p.d.f. f. Let 02 be the variance of T, which is usually dependent

on 6, and we consider the maximum probability interval of width ko.

Definition 2.1. A ko fixed width interval is C(6) = (a*(0), ko + a*(0)) with
a*(0) = argsupgerP(a < T < a+ ko).

It is well known that the shortest confidence interval with a confidence coefficient
may not exist. We then ask if the the ko fixed width interval which is one of shortest

interval exist? The solution provides one reason that it is worthful to be proposed.

Theorem 2.2. If a random variable has finite variance o2, then, for k > 0, the ko
fixed width interval exists.

Proof. Let’s denote P, = P(a < T < a + ko). Note that the set {P, : a € R} is
bounded so that its supremum, denotes it by P*, exists. Let {a,, : n =1,2.3,...} be a
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set such that p* = lim; . oopa,. Since p.d.f. f satisfies f(z) — 0 as z — oo or —oo, there
exists a value ag such that —zy < a,, < z, for all n. Boundness of {a,, : n =1,2,3,...}
implies that there is a sequence n; such that there is o’ = lim;_,ca,,.

Suppose that the distribution is continuous. Then obviously a’ is a solution of a*.
On the other hand, if the distribution is discrete. Then, from the fact that P, is a

step function in a, a* has to be the limit of the sequence {ay, }.

Theorem 2.3. Suppose that the distribution F' is symmetric at a value p, then the

ko fixed width interval is of the form

k k

(,u— EO',IU/—F 50’)

Proof. Consider only that the distribution F' is also continuous. Then solution of a

satisfies

0 F(a+ ko) — F(a)) = f(a+ ko) — f(a). (2.1)

However, f(a + ko) = f(a) if and only if a = = %a for symmetric p.d.f. f.

We extend the concept of measure of location point (see, for example, Staudte and

Sheather (1990, p101)) to the loeation type interval.

Definition 2.4. A measure of fixed width coverage set for F' is a set D(X) that
satisfies the following conditions:
(1). D(X 4+b)=D(X)+0bforbe R.
(2). D(aX)=aD(X) for a € R.
(3). X >0 implies D(X) > 0.

Not every type of parameterized interval fulfills the properties of measure of fixed
width coverage set. Here we show that the ko fixed width interval does satisfies the

conditions of a measure of coverage set.

Theorem 2.5. The ko fixed width interval is a measure of coverage set.

Proof. For convenience, redenote a*, o and C'(ko) for random variable X, respectively,
by a*(X), ox and C(X). To show (1), for ¢ € R,

a*(X +c¢) = argsupaerPla < X +c<a+koxic)

= argsup,ecprP(a —c < X <a+kox —¢)



5

where we use the fact that ox. = ox. We have a*(X + ¢) — ¢ = a*(X) which implies
a*(X 4+¢) =a*(X)+c. Then

C(X+c) = (a*(X+c),a" (X +c)+koxie) = (a*(X)+c,a*(X)+ct+kox) = C(X)+ec.
Consider (2). If b > 0,

a” (bX) = argsup,ecrP(a < bX < a+ kopx)

kb
= argsupaeRP(b <X < CH—TOX)
where we use the fact that op,x = box. We have a*(;:X) = a*(X) which implies

a*(bX) = ba*(X). Then

C(bX) = (a* (bX),a” (bX) + kopx) = b(a*(X), a*(X) + koy) = bC(X).

If b <0,
a” (bX) = argsupgepfla-<bX < a + kopx)
— bk
= argsupaeRP(¥ <X < b)
where we use the fact that o,x = —box. We have a*(X) = w which implies

a*(bX) = ba*(X) + bkox. Then

C(bX) = (a* (bX), a* (bX) + kopx)
( X)+bkax,ba (X)+b]€0x—bk0’x)
= b(a"(X), a*(X) + ko)

= bC(X).

*(
(
Condition (3) is induced by the fact that, for X > 0, we have P(ap < X < ag+ ko) <

P(0 < X < ko) if ap < 0.

Table 1 Median and mode types interval for binomial distribution (b(12,0.3))



Length Tmed C’med Tmod C'mod
0 0.2311 {4} 0.2397 (3}
1 0.4708 {3,4} 0.4708 {3,4}
2 0.6293 {3,4,5} 0.6386 {2,3,4}
3 0.7971 {2,3,4,5} 0.7971 {2,3,4,5}
4 0.8763 {2,...,6} 0.8763 (2,...,6}
5 0.9475 {1,..,6} 0.9475 {1,..,6}
6 0.9766 1,..,7} 0.9766 1,..,7}
7 0.9905 {0,...,7} 0.9905 {0,...,7}
8 0.9983 {0,...,8} 0.9983 {0, ..., 8}
9 0.9997 {0,...,9} 0.9997 {0,...,9}
10 0.9999 {0,...,10} 0.9999 {0,...,10}
11 0.99999 {0,...,11} 0.99999 {0,...,11}
12 1.0000 {0,...,12} 1.0000 {0,...,12}

We call an interval Cy a highest density (HD) interval if

f(x) > f(z1) for x € Cy, 1 & Cp. (2.2)

Theorem 2.6. Suppose that thesunderlying distribution is unimodal and continuous.
Then a quantile interval C(6) is a ke mode interval if and only if it is a width ko HD
interval. ‘

Proof. Let C be a width ko HD inferval. By thefact that C = (C' N Cy) U (C N C§)
and Cp = (CoNC) U (CyNC®). Since C"and' Cy are both width ko interval, we have

width(C'N C&) = width(Cp N C°).

From (2.2), we also have

/C RCLE /C G

Adding |, cnc, /(@)dz to both sides, we further have

REE /C f(@)da. (2.3)

However, from the definition of mode interval, strictly inequality in (2.3) can not hold.

Then Cj is a width ko mode interval.
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On the other hand, let C = (a,a + ko) be a ko mode interval. From (2.1), we have

f(a) = f(a+ ko). (2.4)

With (2.4) and the fact that the mode lying in the mode interval, interval C' satisfies
(2.2). Then C is a width ko HD interval.

3. Statistical Inferences for Fixed Width Mode Interval

Let a fixed width interval be of the form (a;(0),a2(0)). We also assume that there
is a random sample X1,..., Xy available. Consider 0 as an estimator of #. In this
section, we will develop statistical inference procedures for the fixed width interval
when the interval is a function of unknown parameter # and a random sample from
the underlying distribution is available.

The simplicity of the expression of the fixed width mode interval determines the
estimation technique. Suppose that a distribution Fy makes the mode interval in the

form

(a(@)co, an(B)ep + ko) (3.1)

where ¢ is the only fact that is determined by the maximization problem in Definition
2.1 in terms of a distribution Fy which.is free-of parameter 6. Then as long as we have
estimators 6 and & respectively for 6. and o the estimator of the mode interval may
be set as C = (ay(0)co,a1(0)co + k&)." "The' distribution belonging to the family of
location-scale family is the one with this advantage.

In the following, we presents the fixed width mode interval for several distributions

that belong to the location-scale family.

Theorem 3.1. Let X be a random variable with distribution in the family of contin-
uous location-scale distributions with p.d.f. of the form f(z,0:,62) = % fo(%) with

parameter space 61 € R and 6, > 0 has ko mode interval of the type

where

k
a* = argsup,epP(a < Xo <a+ 9—0)
2

and Xy = X0—291_
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Proof. The proof is obvious from the fact that

P(a§X§a+ko—):/ .
a 2

a—60q

02 +§_g
- / foly)dy.

()

The benifit of location-scale family is that the mode interval is explicitly displayed in
terms of a* and parameter # and then we may easily develop the estimator of coverage

interval through the existed theorems for statistical inferences for parameter 6.

Exponential distribution: Consider the case that the random sample is drawn from

a right skewed exponential distribution with p.d.f.

fz) = %e_ITZI(E < x < 00).

The ko fixed width interval is
C(0) = (L, L+k0).

Proof. For this distribution, we may see that standard deviation is 0 = 6 and P(a <
X <a-+ko) = e_%(l — e~ko79). “Then the result is implied from the facts that

1—e /% > 0and e *7 is a decreasing function of a on [(,00). O

Table 2 Comparison of coverage probabilities of median and mode types intervals for

the Exponential distribution with the coverage probabilities for normal distribution

k Tmed Tmod Tmed Tmod Tnor
A=0.3 A=3 Normal

1.0 0.419 0.644 0.417 0.643 0.382
2.0 0.830 0.865 0.830 0.865 0.682
3.0 0.924 0.954 0.923 0.954 0.866
4.0 0.956 0.988 0.956 0.988 0.954
5.0 0.977 0.999 0.977 0.999 0.987
6.0 0.989 1.000 0.989 1.000 0.997
7.0 0.996 1.000 0.996 1.000 0.999

For the point estimation, in case that we have a random sample X;, ..., X,, drawn
from this exponential distribution, we may consider C' = (¢, ¢ + kX) since X is the

best estimator of 6.
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On the other hand, one distribution highly asymmetric skewed to the left that has
p.d.f. of the form

We may also see that the ko fixed width interval is

C(0) = (¢ — k0, 0)

where its estimator may be set as C' = (£ — kX, £).

Gamma distribution: Suppose that X has distribution Gamma(%,
E(X)=% and Var(X) = %, then the ko fixed width interval is

y4 k 12
Cmed —\5 — 3 \/7 50\/;)

and the mode type 2ko fixed width interval is

6). Since

Cooa(0) 2 (%e, %m - V20)

where aj; solves sup,erP(a < x*U)< a + ky/20).
Proof of mode type interval: Since o, = \/gﬁ, the ko fixed width interval is C(6) =

(a*,a* + k\/ge) where a* satisfies'the followings

12
a* = argsup,eprPla < X <a+ k\/;g)

2 2X
= argsupgerP( Qa < e < <4 kvV'20).

Since % has x? distribution with degrees of freedom ¢, the theorem is followed. [
The coverage probabilities of the median type and mode type 2ko fixed width

interval are, respectively,

Tmed = ———0\/7 X<—+k0\/§)
Pl — kf<X(€)<€+k\/§)

Tmod = Plaf < X*(0) < af + kV/2().

and



10

Table 3 Comparison of coverage probabilities of median and mode types intervals for

the Gamma distribution with the coverage probabilities for normal distribution

k Tmed Tmod Tmed Tmod Tnor
g ; g g ; g Normal

1.0 0.401 0.520 0.404 0.489 0.382
2.0 0.735 0.793 0.723 0.771 0.682
3.0 0.909 0.927 0.897 0.918 0.866
4.0 0.958 0.979 0.961 0.975 0.954
5.0 0.978 0.994 0.981 0.991 0.987
6.0 0.989 0.997 0.988 0.998 0.997
7.0 0.994 0.999 0.992 0.999 0.999

Let’s turn to the situation that a distribution does not belong to the location-scale
family. It is then quite often that the fixed ko mode interval may ne be formulated in
the convenient form of (3.1). In this situation, we propose to estimate it as C' = C(6)
simply replacing the distribution Fy.of X*by Fj, where 0 is a suitable estimator of 6.

In the following, we present a case of underlying Poisson distribution.

Poisson distribution: LetzX be a random vatiable with Poisson distribution

having p.d.f. of the form

ATeT?

T l@=012).

f(IL’, >‘) =

The variance of this distribution is A so that the ko mode interval is C'(\) = (a(\), a(A)+
kv/\) with
a+kvV

A\TeA
a(\) = argsupg>o

x!

r=a

When A is unknown, we may estimate C(\) by C' = C(X) where X is the sample

mean of the available random sample X1, ..., X,,.

4. Mode Interval Type Control Chart
Let T be a statistic based on a random sample from a distribution F' with population
mean y; and population variance o?. The general theory of Shewhart control chart is

considering the mean p; as the central line and the two lines with distance 2ko; for
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some k > 0 as the upper and lower control limits as

UCL = Mt —I—I{PO't
CL =
LCL = e — kUt

In practice, the most popular setting of value k is 3. Basically, the Shewhart control
is an interval with fixed width 2ko;. Inheriting the requirement of the fixed width
2koy, it is reasonable to consider the limits of the fixed width 60, mode interval as the
control limits, that is, we define the general form of mode interval type fixed width

Shewhart control limits as

UCLyoq = 2koy + a*(0)
LCLmOd =a” (9)

In practice of quality control, usually we assume that there is a history record of
m samples X1, Xjo, ..., Xjpn,j =21, ...,mudrawn from a distribution F' available to
construct the control limits. Letfis o4 and.a;(0) are, based on jth random sample
Xi1,Xj2, ..., Xjn, estimators of g, o, and-a*(@).” By letting ji; = %Z;’;l firj, 01 =
iy 64y and a*(0) = o> ax(6), the estimated Shewhart control chart and

mode interval type Shewhart control chart-are, respectively, with limits

UCL - ﬂt +k€7t
CL = fu
LCL - ﬂt - k&t

and

UC Linoa = 2kéy + a*(0)
LC Lyoa = a*(0)

In application of this new control chart for on-line process surveillance, if the sample
values of statistic 1" fall within the control limits LCL,,,q and UCL,,,q and do not
exhibit any systematic pattern, we say the process is in control at the level indicated

by the chart.
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Exponential Distribution

Let Xi,...,X,, be a random sample drawn from the exponential distribution with

p.d.f.
1 _ .
f(z,0) = 56_51(13 > 0).

Consider the X-chart. The Shewhart control X-chart is

UCLpeqa =0+ k%

CLmed =0

LCLpeq=0— k:i
NG

By letting )_(j = %Z?:l Xj; and ):(: % Z;”:l X'j, the estimated Shewhart control
X-chart is

S

UC Lisi LRty

CLmed :):(

I

LO L mXomt —
d ¥ 3

On the other hand, the coverage probability of the Shewhart control X-chart may be

derived in the following

wmed:P(H—k% §X§9+k%)
= P(n(@—k‘%) < ;X < mew%))
:P(n(l—%) §Y§n(1+%))

where Y ~ Gamma(n, 1).

The mode type Shewhart control X-chart is

0
Lod = 2k——= (0
e d \/ﬁ—f—a()

LCLmOd =a” (0)
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where a*(0) may be derived in the following

a* () = argsup,P(a < X < 2k% +a)
a S X; 2k a
argsupa P(ng < =55— < (=2 + 5))

By letting b* = argsup,P(nb <Y < n(\z/—’% + b)), we have a* = 6b*. The alternative

form of the mode type Shewhart control X-chart is

0
UCLyoq = 2k— + 6b*
d Jn +
LCL,,0q = 0b*

Table 4 Comparison of coverage probabilities of median and mode types control limits

for the Exponential distribution

k Tmed Tmod ; Timed Tmod
n=3 n=>5

1.0 0.382 0.441 0.382 0.415
2.0 0.715 0.751 0.700 0.722
3.0 0.909 0:909 ‘ 0.892 0.893
4.0 0.955 0.972 0.958 0.966
5.0 0.976 0.992 0.980 0.990
6.0 0.988 0.998 0.990 0.997
7.0 0.994 0.999 0.995 0.999

The estimated mode type Shewhart control X-chart is

UCLpoqg =2k—+ X b*

X
NG
LCL,,0q =X b*

The coverage probability of the mode type Shewhart control X-chart is

Tmod = P(nb* <Y < n(\Q/—kﬁ +b")).

Gamma distribution Let X1, ..., X,, be a random sample drawn from the distribution

Gamma(%ﬁ). Consider the Shewhart X control chart. Since X has mean % and
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variance %, the median type Shewhart X control chart is

00 [/
UCL = — —
CLed 9 + k6 o

0
CLmed - E

LCLpeq = % — k04/ %

The sample type Shewhart X control chart is

UCLyoy =X +k X ,/i
2n

CLmed =X

LCL,..; =X —k X ,/i
2n

The coverage probability of the medianstyperShewhart X control chart is

Z?:1 Xi

For deriving the mode type X control chart, by letting Y = s—, and setting

i

a*(0) = argsup,P(a < X < a + 2k0

l
b* = argsupyP(b < Y < b+ 2ky/ 7”),
we have a* = %. The mode type Shewhart X control chart is

2 *
UC Lpoa = k4] 2 + o0
n n

LCL 0 = i .
n

Table 5 Comparison of coverage probabilities of median and mode types control limits

for the Gamma distribution Gamma(2, 2)
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k Tmed Tmod Tmed Tmod
n=3 n=>5

1.0 0.382 0.409 0.382 0.398
2.0 0.697 0.715 0.691 0.702
3.0 0.888 0.888 0.879 0.880
4.0 0.959 0.964 0.958 0.960
5.0 0.981 0.990 0.983 0.989
6.0 0.991 0.997 0.993 0.997
7.0 0.996 0.999 0.997 0.999

The sample mode type Shewhart X control chart is

The coverage probability of the mode type Shewhart X control chart is

= 2 2Xb*
UCL,poq = 2kX | —
nt
oL, = X0
nt

| ., [nt
Tmod = PO < FEW! K2k ).

Poisson distribution Let X, ..5 Xn be arandom sample drawn from the distribution

Poisson()\). Consider also the X “eontrol chart. Since E(X) = A and Var(X)

the median type Shewhart control chart ‘s

UCLypeqd =X+ k\/g

CLmed =A

LCLypeqa =X—k A

3

The sample type Shewhart control chart is

UCLyoq =X +k

CLmed =X

LOL,..q =X —k

A




16

The coverage probability of the median type Shewhart X control chart is

)

S>>

N
wmed:P(A—k\/jSXS)\Jrk
n

>

A
= P(n(\ — k:\/;) <Y <nA+ky\/—))
where we let Y = >0 | X; ~ Poisson(n\).
The mode type Shewhart X control chart is

S

UCL,poq = a* + 2k %
LCL,,0q = a*
where a* satisfies
a* = argsup,P(a < X < a+ 2k %
A

= argsup, P(na <Y < n(a+ 2ky/—)).

S

The sample type mode type Shewhart X control chart is

UC Byod = @2(X) 302k

LC Bhoqt=a tX)

1=

where a*(X) satisfies

| X
a*(X) = argsup,P(na <Y <n(a+ 2k g))

We here display a comparison of coverage probabilities of median type and mode

type X charts under the Poisson distribution with sample size n = 3

Table 6 Comparison of coverage probabilities of median and mode types control limits
for distribution Poisson(0.5) (n=3)

k Tmed (LCL, UCL)med Tmod (LCL, UCL)mOd
1.0 0.585 (0.3,0.704) 0.585 (0.3,0.708)
2.0 0.585 (0.092, 0.908) 0.808 (0.0,0.816)
3.0 0.934 (0.0,1.112) 0.934 (0.0,1.225)
4.0 0.934 (0.0,1.316) 0.981 (0.0,1.633)
5.0 0.981 (0.0,1.521) 0.999 (0.0,2.041)
6.0 0.995 (0.0,1.725) 0.999 (0.0,2.449)
7.0 0.995 (0.0, 1.929) 0.999 (0.0, 2.858)
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5. Numerical Data Analysis

From the historical records (see the data in Besterfield (1990)), there is a data of
25 subgroups that gives the inspection results for the blower motor in an electric hair
dryer for the motor department. In this case, we have a random sample Xi, ..., X,,
drawn from the binomial distribution b(n, p) with unknown parameter p and n = 300
and m = 25. By letting p = %z;n:l p; with p; = %,j = 1,...,m, the Shewhart X

control chart is

UCLpeq =np+ ky/np(l —p)

CLmed =np

LCLyeq = np — kv/np(1 — p)

and by letting X ~ b(n,p) and

a*(p) = argsup,>o P (a = X< a+ 2k~\/np(1 —p)),

the mode type Shewhart X control chartlis

UCLmad = @ (p)ri=2kn/ np(1 — p)

LCLmOd 4, (]7)

Table 7 Median and mode control chart for binomial distribution

k (LCL, UCL)med Tmed (LCL, UCL)mOd Tmod
2.0 0.794,10.00 0.9742 1.00,10.0 0.9742
2.2 0.333,10.46 0.9742 1.00,11.0 0.9967
2.4 —0.126,10.92 0.9785 1.00,11.0 0.9867
2.5 —0.126,10.92 0.9910 1.00,12.0 0.9922
2.6 —0.587,11.38 0.9910 1.00,12.0 0.9922
2.8 —1.047,11.84 0.9910 1.00,12.0 0.9922
3.0 —1.508,12.30 0.9965 0.00,13.0 0.9987
3.5 —2.659,13.45 0.9987 0.00,16.0 0.9999

We display a graph of the estimated control chart in Figure 1.

In statistical quality control, the number of defects, ¢, arises probabilitically ac-

cording to the Poisson distribution. Suppose that we have a random sample cq, ..., ¢,
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obeying this distribution. By denoting ¢ = % 2111 ¢;, the Shewhart ¢ control chart

has control limits

UCLmed =c+ k?\/é
C’Lrned =c
LC Lypeq = € — kVE.

On the other hand, the mode type Shewhart ¢ control chart has control limits as

UCLynoq = a*(€) + 2kVeE
LCLpoq = a*(€)

where a*(¢) = argsup,>0P(a < ¢ < a + 2k+/¢) where ¢ ~ Poisson(/¢).

Consider the process of the installation of front and rear bumpers on automobiles.
In this automobile manufacturer, all autos were inspected for the bumper installation
process. The numbers cq, ..., ¢, of defects were recorded from shift to shift. For detail
description of the data and defects; please see Devor, Chang, and Sutherland (1992).
From the data of m = 25 samples, the mean of defects ¢ = 16. We list the two

computed control limits in the following table:

Table 8 Median and mode control chart-for-bumper infects

k (LCL, UCL)med Tmed (LCL, UCL)mOd Tmod
2.0 8.0,24.0 0.9677 8.0,24.0 0.9677
2.2 7.2,24.8 0.9677 8.0,25.0 0.9769
2.4 6.4,25.6 0.9829 7.0,26.0 0.9885
2.5 6.0,26.0 0.9912 7.0,27.0 0.9919
2.6 5.6,26.4 0.9912 7.0,27.0 0.9919
2.8 4.8,27.2 0.9955 6.0, 28.0 0.9964
3.0 4.0,28.0 0.9977 5.0,29.0 0.9985
3.5 2.0,30.0 0.9994 4.0,32.0 0.9998

We also display an estimated control chart in Figure 2.

6. Nonparametric Estimation
In the previous work in this paper, the observations were assumed to come from some
underlying distribution, whose general form is assumed known. If these assumptions

about the shape of the distribution are not made, then nonparametric methods to
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estimate the fixed width mode interval C,,,q = (a*, ko + a*) must be used. Besides
the nonparametric estimation of mode interval C,,,4, we also simulate the efficiency
of the mode interval C),,q comparing with median type interval. As we have defined
earlier, the median type interval is C,eq = (11— %a, + %0). For further study, we here
also consider another type of median type interval as Cppeq2 = (F~ag), ko+F 1 (ap))
with F~!(ap) satisfying P(X < F~ (o)) = P(X > ko + F~(ap)).

Let X1,...,X,, be a random sample from a distribution F, we let X = %2?21 X;
and S = (=15 o7 (X;—X)?)/2, the, respectively, sample mean and sample standard

deviation, and X (), X(2), ..., X(n) be the corresponding order statistics. Let

n* = max{n; = number of observations in [X;), X(;) +kS],i =1,...,n}

and let i* be the index ¢ such that number of observations in [X;), X(;) 4+ kS] is equal
to n*. We then define the estimate of the ko mode interval by

~

Crnodi= [X(z*)aX(z*) s kJS]

The corresponding coverage percentage estimate s Tpyoq = ”7 The ordinary Shewhart

control chart is Cyyeq = (o — g&, L %&) where its/corresponding coverage percentage

number of observations in C,, 54
po ;

IS Tmed =

We consider a simulation with replication m = 10,000. For each replication, we
draw a random sample X7, ..., X, of sample size n = 50 from a distribution F'. Besides
the estimated coverage probabilities, we also setting the following vector type mean

squares errors (MSE):

1 o=, . k. k 1 o=, . k. k
MSEmeqd = {E Z(Mj — 505 — (1 —50)), - Z(Mj T 50~ (b + 50))2}
j=1

2
1 & o 1 & .
MSE,,0q = {E Z(X(i*)j —a*)?, - Z(X(i*)j + kSj — (ko +a*))*}.

Jj=1 7j=1

The first we consider the exponential distribution with pdf f(z,\) = Ae™**, 2 > 0 and
we display both the MSE’s and the estimated coverage probabilities.

Table 9 MSE’s and coverage percentages for Exponential distribution
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A MSEmed 7Armed MSEmod ﬁmod
0.1 0.0799,87.755 0.8955 0.0799, 48.384 0.9544
0.3 0.0132,10.594 0.8957 0.0088, 5.3760 0.9542
0.5 0.0047, 3.8140 0.8950 0.0031,1.9353 0.9543
0.7 0.0024,1.9461 0.8949 0.0016, 0.9874 0.9542
0.9 0.0014,1.1771 0.8956 0.0009, 0.5973 0.9544

We have two conclusions:

(a). The MSE’s of Cy,q for estimation of its two ends are uniformly smaller or equal
to the corresponding MSE’s of C,;,q. This indicates that the location of mode interval
is relatively easy to estimate than the location of median interval.

(b). The estimated coverage probabilities based on C,,q are also significantly larger

than those based on C),,cq.

Table 10 Coverage percentages for distribution Beta(a, (3)

6 ﬁmed 7Arvnod 7?‘-Wuzd ﬁmod
a=3 a=10
1 0.9032 0.9309 ‘ 0.9099 0.9419
3 0.8642 0.8942 . 0.8875 0.9104
5 0.8709 0.8986 0.8728 0.8997
7 0.8791 0.9047 0.8682 0.8956
9 0.8855 0:.9092___ - 0.8669 0.8949
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Figure.1 np control chart for blower motor data

np control chart
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Figure.2 C control chart for rear-bumper data
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