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Recently, the independent component analysis (ICA) has been widely used for multivariate non-Gaussian
process monitoring. For principal component analysis (PCA) based monitoring method, the control limit
can be determined by a specific distribution (F distribution) due to the PCA extracted components are
assumed to follow multivariate Gaussian distribution. However, the control limit for ICA based monitor-
ing statistic is determined by using kernel density estimation (KDE). It is well known that the KDE is sen-
sitive to the smoothing parameter, and it does not perform well with autocorrelated data. In most cases,
the calculated ICA based monitoring statistic is usually autocorrelated. Thus, this study aims to integrate
ICA and support vector machine (SVM) in order to develop an intelligent fault detector for non-Gaussian
multivariate process monitoring. Simulation study indicates that the proposed method can effectively
detect faults when compare to methods of original SVM and PCA based SVM in terms of detection rate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical process control (SPC) has been successfully applied to
analyzing systems or processes in which only one variable is mea-
sured and tested. Generally, there exist many variables need to be
monitored and even controlled in a process. Under such a condi-
tion, it may produce false alarms if the univariate SPC is applied
to monitor the process. Multivariate statistical process control
(MSPC) provides a way for engineers to test products, and it pro-
vides several advantages over univariate models. The traditional
MSPC models such as Shewhart chart, EWMA (exponentially
weighted moving average) chart and CUMSUM (cumulative sum)
chart are usually used for monitoring final product variables. The
details of related models can be found in Montgomery (2005).

A problem is emerged with utilizing the traditional MSPC mod-
els, since they may be impractical for high-dimensional systems
with collinearities. Hence, it needs to reduce the dimensionality
of variable space. Principal component analysis (PCA) is one of
the well known projection methods. PCA technique is primarily
used in the area of chemometrics (e.g., Kourti & MacGregor,
1996; Wasterhuis, Gurden, & Smilde, 2000) and it also very prom-
ising in any kind of multivariate processes. PCA benefits from the
capability of handling both process variables and product quality
variables. PCA considers up to the second-order statistics which
ll rights reserved.
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means that the latent variables capture the most variance of origi-
nal variables. PCA tries to decorrelate variables, but not to make
them independent. PCA works well in many cases, but it is seldom
applied to a higher order characteristic process. T2 and Squared
Prediction Error (SPE) statistics are used for the PCA process mon-
itoring, however the control limits of T2 and SPE are determined
based on the assumption that the latent variables are multivariate
Gaussian distributed.

Independent component analysis (ICA) is originally developed
for signal processing applications including speech signal process-
ing, communications, medical image processing, financial engi-
neering and so forth. Later, it has been generalized for feature
extraction. ICA can be taken as an extension of PCA. However,
the objectives for both algorithms are quite different. PCA extracts
components by only considering variance–covariance matrix, and
it aims at making the latent variables to be orthogonally uncorre-
lated. ICA has no orthogonality constraint which not only allows to
decorrelates variables, but also to consider the higher order statis-
tics for making latent variables to be independent. Therefore, ICA
can be used to deal with a non-Gaussian process which is more
practical in a real-world manufacturing environment, especially
for the process industry.

Recently, ICA has been used for monitoring the multivariate pro-
cesses. Lee, Yoo, and Lee (2004a) developed three control charts
based on ICA statistics including I2; I2

e and SPE. I2 is used to monitor
the systematic part of process variation. I2

e can compensate for the
error which is stemmed from an incorrect number of independent
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components selected for the dominant part. SPE is used to monitor
the non-systematic part of common cause variation.

The control limits of PCA systematic part statistic T2 can be
determined by the F distribution. Unlike PCA, the extracted inde-
pendent components do not follow Gaussian distribution, Lee
et al. (2004a) therefore used the non-parametric technique based
on Kernel Density Estimation (KDE) to determine the control limit
for the ICA systematic part statistic I2. However, KDE has two main
limitations, requirement of large dataset and high sensitivity to the
smoothing parameter (Yoo, Lee, Vanrolleghem, & Lee, 2004).
Although the least-squared cross-validation (LSCV) works well in
most types of data, it does not perform well if data is autocorrelat-
ed (Blundell, Maier, & Debevec, 2001).

Support vector machine (SVM) is an effective machine learning
method for classification problem and eventually result in better
generalization performance than most of traditional methods. In
this study, we propose an ICA–SVM fault detector for multivariate
process monitoring. The basic idea of proposed methodology is to
use ICA for feature extraction and then calculate the systematic
part statistic. SVM is used as a classifier to detect the process con-
ditions. Due to the calculated I2 tends to be highly autocorrelated.
Therefore, we not only take I2 to be the input vector of SVM, but
also consider the time delay and time difference of I2 as inputs in
SVM. The effectiveness of proposed methodology is investigated
by comparing to that of PCA–SVM and original SVM.

The organization of this article is as follows. Section 2 reviews
PCA and ICA based projection methods for multivariate process
monitoring. SVM algorithm for classification problem is introduced
in Section 3. The proposed ICA–SVM fault detector is described in
Section 4. Section 5 reports the simulation results of the proposed
algorithm when step and linear disturbances are introduced in the
process. The comparisons are presented in this section as well. The
conclusion is finally given in Section 6.
2. Projection methods for multivariate process monitoring

In the case of monitoring all available process variables, the tra-
ditional multivariate control charts are limited since the process
variables may be highly correlated with one another and their
covariance matrix is nearly singular. Therefore, it is required to
project a high dimensional space into a lower subspace to simplify
the requirements to accurately describe a large dataset. PCA and
ICA both are popular statistical projection tools and have been
widely used in multivariate process monitoring. We introduce
the PCA based monitoring method and the ICA based monitoring
method in Sections 2.1 and 2.2, respectively.
2.1. PCA based fault detection method

Jackson (1959) initially used PCA as a feature extraction tool for
multivariate monitoring. Later, Jackson and Mudholkar (1979)
developed a residual analysis for the PCA based control charts.
After these two initial works, the alternative PCA based approaches
have thereafter been developed in the literature. These approaches
include the PCA based method for monitoring multiway batch pro-
cesses (Nomikos & MacGregor, 1994, 1995), kernel PCA for moni-
toring batch processes (Lee, Yoo, & Lee, 2004b), dynamic PCA for
monitoring time-dependent measurements (Ku, Storer, & Georga-
kis, 1995), integrated PCA-wavelet method for process monitoring
(Shao, Jia, & Morris, 1999), integrated neural network and PCA for
fault detection (Jia, Martin, & Morris, 1998) and so forth.

PCA intends to linearly transform high-dimensional input vec-
tor into a lower dimensional one whose components are uncorre-
lated. X ¼ ½xð1Þ; xð2Þ; . . . ;xðnÞ� 2 Rd�n denotes a centered data
matrix, where x 2 Rd is a column vector with d measured variables
and n is the number of measurements. The covariance matrix is
Rx ¼ EðxxTÞ, where E represents expectation and T denotes the
transpose operator. The eigen-decomposition of Rx can be given by

Rx ¼ UKUT ð1Þ

where U 2 Rd�d is an orthogonal matrix of eigenvectors and K 2 Rd�d

is the diagonal matrix of eigenvalues. All score principal compo-
nents can be expressed as

t ¼ UT x ð2Þ

t 2 Rd. By using only the first few several eigenvectors in descending
order of the eigenvalues, the number of principal components in t
can be reduced, and the reduced t is denoted as t0 2 Ra where
a 6 d. Denote P 2 Rd�a and D 2 Ra�a as the matrices of eigenvectors
and eigenvalues, respectively. They are associated with the retained
principal components such that t0 ¼ PT x. The principal components
have the following properties (Cao, Chua, Chong, Lee, & Gu, 2003):

1. t are uncorrelated.
2. Eft0t0T ¼ D ¼ diagfk1; k2; . . . ; kag; ki have been sorted with

sequentially maximum variances.
3. The mean-squared approximation error in the representation of

original data by t0 is minimal.

Hotelling’s T2 can be used to measure the variation of system-
atic part of PCA model. T2 is the sum of the normalized squared
scores, that is

T2 ¼ t0
T
D�1t0 ¼ xT PD�1PT x ð3Þ

The upper confidence limit for T2 can be obtained by using F distri-
bution, and it takes the form as

T2
a;n;a ¼

aðn� 1Þ
n� a

Fa;n�a;a ð4Þ

A measure of variation not captured by the PCA model can be mon-
itored by the Squared Prediction Error (SPE).

SPE ¼ eT e ¼ xTðI� PPTÞx ð5Þ

where residual is e ¼ x� x̂ ¼ x� Pt0 ¼ ðI� PPTÞx and e ¼ 0 if a ¼ d.
The upper control limit for SPE can be expressed as

SPEa ¼ h1

ca

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2h2

0

q
h1

þ 1þ h2h0ðh0 � 1Þ
h2

1

2
4

3
5

1=h0

ð6Þ

where hg ¼
Pd

j¼aþ1k
g
j for g ¼ 1;2;3; h0 ¼ 1� 2h1h3

3h2
2

and ca is the nor-
mal deviate corresponding to upper 1� a percentile.

2.2. ICA based fault detection method

Kano, Tanaka, Hasebe, Hashimoto, and Ohno (2003) developed
the ICA-based SPC and showed the superiority over the PCA based
monitoring method. Yoo et al. (2004) utilized the multiway ICA for
batch processing monitoring. Lee et al. (2004a) developed I2; I2

e

and SPE control charts as well as variable contribution plot for fault
diagnosis. Lee, Yoo, and Lee (2004c) presented a dynamic ICA
(DICA) monitoring method. In which, ICA was applied to the aug-
ment matrix with time lagged variables. Lee, Qin, and Lee (2006)
proposed a modified ICA to relax the drawbacks of original ICA
algorithm such as the pre-determination of number of extracted
independent components and the pre-determination of the proper
order of independent components. Lu, Wu, Keng, and Chiu (2006)
applied ICA for integrating SPC and Engineering Process Control
(EPC). Ge and Song (2007) proposed PCA–ICA to extract Gaussian
and non-Gaussian information for fault detection and diagnosis.



Fig. 1. Flowchart of ICA algorithm.
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Fig. 1 illustrates the flowchart of ICA. In the ICA algorithm, the
measured variables x 2 Rd can be expressed as linear combination
of m unknown independent components s ¼ ½s1; s2; . . . ; sm� 2 Rm,
that is,

x ¼ As ð7Þ

where A 2 Rd�m is the mixing matrix. ICA tries to estimate A and s
only from the known x. Therefore, it is necessary to find a de-mixing
matrix W which is given as

ŝ ¼Wx ð8Þ

such that the reconstructed vector ŝ becomes as independent as
possible. For convenience, we assume d ¼ m, and EðssTÞ ¼ I. The
whitening transformation is expressed as

z ¼ Qx ¼ QAs ¼ Bs ð9Þ

where whitening matrixQ ¼ K�1=2UT ; B is an orthogonal matrix
(i.e., EðzzTÞ ¼ BEðssTÞBT ¼ IÞ. The relationship between W and B is as

W ¼ BT Q ð10Þ

Hence, Eq. (8) can be rewritten as

ŝ ¼Wx ¼ BT z ¼ BT Qx ¼ BTK�1=2UT x ð11Þ

According to Eq. (11), the ICA problem can be reduced to find an
orthogonal matrix B.

To calculate B, Hyvärinen (1999) introduced a fast fixed-point
algorithm for ICA (FastICA). This algorithm calculates the column
vector bi ði ¼ 1;2; . . . ;mÞ of B through iterative steps. The detailed
procedure can refer to Hyvärinen and Oja (2000) and Hyvärinen
et al. (2001). After obtaining B, we can calculate ŝ by using Eq.
(11) and W from Eq. (10).

To divide W into two parts, dominant part ðWdÞ and excluded
part ðWeÞ, Lee et al. (2004a) proposed three statistics for process
monitoring as follows:

I2 ¼ ŝT
d ŝd

I2
e ¼ ŝT

e ŝe

SPE ¼ eT e ¼ ðx� x̂ÞTðx� x̂Þ ð12Þ

where ŝd ¼Wdx; ŝe ¼Wex and x̂ ¼ Q�1Bdŝ ¼ Q�1BdWdx.
In PCA monitoring, the latent variables are assumed to be

Gaussian distributed, hence the upper control limit for T2 can be
determined by using Eq. (4). In ICA, I2; I2

e and SPE depart from the
normality assumption. Lee et al. (2004a) therefore proposed to
use KDE to determine the control limits for I2; I2

e and SPE statistics
for ICA monitoring. Additionally, the variable contributions of xðtÞ
for I2ðtÞ and I2

e ðtÞ can be defined as

xcdðtÞ ¼
Q�1BdŝdðtÞ
Q�1BdŝdðtÞ
��� ��� kŝdðtÞk ð13Þ

xceðtÞ ¼
Q�1BeŝeðtÞ
Q�1BeŝeðtÞ
��� ��� ŝeðtÞk k ð14Þ
ICA is interested in non-Gaussian information, whereas PCA
seeks to treat Gaussian information. Due to many manufacturing
processes exhibit non-Gaussian characteristic, hence this study
adopts ICA as the feature extraction method. After extracting
essential features, it requires introducing a method for the classifi-
cation problem. Next section reviews the theory of support vector
machine (SVM).
3. Support vector machines

Support vector machines (SVMs) are supervised learning meth-
ods used for classification and regression. Recently, SVM has been
applied to process monitoring and fault diagnosis. Chinnam (2002)
used SVM to recognize the process shifts, and showed that SVM
outperforms radial basis function (RBF) neural networks. Sun and
Tsung (2003) developed a kernel-distance based multivariate con-
trol chart (K chart) by using one-class SVM and demonstrated that
K chart outperforms the conventional charts when the data distri-
bution departs from normality. In advance, Kumar, Choudhary, Ku-
mar, Shankar, and Tiwari (2006) presented a robust K chart which
aims at solving the over-fitting problems when outliers exist in the
SVM training dataset. Widodo, Yang, and Han (2007) integrated
ICA and SVM for faults diagnosis of induction motors.

SVM first maps input vectors into a higher feature space, either
linearly or non-linearly, where a maximum separating hyperplane
is constructed. Two parallel hyperplanes are constructed on each
side of the hyperplane that separates the data. The separating
hyperplane maximizes the distance between the two parallel
hyperplanes. An excellent description to the SVM theory can be
seen in Vanpinik’s book (1995). We give a brief overview of SVM
for binary classification problem herein.

3.1. The linearly separable case

The input vectors xi 2 Rd ði ¼ 1;2; . . . ;nÞ correspond with labels
yi 2 f�1;þ1g. There exists a separating hyperplane and its function
is as

d � xþ b ¼ 0 ð15Þ

where d 2 Rn is a normal vector, the bias b is a scale, and jbj
kdk repre-

sents the perpendicular distance from the separating hyperplane to
the origin. Two parallel hyperplanes can be represented as

yiðd � xi þ bÞP 1 ð16Þ

SVM tries to maximize the margin between two classes, where the
margin width between the two parallel hyperplanes equals to 2

kdk.
Therefore, for linearly separable case, one can find the optimal
hyperplane by solving the following quadratic optimization
problem:

Min
1
2
kdk2

s:t: yiðd � xi þ bÞP 1 ð17Þ



Fig. 2. Architecture of ICA–SVM fault detector.
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By introducing Lagrange multipliers aiði ¼ 1;2; . . . ;nÞ for the con-
straint, the primal problem (Model (17)) becomes a task of finding
the saddle point of Lagrange. Thus, the dual problem becomes

Max LðaÞ ¼
Xn

i¼1

ai �
1
2

Xn

i;j

aiajyiyjðxi � xjÞ

s:t:
Xn

i¼1

aiyi ¼ 0

ai P 0 ð18Þ

By applying Karush–Kukn–Tucker (KKT) conditions, the following
relationship holds:

ai½yiðd � xi þ bÞ � 1� ¼ 0 ð19Þ

If ai > 0, the corresponding data points are called support vectors
(SVs). Hence, the optimal solution for the normal vector is given by

d� ¼
XN

i¼1

aiyixi ð20Þ

where N is the number of SVs. From Eq. (19), by choosing any SVs
ðxk; ykÞ, we can obtain b� ¼ yk � d� � xk. After ðd�; b�Þ is determined,
the discrimination function can be given by

f ðxÞ ¼ sgn
XN

i¼1

aiyiðx � xiÞ þ b�
 !

ð21Þ

where sgn(.) is the sign function, and x 2 þ1 if f ðxÞ > 0
�1 if f ðxÞ < 0

�
.

3.2. The linearly non-separable case

SVM tries to map input vector xi 2 Rd into a higher feature
space, and can thus solve the linearly non-separable case. The
mapping process is based on the chosen kernel function. Some
popular kernel functions are listed as follows:
Linear kernel
 Kðxi;xjÞ ¼ xixj
Polynomial kernel of degree g
 Kðxi;xjÞ ¼ ðcxixj þ rÞg ; c > 0

Radial basis function
 Kðxi;xjÞ ¼ expf�ckxi � xjk2g; c > 0

Sigmoid kernel
 Kðxi;xjÞ ¼ tanhðcxixj þ rÞ; c > 0
where r; c and g are kernel parameters. Hence, the discrimination
function takes the form as

f ðxÞ ¼ sgn
XN

i¼1

aiyi � Kðx � xiÞ þ b�
 !

ð22Þ

Unlike most of the traditional methods which implement the
empirical risk minimization principal, SVM implements the struc-
ture risk minimization principal that can eventually result in better
generalization performance. Besides, SVM makes no assumptions
regarding the dataset and only requires ‘normal’ and ‘abnormal’
data. Therefore, this study applied SVM as classifier for process
monitoring. Next section interprets the proposed methodology.

4. ICA–SVM fault detector

For training SVM, the irrelevant input variables can have a
negative impact on the performance. Cao et al. (2003) had shown
that the SVM with feature extraction performs better than that
without feature extraction. Similarly, to develop the SVM fault
detector, the first step is feature extraction in this study. The
architecture of proposed ICA–SVM fault detector is shown in
Fig. 2. At first, the feature extraction based on ICA is used to pro-
ject the high dimension dataset into a lower one ðm 6 dÞ. The
extracted independent components are then used to calculate
the systematic part statistic. Because the calculated statistic is
autocorrelated, we hence additionally consider time delay and
time difference of systematic statistics as input vectors for ICA–
SVM. Development of ICA–SVM fault detector contains two
phases, off-line training and on-line testing. The detailed proce-
dure is described as follows.

4.1. Phase I: off-line ICA–SVM training

This phase attempts to build a referenced knowledge for ICA–
SVM which considers the development of normal operation condi-
tion (NOC) and fault operation condition (FOC) datasets.

4.1.1. NOC training dataset development

Step 1: Scale NOC dataset. Obtain an NOC dataset (without shifts
in the process), denoted as xnormal. The first step focuses
on centering and whitening xnormal, and then denote as
znormal. This step eliminates most cross-correlation
between the observed variables.

Step 2: Execute FastICA algorithm. Initially let d ¼ m. By using
FastICA algorithm over znormal, we can obtain an orthogo-
nal matrix Bnormal. Therefore, the reconstructed dataset is
given by ŝnormal ¼ BT

normalznormal.
Step 3: Determine the order of ŝnormal. In this step, the order of

ŝnormal is determine by using Euclidean norm ðL2Þ of each
row ðwiÞ in Wnormal (Lee et al., 2004a), ArgiMax wik k2.
Hence, we can obtain a sorted de-mixing matrix.

Step 4: Perform dimension reduction. There are several methods
for selecting the number of independent components
such as cross-validation (Wold, 1978), majority of non-
Gaussianity and variance of reconstruction error (Valle,
Li, & Qin, 1999). However, there is no standard criterion
to determine the number of independent components.
In this study, the number of independent components
is set to be the same as the number of principal
components.

Step 5: Calculate the systematic part statistics. The dominant
independent components represent the systematic part
of data structure. From the above steps, we can obtain
a dominant de-mixing matrix, Wd. From Eq. (10),
Bd ¼ ðWdQ�1ÞT . Hence, the dominant independent com-
ponents can be calculated by ŝnormal d ¼ BT

dznormal, and
the systematic part statistic at sample t can be obtained,
that is I2

normalðtÞ ¼ ŝT
normal dðtÞŝnormal dðtÞ. The obtained I2

normal

is usually autocorrelated. Hence, the time delay
I2
normalðt � 1Þ and time difference I2

normalðtÞ � I2
normalðt � 1Þ

are additionally taken as input vectors for ICA–SVM.
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4.1.2. FOC training dataset development
FOC dataset is also scaled at first, denoted as zfault . ŝfault d repre-

sents the dominant independent components under FOC, and it can
be calculated by ŝfault d ¼ BT

dzfault . The statistic of FOC systematic
part at sample t is calculated from I2

faultðtÞ ¼ ŝT
fault dðtÞŝfault dðtÞ. Also,

I2
faultðt � 1Þ and I2

faultðtÞ � I2
faultðt � 1Þare taken as the input vectors of

ICA–SVM.

4.2. Phase II: on-line ICA–SVM testing

The objective of this phase is to test the trained ICA–SVM mod-
el. Once the new data is obtained, the same scaling is then applied,
and the scaled dataset is then denoted as znew. The dominant inde-
pendent components of znew can be obtained from ŝnew d ¼ BT

dznew,
and the statistic of systematic part at time t can be calculated by
I2
newðtÞ ¼ ŝT

new dðtÞŝnew dðtÞ. The statistics, I2
newðtÞ; I

2
newðt � 1Þ and

I2
new � I2

newðt � 1Þ are fed into trained ICA–SVM for on-line process
monitoring.

5. Implementation

In this section, a dynamic multivariate system is used to verify
the effectiveness of ICA–SVM. Section 5.1 introduces the multivar-
iate simulation model which is constructed by Matlab/Simulink.
Two common faults, step and linear disturbances are introduced
into the process for on-line testing of the built ICA–SVM detector.

5.1. Multivariate process model

Ku et al. (1995) suggested a first-order autoregressive multivar-
iate simulation process, and thereafter Chen and Liao (2002) and
Lee et al. (2004a) simulated a modified version of Ku et al. Without
lose of generality, this study adopts the version of Lee et al. (2004a)
to simulate the first-order autoregressive multivariate process.

A discrete state-space is used to represent the one-order auto-
regressive multivariate process, and it takes the form as

FðkÞ ¼
0:118 �0:191 0:287
0:847 0:264 0:943
�0:333 0:514 �0:217

2
64

3
75Fðk� 1Þ þ

1 2
3 �4
�2 1

2
64

3
75Hðk� 1Þ

CðkÞ ¼ FðkÞ þ EðkÞ ð23Þ

Eq. (23) express the state equation and the output equation, respec-
tively. F represents the state, and C represents the output. E is as-
sumed to be normally distributed with zero mean and variance of
0.1. H is the input that can be obtained as follows:
Fig. 3. Matlab/Simulink blocks for m
HðkÞ ¼
0:811 �0:226
0:477 0:415

� �
Hðk� 1Þ þ

0:193 0:689
�0:320 �0:749

� �
Gðk� 1Þ

ð24Þ

G ¼ ½g1; g2� is the input that follows a uniform distribution between
[�2, 2]. Both input H ¼ ½h1; h2� and output C ¼ ½c1; c2; c3� are used for
analysis, whereas F and G are not, Totally, five variables therefore
are monitored in this process. Matlab/Simulink is adopted to con-
struct the one-order autoregressive multivariate process. Fig. 3
shows the blocks of programmed Matlab/Simulink. Eq. (24) is de-
signed in ‘discrete state-space’ block and Eq. (23) is designed in ‘dis-
crete state-space 1’ block.

5.2. Step disturbance

A step change of g1 by 2 is introduced at the sample of t ¼ 50.
Fig. 4 shows the simulated 200 observations, and c2 exhibits an
obvious step sequence in response to the change of g1. In PCA mod-
el, three principal components are selected, and they capture
approximately 88.1% of the variance. Fig. 5 shows the T2

new values
for PCA. Observing this figure, T2

new can not indicate the disturbance
type, it seems to only be ‘‘randomness”. As the same of PCA, three
independent components are retained in the ICA model. Fig. 6
shows the I2

new statistic for ICA, and it indicates an obvious step dis-
turbance pattern. From Fig. 6, I2

new can provide more disturbance
information than T2

new. By using KDE, the control limit for ICA sys-
tematic statistic can be determined. The dash line in Fig. 6 repre-
sents the 99% control limit. Observing Fig. 6, the detection rate is
relatively low, that is many points fall inside the control limit after
the 50th sample.

By plotting the autocorrelation function (ACF) to I2
new (see Fig. 7),

it indicates that I2
new is highly autocorrelated. Therefore, we con-

sider to take I2ðtÞ; I2ðt � 1Þ and I2ðtÞ � I2ðt � 1Þ as the input vectors
for ICA–SVM fault detector. In this study, LIBSVM 2.82 developed
by Chang and Lin (2001) is used to perform SVM. The users’ guide
is referred to Hsu, Chang, and Lin (2007). In LIBSVM, the default
kernel function is radial basis function (RBF), and the optimal algo-
rithmic parameters can be automatically generated.

Table 1 summarizes the training and testing accuracies of SVM,
PCA–SVM and ICA–SVM under a set of step sizes. Inputs of original
SVM are normalized dataset zðtÞ; zðt � 1Þ and zðtÞ � zðt � 1Þ. Inputs
of PCA–SVM are T2ðtÞ; T2ðt � 1Þ and T2ðtÞ � T2ðt � 1Þ. The training
and testing accuracies are close in ICA–SVM whatever the shift size
is small or large. However, the accuracies of SVM and PCA–SVM are
not favorable compared to that of ICA–SVM. For a clearer view of
comparisons, Fig. 8 shows the fault detection rates against step
sizes. From this figure, SVM performs better than PCA–SVM in
ultivariate process simulation.
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Table 1
Training and testing accuracies (step disturbance introduced at sample 50).

Step size SVM without feature extraction PCA–SVM fault detector ICA–SVM fault detector

Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

1 67.3 55.0 66.3 47.0 75.3 65.0
1.5 77.0 62.5 65.5 48.0 89.0 80.5
2 84.8 65.5 70.0 51.0 97.0 93.0
2.5 89.3 71.0 76.8 57.5 99.0 98.5
3 92.8 74.0 81.8 64.5 99.0 100
3.5 95.5 78.0 86.5 68.0 99.25 100
4 96.5 81.5 90.5 70.5 99.25 100
4.5 96.5 84.0 93.5 75.5 99.25 100
5 97.3 84.5 96.0 83.0 99.5 100
5.5 98.5 87.0 97.5 90.0 99.5 100
6 98.8 88.5 99.0 95.0 99.5 100
6.5 99.0 90.0 99.25 97.0 99.5 100
7 99.3 91.5 99.25 98.0 99.5 100
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Fig. 8. Compare detection rates against shift sizes (solid line: ICA–SVM, dash line: SVM only, dot line: PCA–SVM).
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small shifts, whereas PCA–SVM detects better than SVM in large
shifts. Overall, the results clearly show that ICA–SVM can more
effectively detect faults than SVM and PCA–SVM. For example, in
the case of step size being 2.5, the proposed ICA–SVM can achieve
nearly 100% detection rate; however detection rates of SVM and
PCA–SVM are only 74% and 64.5%, respectively. Besides, ICA–SVM
can produce above 90% detection rate when the step size is only
2, but 6.5 and 5.5 in SVM and PCA–SVM, respectively. These results
indicate that ICA–SVM has the better ability to detect small shifts.

As a fault is detected, Eq. (13) can be used to diagnose the fault
in process. Fig. 9 plots the variable contribution for I2

new when a
fault of a step change of g1 by 2 is detected by ICA–SVM. It indi-
cates that variable c2 is primarily responsible for the step change
of g1.
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Fig. 9. Variables contribution plot for I2
new (S
5.3. Linear disturbance

A linear change of g1 with a slope size of 0.05 introduced at the
50th sample is used for the simulation study of linear disturbance.
Fig. 10 shows the obtained I2

new, and it can illustrate the simulated
disturbance type. The dash line is the 99% control limit obtained by
KDE. From Fig. 10, the detection rate is not satisfactory either.
Although the disturbance is introduced at the 50th sample, it is de-
tected at around the 80th sample. The ACF plot for I2

new shown in
Fig. 11 demonstrates the high autocorrelation of I2

new. The optimal
SVM parameters as well are automatically generated by LIBSVM.

Similar to Tables 1, 2 summarizes the training and testing accu-
racies of the three approaches investigated herein under various
slope sizes. From Table 2, there is no significant difference between
1c 2c 3c

tep change of g1 with 2 at sample 50).



0 25 50 75 100 125 150 175 200
0

50

100

150

200

2
newI

Fig. 10. I2
new for linear change with slope 0.05 at sample 50.

A
C

F

Lag

Fig. 11. ACF plot for I2
new with linear disturbance.

Table 2
Training and testing accuracies (linear disturbance introduced at sample 50).

Slope size SVM without feature extraction PCA–SVM fault detector ICA–SVM fault detector

Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

0.01 66.0 53.0 63.0 39.0 73.8 60.0
0.03 78.5 63.0 75.8 48.0 88.5 82.5
0.05 86.5 75.0 82.8 62.0 92.8 91.5
0.07 89.0 77.5 88.5 71.5 94.3 93.5
0.1 90.5 79.0 91.8 82.0 96.3 94.0
0.2 93.0 82.5 94.5 91.5 97.3 96.0
0.3 94.5 83.5 96.3 92.5 97.8 96.5
0.4 94.5 84.0 96.5 93.5 98.5 96.5
0.5 94.5 84.0 97.5 94.5 98.8 98.0
0.6 94.8 84.0 97.8 93.5 99.0 97.5
0.7 94.8 84.5 98.0 93.5 99.0 98.0
0.8 94.8 85.0 98.0 94.5 99.0 98.5
0.9 94.8 85.0 98.5 96.0 99.0 99.0
1 95.0 85.0 98.5 96.0 99.0 99.0

0 0.03 0.07 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

ICA-SVM PCA-SVM SVM

D
et

ec
tio

n 
R

at
e

Fig. 12. Compare detection rates against slope sizes (solid line: ICA–SVM, dash line: SVM only, dot line: PCA–SVM).
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training and testing accuracies in ICA–SVM, whereas SVM and
PCA–SVM produce an obvious difference, especially in small slope
sizes. Fig. 12 exhibits a clearer view of comparison results. SVM
with feature extraction (PCA–SVM and ICA–SVM) can produce
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Fig. 13. Variable contribution plot for I2
new at sample 70. (Linear change of g1 with slope 0.05 at sample 50).
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higher detection rates if slope sizes are greater than 0.1. Further-
more, the original SVM can only achieve a maximum of 85% detec-
tion rate, but PCA–SVM and ICA–SVM can achieve above 90%
detection rate. Overall, ICA–SVM is clearly shown to be more effec-
tive for detecting the linear disturbance. For example, ICA–SVM
can produce above 90% detection rate when the slope size is only
0.04, but 0.2 for PCA–SVM.

By using Eq. (13), Fig. 13 plots the variable contribution for I2
new

at sample 70, if a linear change of g1 by a slope of 0.05 is introduced
at sample 50. From Fig. 13, it indicates that variables c1 and c2 are
primarily responsible for the linear change of g1.
6. Conclusions

The ICA based statistic I2 can reveal more disturbance type
information than PCA based statistic T2 when deal with a non-
Gaussian multivariate process. However, by using KDE to I2 may
produce unsatisfactory detection rate due to the autocorrelation.
This study proposes a simple but effective fault detector, ICA–
SVM, for multivariate process monitoring. In ICA–SVM, ICA is used
to project the high dimension variable space into a lower one, and
then calculate the systematic part statistics such as I2ðtÞ; I2ðt � 1Þ
and I2ðtÞ � I2ðt � 1Þ as input vectors for SVM. Two common
encountered process disturbance types of step and linear are intro-
duced to verify the efficiency of proposed methodology. From the
simulation results, ICA–SVM can well detect small step change in
the process. In linear disturbance, SVM with feature extraction
(i.e., ICA–SVM and PCA–SVM) can achieve a higher detection rate
than that of SVM without feature extraction. General speaking,
the results clearly show that ICA–SVM can effectively detects faults
in a multivariate dynamic process.

Even though the effectiveness of ICA–SVM is verified via simu-
lation, nevertheless it is anticipated to improve the performance of
multivariate process monitoring in an actual process such as semi-
conductor etch process, Tennessee Eastman process and so forth.
This study considers only the original ICA model, further re-
searches can extend the proposed method by using the dynamic
ICA model and modified ICA model.
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