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情緒偵測、基因表現分群以及生物網路重建之統計方法 
 
 

學生：闕棟鴻 

 

指導教授：盧鴻興 

國立交通大學統計學研究所 博士班 

摘 要       

本論文主要是利用統計在三個不同的研究上的應用，包括情緒偵測、基因表

現分群以及生物網路重建。在第一個研究中，我們致力於發展一種情緒偵測的系

統。在人類與電腦的聯繫以及溝通上，發展一種裝置可以辨別人類的情緒狀態，

將會是相當具有價值的，在此研究中，我們收集受試者在三種不同的情緒狀態下

的生理訊號，包含心電圖、皮膚表面溫度以及皮膚表面電阻，並從中取出三十個

特徵值。在藉由多變量變異數分析去除掉因為不同天測量所產生的雜訊後，我們

使用六種機器學習的方法來辨別情緒的狀態，最後發現使用邏輯迴歸法即可達到

最佳的分辨準確率，同時我們發現在使用多變量變異數分析去除掉每天的雜訊

後，即可有效的改善這六種分類方法的準確率。 

在本篇論文的第二個研究中，我們藉由生物基因的實驗來探討酵母菌在實驗

以及野生品種其在進入發酵生活轉到呼吸生活時基因的表現。同時，我們研究在

這兩個品種中，表現的不同基因。在使用基因過濾，分群分析以及迴歸模型來偵

測此兩個品種擁有不同表現的基因後，我們發現有一群的基因其在野生及實驗品

種的表現呈現有負相關的情況，同時，在這群的資料中，其基因的顯著表現的時

間比起葡萄糖濃度的下降時間早了一個小時。在我們後續的研究當中，將可利用

例如網路分析等工具來研究這種有趣基因其因果的關係。 

在生物資訊的研究中，從基因表現的趨勢來推論基因控制網路以及生物的因

果路徑是相當重要的一個研究。在本篇論文的第三個研究中，我們提出了一個時

間延遲布朗網路來探究生物網路。我們假設每個基因最多是受到 k 個基因所影

響，同時在推論時，我們假設 k=2，此外，我們在布朗方程式以及受影響的基因

之間，我們考慮兩種關係：相似性以及必要性。在我們推論的方法中，我們將每

一個輸出的基因以及成對的輸入基因與八個基本的關係做比較，並且計算其 p 分

數，我們預期 p 分數愈小者，代表其之間的關係愈可能存在，我們將收集所有一

致的關係，並找出其最可能出現的關係。最後我們將使用一個模擬的資料例子以
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及一個真實的醏母菌基因網路關係來進行分析，其結果呈現，我們所提出的基因

網路重建方法可以有效的重建出原本的網路模型。 
 
關鍵字：情緒偵測、生理特徵、機器學習、特徵選取、多變量變異數分析、發酵

生活轉到呼吸生活、生物晶片、基因過濾、分群分析、路徑分析、布朗網路、布

朗方程式、測量誤差。
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ABSTRACT 
 
  This thesis consists of three different researches in the implement of statistical approaches, 

emotion detection, gene expression clustering and biological pathway reconstruction. In the first 

research area, we focus on developing an emotion recognition system by the supervised learning. 

For the importance of communication between human and machine interface, it would be valuable 

to develop an implement which have the ability to recognize emotion. We propose an approach 

which can deal with the daily dependence and personal dependence in the data of multiple subjects 

and samples. Thirty features were extracted from the physiological signals of subject for three 

statuses of emotion. The physiological signals measured were: electrocardiogram (ECG), skin 

temperature (SKT) and galvanic skin response (GSR). After removing the daily dependence and 

subject dependence by the statistical technique of MANOVA, six machine learning including 

Bayesian network learning, naive Bayesian classification, SVM, decision tree of C4.5, Logistic 

model and K-nearest-neighbor (KNN) were implement to differentiate the emotional states. The 

results show that Logistic model gives the best classification accuracy and the statistical technique 

MANOVA can significant improve the performance of all six machine learning methods in emotion 

recognition system. 

  In the second part of this thesis, we explore the expression pattern of yeast genes for diauxic 

shift in BY and RM strains by Micorarray studies. In particular, we investigate the differential 

expressed genes between these two strains. After performing gene filtering, cluster analysis and 

regression model to detect the differential expression patterns of yeast genes for diauxic shift in BY 
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and RM strains, we find a group of genes which have negative correlation in two strains. Besides, 

the estimated time shifts of expression time profiles in the group are mainly 1 hour before the time 

that glucose consumption drops. Further analysis such as network analysis could be used to 

investigate the causal relationship of these interesting genes based on the framework of current 

result in the future. 

  Inference of genetic regulatory networks and biological pathways from gene expression 

patterns is a critical problem in bioinformatics. In the third part of this thesis, we propose using the 

structure of Time Delay Boolean networks as a tool for exploring biological pathways. We suppose 

the indegree of each gene (i.e., the number of input genes to each gene) is bounded by a constant K 

and take K = 2 for the instance of inference. In addition, we consider two kinds of relations between 

the output gene and the Boolean function with input genes: similarity and prerequisite. In our 

inference strategy, we compare every output gene and all the pairs of input genes with the eight 

basic relations and calculate their corresponding p-score. Since we expect that the smaller the 

p-score, the more likely the relation, we combine those consistent relations and find out the most 

possible relation between output gene and the pair of input genes. We illustrate the method using a 

simulated example and a published microarray expression dataset of yeast Saccharomyces 

cerevisiae from experiments with regulation of gluconeogenesis by Cat8 and Sip4. The results show 

that our proposed algorithm is extensible for more realistic network models.  

 

Keywords: Emotion recognition, physiological signals, machine learning, feature selection, 

MANOVA, diauxic shift, Microarray, gene filtering, cluster analysis, pathway, Boolean network, 

Boolean function, measurement error, EM algorithm. 
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Chapter 1

Motivations and Literature

Reviews

1.1 Emotion Detection by Physiological Signals

Research efforts between human and machine interfaces have developed over

decades. With the progress of science and technology, the capability and func-

tionality of automatic machines have rapidly progressed and improved. Even so,

there are still challenges to design machines that can recognize human emotional

states correctly. Essentially, a change in human emotional states will influence a lot

of external behaviors and physiological characteristics, including facial expression,

intonation of speech, gesture, posture, eye expression, blood pressure, heart beat,

skin resistance and so forth. Hence, it is an important research topic to use these

characteristics to detect the states of human emotion.

In the field of human and machine interaction, it would be valuable to develop an

instrument capable of recognizing a person’s emotional status. Emotion recognition

has become a critical investigation in emotional intelligence and can be applied in

many systems. In 1999, Ark et al. at the laboratory of IBM established a mouse

that can distinguish a user’s affective states with 75 percent accuracy. A robot

with the ability to recognize and determine the underlying emotion of a person can

interact with humans using signals in human speech and facial expression (Breazeal

1



and Aryananda, 2002; Littlewort et al., 2004). Moreover, other applications such as

driving safety, training and telemedicine also can implement an emotion recognition

system to benefit users (Nasoz et al., 2004).

In previous research about developing an emotion recognition system, features

of facial expressions are most commonly used as the determinant attribute and

have successfully obtained fairly high rates in emotion recognition (Yacoob and

Davis, 1996; Cowie et al., 2001; Hu et al., 2002; Fasel and Luettin, 2003; Zhou and

Lin, 2005). Besides, there are also studies employing signals of speech and vocal

intonations to recognize states of emotion (Dellaert et al., 1996; Nwe et al., 2003).

Combining facial and voice expression has also been used in distinguishing affective

emotional states recently (Busso et al., 2004). However, these two characteristics are

sometimes hardly recorded if the subject is moving. Therefore, recognizing emotion

using physiological signals, which can be recorded for a moveable subject, is a critical

study.

In the study of affective physiological states, Picard et al. (2001) at MIT Media

Laboratory have tried to differentiate eight different emotions of a single person

using physiological characteristics recorded every day over six weeks, resulting in an

81% overall classification accuracy rate by using a hybrid method involving sequen-

tial floating forward search and Fisher projection. For handling the physiological

signals with short-term segments, Kim et al. (2004) proposed an algorithm to detect

emotional statuses based on their experimental psychosomatic responses for multi-

ple subjects and got the correct classification rate of 78.4% by the machine learning

method of support vector machine (SVM). Nasoz et al. (2004) employed three clas-

sification methods to discriminate six different emotional states from physiological

signals collected via non-invasive technologies. Rani et al. (2006) have applied four

different classification methods to determine affective states from physiological sig-

nals and have made comparisons of these methods.

Among emotion recognition studies, there are typically two approaches: one

2



against one (Picard et al., 2001) and one against all (Kim et al., 2004). For the one

against one approach, we can collect the labeled psychosomatic signals of a single

subject on multiple observations and learn a trainer model out of the same person

so that we can decipher the unknown emotional states of that person as a test of his

(her) physiological signals. Though it has the benefit of removing the inter-subject

difference for subject-based learning, this approach can only recognize one subject’s

emotion. Alternatively, we can measure the physiological signals of emotion from

multiple subjects and learn a trainer model out of them. Hence, we can distinguish

other people’s emotion status using this system. In practice, this user-independent

system is believed to be more convenient in the field of emotional recognition studies.

However, the assumption of independence between physiological signals and subjects

is not reasonable nor practical.

Furthermore, daily physiological signals can vary even for the same state of

emotion. The daily effect could be removed using the statistical technique of mul-

tivariate analysis of variance (MANOVA). Then, typical machine learning methods

could be applied to discriminate and predict the emotional state. Hence, the purpose

of this work is to advance the improvement of emotion recognition by eliminating

inter-subject differences and removing the daily effects by MANOVA with statistical

machine learning.

Physiological signals including skin temperature variation (SKT), galvanic skin

response (GSR) and electrocardiogram (ECG) were implemented in this study.

These physiological signals can be measured conveniently without any annoying

sensors attached on the face or scalp. The subjects would induce three different

emotional statuses by themselves: anger, joy and neutral. Besides, we would use

the techniques of multivariate analysis of variance (MANOVA) and six different

classification methods to discriminate various states of emotion.
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1.2 Analysis of Yeast Genes by Microarray Stud-

ies

Although yeast Saccharomyces cerevisiae can utilize various carbon substrates

as a biomass and energy source, fermentable sugars such as glucose or fructose are

clearly the preferred carbon sources over nonfermentable substrates such as ethanol,

glycerol, lactate, acetate or oleate (Schuller, 2003). When glucose is present, the

enzymes required for the utilization of alternative carbon sources are synthesized at

low rates or not at all. This phenomenon is known as carbon catabolite repression,

or simply glucose repression (Gancedo, 1998). Analysis of genomic expression has

revealed that many genes are differentially transcribed in response to varying glucose

levels (DeRisi et al., 1997).

Yeast cells undergo fermentation, which metabolizes sugars (glucose) and pro-

duces ethanol when sugars are abundant; as the sugars are depleted, cells undergo a

”diauxic shift” in which cells switch to a fully respiratory metabolism (DeRisi et al.,

1997; Gasch et al., 2000; Schuller, 2003). It is very important to understand the

biological process of diauxic shift in fermentation for yeast. Our major goal is to

understand the expression evolution of genes involved in this transition (the diauxic

shift) and in non-fermentative metabolism, which is not well understood.

A laboratory strain (BY4741) and a wild strain (RM11-1a) are used in this study.

These two strains proliferate rapidly and have propagated under different environ-

mental conditions for decades. These two strains also display substantial divergence

in gene expression and are ideal for studying expression divergence within species

(Brem et al., 2002). We performed microarray analysis to study the expression pro-

files of genes during the diauxic shift. In particular, we investigated the differential

expressed genes (DEGs) between these two strains. Our results showed that the

RM strain may experience the diauxic shift earlier than BY strain and that many

of the key genes related to the diauxic shift are turned on earlier in the RM strain.
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1.3 Inference of Biological Pathway by Time De-

lay Boolean Networks

In bioinformatics, inference of genetic regulatory networks and biological path-

ways from gene expression patterns is a crucial issue. Due to the invention of DNA

microarray technology, thousands of gene expression can be monitored and mea-

sured simultaneously (DeRisi et al., 1997). However, it is still a great challenge to

identify complex biological networks, since the number of combinations with the

gene interactions is huge. In recent years, there has been a dramatic proliferation

of research concerned with network reconstruction problems.

Clustering is such an important method for grouping genes which have similar

expression patterns (Eisen et al., 1998). In the framework of clustering, it is an

important task to define the degree of similarity between genes. By the method of

clustering, we can group genes which have similar expressions. However, we still can

not find the causal relationship between genes. Hence, apart from the relations of

similarity, we also have to consider another causal relationship between genes.

There have been many methods proposed in the literature for the inference of

genetic regulatory networks. Over the past two decades, Bayesian networks is an

important technique and has been extensively studied (Pearl, 1988; Jensen, 1996).

Bayesian networks is a graphical model that contains directed probabilistic rela-

tionships between elements. The structure of a Bayesian network consists of two

components. The first component comprises vertices which corresponding to a set of

variables and a set of directed edges between variables with Markov properties. The

second component describes a conditional distribution for each variable, given its

parents. Recently, Bayesian network models have been applied to analyze microar-

ray expression data (Friedman et al., 2000; Heckerman et al., 1995). Although the

Bayesian networks are complete models and some algorithms searching for Bayesian

networks have been developed, the computational cost is still fairly large. Even there
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are only a sparse number of variables, sample sizes of several hundred are required

for achieving high accuracy of estimation.

This study is based on a much simpler model: Boolean networks. Boolean net-

works were originally introduced by Kauffman (Kauffman, 1969) and received much

attention for inferencing gene regulatory networks. In Boolean network models,

gene expression states are quantized to one of two states: ON and OFF. Under the

structure of Boolean networks, the target gene is influenced by a set of genes with a

Boolean function. For each gene, if the indegree (i.e., the number of input genes to

each gene) is bounded by a constant K, only O(log n) pairs of state transition are

necessary to reconstruct the original network with n nodes (Akutsu and Miyano,

1999). However, the deterministic model predicted by the input genes and Boolean

function is criticized.

In 2005, (Li and Lu, 2005) proposed another relationship between two genes:

prerequisite under the Boolean network model. If a Boolean function with one

or several genes is prerequisite for a target output gene, the target gene will be

influenced by the Boolean function with several input genes. However, the target

gene may not be expressed right now, but at another future time. Hence, the

induction of the Boolean function with input genes is necessary for the expression

of the target gene, and we also treat these relations as time delay affection. In this

paper, we would infuse these additional relations for more generalized systems.

1.4 Organization of The Dissertation

This dissertation is organized as follows. In Chapter 2, we focus on the study of

emotion detection. First, we present the procedures of data collection and features

extraction from the measured physiological signals. Then, we discuss the problem

of day-effects and remove daily effects using MANOVA. Besides, we also consider

six classification methods : Bayesian network learning, naive Bayesian classification,

support vector machine (SVM), decision tree of C4.5, logistic model and K-nearest
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neighbor (KNN). In Chapter 3, we discuss the analysis on yeast genes of microarray

studies. We perform gene filtering, cluster analysis and regression model to detect

the differential expression patterns of yeast genes for Diauxic shift in BY and RM

strains. In Chapter 4, we propose a Time Delay Boolean network model and its

identification algorithm for the inference of biological pathway. We also discuss

the theoretical results concerning the number of gene expression patterns required

to identify the Time Delay Boolean network model. Moreover, we illustrate the

method by a simulated example and show some exploratory results on the regulation

of gluconeogenesis by Cat8 and Sip4 pathway using the expression dataset that have

been published in literature. Then, the empirical results of these three researches

are presented in Chapter 5. Finally, we report the conclusions and discuss future

works in Chapter 6.
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Chapter 2

Data Collection and Statistical

Application on Emotion Detection

2.1 Collection of The Data

In the research of emotion recognition, the collection of physiological signals plays

a important role for next analysis. In this study, the database of physiological signals

and corresponding emotional states were collected and obtained from the Center for

Measurement Standards of the Industrial Technology Research Institute (ITRI) in

Taiwan.

The first group included two subjects, Jane and Alice; they are both female and

in their twenties. Every morning between 8:30 am to 10:00 am, they were invited

to our laboratory. They were asked to feel a neutral emotion for 200 seconds first,

followed by an emotion of anger for at least 120 seconds and finish with a emotion of

joy for at least 120 seconds. Meanwhile, those physiological signals were measured

and recorded by MP100 system in BIOPAC (http://www.biopac.com). Regarding

the approach in eliciting emotion, the method we used is similar to the efforts

pioneered by Picard et al. (2001) with a slight modification. The methodology is

subject-elicited instead of event-elicited, open-recording and emotion-purpose. To

prevent differences caused by different external stimulations on different days, we

do not rely on any auxiliaries to arouse the emotions of subjects. The subjects were
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simply asked to feel an emotion without any assistance such as movies, voices or

any other outer stimulus; namely, we do not employ a rigorous Clynes protocol as

Picard et al. did. Data gathered from 11 days were used in this study. The default

sampling rates were 256 points in one second for each state of emotion. An example

of every emotional state is given in Figure 2.1-2.3.

Figure 2.1: Three physiological signals were recorded when the subject was asked

to feel neutral. From top to bottom: skin temperature variation (SKT), galvanic

skin response (GSR) and electrocardiogram (ECG). The physiological signals were

sampling at 256 samples for every second and the measured times were 200 seconds.

Figure 2.2: Three physiological signals were recorded when the subject was asked to

feel joyful. The physiological signals were sampling at 256 samples for every second

and the measured times were 120 seconds.
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Figure 2.3: Three physiological signals were recorded when the subject was asked to

feel angry. The physiological signals were sampling at 256 samples for every second

and the measured times were 120 seconds.

For the second dataset, the subjects we used were adults: five men and five

women aged from twenty to thirty years. Every morning the subjects were invited

to our laboratory with controlled temperature and humidity. At the first practice,

the subjects were in a dark place without any voice or music for eliciting a neutral

mood within four minutes. Then, to begin the negative emotion eliciting stage, the

subjects received eight different pictures with negative expressions, and each picture

was broadcasted for thirty seconds. At the same time, the subjects were asked to

feel the negative emotion under the stimulus of pictures. Then, the positive emotion

eliciting stage was implemented using the same protocol. In the meantime, the

physiological signals of the subjects were also measured and recorded by a MP100

system in BIOPAC over the whole experiment. For every subject, the data we gather

are from using different pictures over seven days.

After gathering good affective data, the next step was the extraction of rep-

resentative features from physiological signals. In this study, we would extract 6

features from the collected SKT data, 6 features from the GSR data and 18 features

from the ECG data. Then, the daily dependence and personal dependence would

be corrected by the statistical technique of MANOVA. Finally, the methodology of
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Figure 2.4: Flow chart in the study of emotion recognition.

leave-one-out cross-validation was performed to evaluate the prediction accuracies

of six classifiers. The flow chart of the proposed emotion recognition system is given

in Figure 2.4.

2.2 Features Extraction

Much research has shown significant correlation between physiological signals

and emotional status. However, unlike vision or speech recognition, physiological

signals in different emotion statuses are not easy to be distinguished by a person

immediately. Hence, it is very important to extract representative features that

characterize main patterns from the raw physiological signals for classification pat-

tern. For completeness, we would consider most of the features proposed from other

literature (Picard et al., 2001; Kim et al., 2004).

For the physiological signals of GSR and SKT, we would use the same features
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as Picard et al. (2001). Those six statistic features were the mean, standard devi-

ation, mean of the absolute values of the first difference, standard deviation of the

first difference, mean of the absolute values of the second difference and standard

deviation of the second difference of the sequence.

The physiological signals of ECG had been calibrated to heart rate variability

(HRV) with baseline correction and their R peaks detection. Then, six statistic

features were considered as well. In addition, twelve features were extracted from

the power spectrum transformation, where the range of the high-frequency (HF) was

set as 0.15∼0.40 MHz, the median-frequency (MF) was set as 0.08∼0.15 MHz and

the low-frequency (LF) was set as 0.04∼0.08 MHz. In this study, the twelve features

we selected were LF, MF, HF, TOTAL (LF+MF+HF), LF/TOTAL, MF/TOTAL,

HF/TOTAL, LF/HF, MF/HF, (LF+MF)/HF, (LF+MF)/TOTAL and median of

HRV.

2.3 Daily and Personal Correction

2.3.1 The Problem of Day-effects and Person-effects

There are many external stimuli, such as temperature and humidity, which can

affect a person’s physiological signals. In addition, a person’s diet and sleep pat-

terns can also cause variations in physiology. Hence, a person could have a different

expression of the same physiological signal on different days even when he experi-

ences the same emotion. Although we have made an effort to control these annoying

factors, there are still some factors, such as hormones or a person’s baseline mood,

that are not controllable. Therefore, we must remove the day-effects for the emotion

recognition study.

In a previous study, Picard proposed some methods to handle the problem of

daily variations. Suppose we let the notation D and F as the number of experimental

days and the number of features, respectively. In the method of day matrix for
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handling day-dependence, the method Picard proposed have to enlarge the original

D×F matrix as D×(F +D−1) matrix. Hence, if the experimental days are long, we

must have a large amount of training day data, and consequently the computational

overhead would be increased. Even though another method of baseline matrix for

handling day-dependence would have avoided the above defect, the state of neutral

emotion would be used as the baseline. Hence, we have to lose the opportunity

to recognize the neutral emotion, and our number of states of emotion would be

reduced.

Besides, in most previous studies of affective status from multiple subjects, the

emotion recognition system treated the subjects and physiological signals indepen-

dently over the same emotional status. However, because of people with different

characteristics such as sex, age, weight and so forth, the physiological signals of

different subjects would have different expresions even they are experiencing the

same emotion. Hence, it is necessary to develop an algorithm or method that can

compensate the personal variations and day-to-day variations.

2.3.2 MANOVA

Since the problem of personal variations and daily variations would significantly

influence the pattern classification in the system of emotion detection, we must

remove the day-effects and person-effects for the emotion recognition study. In

this project, we use the technique of multivariate analysis of variance (MANOVA),

which can be used even on a large number of experimental days; in the meanwhile,

it doesn’t have to reduce the number of states of emotion. After getting those

30 features from physiological signal of ECG, SKT and GSR, we would transform

the features by the statistical technique MANOVA to remove the day-effects and

person-effects. The MANOVA in this study is expressed as Eq. (2.1).

Zijkl = µi + τij + τik + τijk + eijkl (2.1)

where i = 1, 2, · · · , I, j = 1, 2, · · · , J, k = 1, 2, · · · , K, and l = 1, 2, · · · , L.
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The notation of Zijkl represents the value of ith feature measured in jth subjects,

kth days, and lth sample. For the first database, the value of I is 30, J is 1, K is 11 and

L is 3. In the second database, the value of I is 30, J is 10, K is 7 and L is 3. We let

Zjkl = (Z1jkl, Z2jkl, · · · , ZIjkl)
T , µ = (µ1, µ2, · · · , µI)

T , τj = (τ1j, τ2j, · · · , τIj)
T , τk =

(τ1k, τ2k, · · · , τIk)
T , τjk = (τ1jk, τ2jk, · · · , τIjk)

T , and ejkl = (e1jkl, e2jkl, · · · , eIjkl)
T .

Eq. (2.1) can be re-expressed as Eq. (2.2)

Zjkl = µ + τj + τk + τjk + ejkl (2.2)

where j = 1, 2, · · · , J, k = 1, 2, · · · , K, and l = 1, 2, · · · , L.

The value µ is an overall mean value, the value τj represents the jth per-

sonal effect, the value τk represents the kth daily effect, and the value τjk rep-

resents the interact effect of daily and personal factor with the constraints that

∑J
j=1 τj = 0,

∑K
k=1 τk = 0, and

∑J
j=1

∑K
k=1 τjk = 0. The I-dimensional error vector

ejkl = (e1jkl, e2jkl, · · · , eIjkl)
T follows an I-dimensional multivariate distribution with

a zero mean vector and a positive definite matrix Σ. Hence, the least squared

estimates of µ̂, τ̂j, τ̂k and τ̂jk are Z̄, Z̄j − Z̄, Z̄k − Z̄ and Z̄jk − Z̄j − Z̄k + Z̄

respectively, where Z̄ = 1
JKL

∑J
j=1

∑K
k=1

∑L
l=1 Zjkl, Z̄j = 1

KL

∑K
k=1

∑L
l=1 Zjkl, Z̄k =

1
JL

∑J
j=1

∑L
l=1 Zjkl, Z̄jk = 1

L

∑L
l=1 Zjkl. Therefore the estimate Zjkl − τ̂j − τ̂k − τ̂jk =

Zjkl − Z̄jk + Z̄ can be used to represent data after correction and we will use

Xijkl = Zijkl − Z̄ijk + Z̄i as our attribute in the following classification methods.

For the comparison of two classification results, we treat the result of discrimina-

tion as a Bernoulli trail for every sample. Then, two sample t-tests could be applied

in testing the difference between the classifiers. In this study, we use the p-value of

the statistical improvement to compare the results of classification with and without

daily and personal correction by MANOVA.

2.4 Pattern Classification

Tools of machine learning could be applied to discriminate the emotional states
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by the physiological signals. After daily and personal correction, we used the estima-

tor Xijkl = Zijkl−Z̄ijk+Z̄i as our attribute for pattern classification of the emotional

state Yjkl, which represented the emotional state in jth subject, on the kth day, and

for the lth sample. We let the variable Y represent the emotional status and the

variable Xi represent the value of ith feature after removing the daily and personal

correction. Six selected classifiers were tested for their performance and accuracy us-

ing the method of leave-one-out cross-validation. All of these six classification meth-

ods were performed by the software Weka (http://www.cs.waikato.ac.nz/ml/weka),

and all of the classifiers used the default option in Weka. Further investigation of

other options for classifiers in Weka could be studied in the future. The methods of

classifiers were described as below.

2.4.1 Bayesian Network

A Bayesian network, also called Bayes nets, is a directed acyclic graph (DAG)

which consists of two components. The first component G comprises vertices cor-

responding to a set of variables V = {V1, V2, ..., VN} and a set of directed edges

between variables with the Markov properties. The second component θ is attached

the potential table P (Vi|UVi
), for each variable Vi in V with the corresponding par-

ents nodes UVi
(Pearl, 1988; Jensen, 2001). Given the structure G and the parameter

θ , the joint probability distribution can be written as Eq. (2.3):

P (V ) =
N∏

i=1

P (Vi|UVi
). (2.3)

For the purpose of learning take place in a Bayesian networks, we have to

reconstruct the network structure and the field values. In this study, we apply

the hill climbing algorithm and simple estimator to reconstruct the network and

estimate the parameters. After getting the network structure, we used junction tree

methods which can convert our DAG to a tree by clustering variables (Lauritzen

and Spiegelhalt, 1988). Then an efficient algorithm using belief propagation can be

applied for our inference. In our study, we would use the estimator X1, X2, ..., XI
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Figure 2.5: The network structure of the naive Bayesian classifier.

and Y as the prediction variables V = {V1, V2, ..., VI+1} and calculate the conditional

distribution of Y given the observation X1, X2, ..., XI in the constructed Bayesian

network structure.

2.4.2 Naive Bayesian

A naive Bayesian classifier is a simple approach based on the Bayes’ theorem.

The network structure is illustrated in Figure 2.5. There are two assumptions in the

naive Bayesian classifier as follows (John and Langley, 1995). (i) Given the class

attribute (Y ), the predictive attributes (X1, X2, ..., XI) are independent. (ii) There

were no other attributes affecting the prediction process. By the Bayes’ theorem,

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)

P (X = x)
. (2.4)

We can predict the class attribute by finding y that maximizes P (Y = y|X =

x) in Eq. (2.4) given the predictive attributes x. As the predictive attributes

(X1, X2, ..., XI) are assumed to be conditionally independent, we have

P (X = x|Y = y) =
I∏

i=1

P (Xi = xi|Y = y). (2.5)
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For the numeric attributes, we would assume that Xi is distributed as N(µiy, σ
2
iy)

given the class Y = y for every i = 1, 2, ..., I. Hence, we can estimate the parameters

by the maximum likelihood estimates for each class.

2.4.3 Support Vector Machine

Support vector machine (SVM) (Vapnik, 1998) is a popular classification method

used by a lot of research currently being conducted in the field of emotion recognition

(Kim et al., 2004; Chuang and Shih, 2006). Suppose {(x∗1, y∗1), (x∗2, y∗2), ..., (x∗n, y∗n)}
is the training set, where y∗i is 1 or -1, denoting whether x∗i belongs to one of two

classes. In SVM, it is aimed to minimize the cost function 1
2
wT w + C

∑n
i=1 ξi under

the constraints y∗i (w
T x∗i + b) ≥ 1 − ξi for i = 1, 2, ..., n. By using the Lagrange

multiplier method, the original problem can be transformed as optimizing α′is in

Eq. (2.6).

arg max
α

Q(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiαjy
∗
i y
∗
j x
∗T
i x∗i s.t. 0 ≤ αi ≤ C ∀i;

n∑

i=1

αiy
∗
i = 0. (2.6)

After obtaining αi, we can apply the following decision function for prediction

using the new predictive attribute of x∗new : f(x∗new) = sign(
∑n

i=1 y∗i αiK(xnew, x∗i ) +

b), where K() is the kernel function. In this study, we use the Gaussian kernel

and the sequential minimal optimization (SMO) algorithm (Keerthi et al., 2001).

Besides, because our case has multiple classes (three emotional statuses), we used

the approach of pairwise classification by the one-against-one approach in the SVM

classification method.

2.4.4 Decision Tree of C4.5

Decision tree is also a common method used in classification (Hunt et al., 1966).

C4.5 is a hierarchical data structure using the divide-and-conquer strategy to grow-

ing decision trees (Quinlan, 1993). In decision trees, each decision node using a test
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function to partition original data D into subsets D1, D2, . . . , Dn. Suppose the set

D consists of C numbers of classes and p(D, j) denotes the proportion of cases in D

that belongs to the jth class. We can define the information gain by a test T with

m outcomes as Eq. (2.7):

Gain(D, T ) = Info(D)−
m∑

i=1

|Di|
|D| × Info(Di). (2.7)

where Info(D) = −∑C
j=1 p(D, j) × log(p(D, j)) and it can reach its maximal when

there is one case left in each subset Di. The split information is defined as Eq. (2.8):

Split(D,T ) = −
m∑

i=1

|Di|
|D| × log(

|Di|
|D| ). (2.8)

For every possible test, the ratio of its information gain over its split information is

assessed and the test with maximum gain ratio is selected.

2.4.5 Logistic Model

Logistic regression is a classical method to model category data for classification

(Le Cessie and Van Houwelingen, 1992). Suppose there are n samples with c classes

and I attributes. The parameter matrix B is calculated as an I × (c − 1) matrix.

The probability that the ith sample, given the value of x∗i , in the jth class but not

in the last cth class is shown in Eq. (2.9).

Pj(x
∗
i ) =

exp(x∗i Bj)∑c−1
k=1 exp(x∗i Bk) + 1

, where j = 1, 2, ..., c− 1. (2.9)

The probability that the ith sample, given the value of x∗i , in the last cth class is

shown in Eq. (2.10).

Pc(x
∗
i ) = 1−

c−1∑

k=1

Pk(x
∗
i ) =

1
∑c−1

k=1 exp(x∗i Bk) + 1
. (2.10)

The log-likelihood l of the data (K, X) under this model is shown in Eq. (2.11).

l(β) =
n∑

i=1

{
c−1∑

k=1

K∗
ikln(Pk(x

∗
i )) + (1−

c−1∑

k=1

K∗
ik)ln(1−

c−1∑

k=1

Pk(x
∗
i ))}. (2.11)
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The indicator variable K∗
ij = 1 if the ith sample belongs to the jth class, where j 6= c.

Otherwise, K∗
ij = 0 if the ith sample belongs to the last cth class. The parameter

matrix B can be estimated by the maximize likelihood estimates of the likelihood

function, l(β).

2.4.6 K-Nearest Neighbor (KNN)

The k-nearest neighbor (KNN) algorithm is one of the classical classification

methods that have wide applications (Aha et al., 1991). KNN compares the similar-

ity between testing data and every training data. Then it uses the top k similarity

categories of training data to decide the category of the testing data by a weighted

vote. For any testing data of H and training data of {G1, G2, ..., Gn}, we would

classify the category of H as Eq. (2.12).

C(H) = arg max
m

∑

Gi∈S

Sim(H, Gi)I(Gi, Cm). (2.12)

The notation of Sim(H,Gi) is the similarity measure of H and Gi. The set S =

{G̃1, G̃2, . . . , G̃k} is the data set closed to the testing point H, and the notation of

I(Gi, Cm) ∈ {0, 1} indicates whether Gi belongs to Cm. If there are tie cases in

the classification, we will use the group with a minimal index as the corresponding

category of testing data. In this study, we would use the Euclidean distance as the

similarity measure and choose the number of nearest neighbors k=3.
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Chapter 3

Data Collection and Analysis on

Yeast Genes of Microarray Studies

3.1 Materials and Microarray Experiment

S. cerevisiae was used as the model organism for studying expression evolution

because it is experimentally easier to manipulate and its genetics and genomics are

better known than most other eukaryotes. A lab strain (BY4741) and a wild isolate

(RM11) are used in this project. The BY strain is a direct descendant of S288C,

which was generated in the 1960s. The RM strain is a haploid derivative from a

California vineyard.

The cultures of BY4741 and RM11-1a were separately started at OD600=0.1

and were grown in YPAD media (which contains 2% glucose) at 30◦C with 250 rpm

shaking. Overnight cultures of BY4741 and RM11-1a were used for preparing the

starting cultures. The yeast cells we harvested at 4hr, 5hr, 6hr, 7hr, 8hr, 9hr, 10hr,

11hr, 12hr, 13hr, 14hr, 16hr, 18hr and 20hr after inoculation and the glucose content

of media at each time point will also be measured. Each microarray experiment

was conducted with 0.5µg of purified mRNA from each strain. The microarray

was scanned with GenePix 4000B microarray scanner (Axon Instruments) with the

GenePix 5 software package.

We currently adopt the reference design in the array experiments. The cDNA
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sample from the 4hr culture was labeled with Cy3 and used as the reference sample,

whereas RNA sampling from different time points were labeled with Cy5 and used

as experimental samples. Each experiment was repeated four times. Dye-swapping

was also performed in each set of experiments to eliminate dye bias. Theoretically,

loop design may be more efficient in finding significant genes when the number of

variety in treatment is small or time course experiments are considered. However, we

prefer reference design because there is a common reference that is easy to interpret

and to include new microarray data with the same reference. Importantly, reference

deigns are more tolerant to experimental errors.

3.2 Data Extraction

We used several statistical analyses to eliminate background noise and to obtain

more meaningful expression data. First, the background correction was applied to

remove the background median from the foreground median to obtain the expression

intensity for every dye in one spot. If the intensity value after background correla-

tion is small than zero, we treated the experimental value of this spot as an invalid

value because the dye efficiencies of Cy3 and Cy5 could be different. However, this

kind of dye effect can be normalized by the factor between the medians of Cy3 and

Cy5 intensities in one microarray. There are two duplicated spots for one gene, and

there are two swapped arrays. Therefore, there are four spots in total for one gene

per strain at one time point that are obtained as follows.

If Swap=0, Ratioijr =
I532ijr/Medianj=1,...,6368,r=1,2{I532ijr in array i}
I635ijr/Medianj=1,...,6368,r=1,2{I635ijr in array i} ;

If Swap=1, Ratioijr =
I635ijr/Medianj=1,...,6368,r=1,2{I635ijr in array i}
I532ijr/Medianj=1,...,6368,r=1,2{I532ijr in array i} ;

where

I532ij = F532 Medianij −B532 Medianij for Cy3,

I635ij = F635 Medianij −B635 Medianij for Cy5,

i = 1, 2, ..., 176 (176 array files in total),
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j = 1, 2, ..., 6368 (6368 genes in total),

r = 1, 2 (two replicated genes in every array).

The average of the valid ratios in these four ratios for one gene was used for

further normalizing the dye and block effects from a pair of two swapped microarrays

with two duplicated spots in one array. Furthermore, the log2 transformation of ratio

was used to evaluate the relative gene expression of one gene in a strain at a specific

time referring to the common reference at t4.

3.3 Strain Normalization

Because the denominators of expression ratios are different in BY and RM strains,

we can adjust them to have the same denominator for further comparisons. We

performed another six microarrays with two yeast strains at t4. Hence we can get

the ratio of RM t4/BY t4 for each gene by the average of expression ratios in these

six microarrays. This ratio was used to adjust the denominator as the expression of

BY t4 for every gene in every microarray.

The analysis flow chart is illustrated in Figure 3.1. The microarray data in

experiment 1, 3 and 4 were used as the training set because they have common

experiment time points. The microarray data in experiment 2 was used as the test

set to evaluate the performance of analysis results from the training set. Genes

were filtered by the regression coefficients of expression vs. time in the training set.

These unfiltered genes were clustered by the methods of hierarchical clustering and

curve clustering by the training set of microarray data. The clustering method was

selected based on the performance of clustering results in the training and test sets.

The numbers of clusters were also determined accordingly. For every cluster, the

time shift was estimated by regression tests between gene expressions and glucose

consumptions. The details of analyses are discussed in the following sections.
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Figure 3.1: The flowchart in the study of of yeast genes.

3.4 Gene Filtering

A regression line was used to detect expression trends for gene expression vs.

time for every gene in one strain and one experiment in the training set (Exp. 1, 3

and 4). The following regression model was used for every gene in one strain and

one experiment,

log(Ratio) = α0 + α1Time + ε (3.1)

where log(Ratio) is the log ratio of gene expression, Time is the time point ranging

through 5 to 13, α0 is the intercept, α1 is the regression coefficient of slope and ε is

the random noise.

The goal of gene filtering is to filter genes that do not have significantly and

consistently differential expressions over time in the training set of microarray data.

The regression model in (3.1) is used to detect the expression trend for every gene
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in one strain and one experiment.

For every gene in one strain, there are three regression slopes in experiments

1, 3 and 4. The CV which is calculated as the ratio of standard deviation over

the average of three slopes is a measure of SNR. If the CV value is large, then

the expression slopes vary a lot, or the average is small among three experiments.

Hence, those genes with CV values larger than a threshold can be filtered, and a

threshold of 2.1 is used in this study. Then, the average of three slopes is used to

partition the unfiltered genes to three groups. If the averages of three slopes in BY

and RM strains are of the same signs, (+, +) or (−,−), then they are positively

correlated. Otherwise, they are (+,−) or (−, +), which are negatively correlated.

A lot of unfiltered genes have patterns of positive correlation in two strains, and few

genes have patterns of negative correlation. For the group of positive correlations in

two strains, two subgroups are constituted using a threshold for the absolute value

of the difference between the average slopes in two strains, like a threshold of 0.3.

This partition is considered to keep genes that have a large expression variation in

one strain but not in the other strain.

Consequently, there are three different groups we selected. For the first group

of positive correlation and large differences of average slopes in two strains, all

unfiltered genes are kept because they have a strain with large expression variation

but not in the other strain. For the second group of positive correlation and small

differences of average slopes in two strains, the maximum of absolute values of

average slopes is used to keep genes with large expression variation in one strain,

like a threshold of 0.3499. For the third group of negative correlation in two strains,

the maximum of the absolute values of average slopes is used to keep genes with

large expression variation in one strain, like a threshold of 0.2. As a result, there

are 490 genes kept in this study.

The above approach of gene filtering is used to keep genes that could have signif-

icant expression patterns in this study. These 490 genes will be further selected after
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checking the clustering consistency and will be investigated in the later chapters.

Other methods of gene filtering could be studied in the future.

3.5 Cluster Analysis

The expression profiles of unfiltered genes will be used to perform cluster analysis.

Suppose one gene is clustered into groups g1, g2 and g3 in a training set of three

experiments after clustering by one method. Let M1, M2 and M3 be the mean

expression value of each group at one time point. Then, the predicted expression

value for the gene at that time point is defined to be the average of M1, M2 and

M3. Thus the prediction square error (PSE) is the value of the square of the error

between a predicted expression and the observed expression of the gene in the test

set. Hence the PSE is as follows:

PSE =
490∑

i=1

14∑

j=1

(R2,ij −Rpred,ij)
2

14
(3.2)

where R2,ij means the gene expression of the ith gene in the jth microarray data,

and RPred,ij is its predicted value by the clustering method. For every gene, the

microarray data contain 14 gene expressions at seven time points for two strains in

experiment 2. If the PSE of one clustering method is small, then this clustering

method is a good method. Through the comparisons of PSEs, we can select one

method from different clustering methods.

The clustering consistency for one gene in the clustering results using three exper-

iments in the training set will be also checked. That is, it will be examined whether

the expression time profile of one gene in different experiments will be clustered into

the same group. One example is illustrated in Figure 3.2. Genes with clustering

consistency will be selected to find the representative curves in every group.

3.5.1 Hierarchical Clustering

Hierarchical clustering is a nonparametric method to cluster data (Eisen et al.,
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Figure 3.2: In this case, gene g2 is considered to have clustering consistency.

1998). The basic idea of hierarchical clustering is to construct a tree based on the

similarity (or dissimilarity) among data. If the observations of two data are similar,

they will be clustered into the same group. Hierarchical clustering depends on a

distance matrix, D, which records the pairwise distance for expressions of any two

data. So, it is a symmetric matrix. The following two distances are commonly used

in literature and they will be investigated in this study.

Euclidean distance:

d(zr, zs) = [
d∑

j=1

(zr
j − zs

j )
2]1/2 (3.3)

(Pearson’s) Correlation distance:

d(zr, zs) = 1− cor(zr, zs) = 1− cov(zr, zs)√
var(zr)× var(zs)

(3.4)

where zr and zs are two observation vectors in d-dimensions, zr
j and zs

j are jth

components of two observation vector, and cov and var are the sample covariance

and variance.
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In the second step, it is necessary to define the linkage that is the distance

between two groups. There are three kinds of linkages that are commonly considered

in literature.

Single linkage: the distance is defined as the smallest distance between all pos-

sible pairs of elements of the two groups, Gi and Gj:

d(Gi, Gj) = min
zr∈Gi,zs∈Gj

d(zr, zs). (3.5)

Complete linkage: the distance between two groups is taken as the largest distance

between all possible pairs:

d(Gi, Gj) = max
zr∈Gi,zs∈Gj

d(zr, zs). (3.6)

Average linkage: the average of distances between all possible pairs in two groups:

d(Gi, Gj) = averagezr∈Gi,zs∈Gj
d(zr, zs). (3.7)

The algorithm of agglomerative clustering will be used for hierarchical clustering in

this study. First, every observation is treated as a group itself. Then similar groups

are merged to form larger groups hierarchically until all groups are merged into a

single one.

We will try two kinds of distances and three kinds of linkages (single linkage,

complete linkage and average linkage) to investigate which combination is better for

the log ratio of expressions obtained from microarray data. Therefore, there will be

six different results for hierarchical clustering as shown in Figure 3.3.

By comparing PSEs for different cluster sizes, it is observed that the results

of hierarchical clustering by Euclidean distance and the complete linkage have the

smallest PSE when the cluster size is large than 2. Hence, the hierarchical clustering

by Euclidean distance and the complete linkage will be used in this study. The

dendrogram of this hierarchical clustering is shown in Figure 3.4
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Figure 3.3: Comparisons of PSEs for different cluster sizes are plotted for hierarchical

clustering with different settings.

 


Figure 3.4: The dendrogram of the hierarchical clustering is shown for 30 nodes.
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3.5.2 Curve Clustering

The clustering method that could be applied to cluster expression profiles can be

curve clustering. This method has been proposed to cluster curves based on mix-

ture models (Gaffney, 2004; Gaffney and Smyth, 2004; Gaffney et al., 2007), and the

toolbox for matlab is available at (http://www.ics.uci.edu/ sgaffney/CCT/). Ba-

sically, that method assumed a mixture model with an expectation-maximization

(EM) algorithm to estimate parameters in the mixture model, which are reviewed

below. Suppose that yi is a sequence of curve measurements that are observed at

ni time points in xi. The author defines a cluster-specific conditional probabilistic

model, which is denoted as pk(yi|xi, θk) for the probability distribution in cluster k

with parameters θk. In this study, the linear polynomial regression model (LRM) is

investigated and performed well for the microarray data under investigation. Poly-

nomial regression models of yi on xi with a Gaussian noise can be summarized with

the following equation:

yi = Xiβ + εi, εi ∼ N(0, σ2I), (3.8)

where the ni × p regression matrix Xi is the Vandermonde matrix evaluated at xi,

β is the p-vector of regression coefficients, εi is the Gaussian noise with mean 0 and

covariance matrix σ2I. The p-th order Vandermonde matrix evaluated at xi is equal

to

Xi =




1 xi1 x2
i1 · · · xp−1

i1

1 xi2 x2
i2 · · · xp−1

i2
...

...
...

. . .
...

1 xin x2
in · · · xp−1

in




.

Then, the conditional probability of yi give xi is distributed as N(yi|Xiβ, σ2I).

The polynomial regression mixture model of K clusters is defined to be:

p(yi|xi, θ) =
K∑

k=1

αkpk(yi|xi, θk) =
K∑

k=1

αkN(yi|Xiβk, σ
2
kI) (3.9)

where αk is the mixing probability in kth cluster, pk is the conditional probability
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of a Gaussian distribution with mean Xiβk and covariance matrix σ2
kI. The log-

likelihood function N observations becomes

log p(θ|Y,X) =
N∑

i=1

log(
K∑

k=1

αkpk(yi|xi, θk)) (3.10)

The EM algorithm can be applied to obtain the maximum likelihood estimates of

parameters of βk, σ
2
k, αk, k = 1, 2, ..., K for any fixed cluster size K. The complete

log-likelihood function Lc can be obtained after assuming a class label variable of

the ith observation, zi, as follows:

Lc =
N∑

i=1

log αzi
N(yi|Xiβzi

, σ2
zi
I). (3.11)

In the E-step, the posterior probability p(zi|yi, xi) is calculated and denoted as wik:

wik = p(zi = k|yi, xi) ∝ αkpk(yi|xi) = αkN(yi|Xiβk, σ
2
kI). (3.12)

And the conditional expectation Q is:

Q = E[Lc|yi, xi] =
N∑

i=1

K∑

k=1

wik log αkN(yi|Xiβk, σ
2
kI). (3.13)

In the M-step, we maximize Q with respect to the parameters βk, σ
2
k, αk, k =

1, 2, ..., K. The iterated estimators for parameters turn out to be

β̂k = [
N∑

i=1

wikX
T
i Xi]

−1
N∑

i=1

wikX
T
i yi, (3.14)

σ̂2
k =

1
∑N

i=1 wik

N∑

i=1

wik ‖ yi −Xiβk ‖2, (3.15)

and

α̂k =
1

N

N∑

i=1

wik, (3.16)

The method of curve clustering has been applied to cluster observations of latitude

and longitude positions in cyclones(Gaffney, 2004; Gaffney and Smyth, 2004). For

the analysis of microarray data in this study, we will regard gene expressions of one

gene in BY and RM strains at different time points during one experiment as one
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Figure 3.5: The typical results of two dimensional expression curves in experiment

1 for five groups are plotted.

expression curve moved along time in two dimensions of expressions in BY and RM

strains. That is, we treat the expression profiles of every gene in one experiment

as an observation. The expressions at one time point in BY and RM strain are

regarded as a point in two dimensional space for expressions in BY and RM strains.

The typical results of two dimensional expression curves for five groups are plotted

in Figure 3.5.

The selection for cluster size in curve clustering may be considered by the tech-

nique of model selection. A typical method is the Bayesian information criterion

(BIC) (Burnham and Anderson, 1998). The value of BIC for the above method of

curve clustering is evaluated by the following equation:

BIC = −2 log(LML) + Kα log N, (3.17)

where log(LML) is the log-likelihood evaluated at the maximum likelihood estima-

tion, Ka is the total number of free parameters, and N is the number of observations.

The BIC curve for curve clustering of microarray data in the training set is plotted
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Figure 3.6: Model selection by BIC is shown for curve clustering.

for cluster sizes from 2 to 10 in Figure 3.6. As the BIC curve is decreasing when the

cluster size is increasing in Figure 3.6, the method of BIC will tend to select a large

cluster size, like 10 in this study. Alternatively, we will also consider other evalu-

ation methods to select a smaller cluster size in this study as reported in Section

5.2.

3.6 Regression Models With Time Shift

The analysis of variance (ANOVA) has been applied for microarray data in lit-

erature (Kerr and Churchill, 2001; Kerr, 2003; Galindo et al., 2004). In this study,

the curves of glucose consumptions can be further incorporated in the model. Fur-

thermore, the time shift between gene expression and glucose consumption shall be

considered. Microarray data in different experiments can be combined in statistical

models and tests. These statistical models can be applied to every cluster of fewer

genes with similar expression profiles to reduce the false errors caused by multiple

comparisons of many genes.

32



The experiment factors of exp, strain, time and gene shall be included in models

to investigate the variation of expressions for these factors. The interaction term

of gene and time can be included to describe the differences in expression time

profiles among genes. The factor of glucose with the parameter of time shift shall

be also included to detect the relationship between gene expression and glucose

consumption. If the time shift is the same for the expression profiles in both BY

and RM strains, we will consider the following regression model for the log ratios of

gene expression with other experiment factors:

log(Ratio(time)) = µ + µstrain + µtime + µexp + µgene + µtime×gene

+ γglucose(time + time shift) + error. (3.18)

If gene expression profiles have different time shifts in BY and RM strains, we

will consider estimate the time shift in one strain by using the expression data in

one strain only:

log(Ratio(time)) = µ + µtime + µexp + µgene + µtime×gene

+ γglucose(time + time shift) + error. (3.19)

With the parameter of time shifts, the above models are nonlinear. For simplicity,

we will consider the time shift parameters at fixed values, like -1, 0 and 1. At

a fixed value of time shift parameter, the above models become linear and linear

regression techniques can be applied. The smallest p-value for testing the hypotheses

of H0 : γ = 0 vs. H1 : γ 6= 0 is used to determine the fitted time shift for gene

expressions in one cluster. Techniques of nonlinear regression and interpolation may

be studied to estimate the shift parameter besides those fixed values in the future.

Different types of hypotheses can be tested based on the above model. For

instance, one can consider different regression models with time shifts in glucose

separately to investigate whether gene expressions in one group vary before or after

the glucose consumption dropped. We set three time shifts as -1, 0, and 1 in this
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study. The negative time shift means the gene expression varies after the glucose

consumption dropped. The time shift is determined for a group of genes when it

will result in a maximum F statistics for testing H0 : γ = 0 vs. H1 : γ 6= 0 among

the results of three time shifts as follows:

FGlucose =
SSGlucose/1

SSError/dfError

, (3.20)

The degree of freedom for the sum of squares of Glucose is equal to 1 since the

Glucose term is a one-dimensional variable.

Furthermore, one can also check if there are significant differences in strains, time

points, experiments, genes, the interactions between time points and genes by similar

test statistics. For example, one can consider the following hypotheses, H0: the null

hypothesis that gene expressions do not vary by times (the time-gene interaction

terms of µtime×gene are all equal to zeros); and H1: the alternative hypothesis that

gene expressions do vary by times (the time-gene interaction terms of µtime×gene are

not all equal to zeros). The F statistics become

Ftime×gene =
SStime×gene/dftime×gene

SSError/dfError

, (3.21)

where SStime×gene indicates the sum of squares of µtime×gene terms, dftime×gene indi-

cates its degree of freedom, dftime×gene = (number of time points - 1)×(number of

genes - 1); SSError indicates the sum of squares of errors, and dfError indicates the

degree of freedom, dfError = (number of observations) − (degrees of freedom of all

terms).
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Chapter 4

Inference of biological pathway by

Time Delay Boolean network

4.1 Models

4.1.1 Boolean Network

Boolean networks, introduced by Kaufmann was used as model of genetic reg-

ulatory networks in thirty years ago (Kauffman, 1969). Following (Akutsu and

Miyano, 1999), we are going to review the definition of Boolean networks. A Boolean

network G(V, F ) is a directed graph consist of two components. The first com-

ponent V = {v1, v2, . . . , vn} is a set of nodes representing genes, and the second

component F = {f1, f2, . . . , fn} is a list of Boolean functions. For every node

vi ∈ V , its expression has only two states, ON and OFF. For every boolean function

fi(vi1 , vi2 , . . . , vik) ∈ F , the input node vi1 , vi2 , . . . , vik is assigned to the node vi in

the graph. The state of each node vi ∈ V is determined by the Boolean function

fi(vi1 , vi2 , . . . , vik).

For an element U ∈ V , an expression pattern ψ of U is a function from U

to {0, 1}. For each node vi, the gene expression state at time t is assumed to

take either 0 (not-expressed) or 1 (expressed) and is expressed as ψt(vi). In a

Boolean network, every gene expression pattern at time t + 1 is determined by the

gene expression pattern at time t and the corresponding Boolean function F (i.e.,

35



ψt+1(vi) = fi(ψt(vi1), ψt(vi2), . . . , ψt(vik))).
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Figure 4.1: A Boolean network G(V, F ), its wiring diagram G′(V ′, F ′) and the func-

tional dependency table. (Akutsu et al. 1999)

For convenience, we consider the wiring diagram G′(V ′, F ′) of a Boolean network

G(V, F ) (See Figure 4.1). For each vi ∈ V , suppose vi1 , vi2 , . . . , vik are the input

nodes assigned to vi. Then we construct an additional node v′i and connected the

edge from vij to v′i for each 1 ≤ j ≤ k. That is, the {v1, . . . , vn} represent the gene

expression pattern at time t and {v′1, . . . , v′n} corresponds to the gene expression

pattern at time t + 1. Hence we can treat the {v1, . . . , vn} as the input values and

the {v′1, . . . , v′n} as the corresponding output values.

4.1.2 The Structure of Time Delay Boolean Network

In the previous subsection, we found that the output gene vi at time t + 1 is

determined by the input genes vi1 , vi2 , . . . , vik at previous time t. That is, for every

gene vi ∈ V , if the input gene {vi1 , vi2 , . . . , vik} at time t and the Boolean func-

tion fi is fixed, the gene expression vi at the next time t + 1 is determined by

ψt+1(vi) = fi(ψt(vi1), ψt(vi2), . . . , ψt(vik)). However, in real genetic regulatory situ-

ations, the deterministic system always fails because of the misclassification error

and noise. Besides, some of the gene express would have the situation of time delay

36



when the gene influenced by one or several input genes. Hence, it would be much

more flexible to use a non-deterministic network system. In this subsection, we con-

sider two relations between the Boolean function and the target gene instead of the

deterministic relation.

We define a prerequisite relation between the Boolean function and the target

output gene as follows. A Boolean function fi with input genes vi1 , vi2 , . . . , vik at

time t is prerequisite for the target gene vi at time t + 1, if the on-status of Boolean

function is necessary for the on-status of gene vi at time t + 1, and we denote this

by fi(ψt(vi1), ψt(vi2), . . . , ψt(vik)) ≺ ψt+1(vi). If it does not cause confusion, we omit

the notation of ψ and input genes as denoted by fi ≺ vi. Moreover, for every

gene vi, we use v̄i as its dual in this paper. For the prerequisite relation between

Boolean function and target gene, we have the following two relations: fi ≺ vi and

fi ≺ v̄i. In this model, we do not consider the situation of a dual Boolean function

prerequisite to the target gene, that is f̄i ≺ vi and f̄i ≺ v̄i. Since for the boolean

function whose dual is prerequisite to the target gene, there must be another boolean

function which is prerequisite to the target gene. For instance, if f̄i{v1, v2} ≺ v3,

where fi{v1, v2} = (v1 AND v2) then f ′i{v1, v2} ≺ v3, where f ′i{v1, v2} = (v̄1 OR v̄2).

Therefore, for the prerequisite relationship, we only consider the Boolean function

prerequisite to target gene and Boolean function prerequisite to dual of target gene.

Another relation between Boolean function and target gene is similarity. The

Boolean function and target gene are similar if the state of the Boolean function will

make the state of the target gene in the same expression, and we denoted this by

fi ∼ vi. In the same way, we do not consider the negatively similar such as fi ∼ v̄i in

this study. For the same reasons, if there is one Boolean function which is negatively

similar to a target gene, there must exist another Boolean function which is similar

to the target gene.

In the model of Time Delay Boolean network we proposed, the output of the

gene expression is not totally determined by the input state and Boolean function.
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1 1 1 (0,1) (0,1) 1

Figure 4.2: One example of Time Delay Boolean network and its Input/Output.

The output expression may have more than one possible result in the Time Delay

Boolean network. For example, we consider the graph in Figure 4.2. The possible

outputs for every input state are listed in the right part of the graph. If we knew the

Boolean network, some of the inputs would have more than one output expression

in the Time Delay Boolean network.

4.1.3 Identification Algorithm

For convenience, we consider the Boolean network model in which the maximum

number of input genes is bounded by constant K for every target gene. In this

subsection, we would consider the case of K = 2. However, these can be generalized

to any K in a straightforward way. For the inference of the genetic network, we

need to clarify the following question for each target output gene.

• Which genes would affect the target gene?

• What kind of Boolean function would be used for combining the input genes?
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• What kind of relationship exists between the Boolean function and the target

genes?

Table 4.1: Tables for a pair of input gene and one output gene assuming no mea-

surement error

v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 m000 m010 m100 m110 0 q000 q010 q100 q110

1 m001 m011 m101 m111 1 q001 q011 q101 q111

In this subsection, we propose an algorithm to clarify the above questions. The

algorithm below is conceptually very simple since it simply uses output Boolean

functions with input genes and relations with target genes that are consistent with

the data. First, for each output gene expression at time t + 1 such as ψt+1(vi), we

consider all the pairs of elements in V at time t, for instance ψt(vj) and ψt(vh). Then

we count the eight incidents of (vj, vh, v
′
i) being (0,0,0), (0,0,1), . . . (1,1,1) from the

sample and arrange them in a 2× 4 table ; see the left part of Table 4.1. We mark

a cell ”+” if the count is positive and mark it ”0” otherwise.

For detecting whether there exists a Boolean function which is prerequisite to

the target gene, we would compare the 2 × 4 output table with the left four basic

relations in Table 4.2. We denote the basic relations are consistent with the output

table if the position of 0 cell in the basic relations is also 0 in the output table. By

comparing the output table with the four basic relations, we can find the relations

which are consistent with the output tables. If there is more than one relation

which is consistent with the output tables, we would use the boolean logic gate

AND to combine the Boolean function and the result would transfer to another

Boolean function. Hence, the final Boolean function is prerequisite to the target

gene. Similarly, by comparing the 2 × 4 output table with the right four basic

relations in Table 4.2, we may get another Boolean function which is prerequisite to

the dual of target gene.
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Table 4.2: Count patterns for the basic eight relations assuming exhaustive sampling

and no measurement error

(vj or vh) ≺ v′i (vj or vh) ≺ v̄′i
v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 + + + + 0 0 + + +

1 0 + + + 1 + + + +

(vj or v̄h) ≺ v′i (vj or v̄h) ≺ v̄′i
v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 + + + + 0 + 0 + +

1 + 0 + + 1 + + + +

(v̄j or vh) ≺ v′i (v̄j or vh) ≺ v̄′i
v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 + + + + 0 + + 0 +

1 + + 0 + 1 + + + +

(v̄j or v̄h) ≺ v′i (v̄j or v̄h) ≺ v̄′i
v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 + + + + 0 + + + 0

1 + + + 0 1 + + + +
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Moreover, if there is only one Boolean function which occurs in above relation,

that is, there is no Boolean function prerequisite to the target gene or prerequisite

to the dual of target gene, we would treat the relation as our final relation between

the Boolean function and the target gene. However, if both of the two prerequisite

happen (i.e. ∃fi and f ′i s.t. fi ≺ vi and f ′i ≺ v̄i), we need to check whether these

two relations are in conflict. If the dual of fi is equivalent to f ′i , our conclusion

for inference would be fi is similar to the target gene (that is, fi ∼ vi); otherwise,

we would treat it as if there is no relation between the input genes and the target

gene. By the above identification procedure, for every target gene, we can find the

corresponding input genes, Boolean function and its relation.

4.2 Theoretical Results

In this section, we analyze the number of INPUT/OUTPUT pairs required to

identify the Time Delay Boolean network uniquely. The following proposition was

obtained from the related paper with a small modification (Akutsu et al., 1998,

2003).

Proposition 1 For all subsets of V with 2K genes, if all assignments (i.e., 22K

assignments) of Boolean values appear in INPUT expression patterns and all of its

possible OUTPUT expression patterns of the target gene are present, the identifica-

tion of genetic network is determined to be unique, if it exists.

Proposition 2 The probability that one sub-assignment with all of its possible re-

sults in the target gene does not appear among m random INPUT expression pattern

is equal to 2(22K+1−1
22K+1 )m − (1− 1

22K )m, and bounded by 2(1− 1
22K+1 )

m.

(Proof) For any fixed set of nodes {vi1 , vi2 , . . . , vi2K
}, the probability that a sub-

assignment vi1 = vi2 = . . . = vi2K
= 1 does not appear in one random INPUT

expression pattern is 1 − 1
22K . Thus, among the m random INPUT expressions,
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the probability that vi1 = vi2 = . . . = vi2K
= 1 appears is t times is equal to

m!
t!(m−t)!

( 1
22K )t(1− 1

22K )m−t, where t ≤ m, and the probability that all of the possible

results in the target gene does not appear among t times INPUT is smaller than

(1
2
)t−1. Hence the probability that one sub-assignment with all of their possible

results does not appear among m random INPUT expression is smaller than (1 −
1

22K )m +
m∑

t=1

m!

t!(m− t)!
(

1

22K
)t(1− 1

22K
)m−t(

1

2
)t−1 , and this is equal to 2(22K+1−1

22K+1 )m−
(1− 1

22K )m, and bounded by 2(1− 1
22K+1 )

m by a simple algebra calculation.

Next we prove the main theorem.

Theorem 1 For the identification of one Time Delay Boolean network of n nodes

with maximum indegree ≤ K, O(22K+1 ·(2K+α)·log n) uniformly randomly sampled

Input patterns are sufficient for exact inference with probability at least 1 − 1
nα for

α > 0.

(Proof) We consider the probability that the condition of Proposition 1 is not

satisfied under m random INPUT expression patterns.

By Proposition 2, the probability that vi1 = vi2 = . . . = vi2K
= 1 with all

of its possible results in the target gene does not appear among the m random

INPUT expression patterns is bounded by 2(1− 1
22K+1 )

m for any fixed set of nodes

{vi1 , vi2 , . . . , vi2K
}. Since the number of combinations of 2K nodes from a set of n

possibilities is bounded by 22K ·n2K , the probability that the condition of Proposition

1 is not satisfied is at most 22K · n2K · 2(1 − 1
22K+1 )

m. It is not difficult to see that

22K ·n2K ·2(1− 1
22K+1 )

m < p holds for m > ln 2 ·22K+1 ·(2K +2K log n+log 2+log 1
p
).

Letting p = 1
nα , we obtain the theorem.

Next we develop an information theoretic lower bound on the number of IN-

PUT/OUTPUT pairs needed for the identification of Time Delay Boolean network.

The proof of the theorem is a straightforward adaptation of similar results given in

(Akutsu and Miyano, 1999) in the case of Boolean networks.

Theorem 2 If the maximum indegree ≤ K, at least Ω(2K+K log n) INPUT/OUTPUT
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pairs are required for the identification of Time Delay Boolean network in the worst

case.

(Proof) The number of Time Delay Boolean network is given by all the possible

combination of Boolean function with k nodes from a set of n possibilities with

all possible relations between Boolean function with target node. Since there are

Ω(nK) possible combinations of input nodes, 22K
possible boolean functions and

3 possible relations between Boolean function with each node, there are Ω((22K ·
nK · 3)n) Boolean networks whose maximum indegree is at most K. On the other

hand, there are at least 2n possible OUTPUT patterns with one INPUT expression

pattern. Therefore, Ω(log2n((22K · nK · 3)n)) which is the same as Ω(2K + K log n)

INPUT/OUTPUT pairs are required in the worst case.

4.3 Inference of Time Delay Boolean Network with

Noise data

In Section 4.2, we discussed the identification algorithm for the data without

measurement error. In this section we will extend the situation of inference compete

the data with measurement error. We assume there exists a measurement error

with probability p in every element, independently, and make the output Oj j =

1, 2, . . . , m switch to its negation; that is

O∗
ij =





Oij with probability 1− p;

1−Oij with probability p.

This makes the output data O∗
j with noise are the observations and our goal is to

reconstruct the Time Delay Boolean network from the pair data (Ij, O
∗
j ).

Similar to section 4.2, we consider the maximum number of input genes is

bounded by 2 for every target gene. Instead of using full model including every

element, we consider the pair of input genes with every output gene as our model

and use probabilistic models to compute the measurement error. We treat the data
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Table 4.3: The eight basic relations and their corresponding probabilistic hypotheses

and scores
Relation Hypothesis Scores

(vj or vh) ≺ v̄′i q000 = 0 p(vj or vh)≺v̄′i
(vj or v̄h) ≺ v̄′i q010 = 0 p(vj or v̄h)≺v̄′i
(v̄j or vh) ≺ v̄′i q100 = 0 p(v̄j or vh)≺v̄′i
(v̄j or v̄h) ≺ v̄′i q110 = 0 p(v̄j or v̄h)≺v̄′i
(vj or vh) ≺ v′i q001 = 0 p(vj or vh)≺v′i
(vj or v̄h) ≺ v′i q011 = 0 p(vj or v̄h)≺v′i
(v̄j or vh) ≺ v′i q101 = 0 p(v̄j or vh)≺v′i
(v̄j or v̄h) ≺ v′i q111 = 0 p(v̄j or v̄h)≺v′i

Table 4.4: The 2 × 4 count table for a pair of input and output gene and their

generated probabilities in the presence of measurement error

v′i/vjvh 00 01 10 11 v′i/vjvh 00 01 10 11

0 n000 n010 n100 n110 0 r000 r010 r100 r110

1 n001 n011 n101 n111 1 r001 r011 r101 r111
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in the 2×4 table as a multinomial distribution with eight cells whose probabilities are

q000, q001, . . . , q111 as shown in the right part of Table 4.1, where q000+q001+. . .+q111 =

1. Similarly, we extract the data with measurement error for every output gene and

each pair of input genes as the 2 × 4 table. Now the counts n000, n001, . . . , n111 are

not generated from the multinomial q000, q001, . . . , q111, but from another multinomial

r000, r001, . . . , r111 as shown in Table 4.4, where r000 + r001 + . . . + r111 = 1.

Table 4.5: Splitting counts caused by misclassification error

v′i/vjvh 00 01 10 11

m000,000 m000,001 m010,000 m010,001 m100,000 m100,001 m110,000 m110,001

0 m000,010 m000,011 m010,010 m010,011 m100,010 m100,011 m110,010 m110,011

m000,100 m000,101 m010,100 m010,101 m100,100 m100,101 m110,100 m110,101

m000,110 m000,111 m010,110 m010,111 m100,110 m100,111 m110,110 m110,111

m001,000 m001,001 m011,000 m011,001 m101,000 m101,001 m111,000 m111,001

1 m001,010 m001,011 m011,010 m011,011 m101,010 m101,011 m111,010 m111,011

m001,100 m001,101 m011,100 m011,101 m101,100 m101,101 m111,100 m111,101

m001,110 m001,111 m011,110 m011,111 m101,110 m101,111 m111,110 m111,111

Because of the measurement error, some samples of m000 may translate to other

seven cells. We use the notation m000,000,m000,001, . . . , m000,111 represent the counts of

eight cells translated from m000. Analogous notation is defined for m001,m010, . . . , m111.

The splitting is shown in Table 4.5. Corresponding, their generating probabilities

(q000, q001, . . . , q111) are redistributed as follows: qi1i2i3,j1j2j3 = pI(i,j)(1−p)3−I(i,j)qi1i2i3 ,

where I(i, j) =
∑3

k=1 |ik − jk|. Here, we adopt the notation qi1i2i3,j1j2j3 analogous to

mi1i2i3,j1j2j3 . These two sets of counts and probabilities are linked as follows:





nj1j2j3 =
∑

i1,i2,i3=0,1

mi1i2i3,j1j2j3

rj1j2j3 =
∑

i1,i2,i3=0,1

qi1i2i3,j1j2j3

and (4.1)
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



mi1i2i3 =
∑

j1,j2,j3=0,1

mi1i2i3,j1j2j3

qi1i2i3 =
∑

j1,j2,j3=0,1

qi1i2i3,j1j2j3

Under the full data {mi1i2i3,j1j2j3}, the log-likelihood is given by

L =
∑

i1,i2,i3,j1,j2,j3=0,1

mi1i2i3,j1j2j3 log qi1i2i3,j1j2j3 (4.2)

where qi1i2i3,j1j2j3 are those splitting probabilities. Later we define p-scores via maxi-

mum likelihood estimates (MLE). Since the full data {mi1i2i3,j1j2j3} is not observable,

we use the famous E-M algorithm to maximize the likelihood of full data (2) to esti-

mate MLE. In the E-step, the splitting counts of full data {mi1i2i3,j1j2j3} is evaluated

by the conditional expectations calculated at the current value of the parameter by

the formula

Ep,q000,q001,...,q111(mi1i2i3,j1j2j3|nj1j2j3) =
nj1j2j3qi1i2i3,j1j2j3∑

i′1i′2i′3=0,1

qi′1i′2i′3,j1j2j3

(4.3)

where i1, i2, i3, j1, j2, j3 = 0, 1. One probabilities of q000, q001, . . . , q111 are zero in

the different hypotheses specified in Table 4.3. In the M-step, we maximize the

conditional expectation of the log-likelihood for the full data to calculate the MLE

of the parameters.

e first consider a problem simpler than reconstructing a Time Delay Boolean

network: what is the most likely relation for one output gene and a pair of input

genes?

Definition 1 For one output gene v
′
i and a pair of input genes vj and vk, the p-

scores p(vj or vk)≺v̄
′
i
, p(v̄j or vk)≺v̄

′
i
, p(vj or v̄k)≺v̄

′
i
, p(v̄j or v̄k)≺v̄

′
i
, p(vj or vk)≺v

′
i
, p(v̄j or vk)≺v

′
i
,

p(vj or v̄k)≺v
′
i
, p(v̄j or v̄k)≺v

′
i

are, respectively, the maximum likelihood estimates of p

under the triangular model: q000 = 0, q010 = 0, q100 = 0, q110 = 0, q001 = 0, q011 = 0,

q101 = 0, q111 = 0

We compute p-scores by the E-M algorithm described earlier. The heuristic of

the definition is that we use the MLE p̂ to measure how well each hypothesis fits:

the smaller the score, the more evidence that the corresponding hypothesis is true.
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The p-scores are more meaningful if they are generated from a Time Delay

Boolean network because we may discover significant relations by ranking the scores

in the ascending order. Here we use the maximum compatibility criterion: choose

the maximum threshold value so that the selected relations contain no conflicts

(Li and Lu, 2005). We collect those relations whose p-scores are smaller than a

threshold. Known biological results are helpful for the determination of a threshold.

For example, if we know the relation (v1 or v2) ≺ v3 is true, then the p-scores smaller

than p(v1 or v2)≺v3 should be in our watch list. Please notice that as more relations

are included in the watch list, the more likely we are to observe incompatible ones.

Hence, we can choose the threshold which is the maximum number that contains no

conflicting relations. Next we illustrate the method by some examples.
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Chapter 5

Empirical Results

5.1 Emotion Detection by Physiological Signals

Due to the existence of day-dependency of the features of physiological signals,

some of the features would have a large discrepancy even they are in the same state

of emotion. Besides, some of the value of features would be quite near even for

different states of emotion, as shown in Figure 5.1. However, after removing the

daily effects by MANOVA, the scatter of the features in the same state of emotion

would be more tight and become differentiable for distinct states of emotion, as

shown in Figure 5.2. Therefore, the statistical technique of MANOVA would be

helpful for emotion classification and recognition.
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Figure 5.1: The scatter plot of three statuses of emotion without daily correction.
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Figure 5.2: The scatter plot of three statuses of emotion with daily correction.

After getting the features from physiological signals and removing daily effects

by MANOVA, six classification methods would be applied as discussed before. For

the first database, the classification results without daily correction and with daily

correction by leave-one-out cross-validation in three emotional statuses by six clas-

sification methods are listed in Table 5.1 and Table 5.2. From the classification

result of subject Alice, the highest correct recognition rate is 90.91% using the clas-

sification method of logistic model. As for the classification result of subject Jane,

the highest correct recognition rate is 93.94% by the same classification method of

logistic model. Hence, the leave-one-out cross-validation can be used to evaluate

the prediction accuracy and make comparisons. Besides, the p-values of statistical

improvement are all significant in most classification methods, except the subject

Jane with the classification method of C4.5.

For second database, in order to see how the statistical technique of MANOVA

influence classification, we compare the classification accuracy with and without

removing the daily and subject dependence in Table 5.3. In additional, the p-

value with statistical significance of the difference in classification between with and

without the technique of MANOVA for every classification method is also attached

in Table 5.3 as well. Among these six classification methods, the highest correct
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Table 5.1: Classification of three emotional statuses by the physiological signals of

subject Alice.

Alice

Method Without daily With daily p-value of

correction correction improvement

Bayesian Network 45.45% 81.82% 0.001

Naive Bayesian 48.48% 75.76% 0.011

SVM 45.45% 78.79% 0.003

C4.5 45.45% 78.79% 0.003

Logistic Model 57.58% 90.91% 0.001

KNN 39.40% 75.76% 0.001

Table 5.2: Classification of three emotional statuses by the physiological signals of

subject Jane.

Jane

Method Without daily With daily p-value of

correction correction improvement

Bayesian Network 51.52% 90.91% 0.000

Naive Bayesian 48.48% 78.79% 0.005

SVM 69.70% 84.85% 0.073

C4.5 66.67% 75.76% 0.211

Logistic Model 60.61% 93.94% 0.000

KNN 63.64% 87.88% 0.011
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Table 5.3: Classification of three emotion status by the physiological signals of 10

subjects and 7 times.

Method Without daily With daily p-value of

correction correction improvement

Bayesian Network 49.05% 64.76% 0.001

Naive Bayes 48.57% 65.71% 0.000

SVM 45.24% 70.48% 0.000

C4.5 50.00% 61.90% 0.007

Logistic Model 54.29% 74.76% 0.000

KNN 42.38% 58.10% 0.001

recognition rate is 74.76% using the classification method of logistic model and all

of these classification method can significant improve the overall accuracy rate after

removing daily and personal effects by MANOVA.

5.2 Analysis of Yeast Genes by Microarray Stud-

ies

In this section, the results by two different kinds of clustering methods in the

microarray study are compared. Firstly, the PSE is considered. The results are

plotted and tabulated in Figure 5.3 and Table 5.4.
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Figure 5.3: PSE comparisons of different number of clusters are shown for two

different clustering methods.
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Table 5.4: The detail values of PSE.

No. of groups 2 3 4 5 6 7 8 9 10

H. Cluster 642.1 559.9 532.4 529.8 531.2 502.2 491.2 486.6 483.4

C. Cluster 590.1 518.3 493.3 477.5 478.4 468.7 468.2 457.6 456.9

From the above comparisons, the results by curve clustering have smaller PSE

than those by hierarchical cluster do. In addition, we will check the consistency for

two clustering method as the mean curves shown in Figure 5.4.

From the above results for two clustering method, it often exist groups in hi-

erarchical clustering that do not have consistent gene expression profiles in three

experiments when the number of clusters is large. By these viewpoints of prediction

errors and consistency, the results by curve clustering are preferred. Then, it is

necessary to decide the cluster size. When the number of cluster size equals to five,

there will be one group that gene expressions appear negative correlation between

BY and RM strains. As the cluster size increases, patterns of negative correlation

are recurrent. However, the number of genes with consistent expression profiles in

every group becomes fewer as the cluster size increases. Hence, we will consider the

cluster size of five in this study.

The expression profiles of consistent genes are listed in Figure 5.5. Expression

profiles in group 2, 3, 4 and 5 show similar time trends and positive correlations in

two strains. However, consistent genes in group 1 show different time trends and

patterns that will be explored below.

The results of time shifts determined by regression models in these five clusters

are listed in Figure 5.6. From Figure 5.6, gene expressions appear to vary later

than glucose consumption do in most groups, except for group 1. Genes in group

1 are interesting because there are negative correlations between gene expressions

in BY and RM strains as shown in the mean curves in Figure 5.4 when the cluster

size is five. The regression results show that the gene expression profiles in group 1
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Figure 5.4: Mean curves of every group are shown for two clustering methods with

different clustering sizes.
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Average expression profiles of three experiments

for consistency genes in two strains


Figure 5.5: The clustering results by curve clustering are shown when the number

of cluster size is five.
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Figure 5.6: Results of regression models with the most significant effects of glucose

association among three time shifts are listed for five groups.
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Figure 5.7: Time profiles of genes for two strains in group 1 are shown when the

number of cluster size equal to five
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Table 5.5: Consistent genes are reported for five groups.

Group Consistent genes included in the group

1 yor128c ydr170w-a ymr120c yol143c yor375c-r ylr346c yor375c

yhr163w yor273c ygr234w

2 ygr148c ylr344w yml063w yol120c yfr031c-a yjr123w ylr075w

ylr388w ynl096c ymr142c ynl301c yor096w yor369c yjl191w

yml024w ypl081w ydr064w ymr116c ynl178w ynl162w yor063w

yol127w ypr132w yhl001w yil018w yhr141c yjr145c ymr242c

ymr230w yhl015w yjl190c ygl147c yil053w ylr061w yor234c

ydr447c yfr032c-a ygr085c yil069c ypl143w ydl083c ydl075w

ylr101c ypl249c-a ygl123w ygr034w ygl103w yjl189w yml026c

ynl209w ypl079w ydr418w ygl030w ygr162w yil052c ylr048w

ymr098c yor312c ydr450w yhr010w yjl136c ymr121c ynl069c

yol040c yol121c ydl082w ydr025w yfl034c-a yer131w ykr094c

yel054c yer056c-a ygr214w ylr029c ynl302c yor293w ypr102c

3 ymr105c ydr178w ykl217w yfl052w ygl121c ygr043c ykl148c

yhr001w-a yer053c-a-r ylr327c ynr002c ypr160w ygl191w yjl166w

ynl015w ylr038c ynl134c ydr529c ylr149c ymr107w ygr183c

ylr366w ymr250w ynr034w-a yol052c-a yer067w yel039c ymr175w

ynl117w q0080 yil160c yml054c ylr178c ynl160w yfl030w

yer150w yer053c-a ymr256c yor394w

4 ynl055c ykr076w ylr270w ylr356w ygl188c yil111w yjl163c

ymr251w-a yol152w ybl045c ydr513w ydr322c-a yel060c yhl032c

ymr181c ymr271c yor120w ypr193c ydl222c ydl124w ydl021w

ydr530c ykl026c ycr063w ylr164w ylr258w ycl064c ydr377w

yhr138c ypr184w yir039c ymr081c yol077w-a ydr343c ykr049c

ynl237w ypl123c yor317w yer015w yml081c-a yol126c ypl135w

ypl222w ydr018c ydl067c yil113w yjl161w ykl142w ylr295c

yml120c yol084w ypr006c ypr002w ypl186c ypl087w ydl110c

ykl016c yll020c yor136w ypl201c ygr174c yjl144w ylr080w

yol048c ypl134c ydl168w ygr194c yjl164c ylr294c yor374w

ypl154c yhl021c yll009c yml131w ynl037c yol083w yor289w

yor285w ypl271w ypl078c
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Group Consistent genes included in the group

5 ydr341c ykr059w yjr016c ymr307w ynl175c ydl081c yer036c

yor182c yor272w ygl029w ykl081w ykr059w-r ymr075c-a yor108w

ymr290c ypl211w yor310c ydr087c yer110c ygl076c ygr272c

yjl158c yjl138c yfl045c-r ynl182c yor344c ydr101c ykl056c

ynl110c ypl160w ydr324c yer055c ygl120c ykl006w yjr063w

yol097c ypl273w ykr057w ykl009w ydl229w ylr167w yor254c

ypl131w yjl177w ylr287c-a ypr187w yhr064c yjr070c ylr121c

ylr406c yml022w yol077c ypr069c yhr170w ylr432w ypl043w

yor340c ypl126w ygr118w yil096c yhr216w ykr081c ydl192w

yfl045c ykl153w ynl132w ypl090c yor247w-r ypr190c

Table 5.6: Degrees of clustering consistency for all genes are tabulated.

Max. no. of occurrence in one 3 2 1

group among three experiments

No. of genes 276 205 9

(56.33%) (41.84%) (1.84%)

are inhomogeneous. The time profiles of consistent genes for two strains in group

1 are further investigated in Figure 5.7. From Figure 5.7, it is observed that the

negative correlations between two strains may be due to the differences in time shifts

or time trends of time profiles in BY and RM strains. Therefore, the regression

results of group 1 in Figure 5.6 show the mixing effects of these two types. These

interesting phenomena occur not only in three experiments of the training set but

also the experiment in the test set. These are interesting observations that need

more investigations in the future.

The lists of consistent genes in these five groups are reported in Table 5.5. The

clustering consistency for all genes can be further evaluated by Table 5.6. From

Table 5.6, the probabilities of consistent genes in three experiments of the training set

among all and reference genes are over 56%. This is very high because the consistent
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probability is only 5/125 = 4% when one gene is randomly clustered 5 clusters for

three experiments. Hence, these consistent genes have consistent patterns among

three experiments in the training set.

5.3 Example with simulation and real data

For the pair of samples consisting of three elements as list in the right part of

Fig. 4.2, we uniformly generate 100 input samples and their corresponding possible

output samples with misclassification probability p = 0.05. For the prerequisite

relation, if the state of Boolean with input genes is ON, then we let the output value

have equal probability with ON and OFF. The data can be arranged as input/output

sample similar to that obtained from micorarray data with time. Namely, the input

of each sample can represent the gene expression at time t and the output can

represent the gene expression at time t+1. For each pair of input and output genes,

we compute the 8 p-scores which represent the 8 basic hypotheses in Table 4.3 for

all of pair input genes and output genes. After calculating, the results are shown in

Table 5.7.

Table 5.7: For the Time Delay Boolean network in figure 1, we generate 100 samples,

and take p=0.05

Samples Hypotheses Relation

Input Output q000=0 q010=0 q100=0 q110=0 q001=0 q011=0 q101=0 q111=0

v1,v2 v
′
1 0.569 0.192 0.213 0.230 0.016 0.251 0.419 0.210

v1,v3 v
′
1 0.459 0.419 0.226 0.253 0.218 0.089 0.344 0.435 (v1or v2)≺v′1

v2,v3 v
′
1 0.547 0.411 0.297 0.422 0.194 0.315 0.432 0.244

v1,v2 v
′
2 0.327 0.272 0.331 0.266 0.018 0.075 0.172 0.214

v1,v3 v
′
2 0.337 0.235 0.323 0.248 0.042 0.081 0.056 0.293 (v1andv3)≺v′2

v2,v3 v
′
2 0.367 0.283 0.316 0.218 0.017 0.169 0.072 0.150

v1,v2 v
′
3 0.210 0.038 0.361 0.015 0.047 0.211 0.034 0.346

v1,v3 v
′
3 0.339 0.478 0.386 0.644 0.640 0.260 0.374 0.467 v2 ∼ v′3

v2,v3 v
′
3 0.274 0.293 0.029 0.029 0.049 0.040 0.291 0.264
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Next, we have to decide the threshold for choosing the relations. When we

increase the threshold of the p-score, there are some relations whose p-scores are

smaller than the threshold, and the relations would been choose. Moreover, when the

number is 0.089, the conflict occurs, since we have (v1 or v2) ≺ v′1 and (v1 or v̄3) ≺
v′1. However, in our model, there are at most two genes which would affect a output

gene. Therefore, we can choose 0.089 as our threshold and include the relations

whose p-score is smaller than the threshold. By these procedure, we can reconstruct

the Time Delay Boolean network identical with Fig. 4.2.

In the area of gene regulatory network study, (Schuller, 2003) summarized regu-

latory cis-acting elements of structural genes of the nonfermentative metabolism and

described the molecular interactions among general regulators and pathway-specific

factors. In the gene regulation of gluconeogenesis by Sip4 and Cat8 pathway, the

carbon source control could be identified for the regulator Cat8; see (Figure 6) in

(Schuller, 2003). For the experimental data collection, we use the microarray ex-

pression dataset of yeast Saccharomyces cerevisiae produced by (Spellman et al.,

1998) and (DeRisi et al., 1997). By these data sets, we can reconstruct the biolog-

ical pathway using our proposed method. Under the Time Delay Boolean network

model, we reconstruct the genetic regulation network as shown in Figure 5.8. The

result is consistent with the genetic network in literature. That is, the restraint of

Mig1 or activation of Snf1 is prerequisite for the decreasing of Cat8. Moreover, the

restraint of Snf1 or Cat8 is prerequisite for the decreasing of Mls1. However, the

negative similarity between Snf1 and Mig1 is undetectable in our current model.

64



1

2

(Snf1 or Mig1) Cat8

(Snf1 or Cat8) Mls1

f

f

 

 

 

 

1f

2f

D

D

Figure 5.8: Network reconstruct from the expression data of yeast Saccharomyces

cerevisiae; see (Schuller, 2003).
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Chapter 6

Conclusion and Discussion

In the study of emotion recognition, we have compared six typical classifiers

by their performances in emotion recognition using physiological signals with daily

and personal correction by MANOVA. As the results mentioned above, these clas-

sification methods can be very useful to perform emotion recognition by using the

physiological signals with daily and personal correction. In particular, we can suc-

cessfully correct daily effects using the statistical techniques of MANOVA.

There are still challenges for future studies. For example, we could investigate

and determine significant features using feature selection and dimensional reduction

methods. In addition, more data collection could be performed in future stud-

ies to improve the accuracy. Real-time applications could be further investigated

for the prediction of emotional states based on the physiological signals with daily

correction. Further adjustments of parameters in classification methods could be

investigated. These are interesting topics that we plan to study in the future based

on the framework of the current research results.

Regarding the analysis of yeast, five major clusters of gene expression time pro-

files were discovered in this study. Four clusters show positive correlations between

gene expression profiles in BY and RM strains. The estimated time shifts of expres-

sion time profiles in these four clusters are mainly 1 hour after the time that glucose

consumption drops. The first cluster shows very interesting pattern of negative cor-
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relations between gene expression profiles in BY and RM strains. In this group,

the estimated time shift of expression time profiles are mainly 1 hour before the

time that glucose consumption drops. These consistent genes show negative correla-

tions in two strains are: yor128c, ymr120c, ydr170w-a, yol143c, yor375c-r, ylr346c,

yor375c, yhr163w, yor273c, ygr234w. The negative correlations in two strains could

be due to the differences of time shifts or the differences in expression shapes in two

strains according to the time profiles from microarray data. The experiment data by

RT-PCR can be studied to confirm the time profiles of consistent genes in the group

of negative correlation of expressions in BY and RM strains in the future. Other

models are possible to analyze these microarray data. For instance, time series mod-

els with dependent errors, longitudinal models, models of functional data analyses

and so forth. Besides, network analysis such as Boolean network or Bayesian net-

work could be used to investigate the causal relationship of these interesting genes.

These will be of interest to investigate in future studies.

For the study of Time Delay Boolean network, we introduced the Time Delay

Boolean network which generalizes the Boolean network model in order to cope

dependencies that have time delay relationships. The approach to genetic network

inference from gene expression data rely on the assumption that only the expression

of a gene is likely to be controlled by a relatively small number (say k) of genes.

Some bounds on the size of data needed for the identification of the Time Delay

Boolean networks under constant of indegree are stated. Moreover, the algorithm

of the network reconstruction from data with noise are developed.

In practice, there exists differences between real biological systems and Boolean

networks. Nodes in a Boolean network take binary values updated synchronously.

In contrast, quantities of gene expression in real cells are continuous and vary with

time. Hence, we need to discretize them. The gene expression which is increasing

or decreasing with time is also a possible discretization choice.

Work in progress is aimed at evaluating the effectiveness of the described ap-
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proach for inferring genetic networks from biological gene expression time series

data. Besides, implementation on some other real biological data is also an impor-

tant task.

For the implement of the inference algorithm, the most complexity is the com-

putation of p-score for each of the n!
k!(n−k)!

input elements and n output elements,

where n is the number of elements and k is the number of indegree. It is an iter-

ative algorithm to compute the MLE for the p-scores by E-M procedure and the

common practice is setting an upper bound for iterations in numerical implementa-

tion. Consequently, this keeps the O(nk+1) complexity for the computation of MLE.

Moreover, the sorting algorithm for the n!
k!(n−k)!

n data cost O(nk+1 log(n)) in time.

Hence, the overall time complexity is O(nk+1 log(n)) in this algorithm.
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