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摘 要       

    通用的 Shewhart 管制圖是利用一個統計量 T 的平均數加減 3 倍標準差來做

為管制上下限。這套方式應用於所有的分配，不管是對稱或不對稱，以及連續或

不連續。我們把 Huang (2003)的眾數區間概念應用於固定長度，但具有最大覆

蓋機率的管制圖。對此一區間我們討論了有母數及無母數估計並且做了資料分

析。 
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ABSTRACT 

The popular used Shewhart control chart is choosing a statistic T and setting its 

upper and lower control limits as T's mean plusing and minusing 3 times of T's 

standard deviation. This rule has been applied for variables with distributions 

continuous or discrete and symmetric or asymmetric. We extend the mode interval of 

Huang (2003) to define the fixed width mode interval which is one having largest 

coverage probability among the intervals with the same width. Estimation of this new 

chart has been discussed in parametric and nonparametric techniques. Moreover, a 

real data analysis has also been provided. 
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Fixed Width Mode Interval and Its Application to Quality Control

SUMMARY

The popular used Shewhart control chart is choosing a statistic T and setting its

upper and lower control limits as T ’s mean plusing and minusing 3 times of T ’s stan-

dard deviation. This rule has been applied for variables with distributions continuous

or discrete and symmetric or asymmetric. We extend the mode interval of Huang

(2003) to define the fixed width mode interval which is one having largest coverage

probability among the intervals with the same width. Estimation of this new chart

has been discussed in parametric and nonparametric techniques. Moreover, a real data

analysis has also been provided.

1. Introduction

In statistical applications, we often face two problems of estimating an interval for

a random variable or a statistic. In the first problem, we anticipate to find a random

interval that covers (usually) a random variable with a given coverage probability.

This problem usually is done by the so-called pivotal quantity method. In the second

problem, we face the problem of estimating an interval that covers the random variable

or statistic in some sense where the two ends of the interval are functions of unknown

parameters. There are two main types of this unknown interval. One is setting covering

the random variable or statistic with a fixed probability. In this problem, searching one

among those with the same coverage probability with shortest width is, in general, a

suitable solution. The other one is a certain interval with a fixed width. This interval of

the type with fixed width is especially interesting in application in industrial statistics.

The popular way in setting an interval of fixed width is selecting T , a statistic T

or random variable, with mean µt and standard deviation σt to form the symmetric

interval (µt− kσt, µt + kσt) of width fixed at 2kσt and centered at mean µt where the

constant k popular is with value 3. We interpret this with two examples applying in

statistical quality control. First, the general form of a Shewhart control chart considers

the sample mean or sample range for statistic T and defines the two ends of the interval
1
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as upper control limit (UCL) and lower control limit (LCL) as

UCL = µt + 3σt

CL = µt

LCL = µt − 3σt

.

where CL represents the central line. Since this control chart may be applied on the

manufacturing process no matter what the distribution of the controlling variable is,

this interval does not guarantee the coverage probability with a fixed value.

Second, using the width of this interval, process capability index is very popular rep-

resenting the capability of a manufacturing process. For example, consider a random

variable X and its standard deviation σ. The simplest version is defined as

Cp =
USL− LSL

6σ

where USL and LSL, respectively, represent the upper and lower specification limits

for the random variable that are determined by engineer. In this example, the index

uses the 6σ of the interval (µ− 3σ, µ + 3σ).

Consider the problem. The following

{(a, a + 6σt) : a ∈ R}, (1.1)

provides the class of whole intervals with the same width 6σt, why should we choose

the symmetric one? Two criterions may be appropriate setting for making decision in

selection. First, we may treat a fixed width interval as an extension of the traditional

concept of location for a distribution of a random variable from a point to an interval.

We then expect that it should fulfill several desired eqivariant properties for a location

parameter. The traditional Shewhart control charts generally do not satisfy some

expected equivariant properties where one is that the constructed intervals may be

out of the support of the statistic T . For example, suppose that we have a sample

mean X̄ computed from a random sample X1, ..., Xn drawn from the distribution

Gamma(2, 3) where we have its mean µ = 6 and standard deviation σ =
√

18. We

then see that the lower control limit LCL is 6 − 12.72√
n

which is less than zero when

n ≤ 4 that makes LCL lie out side the support (0,∞). Since n ≤ 4 is the very often

case in quality control, we need to avoid this in-practical control limits. Second, for

ensuring that the manufacturing process is running in appropriateness, a control chart
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should have control limits that work well in two aspects. 1. When the process is in

control, we expect not to have data points lie outside the control limits which causes

conclusion of possible distributional shift. 2. When the process is out of control, we

expect to have more observations lie outside of the control limits that we can detect the

fact of distributional shift. Searching a quantile interval that fulfill the two criterions

above is our aim in this paper.

Extension of the location point of the mode, we define the fixed width interval that

maximizes the corresponding coverage probability. From the expectation for being

a location interval, we show that it satisfies several desired equivariant properties.

Its estimation and application in constructing a new Shewhart X̄ control chart are

addressed. Finally, nonparametric estimation of this interval has also been discussed.

We define the mode type interval and show that it satisfies several equivariant

properties in Section 2. Examples of mode type intervals for several distributions and

their corresponding point estimations are displayed in Section 2. The application of

this mode interval to the Shewhart X̄ control chart is introduced in Section 3. Finally,

we introduce a nonparametric estimation for the mode type interval and display several

simulation results in Section 4.

2. Population Fixed Width Interval

Suppose that we have a random sample X1, ..., Xn drawn from distribution with

p.d.f. f(x, θ). Let T be a statistic based on the random sample or simply the random

variable X having p.d.f. f . Let σ2 be the variance of T , which is usually dependent

on θ, and we consider the maximum probability interval of width kσ.

Definition 2.1. A kσ fixed width interval is C(θ) = (a∗(θ), kσ + a∗(θ)) with

a∗(θ) = argsupa∈RP (a ≤ T ≤ a + kσ).

It is well known that the shortest confidence interval with a confidence coefficient

may not exist. We then ask if the the kσ fixed width interval which is one of shortest

interval exist? The solution provides one reason that it is worthful to be proposed.

Theorem 2.2. If a random variable has finite variance σ2, then, for k > 0, the kσ

fixed width interval exists.

Proof. Let’s denote Pa = P (a ≤ T ≤ a + kσ). Note that the set {Pa : a ∈ R} is

bounded so that its supremum, denotes it by P ∗, exists. Let {an : n = 1, 2.3, ...} be a
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set such that p∗ = limi→∞pai
. Since p.d.f. f satisfies f(x) → 0 as x →∞ or −∞, there

exists a value a0 such that −x0 ≤ an ≤ x0, for all n. Boundness of {an : n = 1, 2, 3, ...}
implies that there is a sequence ni such that there is a′ = limi→∞ani

.

Suppose that the distribution is continuous. Then obviously a′ is a solution of a∗.

On the other hand, if the distribution is discrete. Then, from the fact that Pa is a

step function in a, a∗ has to be the limit of the sequence {ani
}.

Theorem 2.3. Suppose that the distribution F is symmetric at a value µ, then the

kσ fixed width interval is of the form

(µ− k

2
σ, µ +

k

2
σ).

Proof. Consider only that the distribution F is also continuous. Then solution of a

satisfies

0 =
∂

∂a
(F (a + kσ)− F (a)) = f(a + kσ)− f(a). (2.1)

However, f(a + kσ) = f(a) if and only if a = µ− k
2σ for symmetric p.d.f. f .

We extend the concept of measure of location point (see, for example, Staudte and

Sheather (1990, p101)) to the location type interval.

Definition 2.4. A measure of fixed width coverage set for F is a set D(X) that

satisfies the following conditions:

(1). D(X + b) = D(X) + b for b ∈ R.

(2). D(aX) = aD(X) for a ∈ R.

(3). X ≥ 0 implies D(X) ≥ 0.

Not every type of parameterized interval fulfills the properties of measure of fixed

width coverage set. Here we show that the kσ fixed width interval does satisfies the

conditions of a measure of coverage set.

Theorem 2.5. The kσ fixed width interval is a measure of coverage set.

Proof. For convenience, redenote a∗, σ and C(kσ) for random variable X, respectively,

by a∗(X), σX and C(X). To show (1), for c ∈ R,

a∗(X + c) = argsupa∈RP (a ≤ X + c ≤ a + kσX+c)

= argsupa∈RP (a− c ≤ X ≤ a + kσX − c)
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where we use the fact that σX+c = σX . We have a∗(X + c)− c = a∗(X) which implies

a∗(X + c) = a∗(X) + c. Then

C(X +c) = (a∗(X +c), a∗(X +c)+kσX+c) = (a∗(X)+c, a∗(X)+c+kσX) = C(X)+c.

Consider (2). If b > 0,

a∗(bX) = argsupa∈RP (a ≤ bX ≤ a + kσbX)

= argsupa∈RP (
a

b
≤ X ≤ a + kbσX

b
)

where we use the fact that σbX = bσX . We have a∗(bX)
b = a∗(X) which implies

a∗(bX) = ba∗(X). Then

C(bX) = (a∗(bX), a∗(bX) + kσbX) = b(a∗(X), a∗(X) + kσX) = bC(X).

If b < 0,

a∗(bX) = argsupa∈RP (a ≤ bX ≤ a + kσbX)

= argsupa∈RP (
a− bkσX

b
≤ X ≤ a

b
)

where we use the fact that σbX = −bσX . We have a∗(X) = a∗(bX)−bkσX

b which implies

a∗(bX) = ba∗(X) + bkσX . Then

C(bX) = (a∗(bX), a∗(bX) + kσbX)

= (ba∗(X) + bkσX , ba∗(X) + bkσX − bkσX)

= b(a∗(X), a∗(X) + kσX)

= bC(X).

Condition (3) is induced by the fact that, for X ≥ 0, we have P (a0 ≤ X ≤ a0 + kσ) ≤
P (0 ≤ X ≤ kσ) if a0 < 0.

Table 1 Median and mode types interval for binomial distribution (b(12,0.3))
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Length πmed Cmed πmod Cmod

0 0.2311 {4} 0.2397 {3}
1 0.4708 {3, 4} 0.4708 {3, 4}
2 0.6293 {3, 4, 5} 0.6386 {2, 3, 4}
3 0.7971 {2, 3, 4, 5} 0.7971 {2, 3, 4, 5}
4 0.8763 {2, ..., 6} 0.8763 {2, ..., 6}
5 0.9475 {1, ..., 6} 0.9475 {1, ..., 6}
6 0.9766 {1, ..., 7} 0.9766 {1, ..., 7}
7 0.9905 {0, ..., 7} 0.9905 {0, ..., 7}
8 0.9983 {0, ..., 8} 0.9983 {0, ..., 8}
9 0.9997 {0, ..., 9} 0.9997 {0, ..., 9}
10 0.9999 {0, ..., 10} 0.9999 {0, ..., 10}
11 0.99999 {0, ..., 11} 0.99999 {0, ..., 11}
12 1.0000 {0, ..., 12} 1.0000 {0, ..., 12}

We call an interval C0 a highest density (HD) interval if

f(x) ≥ f(x1) for x ∈ C0, x1 6∈ C0. (2.2)

Theorem 2.6. Suppose that the underlying distribution is unimodal and continuous.

Then a quantile interval C(θ) is a kσ mode interval if and only if it is a width kσ HD

interval.

Proof. Let C0 be a width kσ HD interval. By the fact that C = (C ∩ C0) ∪ (C ∩ Cc
0)

and C0 = (C0 ∩ C) ∪ (C0 ∩ Cc). Since C and C0 are both width kσ interval, we have

width(C ∩ Cc
0) = width(C0 ∩ Cc).

From (2.2), we also have

∫

C0∩Cc

f(x)dx ≥
∫

C∩Cc
0

f(x)dx.

Adding
∫

C∩C0
f(x)dx to both sides, we further have

∫

C0

f(x)dx ≥
∫

C

f(x)dx. (2.3)

However, from the definition of mode interval, strictly inequality in (2.3) can not hold.

Then C0 is a width kσ mode interval.
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On the other hand, let C = (a, a + kσ) be a kσ mode interval. From (2.1), we have

f(a) = f(a + kσ). (2.4)

With (2.4) and the fact that the mode lying in the mode interval, interval C satisfies

(2.2). Then C is a width kσ HD interval.

3. Statistical Inferences for Fixed Width Mode Interval

Let a fixed width interval be of the form (a1(θ), a2(θ)). We also assume that there

is a random sample X1, ..., XN available. Consider θ̂ as an estimator of θ. In this

section, we will develop statistical inference procedures for the fixed width interval

when the interval is a function of unknown parameter θ and a random sample from

the underlying distribution is available.

The simplicity of the expression of the fixed width mode interval determines the

estimation technique. Suppose that a distribution Fθ makes the mode interval in the

form

(a1(θ)c0, a1(θ)c0 + kσ) (3.1)

where c0 is the only fact that is determined by the maximization problem in Definition

2.1 in terms of a distribution F0 which is free of parameter θ. Then as long as we have

estimators θ̂ and σ̂ respectively for θ and σ the estimator of the mode interval may

be set as Ĉ = (a1(θ̂)c0, a1(θ̂)c0 + kσ̂). The distribution belonging to the family of

location-scale family is the one with this advantage.

In the following, we presents the fixed width mode interval for several distributions

that belong to the location-scale family.

Theorem 3.1. Let X be a random variable with distribution in the family of contin-

uous location-scale distributions with p.d.f. of the form f(x, θ1, θ2) = 1
θ2

f0(x−θ1
θ2

) with

parameter space θ1 ∈ R and θ2 > 0 has kσ mode interval of the type

(a∗, a∗ +
kσ

θ2
)

where

a∗ = argsupa∈RP (a ≤ X0 ≤ a +
kσ

θ2
).

and X0 = X−θ1
θ2

.



8

Proof. The proof is obvious from the fact that

P (a ≤ X ≤ a + kσ) =
∫ a+kσ

a

1
θ2

f0(
x− θ1

θ2
)dx

=
∫ a−θ1

θ2
+ kσ

θ2

a−θ1
θ2

f0(y)dy.

The benifit of location-scale family is that the mode interval is explicitly displayed in

terms of α∗ and parameter θ and then we may easily develop the estimator of coverage

interval through the existed theorems for statistical inferences for parameter θ.

Exponential distribution: Consider the case that the random sample is drawn from

a right skewed exponential distribution with p.d.f.

f(x) =
1
θ
e−

x−`
θ I(` < x < ∞).

The kσ fixed width interval is

C(θ) = (`, ` + kθ).

Proof. For this distribution, we may see that standard deviation is σ = θ and P (a <

X < a + kσ) = e−
a−`

θ (1 − e−kσ/θ). Then the result is implied from the facts that

1− e−kσ/θ > 0 and e−
a−`

θ is a decreasing function of a on [`,∞). ¤

Table 2 Comparison of coverage probabilities of median and mode types intervals for

the Exponential distribution with the coverage probabilities for normal distribution

k πmed πmod πmed πmod πnor

λ = 0.3 λ = 3 Normal
1.0 0.419 0.644 0.417 0.643 0.382
2.0 0.830 0.865 0.830 0.865 0.682
3.0 0.924 0.954 0.923 0.954 0.866
4.0 0.956 0.988 0.956 0.988 0.954
5.0 0.977 0.999 0.977 0.999 0.987
6.0 0.989 1.000 0.989 1.000 0.997
7.0 0.996 1.000 0.996 1.000 0.999

For the point estimation, in case that we have a random sample X1, ..., Xn drawn

from this exponential distribution, we may consider Ĉ = (`, ` + kX̄) since X̄ is the

best estimator of θ.
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On the other hand, one distribution highly asymmetric skewed to the left that has

p.d.f. of the form

f(x) =
1
θ
e

x−`
θ I(−∞ < x < `).

We may also see that the kσ fixed width interval is

C(θ) = (`− kθ, `)

where its estimator may be set as Ĉ = (`− kX̄, `).

Gamma distribution: Suppose that X has distribution Gamma( `
2 , θ). Since

E(X) = `θ
2 and V ar(X) = `θ2

2 , then the kσ fixed width interval is

Cmed = (
`θ

2
− k

2
θ

√
`

2
,
`θ

2
+

k

2
θ

√
`

2
)

and the mode type 2kσ fixed width interval is

Cmod(θ) = (
a∗0
2

θ,
a∗0
2

θ +
θk

2

√
2`)

where a∗0 solves supa∈RP (a ≤ χ2(`) ≤ a + k
√

2`).

Proof of mode type interval: Since σ =
√

`
2θ, the kσ fixed width interval is C(θ) =

(a∗, a∗ + k
√

`
2θ) where a∗ satisfies the followings

a∗ = argsupa∈RP (a ≤ X ≤ a + k

√
`

2
θ)

= argsupa∈RP (
2a

θ
≤ 2X

θ
≤ 2a

θ
+ k

√
2`).

Since 2X
θ has χ2 distribution with degrees of freedom `, the theorem is followed. ¤

The coverage probabilities of the median type and mode type 2kσ fixed width

interval are, respectively,

πmed = P (
`θ

2
− k

2
θ

√
`

2
≤ X ≤ `θ

2
+

k

2
θ

√
`

2
)

= P (`− k

√
`

2
≤ χ2(`) ≤ ` + k

√
`

2
)

and

πmod = P (a∗0 ≤ χ2(`) ≤ a∗0 + k
√

2`).
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Table 3 Comparison of coverage probabilities of median and mode types intervals for

the Gamma distribution with the coverage probabilities for normal distribution

k πmed πmod πmed πmod πnor

α = 3
β = 2

α = 9
β = 2 Normal

1.0 0.401 0.520 0.404 0.489 0.382
2.0 0.735 0.793 0.723 0.771 0.682
3.0 0.909 0.927 0.897 0.918 0.866
4.0 0.958 0.979 0.961 0.975 0.954
5.0 0.978 0.994 0.981 0.991 0.987
6.0 0.989 0.997 0.988 0.998 0.997
7.0 0.994 0.999 0.992 0.999 0.999

Let’s turn to the situation that a distribution does not belong to the location-scale

family. It is then quite often that the fixed kσ mode interval may ne be formulated in

the convenient form of (3.1). In this situation, we propose to estimate it as Ĉ = C(θ̂)

simply replacing the distribution Fθ of X by Fθ̂ where θ̂ is a suitable estimator of θ.

In the following, we present a case of underlying Poisson distribution.

Poisson distribution: Let X be a random variable with Poisson distribution

having p.d.f. of the form

f(x, λ) =
λxe−λ

x!
I(x = 0, 1, 2, ...).

The variance of this distribution is λ so that the kσ mode interval is C(λ) = (a(λ), a(λ)+

k
√

λ) with

a(λ) = argsupa≥0

a+k
√

λ∑
x=a

λxe−λ

x!
.

When λ is unknown, we may estimate C(λ) by Ĉ = C(X̄) where X̄ is the sample

mean of the available random sample X1, ..., Xn.

4. Mode Interval Type Control Chart

Let T be a statistic based on a random sample from a distribution F with population

mean µt and population variance σ2
t . The general theory of Shewhart control chart is

considering the mean µt as the central line and the two lines with distance 2kσt for
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some k > 0 as the upper and lower control limits as

UCL = µt + kσt

CL = µt

LCL = µt − kσt

In practice, the most popular setting of value k is 3. Basically, the Shewhart control

is an interval with fixed width 2kσt. Inheriting the requirement of the fixed width

2kσt, it is reasonable to consider the limits of the fixed width 6σt mode interval as the

control limits, that is, we define the general form of mode interval type fixed width

Shewhart control limits as

UCLmod = 2kσt + a∗(θ)

LCLmod = a∗(θ)

In practice of quality control, usually we assume that there is a history record of

m samples Xj1, Xj2, ..., Xjn, j = 1, ..., m drawn from a distribution F available to

construct the control limits. Let µ̂tj , σ̂tj and â∗j (θ) are, based on jth random sample

Xj1, Xj2, ..., Xjn, estimators of µt, σt and a∗(θ). By letting µ̂t = 1
m

∑m
j=1 µ̂tj , σ̂t =

1
m

∑m
j=1 σ̂tj and â∗(θ) = 1

m

∑m
j=1 â∗j (θ), the estimated Shewhart control chart and

mode interval type Shewhart control chart are, respectively, with limits

UCL = µ̂t + kσ̂t

CL = µ̂t

LCL = µ̂t − kσ̂t

and

UCLmod = 2kσ̂t + â∗(θ)

LCLmod = â∗(θ)

In application of this new control chart for on-line process surveillance, if the sample

values of statistic T fall within the control limits LCLmod and UCLmod and do not

exhibit any systematic pattern, we say the process is in control at the level indicated

by the chart.
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Exponential Distribution

Let X1, ..., Xn be a random sample drawn from the exponential distribution with

p.d.f.

f(x, θ) =
1
θ
e−

x
θ I(x > 0).

Consider the X̄-chart. The Shewhart control X̄-chart is

UCLmed = θ + k
θ√
n

CLmed = θ

LCLmed = θ − k
θ√
n

By letting X̄j = 1
n

∑n
i=1 Xji and

=

X= 1
m

∑m
j=1 X̄j , the estimated Shewhart control

X̄-chart is

UCLmed =
=

X +k

=

X√
n

CLmed =
=

X

LCLmed =
=

X −k

=

X√
n

On the other hand, the coverage probability of the Shewhart control X̄-chart may be

derived in the following

πmed = P (θ − k
θ√
n
≤ X̄ ≤ θ + k

θ√
n

)

= P (n(θ − k
θ√
n

) ≤
n∑

i=1

Xi ≤ n(θ + k
θ√
n

))

= P (n(1− k√
n

) ≤ Y ≤ n(1 +
k√
n

))

where Y ∼ Gamma(n, 1).

The mode type Shewhart control X̄-chart is

UCLmod = 2k
θ√
n

+ a∗(θ)

LCLmod = a∗(θ)
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where a∗(θ) may be derived in the following

a∗(θ) = argsupaP (a ≤ X̄ ≤ 2k
θ√
n

+ a)

= argsupaP (n
a

θ
≤

∑n
i=1 Xi

θ
≤ n(

2k√
n

+
a

θ
)).

By letting b∗ = argsupbP (nb ≤ Y ≤ n( 2k√
n

+ b)), we have a∗ = θb∗. The alternative

form of the mode type Shewhart control X̄-chart is

UCLmod = 2k
θ√
n

+ θb∗

LCLmod = θb∗

Table 4 Comparison of coverage probabilities of median and mode types control limits

for the Exponential distribution

k πmed πmod πmed πmod

n = 3 n = 5
1.0 0.382 0.441 0.382 0.415
2.0 0.715 0.751 0.700 0.722
3.0 0.909 0.909 0.892 0.893
4.0 0.955 0.972 0.958 0.966
5.0 0.976 0.992 0.980 0.990
6.0 0.988 0.998 0.990 0.997
7.0 0.994 0.999 0.995 0.999

The estimated mode type Shewhart control X̄-chart is

UCLmod = 2k

=

X√
n

+
=

X b∗

LCLmod =
=

X b∗

The coverage probability of the mode type Shewhart control X̄-chart is

πmod = P (nb∗ ≤ Y ≤ n(
2k√
n

+ b∗)).

Gamma distribution Let X1, ..., Xn be a random sample drawn from the distribution

Gamma( `
2 , θ). Consider the Shewhart X̄ control chart. Since X̄ has mean `θ

2 and
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variance `θ2

2n , the median type Shewhart X̄ control chart is

UCLmed =
`θ

2
+ kθ

√
`

2n

CLmed =
`θ

2

LCLmed =
`θ

2
− kθ

√
`

2n

The sample type Shewhart X̄ control chart is

UCLmed =
=

X +k
=

X

√
`

2n

CLmed =
=

X

LCLmed =
=

X −k
=

X

√
`

2n

The coverage probability of the median type Shewhart X̄ control chart is

πmed = P (
`θ

2
− kθ

√
`

2n
≤ X̄ ≤ `θ

2
+ kθ

√
`

2n
)

= P (n(
`

2
− k

√
`

2n
) ≤ Y ≤ n(

`

2
+ k

√
`

2n
)).

For deriving the mode type X̄ control chart, by letting Y =
∑n

i=1
Xi

θ , and setting

a∗(θ) = argsupaP (a ≤ X̄ ≤ a + 2kθ

√
`

2n
)

b∗ = argsupbP (b ≤ Y ≤ b + 2k

√
`n

2
),

we have a∗ = θb∗
n . The mode type Shewhart X̄ control chart is

UCLmod = kθ

√
2`

n
+

θb∗

n

LCLmod =
θb∗

n
.

Table 5 Comparison of coverage probabilities of median and mode types control limits

for the Gamma distribution Gamma(2, 2)
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k πmed πmod πmed πmod

n = 3 n = 5
1.0 0.382 0.409 0.382 0.398
2.0 0.697 0.715 0.691 0.702
3.0 0.888 0.888 0.879 0.880
4.0 0.959 0.964 0.958 0.960
5.0 0.981 0.990 0.983 0.989
6.0 0.991 0.997 0.993 0.997
7.0 0.996 0.999 0.997 0.999

The sample mode type Shewhart X̄ control chart is

UCLmod = 2k
=

X

√
2
n`

+
2

=

Xb∗

n`

LCLmod =
2

=

Xb∗

n`
.

The coverage probability of the mode type Shewhart X̄ control chart is

πmod = P (b∗ ≤ Y ≤ b∗ + 2k

√
n`

2
).

Poisson distribution Let X1, ..., Xn be a random sample drawn from the distribution

Poisson(λ). Consider also the X̄ control chart. Since E(X̄) = λ and V ar(X̄) = λ
n .

the median type Shewhart control chart is

UCLmed = λ + k

√
λ

n
CLmed = λ

LCLmed = λ− k

√
λ

n

The sample type Shewhart control chart is

UCLmed =
=

X +k

√
=

X

n

CLmed =
=

X

LCLmed =
=

X −k

√
=

X

n
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The coverage probability of the median type Shewhart X̄ control chart is

πmed = P (λ− k

√
λ

n
≤ X̄ ≤ λ + k

√
λ

n
)

= P (n(λ− k

√
λ

n
) ≤ Y ≤ n(λ + k

√
λ

n
))

where we let Y =
∑n

i=1 Xi ∼ Poisson(nλ).

The mode type Shewhart X̄ control chart is

UCLmod = a∗ + 2k

√
λ

n
LCLmod = a∗

where a∗ satisfies

a∗ = argsupaP (a ≤ X̄ ≤ a + 2k

√
λ

n

= argsupaP (na ≤ Y ≤ n(a + 2k

√
λ

n
)).

The sample type mode type Shewhart X̄ control chart is

UCLmod = a∗(
=

X) + 2k

√
=

X

n

LCLmod = a∗(
=

X)

where a∗(
=

X) satisfies

a∗(
=

X) = argsupaP (na ≤ Y ≤ n(a + 2k

√
=

X

n
)).

We here display a comparison of coverage probabilities of median type and mode

type X̄ charts under the Poisson distribution with sample size n = 3

Table 6 Comparison of coverage probabilities of median and mode types control limits

for distribution Poisson(0.5) (n=3)

k πmed (LCL,UCL)med πmod (LCL, UCL)mod

1.0 0.585 (0.3, 0.704) 0.585 (0.3, 0.708)
2.0 0.585 (0.092, 0.908) 0.808 (0.0, 0.816)
3.0 0.934 (0.0, 1.112) 0.934 (0.0, 1.225)
4.0 0.934 (0.0, 1.316) 0.981 (0.0, 1.633)
5.0 0.981 (0.0, 1.521) 0.999 (0.0, 2.041)
6.0 0.995 (0.0, 1.725) 0.999 (0.0, 2.449)
7.0 0.995 (0.0, 1.929) 0.999 (0.0, 2.858)
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5. Numerical Data Analysis

From the historical records (see the data in Besterfield (1990)), there is a data of

25 subgroups that gives the inspection results for the blower motor in an electric hair

dryer for the motor department. In this case, we have a random sample X1, ..., Xm

drawn from the binomial distribution b(n, p) with unknown parameter p and n = 300

and m = 25. By letting p̄ = 1
n

∑m
j=1 p̂j with p̂j = Xj

n , j = 1, ...,m, the Shewhart X

control chart is

UCLmed = np̄ + k
√

np̄(1− p̄)

CLmed = np̄

LCLmed = np̄− k
√

np̄(1− p̄)

and by letting X̂ ∼ b(n, p̄) and

a∗(p̄) = argsupa≥0P (a ≤ X̂ ≤ a + 2k
√

np̄(1− p̄)),

the mode type Shewhart X control chart is

UCLmod = a∗(p̄) + 2k
√

np̄(1− p̄)

LCLmod = a∗(p̄).

Table 7 Median and mode control chart for binomial distribution

k (LCL, UCL)med πmed (LCL, UCL)mod πmod

2.0 0.794, 10.00 0.9742 1.00, 10.0 0.9742
2.2 0.333, 10.46 0.9742 1.00, 11.0 0.9967
2.4 −0.126, 10.92 0.9785 1.00, 11.0 0.9867
2.5 −0.126, 10.92 0.9910 1.00, 12.0 0.9922
2.6 −0.587, 11.38 0.9910 1.00, 12.0 0.9922
2.8 −1.047, 11.84 0.9910 1.00, 12.0 0.9922
3.0 −1.508, 12.30 0.9965 0.00, 13.0 0.9987
3.5 −2.659, 13.45 0.9987 0.00, 16.0 0.9999

We display a graph of the estimated control chart in Figure 1.

In statistical quality control, the number of defects, c, arises probabilitically ac-

cording to the Poisson distribution. Suppose that we have a random sample c1, ..., cm
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obeying this distribution. By denoting c̄ = 1
m

∑m
i=1 ci, the Shewhart c control chart

has control limits

UCLmed = c̄ + k
√

c̄

CLmed = c̄

LCLmed = c̄− k
√

c̄.

On the other hand, the mode type Shewhart c control chart has control limits as

UCLmod = a∗(c̄) + 2k
√

c̄

LCLmod = a∗(c̄)

where a∗(c̄) = argsupa≥0P (a ≤ ĉ ≤ a + 2k
√

c̄) where ĉ ∼ Poisson(
√

c̄).

Consider the process of the installation of front and rear bumpers on automobiles.

In this automobile manufacturer, all autos were inspected for the bumper installation

process. The numbers c1, ..., cm of defects were recorded from shift to shift. For detail

description of the data and defects, please see Devor, Chang, and Sutherland (1992).

From the data of m = 25 samples, the mean of defects c̄ = 16. We list the two

computed control limits in the following table.

Table 8 Median and mode control chart for bumper infects

k (LCL, UCL)med πmed (LCL, UCL)mod πmod

2.0 8.0, 24.0 0.9677 8.0, 24.0 0.9677
2.2 7.2, 24.8 0.9677 8.0, 25.0 0.9769
2.4 6.4, 25.6 0.9829 7.0, 26.0 0.9885
2.5 6.0, 26.0 0.9912 7.0, 27.0 0.9919
2.6 5.6, 26.4 0.9912 7.0, 27.0 0.9919
2.8 4.8, 27.2 0.9955 6.0, 28.0 0.9964
3.0 4.0, 28.0 0.9977 5.0, 29.0 0.9985
3.5 2.0, 30.0 0.9994 4.0, 32.0 0.9998

We also display an estimated control chart in Figure 2.

6. Nonparametric Estimation

In the previous work in this paper, the observations were assumed to come from some

underlying distribution, whose general form is assumed known. If these assumptions

about the shape of the distribution are not made, then nonparametric methods to
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estimate the fixed width mode interval Cmod = (a∗, kσ + a∗) must be used. Besides

the nonparametric estimation of mode interval Cmod, we also simulate the efficiency

of the mode interval Cmod comparing with median type interval. As we have defined

earlier, the median type interval is Cmed = (µ− k
2σ, µ+ k

2σ). For further study, we here

also consider another type of median type interval as Cmed2 = (F−1(α0), kσ+F−1(α0))

with F−1(α0) satisfying P (X ≤ F−1(α0)) = P (X ≥ kσ + F−1(α0)).

Let X1, ..., Xn be a random sample from a distribution F , we let X̄ = 1
n

∑n
i=1 Xi

and S = ( 1
n−1

∑n
i=1(Xi−X̄)2)1/2, the, respectively, sample mean and sample standard

deviation, and X(1), X(2), ..., X(n) be the corresponding order statistics. Let

n∗ = max{ni = number of observations in [X(i), X(i) + kS], i = 1, ..., n}

and let i∗ be the index i such that number of observations in [X(i), X(i) + kS] is equal

to n∗. We then define the estimate of the kσ mode interval by

Ĉmod = [X(i∗), X(i∗) + kS].

The corresponding coverage percentage estimate is π̂mod = n∗
n . The ordinary Shewhart

control chart is Ĉmed = (µ̂− k
2 σ̂, µ̂ + k

2 σ̂) where its corresponding coverage percentage

is π̂med = number of observations in Ĉmed

n .

We consider a simulation with replication m = 10, 000. For each replication, we

draw a random sample X1, ..., Xn of sample size n = 50 from a distribution F . Besides

the estimated coverage probabilities, we also setting the following vector type mean

squares errors (MSE):

MSEmed = { 1
m

m∑

j=1

(µ̂j − k

2
σ̂j − (µ− k

2
σ))2,

1
m

m∑

j=1

(µ̂j +
k

2
σ̂j − (µ +

k

2
σ))2}

MSEmod = { 1
m

m∑

j=1

(X(i∗)j − a∗)2,
1
m

m∑

j=1

(X(i∗)j + kSj − (kσ + a∗))2}.

The first we consider the exponential distribution with pdf f(x, λ) = λe−λx, x > 0 and

we display both the MSE’s and the estimated coverage probabilities.

Table 9 MSE’s and coverage percentages for Exponential distribution
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λ MSEmed π̂med MSEmod π̂mod

0.1 0.0799, 87.755 0.8955 0.0799, 48.384 0.9544
0.3 0.0132, 10.594 0.8957 0.0088, 5.3760 0.9542
0.5 0.0047, 3.8140 0.8950 0.0031, 1.9353 0.9543
0.7 0.0024, 1.9461 0.8949 0.0016, 0.9874 0.9542
0.9 0.0014, 1.1771 0.8956 0.0009, 0.5973 0.9544

We have two conclusions:

(a). The MSE’s of Cmod for estimation of its two ends are uniformly smaller or equal

to the corresponding MSE’s of Cmed. This indicates that the location of mode interval

is relatively easy to estimate than the location of median interval.

(b). The estimated coverage probabilities based on Cmod are also significantly larger

than those based on Cmed.

Table 10 Coverage percentages for distribution Beta(α, β)

β π̂med π̂mod π̂med π̂mod

α = 3 α = 10
1 0.9032 0.9309 0.9099 0.9419
3 0.8642 0.8942 0.8875 0.9104
5 0.8709 0.8986 0.8728 0.8997
7 0.8791 0.9047 0.8682 0.8956
9 0.8855 0.9092 0.8669 0.8949
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Figure.1  np control chart for blower motor data 

 

Figure.2  C control chart for rear bumper data 

 


