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Statistical Approaches for Emotion Detection, Gene Expression Clustering and
Biological Pathway Reconstruction

student : Tung-Hung Chueh Advisors : Henry Horng-Shing Lu

Institute of Statistics
National'Chiao Tung University

ABSTRACT

This thesis consiststof three different researches in the ‘implement of statistical approaches,
emotion detection, gene expression clustering and biological pathway recenstruction. In the first
research area, we focus on developing an emotion recognition system by the supervised learning.
For the importance of coammunication betweéen human and machine interface, it would be valuable
to develop an implement which have-the ability to-recognize-emotion. We propose an approach
which can deal with the daily dependencesand personal dependence in the data of multiple subjects
and samples. Thirty features:were. extracted from the physiolegical signals of subject for three
statuses of emotion. The physielogical signals measured were: electrocardiogram (ECG), skin
temperature (SKT) and galvanic skin response (GSR). After removing the daily dependence and
subject dependence by the statistical technique of MANOVA, six machine learning including
Bayesian network learning, naive Bayesian classification, SVM, decision tree of C4.5, Logistic
model and K-nearest-neighbor (KNN) were implement to differentiate the emotional states. The
results show that Logistic model gives the best classification accuracy and the statistical technique
MANOVA can significant improve the performance of all six machine learning methods in emotion
recognition system.

In the second part of this thesis, we explore the expression pattern of yeast genes for diauxic
shift in BY and RM strains by Micorarray studies. In particular, we investigate the differential
expressed genes between these two strains. After performing gene filtering, cluster analysis and

regression model to detect the differential expression patterns of yeast genes for diauxic shift in BY



and RM strains, we find a group of genes which have negative correlation in two strains. Besides,
the estimated time shifts of expression time profiles in the group are mainly 1 hour before the time
that glucose consumption drops. Further analysis such as network analysis could be used to
investigate the causal relationship of these interesting genes based on the framework of current
result in the future.

Inference of genetic regulatory networks and biological pathways from gene expression
patterns is a critical problem in bioinformatics. In the third part of this thesis, we propose using the
structure of Time Delay Boolean networks as a tool for exploring biological pathways. We suppose
the indegree of each gene (i.e., the number of input genes to each gene) is bounded by a constant K
and take K = 2 for the instance of inference. In addition, we consider two kinds of relations between
the output gene and the Boolean function with input genes: similarity and prerequisite. In our
inference strategy, we compare every output gene and all the pairs of input genes with the eight
basic relations and calculate their correSponding p-scoré. Since we expect that the smaller the
p-score, the more likely the relation, we combine those consistent relations and find out the most
possible relation between output gene and the_pair of input genes. We illustrate the method using a
simulated example and “a published--microarray expression dataset of yeast Saccharomyces
cerevisiae from experiments with regutation of gluconeogenesis by. Cat8 and Sip4. The results show
that our proposed algorithm is extensible for more realistic network models.

Keywords: Emotion recognition, physiological signals, machine learning, feature selection,
MANOVA, diauxic shift, Microarray, gene filteringreluster-analysis, pathway, Boolean network,

Boolean function, measurement error,:-EMsalgorithm:
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Chapter 1

Motivations and Literature

Reviews

1.1 Emotion Detection by Physiological Signals

Research efforts. between human and machine interfaces have developed over
decades. With the progress.of _science and, technology, the capability and func-
tionality of automatid machines have rapidly progressed and improved. Even so,
there are still challenges to design machines/that can recognize human emotional
states correctlysEssentially, a change in' human emotional states will influence a lot
of external behaviors and physiolegical characteristies, including facial expression,
intonation of speechy gesture, posture, eye expression, bleod pressure, heart beat,
skin resistance and so forth. ‘Hence, it is an important research topic to use these
characteristics to detect the states of human emotion.

In the field of human and machine interaction, it would be valuable to develop an
instrument capable of recognizing a person’s emotional status. Emotion recognition
has become a critical investigation in emotional intelligence and can be applied in
many systems. In 1999, Ark et al. at the laboratory of IBM established a mouse
that can distinguish a user’s affective states with 75 percent accuracy. A robot
with the ability to recognize and determine the underlying emotion of a person can

interact with humans using signals in human speech and facial expression (Breazeal



and Aryananda, 2002; Littlewort et al., 2004). Moreover, other applications such as
driving safety, training and telemedicine also can implement an emotion recognition
system to benefit users (Nasoz et al., 2004).

In previous research about developing an emotion recognition system, features
of facial expressions are most commonly used as the determinant attribute and
have successfully obtained fairly high rates in emotion recognition (Yacoob and
Davis, 1996; Cowie et al., 2001; Hu et al., 2002; Fasel and Luettin, 2003; Zhou and
Lin, 2005). Besides, there are also studies employing signals of speech and vocal
intonations to recognize states of emotion (Dellaert et al., 1996; Nwe et al., 2003).
Combining facial and voice expression has also been used in distinguishing affective
emotional states recently (Busso et al., 2004). Howevet; these two characteristics are
sometimes hardly recorded if the subject is moving. Therefore, recognizing emotion
using physiologicalssignals, which.can be recorded for a moveablessubject, is a critical
study.

In the study of affective physiological states; Picard et al. (2001) at MIT Media
Laboratory have tried to differentiate cight different emotions of' a single person
using physiologieal characteristics recorded every day over six weeks, resulting in an
81% overall classification accuracy rate by using a hybrid method involving sequen-
tial floating forwardssearch and Fisher projection. For handling the physiological
signals with short-term gegments, Kim et al. (2004) proposed an algorithm to detect
emotional statuses based on their experimental psychosomatic responses for multi-
ple subjects and got the correct classification rate of 78.4% by the machine learning
method of support vector machine (SVM). Nasoz et al. (2004) employed three clas-
sification methods to discriminate six different emotional states from physiological
signals collected via non-invasive technologies. Rani et al. (2006) have applied four
different classification methods to determine affective states from physiological sig-
nals and have made comparisons of these methods.

Among emotion recognition studies, there are typically two approaches: one



against one (Picard et al., 2001) and one against all (Kim et al., 2004). For the one
against one approach, we can collect the labeled psychosomatic signals of a single
subject on multiple observations and learn a trainer model out of the same person
so that we can decipher the unknown emotional states of that person as a test of his
(her) physiological signals. Though it has the benefit of removing the inter-subject
difference for subject-based learning, this approach can only recognize one subject’s
emotion. Alternatively, we can measure the physiological signals of emotion from
multiple subjects and learn a trainer model out of them. Hence, we can distinguish
other people’s emotion status using this system. In practice, this user-independent
system is believed to be more convenient in the field of emotional recognition studies.
However, the assumption of independence between physiological signals and subjects
is not reasonable nor practical:

Furthermore, daily physiological signals can vary even for the same state of
emotion. The daily effect could-be removed;using the statistical technique of mul-
tivariate analysis-of yariance (MANOVA). Then, typical machine learning methods
could be applied to discriminate and predict the emotional state. Hence, the purpose
of this work is to advance the improvement of emotion recognition by eliminating
inter-subject differences and removing the daily.effects by MANOVA with statistical
machine learning.

Physiological signalg ineluding skin temperature wariation (SKT), galvanic skin
response (GSR) and electrocardiogram (ECG) were implemented in this study.
These physiological signals can be measured conveniently without any annoying
sensors attached on the face or scalp. The subjects would induce three different
emotional statuses by themselves: anger, joy and neutral. Besides, we would use
the techniques of multivariate analysis of variance (MANOVA) and six different

classification methods to discriminate various states of emotion.



1.2 Analysis of Yeast Genes by Microarray Stud-
ies

Although yeast Saccharomyces cerevisiae can utilize various carbon substrates
as a biomass and energy source, fermentable sugars such as glucose or fructose are
clearly the preferred carbon sources over nonfermentable substrates such as ethanol,
glycerol, lactate, acetate or oleate (Schuller, 2003). When glucose is present, the
enzymes required for the utilization of alternative carbon sources are synthesized at
low rates or not at all. This phenomenon is known as carbon catabolite repression,
or simply glucose repression (Gancedo, 1998). Analysis of genomic expression has
revealed that many genes are differentially transcribed in response to varying glucose
levels (DeRisi et al., 1997).

Yeast cells undergo fermentation jpwhich metabolizes sugars (glucose) and pro-
duces ethanol whén sugars are abundant; as the sugars are depleted, cells undergo a
”diauxic shift” in.which cells switch to a fully respiratory metabolism (DeRisi et al.,
1997; Gasch et_al., 2000; Schuller, 2003). It is 'very important to understand the
biological process of 'diauxic shift in fermentation for yeast. Qur major goal is to
understand the expression evolution-ef-genes-invelved-in this transition (the diauxic
shift) and in non-férmentative metabolismjwhichis not well understood.

A laboratory strain (BY4741) and a wild strain (RMl1-1la) are used in this study.
These two strains proliferate rapidlyrand. have propagated under different environ-
mental conditions for decades. These two strains also display substantial divergence
in gene expression and are ideal for studying expression divergence within species
(Brem et al., 2002). We performed microarray analysis to study the expression pro-
files of genes during the diauxic shift. In particular, we investigated the differential
expressed genes (DEGs) between these two strains. Our results showed that the
RM strain may experience the diauxic shift earlier than BY strain and that many

of the key genes related to the diauxic shift are turned on earlier in the RM strain.



1.3 Inference of Biological Pathway by Time De-

lay Boolean Networks

In bioinformatics, inference of genetic regulatory networks and biological path-
ways from gene expression patterns is a crucial issue. Due to the invention of DNA
microarray technology, thousands of gene expression can be monitored and mea-
sured simultaneously (DeRisi et al., 1997). However, it is still a great challenge to
identify complex biological networks, since the number of combinations with the
gene interactions is huge. In recent years, there has been a dramatic proliferation
of research concerned with network reconstruction problems.

Clustering is such an important method for grouping genes which have similar
expression patterns (Eigen et al., 1998). In the framework of clustering, it is an
important task to define the degree of similarity between genes. By the method of
clustering, we cadgroup genes which have similar expressions. However, we still can
not find the causal relationship between genes. Hence, apart from the relations of
similarity, we also have to consider another ¢ausal relationship between genes.

There have been many methods proposed in the literature for'the inference of
genetic regulatory networks. ‘Over the-past-two-decades, Bayesian networks is an
important technique and hastbeen extensively studied (Pearl, 1988; Jensen, 1996).
Bayesian networks ista graphical model that contains dirceted probabilistic rela-
tionships between elements: The structuresof @ Bayesian network consists of two
components. The first component comprises vertices which corresponding to a set of
variables and a set of directed edges between variables with Markov properties. The
second component describes a conditional distribution for each variable, given its
parents. Recently, Bayesian network models have been applied to analyze microar-
ray expression data (Friedman et al., 2000; Heckerman et al., 1995). Although the
Bayesian networks are complete models and some algorithms searching for Bayesian

networks have been developed, the computational cost is still fairly large. Even there



are only a sparse number of variables, sample sizes of several hundred are required
for achieving high accuracy of estimation.

This study is based on a much simpler model: Boolean networks. Boolean net-
works were originally introduced by Kauffman (Kauffman, 1969) and received much
attention for inferencing gene regulatory networks. In Boolean network models,
gene expression states are quantized to one of two states: ON and OFF. Under the
structure of Boolean networks, the target gene is influenced by a set of genes with a
Boolean function. For each gene, if the indegree (i.e., the number of input genes to
each gene) is bounded by a constant K, only O(logn) pairs of state transition are
necessary to reconstruct the original network with n nodes (Akutsu and Miyano,
1999). However, the deterministic model predicted by'the input genes and Boolean
function is criticized.

In 2005, (Li and Lu, 2005) proposed another relationshipsbetween two genes:
prerequisite under the Boolean.network medel. " If .a Boolean function with one
or several genesis prerequisite for a target output gene, the target gene will be
influenced by the Boolean function with.several input genes. However, the target
gene may not beé expressed right now; but at another future fime. Hence, the
induction of the Boolean funetion with input genes is necessary for the expression
of the target gene, and we also treat these relations as time delay affection. In this

paper, we would infuse these additional relations.forsmore generalized systems.

1.4 Organization of The Dissertation

This dissertation is organized as follows. In Chapter 2, we focus on the study of
emotion detection. First, we present the procedures of data collection and features
extraction from the measured physiological signals. Then, we discuss the problem
of day-effects and remove daily effects using MANOVA. Besides, we also consider
six classification methods : Bayesian network learning, naive Bayesian classification,

support vector machine (SVM), decision tree of C4.5, logistic model and K-nearest



neighbor (KNN). In Chapter 3, we discuss the analysis on yeast genes of microarray
studies. We perform gene filtering, cluster analysis and regression model to detect
the differential expression patterns of yeast genes for Diauxic shift in BY and RM
strains. In Chapter 4, we propose a Time Delay Boolean network model and its
identification algorithm for the inference of biological pathway. We also discuss
the theoretical results concerning the number of gene expression patterns required
to identify the Time Delay Boolean network model. Moreover, we illustrate the

method by a simulated example and show some exploratory results on the regulation

of gluconeogenesis by Cat8 and Sip4 pathway using the expression dataset that have




Chapter 2

Data Collection and Statistical

Application on Emotion Detection

2.1 Collection“of The Data

In the research of emotion recognition, the collection of physiological signals plays
a important role for next analysis.. In this study, the'database of physiological signals
and corresponding emotional states were collected and obtained from the Center for
Measurement Standards of the IndustrialsTechnology Research Institute (ITRI) in
Taiwan.

The first group included two subjects, Jane.and Alice; they are both female and
in their twenties. Ewery morning between 8:30 am to 10:00 am, they were invited
to our laboratory. They weresasked to feel a neutralemotion for 200 seconds first,
followed by an emotion of anger for at least 120 seconds and finish with a emotion of
joy for at least 120 seconds. Meanwhile, those physiological signals were measured
and recorded by MP100 system in BIOPAC (http://www.biopac.com). Regarding
the approach in eliciting emotion, the method we used is similar to the efforts
pioneered by Picard et al. (2001) with a slight modification. The methodology is
subject-elicited instead of event-elicited, open-recording and emotion-purpose. To
prevent differences caused by different external stimulations on different days, we

do not rely on any auxiliaries to arouse the emotions of subjects. The subjects were



simply asked to feel an emotion without any assistance such as movies, voices or
any other outer stimulus; namely, we do not employ a rigorous Clynes protocol as
Picard et al. did. Data gathered from 11 days were used in this study. The default
sampling rates were 256 points in one second for each state of emotion. An example

of every emotional state is given in Figure 2.1-2.3.
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Figure 2.2: Three physiological signals were recorded when the subject was asked to
feel joyful. The physiological signals were sampling at 256 samples for every second

and the measured times were 120 seconds.
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Figure 2.3: Three physiological signals were recorded when the subject was asked to
feel angry. The physiological signals were sampling at 256 samples for every second

and the measured times were 120 seconds.

For the second datase ) - adults: five men and five
women aged from twer i c " Anorning subjects were invited

to our laborator [ olled te ature humidi At the first practice,

physiological signals of the gubje 5 d and recorded by a MP100
system in BIOPAC over the whole expe For every subject, the data we gather
are from using different pictures over seven days.

After gathering good affective data, the next step was the extraction of rep-
resentative features from physiological signals. In this study, we would extract 6
features from the collected SKT data, 6 features from the GSR data and 18 features
from the ECG data. Then, the daily dependence and personal dependence would

be corrected by the statistical technique of MANOVA. Finally, the methodology of
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Output Results

A 4
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MANOVA
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Figure 2.4: Flow chart in the study of emotion Tecognition.

leave-one-out dress-validation was performed.to evaluate the prediction accuracies
of six classifiers,.The flow chart of thé proposed emotion recognition system is given

in Figure 2.4.

2.2 Features Extraction

Much research has shown significant, correlation between physiological signals
and emotional status. However, unlike vision or speech recognition, physiological
signals in different emotion statuses are not easy to be distinguished by a person
immediately. Hence, it is very important to extract representative features that
characterize main patterns from the raw physiological signals for classification pat-
tern. For completeness, we would consider most of the features proposed from other
literature (Picard et al., 2001; Kim et al., 2004).

For the physiological signals of GSR and SKT, we would use the same features

11



as Picard et al. (2001). Those six statistic features were the mean, standard devi-
ation, mean of the absolute values of the first difference, standard deviation of the
first difference, mean of the absolute values of the second difference and standard
deviation of the second difference of the sequence.

The physiological signals of ECG had been calibrated to heart rate variability
(HRV) with baseline correction and their R peaks detection. Then, six statistic
features were considered as well. In addition, twelve features were extracted from
the power spectrum transformation, where the range of the high-frequency (HF) was
set as 0.15~0.40 MHz, the median-frequency (MF) was set as 0.08~0.15 MHz and
the low-frequency (LF) was set as 0.04~0.08 MHz. In this study, the twelve features
we selected were LF, MF, HE, TOTAL (LF+MF+HF), LF /TOTAL, MF/TOTAL,
HF/TOTAL, LF/HF sMFE/HF, (LF+MF)/HF, (LF+MF)/ZOTAL and median of
HRV.

2.3 Daily and Personal Correction

2.3.1 The . Problem of Day-effects and Person-effects

There are many external stimilis-such-as-temperature and humidity, which can
affect a person’s physiological 'signals. In“addition; a person’s diet and sleep pat-
terns can also cause variations.in physiology. Hence,.a.person could have a different
expression of the same physiological signal-on different days even when he experi-
ences the same emotion. Although wehave made an effort to control these annoying
factors, there are still some factors, such as hormones or a person’s baseline mood,
that are not controllable. Therefore, we must remove the day-effects for the emotion
recognition study.

In a previous study, Picard proposed some methods to handle the problem of
daily variations. Suppose we let the notation D and F' as the number of experimental

days and the number of features, respectively. In the method of day matrix for
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handling day-dependence, the method Picard proposed have to enlarge the original
D x F matrix as D X (F'+D—1) matrix. Hence, if the experimental days are long, we
must have a large amount of training day data, and consequently the computational
overhead would be increased. Even though another method of baseline matrix for
handling day-dependence would have avoided the above defect, the state of neutral
emotion would be used as the baseline. Hence, we have to lose the opportunity
to recognize the neutral emotion, and our number of states of emotion would be
reduced.

Besides, in most previous studies of affective status from multiple subjects, the
emotion recognition system treated the subjects and physiological signals indepen-
dently over the same emotional status. However, beéause of people with different
characteristics such ag, sex, age, weight and so forth, the physiological signals of
different subjects would have different expresions even they are experiencing the
same emotion. Henece, it is necessary to develop ‘an algerithm or. method that can

compensate the personal variations and day-to-day: variations.

2.3.2 MANOVA

Since the problem of personal variations and daily variations would significantly
influence the patterm classification in the system of emotion; detection, we must
remove the day-effects and person-effects for the emotion recognition study. In
this project, we use the technique of multivariate analysis of variance (MANOVA),
which can be used even on a large number of experimental days; in the meanwhile,
it doesn’t have to reduce the number of states of emotion. After getting those
30 features from physiological signal of ECG, SKT and GSR, we would transform
the features by the statistical technique MANOVA to remove the day-effects and

person-effects. The MANOVA in this study is expressed as Eq. (2.1).
Zijk = i + Tij + Tik + Tijie + €ijnl (2.1)
where 1 =1,2,---,1, j=1,2,---,J, k=1,2,--- K, and [ =1,2,---, L.
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The notation of Z;;; represents the value of i feature measured in 5™ subjects,
k" days, and [** sample. For the first database, the value of I is 30, Jis 1, K is 11 and

L is 3. In the second database, the value of I is 30, J is 10, K is 7 and L is 3. We let

ijl = (lekl7 Z2jkla T lekl)T> n = (Ml,ﬁbz, te ,MI)T, Tj = (7'1]‘, T2j, """ >TIj)T7 Tk =
(le77—2k> T ,le)T, Tjik = (lelmTija T 77—Ijk)T7 and ikl = <€1jk1762jkl> Tt eljkl)T-
Eq. (2.1) can be re-expressed as Eq. (2.2)

Zikg = Wb+ Tj + Tk + Tjk + €jul (2.2)

where j =1,2,---,J, k=1,2,--- K, and [ =1,2,---, L.

The value p is an overall mean value, the value 7; represents the 4t per-
sonal effect, the value 7, répresents the & daily effect, and the value Tjk Tep-
resents the interact efféct of daily and personal facter with the constraints that
Z}']:1 7; =0, Zszl 7. = 0, and Z;-’zl ZkK=1 Tjk = 0. The I-dimensional error vector
eixt = (€1jkl €ajrips s €rjxt) T follows angd-climensional multivariate distribution with
a zero mean vector and a positive definite matrix >. Hence, the least squared
estimates of [, 7;, 7, and 7;, are T Zj 37, Zp— Z and Z]-k — Zj — 7y +Z
respectively, whete Z = ﬁZ}]ﬂ St Y ﬁszzl Si Ziw, Zi =
+ E}-]:1 S Zivigign = %Zle Zip. Therefore the estimate Zijgy — 75 — 7 — Tj =
Zikl — ij + 7 cansbetused to represent data after correction and we will use
Xijkl = Zijrl — Zijk + Zj as our_attribute in the following classification methods.

For the comparison of two elassification results, we treat the result of discrimina-
tion as a Bernoulli trail for every sample. Then, two sample t-tests could be applied
in testing the difference between the classifiers. In this study, we use the p-value of

the statistical improvement to compare the results of classification with and without

daily and personal correction by MANOVA.

2.4 Pattern Classification

Tools of machine learning could be applied to discriminate the emotional states
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by the physiological signals. After daily and personal correction, we used the estima-
tor Xyju = Zijm —Zijk+Zz- as our attribute for pattern classification of the emotional
state Yjg, which represented the emotional state in j subject, on the £ day, and
for the {** sample. We let the variable Y represent the emotional status and the
variable X; represent the value of i feature after removing the daily and personal
correction. Six selected classifiers were tested for their performance and accuracy us-
ing the method of leave-one-out cross-validation. All of these six classification meth-
ods were performed by the software Weka (http://www.cs.waikato.ac.nz/ml/weka),
and all of the classifiers used the default option in Weka. Further investigation of
other options for classifiers in Weka could be studied in the future. The methods of

classifiers were described astbelow.

2.4.1 Bayesian. Network

A Bayesian network, also.called Bayes nets, is & directed acyclic graph (DAG)
which consists oftwo jcomponents. The first-component G'comprises vertices cor-
responding to @'set of variables V' = {14, V5, ..., Viy} and a set of directed edges
between variables with the Markov properties. The second component 6 is attached
the potential table P(V;|Uy,), for.each variable V; in V' with the eorresponding par-
ents nodes Uy, (Pearl; 1988; Jensen, 2001). Given the structure.GG and the parameter

0 , the joint probabilitysdistribution can be written as Eq. (2.3):

PE ) =TI R(VEOw: )- (2.3)

=1

For the purpose of learning take place in a Bayesian networks, we have to
reconstruct the network structure and the field values. In this study, we apply
the hill climbing algorithm and simple estimator to reconstruct the network and
estimate the parameters. After getting the network structure, we used junction tree
methods which can convert our DAG to a tree by clustering variables (Lauritzen
and Spiegelhalt, 1988). Then an efficient algorithm using belief propagation can be

applied for our inference. In our study, we would use the estimator X, X, ..., X7
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PX,IY) PIX,IY P(XnlY)

Figure 2.5: The fiéf 2 > he e Bayesian classifier.

and Y as the predict ulate the conditional

distribution of ructed Bayesian

network structure

2.4.2 Naive

A naive Bayesiar e Bayes’ theorem.

The network structiire. » two assumptions in the

lustrated in Figure 2.5. Ther ;i

naive Bayesian classifier as John and 1995). (i) Given the class

attribute (Y), the predictive a tib 1 .y X1) are independent. (ii) There

were no other attributes affecting the prediction process. By the Bayes’ theorem,

PY =y P(X =alY =y)

P(Y =y|X =z) = O =0

(2.4)

We can predict the class attribute by finding y that maximizes P(Y = y|X =
x) in Eq. (2.4) given the predictive attributes z. As the predictive attributes

(X1, X, ..., X1) are assumed to be conditionally independent, we have

PX =zlY =y) = [[ P(Xi = x]Y =y). (2.5)

i=1

16



For the numeric attributes, we would assume that X; is distributed as N(py, afy)
given the class Y =y for every i = 1,2, ..., [. Hence, we can estimate the parameters

by the maximum likelihood estimates for each class.

2.4.3 Support Vector Machine

Support vector machine (SVM) (Vapnik, 1998) is a popular classification method
used by a lot of research currently being conducted in the field of emotion recognition
(Kim et al., 2004; Chuang and Shih, 2006). Suppose {(z1,y7), (5, y3), ..., (x5, y:)}
is the training set, where y’ is 1 or -1, denoting whether z} belongs to one of two
classes. In SVM, it is aimed to minimize the cost function jw”w + C' Y1, & under
the constraints y; (w?z} + b) =1 =& for i = 1,24 n. By using the Lagrange
multiplier method, the ‘original problem can be transformed as optimizing «;s in
Eq. (2.6).

arg max Qla) = i:ozi — ;iiaiajy;ky;xfx;‘ s.t.0 <oy < C Vi

=T i=1 j=1

Yaw; = 0. (2.6)
i=1

After obtaining a;, we can apply.the following decision funetion for prediction
using the new predictive attribute of @, = f (i) = sign(> 15 v o K (Tpew, 1) +
b), where K() is thegkernel function. In this study, we use the Gaussian kernel
and the sequential minimal optimization (SMO) algorithm (Keerthi et al., 2001).
Besides, because our case has multiple classes (three emotional statuses), we used

the approach of pairwise classification by the one-against-one approach in the SVM

classification method.

2.4.4 Decision Tree of C4.5

Decision tree is also a common method used in classification (Hunt et al., 1966).
(4.5 is a hierarchical data structure using the divide-and-conquer strategy to grow-

ing decision trees (Quinlan, 1993). In decision trees, each decision node using a test
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function to partition original data D into subsets Dy, Do, ..., D,. Suppose the set
D consists of C' numbers of classes and p(D, j) denotes the proportion of cases in D
that belongs to the jth class. We can define the information gain by a test T with
m outcomes as Eq. (2.7):

| D
| D

Gain(D,T') = Info(D) — i x Info(D;). (2.7)

where Info(D) = — ZJC=1 p(D,j) x log(p(D, 7)) and it can reach its maximal when

there is one case left in each subset D;. The split information is defined as Eq. (2.8):

o~ Dl

Split(D, T) = =3 1D

x log( D] ). (2.8)

For every possible test, the t over its split information is

Logistic regre ;‘ is ac thod to mode a for classification
(Le Cessie and 'V W . Stppos e ar amples with ¢ classes
and I attributes r ma : (¢ — 1) matrix.

The probability t ;i sle, gi he valt . in the j" class but not

e—1. (2.9)

The probability that the i'" sample, given the value of z}, in the last ¢! class is

shown in Eq. (2.10).

1
clerp(xiBy) + 1

Pua) =1 - 2 Pula) = (2.10)

The log-likelihood [ of the data (K, X)) under this model is shown in Eq. (2.11).

18) = YU Kidn(Pa(e)) + (1 - z K5 In(1 — z R} (@11

i=1 k=1
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The indicator variable K7; = 1 if the i'" sample belongs to the j* class, where j # c.
Otherwise, K7 = 0 if the i"* sample belongs to the last ¢ class. The parameter
matrix B can be estimated by the maximize likelihood estimates of the likelihood

function, ().

2.4.6 K-Nearest Neighbor (KNN)

The k-nearest neighbor (KNN) algorithm is one of the classical classification
methods that have wide applications (Aha et al., 1991). KNN compares the similar-
ity between testing data and every training data. Then it uses the top k similarity

categories of training data to decide the ory of the testing data by a weighted

vote. For any testing datadof’ H ata G1,Ga, ..., Gy}, we would

(2.12)
The notation o The set S =
{G1, G, d the notation of
I(G;,Cp) € {0 are tie cases in
the classification Wi e the g -i EBE | index as the corresponding
category of testing dat . 'iudy, we would use t_l_lé' ; ean distance as the
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Chapter 3

Data Collection and Analysis on

Yeast (GGenes of Microarray Studies

3.1 Materials and Microarray Experiment

S. cerevisiae was used as the model organism for studying expression evolution
because it is experimentally easier to manipulate ‘and its genetics.and genomics are
better known than most other eukaryotes. A lab strain (BY4741) and a wild isolate
(RM11) are used in this project. The BY strain is a direct descendant of S288C,
which was generated in the 1960s.."The RM strain is a haploid derivative from a
California vineyazd.

The cultures of BY4741 and RM11-1a were separately started at OD600=0.1
and were grown in YPAD media (which contains 2%glucose) at 30°C with 250 rpm
shaking. Overnight cultures of BY4741 and RM11-1a were used for preparing the
starting cultures. The yeast cells we harvested at 4hr, Shr, 6hr, 7hr, 8hr, 9hr, 10hr,
11hr, 12hr, 13hr, 14hr, 16hr, 18hr and 20hr after inoculation and the glucose content
of media at each time point will also be measured. Each microarray experiment
was conducted with 0.5ug of purified mRNA from each strain. The microarray
was scanned with GenePix 4000B microarray scanner (Axon Instruments) with the
GenePix 5 software package.

We currently adopt the reference design in the array experiments. The cDNA
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sample from the 4hr culture was labeled with Cy3 and used as the reference sample,
whereas RNA sampling from different time points were labeled with Cy5 and used
as experimental samples. Each experiment was repeated four times. Dye-swapping
was also performed in each set of experiments to eliminate dye bias. Theoretically,
loop design may be more efficient in finding significant genes when the number of
variety in treatment is small or time course experiments are considered. However, we
prefer reference design because there is a common reference that is easy to interpret
and to include new microarray data with the same reference. Importantly, reference

deigns are more tolerant to experimental errors.

3.2 Data Extraction

We used several statistical analyses.to. eliminatesbackground noise and to obtain
more meaningful expression data. First, the background correction was applied to
remove the background median from the foreground median to obtain the expression
intensity for every dyelin one spot. If the intensity value after background correla-
tion is small than zero, we treated the.experimental value of this spot as an invalid
value because the dye efficiénciesiof Cy3 and Cy5 could be different. However, this
kind of dye effect"can be normalized by thefactor between the medians of Cy3 and
Cyb intensities in one microarray. There are two duplicated spots for one gene, and
there are two swapped arrays. Therefore, there.are four spots in total for one gene

per strain at one time point that are obtainedlasfollows.

I532ijr/Medianjzlw.,6368,74:1,2{15322-]-7. in array Z} .
1635;;, /Median;_1, 368 ,=1,2{1635;; in array i}’
I635ijr/Medianj:1’._7636877‘:172{]6351‘]‘7» in array ’L} .

If Swap=0, Ratio;;, =

If Swap=1, Ratio;;, =

.....

where

I532;; = F'532_Median;; — B532_Median;; for Cy3,
1635;; = F635_Median;; — B635_Median;; for Cyb,
i=1,2,...,176 (176 array files in total),
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j=1,2,...,6368 (6368 genes in total),

r = 1,2 (two replicated genes in every array).

The average of the valid ratios in these four ratios for one gene was used for
further normalizing the dye and block effects from a pair of two swapped microarrays
with two duplicated spots in one array. Furthermore, the log, transformation of ratio
was used to evaluate the relative gene expression of one gene in a strain at a specific

time referring to the common reference at t4.

3.3 Strain Normalization

Because the denominators of expression ratios are different in BY and RM strains,
we can adjust themyto have the same denominater for further comparisons. We
performed another six microarrays with two. yeast strains at t4., Hence we can get
the ratio of RM_t4/BY _t4 for each gene by the average of expression ratios in these
six microarrays.”This ratio was used to adjust the denominator as the expression of
BY _t4 for every gene in every microarray.

The analysis . flow chartlis illustrated in Figure 3.1. The microarray data in
experiment 1, 3 and 4 were.used as the training set because-they have common
experiment time pomts. The microarray data in experiment2 was used as the test
set to evaluate the performance of analysis results from the training set. Genes
were filtered by the regression coetficients of expression vs. time in the training set.
These unfiltered genes were clustered by the methods of hierarchical clustering and
curve clustering by the training set of microarray data. The clustering method was
selected based on the performance of clustering results in the training and test sets.
The numbers of clusters were also determined accordingly. For every cluster, the
time shift was estimated by regression tests between gene expressions and glucose

consumptions. The details of analyses are discussed in the following sections.
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Simultaneously use Exp. 1, 3 Clustering with hierarchical

and 4 that have the same clustering and curve
experiment time point clustering
Y A4
Select one method of
Strain normalization clustering and decide the

number of clusters

A 4

Estimate time shift for every
cluster by the regression of
expression versus glucose

consumption

Filter genes by regression
coefficients of expression
versustime

Figure 3.1: The flowchart_in the study-of of yeast genes.

3.4 Gene Filtering

A regression line was uded te detect expression trends for gene expression vs.
time for every gene.dn one strain'and one experiment in the training set (Exp. 1, 3
and 4). The following regression model was used for every gene in one strain and
one experiment,

log(Ratio) = ap + aaltme + € (3.1)

where log(Ratio) is the log ratio of gene expression, Time is the time point ranging
through 5 to 13, g is the intercept, o is the regression coefficient of slope and ¢ is
the random noise.

The goal of gene filtering is to filter genes that do not have significantly and
consistently differential expressions over time in the training set of microarray data.

The regression model in (3.1) is used to detect the expression trend for every gene
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in one strain and one experiment.

For every gene in one strain, there are three regression slopes in experiments
1, 3 and 4. The CV which is calculated as the ratio of standard deviation over
the average of three slopes is a measure of SNR. If the CV value is large, then
the expression slopes vary a lot, or the average is small among three experiments.
Hence, those genes with CV values larger than a threshold can be filtered, and a
threshold of 2.1 is used in this study. Then, the average of three slopes is used to
partition the unfiltered genes to three groups. If the averages of three slopes in BY
and RM strains are of the same signs, (+,+) or (—, —), then they are positively
correlated. Otherwise, they are (+, —) or (—,+), which are negatively correlated.
A lot of unfiltered genes haveé patterns of positive corrélation in two strains, and few
genes have patterns ofinegative correlation. For the group ofspositive correlations in
two strains, two subgroups are constituted using a threshold for the absolute value
of the difference;between the.average slopes;in two strains, like a threshold of 0.3.
This partition is“considered to keep genes that.hayve a large expression variation in
one strain but not in the other strain.

Consequently; there are three differént groups we selected. For the first group
of positive correlation .and "large«differences of average slopes in two strains, all
unfiltered genes are kept because they have a strain with largeiexpression variation
but not in the other strain. For the second group ofpositive correlation and small
differences of average slopes in two strains, the maximum of absolute values of
average slopes is used to keep genes with large expression variation in one strain,
like a threshold of 0.3499. For the third group of negative correlation in two strains,
the maximum of the absolute values of average slopes is used to keep genes with
large expression variation in one strain, like a threshold of 0.2. As a result, there
are 490 genes kept in this study.

The above approach of gene filtering is used to keep genes that could have signif-

icant expression patterns in this study. These 490 genes will be further selected after
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checking the clustering consistency and will be investigated in the later chapters.

Other methods of gene filtering could be studied in the future.

3.5 Cluster Analysis

The expression profiles of unfiltered genes will be used to perform cluster analysis.
Suppose one gene is clustered into groups gl, g2 and g3 in a training set of three
experiments after clustering by one method. Let M1, M2 and M3 be the mean
expression value of each group at one time point. Then, the predicted expression
value for the gene at that time point is defined to be the average of M1, M2 and
M3. Thus the prediction square error (PSE) is the value of the square of the error
between a predicted expression and the observed expression of the gene in the test

set. Hence the PSE is"as follows:

4907 14 R2 " predij)z
PSE= ZZ ’ (3.2)

i=1 j=1
where R,;; means the' gene expression of the i gene in the j microarray data,
and Rpyeqq; is'its predicted value bysthetclustering method. For'every gene, the
microarray dataseontain 14 gene‘expressions at seven time points for two strains in
experiment 2. If the PSE of. one, clustering:method is small, then this clustering
method is a good method: Through the comparisons.of PSEs, we can select one
method from different clustering methods.

The clustering consistency for one gene in the clustering results using three exper-
iments in the training set will be also checked. That is, it will be examined whether
the expression time profile of one gene in different experiments will be clustered into
the same group. One example is illustrated in Figure 3.2. Genes with clustering

consistency will be selected to find the representative curves in every group.

3.5.1 Hierarchical Clustering

Hierarchical clustering is a nonparametric method to cluster data (Eisen et al.,
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Figure 3.2: In th stering consistency.
1998). The basie ' ] ering is-tc ct ee based on the
similarity (or dissimi the PG 0 data are similar,
they will be clust
distance matrix,"D; whi he pairwise distanc _expressions of any two
data. So, it is as i g e follo two distances are commonly used
in literature and the
Euclidean distance:

(3.3)

(Pearson’s) Correlation distance:

cov(z", 2%)
\/var(z’") X var(z®)

where 2" and z* are two observation vectors in d-dimensions, 27 and z] are gt

dz",z°)=1—=cor(z",2°)=1—

(3.4)

components of two observation vector, and cov and var are the sample covariance

and variance.
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In the second step, it is necessary to define the linkage that is the distance
between two groups. There are three kinds of linkages that are commonly considered
in literature.

Single linkage: the distance is defined as the smallest distance between all pos-

sible pairs of elements of the two groups, G; and Gj:

d(G;,G;) = min  d(z",2°). (3.5)

ZTGGi,ZSEGj

Complete linkage: the distance between two groups is taken as the largest distance

between all possible pairs:

e d(2, ). (3.6)

max
I C GRSk G

Average linkage: the average of distances between all possible pairs in two groups:
d(G;)Gy) =average s og, . seq, UE , 2°): (3.7)

The algorithm of agglomerative clustering will.be used for hierarchical clustering in
this study. First, every observation is treated as a group itself. Then similar groups
are merged to form Jlarger groups hierarchically until all groups are merged into a
single one.

We will try twogkinds of distances and three kinds of linkages (single linkage,
complete linkage and average linkage) to investigateswhich eombination is better for
the log ratio of expressions obtained from microarray data. Therefore, there will be
six different results for hierarchical clustering as shown in Figure 3.3.

By comparing PSEs for different cluster sizes, it is observed that the results
of hierarchical clustering by Euclidean distance and the complete linkage have the
smallest PSE when the cluster size is large than 2. Hence, the hierarchical clustering
by Euclidean distance and the complete linkage will be used in this study. The

dendrogram of this hierarchical clustering is shown in Figure 3.4
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Figure 3.4: The dendrogram of the hierarchical clustering is shown for 30 nodes.
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3.5.2 Curve Clustering

The clustering method that could be applied to cluster expression profiles can be
curve clustering. This method has been proposed to cluster curves based on mix-
ture models (Gaffney, 2004; Gaffney and Smyth, 2004; Gaffney et al., 2007), and the
toolbox for matlab is available at (http://www.ics.uci.edu/ sgaffney/CCT/). Ba-
sically, that method assumed a mixture model with an expectation-maximization
(EM) algorithm to estimate parameters in the mixture model, which are reviewed
below. Suppose that y; is a sequence of curve measurements that are observed at
n; time points in x;. The author defines a cluster-specific conditional probabilistic
model, which is denoted as py(y;|@;;0;) for the probability distribution in cluster k
with parameters 6. In this study, the linear polynomial'regression model (LRM) is
investigated and performed well for the microarray, data under investigation. Poly-
nomial regression_models of y; on z; with a Gaussian noise can be summarized with

the following equation:
Yi :Xzﬂ—i-ei, €; NN(O,O'ZI), (38)

where the n; X p.regression matrix X; 1s the Vandermonde matrix evaluated at x;,
[ is the p-vector of regression coefficients, ¢; is the-Gaussian noise with mean 0 and

covariance matrix o*I 2 The p-th order Vandermonde mattix evaluated at z; is equal

to

2 1
-1

il 2

2 2

Xi -

2 p—1

1z x;, - xy,

Then, the conditional probability of y; give x; is distributed as N (y;| X;3, 021).

The polynomial regression mixture model of K clusters is defined to be:

K K
p(yilwi, 0) = awpr(ilzi, 0k) = > N (yi| X By, o1 1) (3.9)
=1 P

where «y, is the mixing probability in k' cluster, p; is the conditional probability
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of a Gaussian distribution with mean X;3; and covariance matrix ¢2I. The log-
likelihood function N observations becomes

K
log p(8]Y, X) Zlog Zozkpk (yi|zi, Ok)) (3.10)

The EM algorithm can be applied to obtain the maximum likelihood estimates of
parameters of (3, 0%, ag, k = 1,2,..., K for any fixed cluster size K. The complete
log-likelihood function L. can be obtained after assuming a class label variable of

the " observation, z;, as follows:

N
L, = Zlog a, N (v X; ﬁzz, ) (3.11)

In the E-step, the posterio ).is dalculated and denoted as wyy,:

(3.13)
In the M—step, 1mi vit ‘ ﬁk?o-lzaaka k =

1,2 K. The iter:
(3.14)
wir || yi — XiBr |7, (3.15)

> im1 Wik 121
and
1 N

Qy = N ;wik, (3.16)

The method of curve clustering has been applied to cluster observations of latitude
and longitude positions in cyclones(Gaffney, 2004; Gaffney and Smyth, 2004). For
the analysis of microarray data in this study, we will regard gene expressions of one

gene in BY and RM strains at different time points during one experiment as one
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Figure 3.5: The typical résults of two dimensional éxpression curves in experiment

1 for five groups are plotted.

expression curvermoved along-time in two dimensions of expressions in BY and RM
strains. That is, we:rtreat the expression profiles«6f every gene imgone experiment
as an observation. The expressions at.one time point in BY and RM strain are
regarded as a pomt in two dimensional'space for expressions in BY'and RM strains.
The typical results of two dimensional expression curves for five groups are plotted
in Figure 3.5.

The selection for cluster size.in curve clusteringsmay be considered by the tech-
nique of model selection. A typical method is the"Bayesian information criterion
(BIC) (Burnham and Anderson, 1998). The value of BIC for the above method of

curve clustering is evaluated by the following equation:
BIC = —2log(Lyr) + K, log N, (3.17)

where log(Lysr) is the log-likelihood evaluated at the maximum likelihood estima-
tion, K, is the total number of free parameters, and N is the number of observations.

The BIC curve for curve clustering of microarray data in the training set is plotted

31



750001

70000

65000

BIC

60000

55000

T

50000 1 1 1 1 1 1 1 1 1

the curves of glucose consumptions can be further incorporated in the model. Fur-

thermore, the time shift between gene expression and glucose consumption shall be
considered. Microarray data in different experiments can be combined in statistical
models and tests. These statistical models can be applied to every cluster of fewer
genes with similar expression profiles to reduce the false errors caused by multiple

comparisons of many genes.
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The experiment factors of exp, strain, time and gene shall be included in models
to investigate the variation of expressions for these factors. The interaction term
of gene and time can be included to describe the differences in expression time
profiles among genes. The factor of glucose with the parameter of time shift shall
be also included to detect the relationship between gene expression and glucose
consumption. If the time shift is the same for the expression profiles in both BY
and RM strains, we will consider the following regression model for the log ratios of

gene expression with other experiment factors:

10g(Rath(th6)) = W+ Wstrain T Htime T Hexp T Hgene T Htimexgene

+  aglucose(time + time.shift) + error. (3.18)

If gene expressiontprofiles have different time shifts in.BY and RM strains, we
will consider estimate the time shift in one strain by: using the expression data in

one strain only:

10g(RatZO(tlm€)) = W+ Utime T Mexp T Kgene + Htimexgene

+ qglucese(time + time_shift) +error. (3.19)

With the parametet of time shifts, the above models are nonlinear. For simplicity,
we will consider the time, shift parameters at fixed values; like -1, 0 and 1. At
a fixed value of time shift parameter, the above.models'become linear and linear
regression techniques can be applied. The smallest p-value for testing the hypotheses
of Hy : v =0 vs. Hy :~v # 0 is used to determine the fitted time shift for gene
expressions in one cluster. Techniques of nonlinear regression and interpolation may
be studied to estimate the shift parameter besides those fixed values in the future.

Different types of hypotheses can be tested based on the above model. For
instance, one can consider different regression models with time shifts in glucose
separately to investigate whether gene expressions in one group vary before or after

the glucose consumption dropped. We set three time shifts as -1, 0, and 1 in this
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study. The negative time shift means the gene expression varies after the glucose
consumption dropped. The time shift is determined for a group of genes when it
will result in a maximum F statistics for testing Hy : v = 0 vs. H; : v # 0 among

the results of three time shifts as follows:

S SGlucose / 1
SSError/derror ’

FGlucose = (320)

The degree of freedom for the sum of squares of Glucose is equal to 1 since the
Glucose term is a one-dimensional variable.

Furthermore, one can also check if there are significant differences in strains, time

not all equal to
(3.21)

where SStimexgen i o dftimexgene indi-

111, dftiﬁgene =

cates its degree of (number of ti s - 1)x (number of
genes - 1); SSpyor indi
degree of freedom, dfgror =

terms).
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Chapter 4

Inference of biological pathway by

Time Delay Boolean network

4.1 Models

4.1.1 Boolean Network

Boolean networks, introduced by Kaufmann was used as model of genetic reg-
ulatory networks in 'thirty years ago (Kauffman; 1969). Following (Akutsu and
Miyano, 1999), we are going to review the definition of Boolean networks. A Boolean
network G(V, FY) is ‘a directed 'graph“eonsist of two- components. The first com-
ponent V' = {v17v9, .5, v, 118 a set of nodes Tepresenting genes, and the second
component F = {fi, fo,. ., fn} is a list of Boolean-funetions. For every node
v; € V, its expression has only two states, ON and.OFF. For every boolean function
fi(vig, vig,y ...y v;,) € F, the inputinode vy, U, 4« . oy U;

. 1s assigned to the node v; in

the graph. The state of each node v; € V is determined by the Boolean function
fi(vigs Vig,y ooy 04,).

For an element U € V, an expression pattern ¢ of U is a function from U
to {0,1}. For each node v;, the gene expression state at time ¢ is assumed to
take either 0 (not-expressed) or 1 (expressed) and is expressed as ¥(v;). In a
Boolean network, every gene expression pattern at time ¢ + 1 is determined by the

gene expression pattern at time ¢ and the corresponding Boolean function F' (i.e.,
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G (vi) = fili(vi), Pilviy), - P(viy))-

G(V.F) G'(V',F’) INPUT | OUTPUT

v, Vi Vs Vs oy v vy v)
000]00 1

001001

010|101

011|101

AND 100]00 0

v, v, O 101010
vl’ v2’ v3’ 1 10100

111110

v, =V, V,=V,ANDV, Vv, =NOT YV,

Figure 4.1: A Boolean network G (Vi) itspwizing diagram G’(V’, F”) and the func-
tional dependency table. (Akutsu et al. 1999)

For conveniencéywe consider the wiring diagram G’ (V" F).of a Boolean network

G(V,F) (See Figure 4.1). For-each-us€ Vi suppose v, vi, . -=3v;, are the input

nodes assigned to v;; [Then we construct an additional node v; and connected the

edge from v;; t6 v for each'l < j < k. ‘Fhatiis, the {v,,..., v, } represent the gene

expression pattern at time ¢ and {visi.. 0} corresponds to the gene expression
pattern at time ## 1., Hencé'we ¢an treat the {v:;...,v,} as the input values and
the {v],..., v} as the eorresponding output values.

4.1.2 The Structure of Time Delay Boolean Network

In the previous subsection, we found that the output gene v; at time t + 1 is
determined by the input genes v;,,v;,, ..., v;, at previous time t. That is, for every
gene v; € V, if the input gene {v;,,vsy,...,v; } at time ¢ and the Boolean func-
tion f; is fixed, the gene expression v; at the next time ¢ + 1 is determined by
Yep1(vi) = file(vi), Ye(viy), - .., (v, ). However, in real genetic regulatory situ-
ations, the deterministic system always fails because of the misclassification error

and noise. Besides, some of the gene express would have the situation of time delay
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when the gene influenced by one or several input genes. Hence, it would be much
more flexible to use a non-deterministic network system. In this subsection, we con-
sider two relations between the Boolean function and the target gene instead of the
deterministic relation.

We define a prerequisite relation between the Boolean function and the target
output gene as follows. A Boolean function f; with input genes v;,,v;,,...,v;, at
time t is prerequisite for the target gene v; at time t + 1, if the on-status of Boolean
function is necessary for the on-status of gene v; at time ¢ + 1, and we denote this
by fi(e(viy), Ye(viy), - (i) < g1 (v;). If it does not cause confusion, we omit
the notation of 1 and input genes as denoted by f; < v;. Moreover, for every
gene v;, we use v; as its dual in.this paper. For the'prerequisite relation between
Boolean function and target gene, we have the following twe relations: f; < v; and
fi < v;. In this maedel, we do not-consider the situation of a dual Boolean function
prerequisite to the target gene, that is«f; <;u; and'f; X ©;. ‘Since for the boolean
function whose dual is prerequisite to the target.gene, there must be another boolean
function which"is prerequisite to the targeét gene. For instance, if' f;{vi, vo} < vs,
where fi{v1, veJi= (v1 AND wvo) then' f/{vy,va} < v3; where f/{vy,m} = (01 OR 0y).
Therefore, for the prerequisite relationship, we.only consider the Boolean function
prerequisite to target gene and Boolean function prerequisite to dual of target gene.

Another relation betweensBoolean function and target gene is similarity. The
Boolean function and target gene are similar if the state of the Boolean function will
make the state of the target gene in the same expression, and we denoted this by
fi ~ v;. In the same way, we do not consider the negatively similar such as f; ~ v; in
this study. For the same reasons, if there is one Boolean function which is negatively
similar to a target gene, there must exist another Boolean function which is similar
to the target gene.

In the model of Time Delay Boolean network we proposed, the output of the

gene expression is not totally determined by the input state and Boolean function.
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Input Output
Vi V2 Vs i vy vy
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 (1) O 1
0 1 1 |1 0 1
1 0 0 (1) O 0
1 0 1 ((,1) (01) 0
1 1 0 |1 o0 1
v, v, vy 1 1 1 [(0,1) (0,1) 1

fi=( orv,)<v,

f, =, and v;) < v'2

For convenience, we consider the B work model in which the maximum
number of input genes is bounded by constant K for every target gene. In this
subsection, we would consider the case of K = 2. However, these can be generalized

to any K in a straightforward way. For the inference of the genetic network, we

need to clarify the following question for each target output gene.
e Which genes would affect the target gene?

e What kind of Boolean function would be used for combining the input genes?
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e What kind of relationship exists between the Boolean function and the target

genes?

Table 4.1: Tables for a pair of input gene and one output gene assuming no mea-

surement error

vifvju, 00 01 10 11 vi/vju, 00 01 10 11
0 Mooo Mo1o0 MM100 110 0 dooo qoi0 4100 4110
1 Meo1 Mo11 Mio1 Mi11 1 qoo1 goi1 Gio1 qi11

In this subsection, we propose an algorithm to clarify the above questions. The
algorithm below is conceptually very simple sinee.it simply uses output Boolean
functions with input genmes and relations with target genes that are consistent with
the data. First, foreach output genegexpression atitime ¢ 44 such as ¥, (v;), we
consider all the pairs of elements in V' at.time.t, for instance ¥y (v;) and ¢;(vy,). Then
we count the eight incidents of (v;,vs, ;) being (0,0,0), (0.0,1), ... (1,1,1) from the
sample and arrange them in a 2 X 4 table ; see_the left part of Table 4.1. We mark
a cell 7+ if the eount is positive and.mark it ”0” otherwise.

For detectingswhether there exists a_Boolean function which'is prerequisite to
the target gene, we'would compare the 2 x 4 output table/with the left four basic
relations in Table 4.2.4#Wedenote the basic relations are consistent with the output
table if the position of 0 eell in thesbasic relations is also 0 in the output table. By
comparing the output table with the four basie relations, we can find the relations
which are consistent with the output tables. If there is more than one relation
which is consistent with the output tables, we would use the boolean logic gate
AND to combine the Boolean function and the result would transfer to another
Boolean function. Hence, the final Boolean function is prerequisite to the target
gene. Similarly, by comparing the 2 x 4 output table with the right four basic
relations in Table 4.2, we may get another Boolean function which is prerequisite to

the dual of target gene.
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Table 4.2: Count patterns for the basic eight relations assuming exhaustive sampling

and no measurement error

(vj or vy) < v (vj or vp) < U
vl /vju, 00 0Ly 10, up, 00 01 10 11
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Moreover, if there is only one Boolean function which occurs in above relation,
that is, there is no Boolean function prerequisite to the target gene or prerequisite
to the dual of target gene, we would treat the relation as our final relation between
the Boolean function and the target gene. However, if both of the two prerequisite
happen (i.e. 3f; and f! s.t. fi < v; and f/ < ¥;), we need to check whether these
two relations are in conflict. If the dual of f; is equivalent to f/, our conclusion
for inference would be f; is similar to the target gene (that is, f; ~ v;); otherwise,
we would treat it as if there is no relation between the input genes and the target
gene. By the above identification procedure, for every target gene, we can find the

corresponding input genes, Boolean function and its relation.

4.2 Theoretical Results

In this sectiong we analyze the munber of INPUT/OUTPUT pairs required to
identify the Time Delay Boolean network uniquely. The following proposition was

obtained from the related paper with a small modification (Akutsu et al., 1998,
2003).

Proposition 1 For all subsets of V. with 2K _genes, if all assignments (i.e., 2%

assignments) of Booleamsvalues®appear in INPUT expression patterns and all of its
possible OUTPUT expressionpatterns of the target gene are present, the identifica-

tion of genetic network is determined to be unique, if it exvists.

Proposition 2 The probability that one sub-assignment with all of its possible re-
sults in the target gene does not appear among m random INPUT expression pattern

is equal to 2(%)7” — (1 = 55=)™, and bounded by 2(1 — st7)™.

(Proof) For any fixed set of nodes {v;,,vi,, ..., Vi, }, the probability that a sub-
assignment v;, = v, = ... = V;,,, = 1 does not appear in one random INPUT

expression pattern is 1 — Q%K Thus, among the m random INPUT expressions,
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the probability that v;, = v;, = ... = v, = 1 appears is ¢ times is equal to

#;),(22%)%1 — 53%)™ ", where t < m, and the probability that all of the possible

results in the target gene does not appear among ¢ times INPUT is smaller than
(3)""'. Hence the probability that one sub-assignment with all of their possible

results does not appear among m random INPUT expression is smaller than (1 —
m m m! 1 ¢ 1 m—t 1 —1 .o 22K+1_1\
72K ) +t; f( B (22K) (1- 227) (5) , and this is equal to 2( %)™ —

1
22
(1 — 5%)™, and bounded by 2(1 — zz57)™ by a simple algebra calculation.

m E—
Next we prove the main theorem.

Theorem 1 For the identification of one Time Delay Boolean network of n nodes
with mazimum indegree < K, Q2281 (2K + @) dogn) uniformly randomly sampled
Input patterns are sufficient for-exact inference with probability at least 1 — n% for

a > 0.

(Proof) We consider the probability that the'condition of Proposition 1 is not
satisfied under m random INPUT expression patterns.

By Proposition 2, the probability that v, = v, = ... = v;,, = 1 with all
of its possible results in the target gene does not. appear among the m random
INPUT expression patterns is bounded by 2(1 — QQK;H)T” forfany:fixed set of nodes
{viys Vig,s -+, Uiy, }. Sineethe number of combinations of 2K modes from a set of n
possibilities is bounded by 225:1n2% | the probability that the condition of Proposition
1 is not satisfied is at most 2% . ¥ . 2(1 — o)™ It is not difficult to see that
222 2(1 — 51)™ < p holds for m > In2-225+1. (2K + 2K log n+log 2+1log ;1))

n%, we obtain the theorem.

Letting p =

Next we develop an information theoretic lower bound on the number of IN-
PUT/OUTPUT pairs needed for the identification of Time Delay Boolean network.
The proof of the theorem is a straightforward adaptation of similar results given in

(Akutsu and Miyano, 1999) in the case of Boolean networks.

Theorem 2 If the mazimum indegree < K, at least Q25+ K logn) INPUT/OUTPUT
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pairs are required for the identification of Time Delay Boolean network in the worst

case.

(Proof) The number of Time Delay Boolean network is given by all the possible
combination of Boolean function with £ nodes from a set of n possibilities with
all possible relations between Boolean function with target node. Since there are
Q(n*) possible combinations of input nodes, 92" possible boolean functions and
3 possible relations between Boolean function with each node, there are Q((22" -
nf . 3)") Boolean networks whose maximum indegree is at most K. On the other
hand, there are at least 2" possible OUTPUT patterns with one INPUT expression
pattern. Therefore, Q(logy. ((22 #n 3)")) whieh is the same as Q(2X + K logn)

INPUT/OUTPUT pairs.are required in the worst case.

4.3 Inference of Time Delay Boolean Network with

Noise data

In Section 4.2, we disecussed the identification algorithm for the data without
measurement error. In this sectionwe.will extend the situation of inference compete
the data with measurement error. We assume there exists a measurement error
with probability p il‘every element, independently, andsmaké the output O; j =

1,2,...,m switch to its'negation; that is

0r = { 102-]- ; W?th probab%l?ty 1—p;
— O;; with probability p.
This makes the output data O} with noise are the observations and our goal is to
reconstruct the Time Delay Boolean network from the pair data (I}, O7).
Similar to section 4.2, we consider the maximum number of input genes is
bounded by 2 for every target gene. Instead of using full model including every

element, we consider the pair of input genes with every output gene as our model

and use probabilistic models to compute the measurement error. We treat the data
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Table 4.3: The eight basic relations and their corresponding probabilistic hypotheses
and scores

Relation Hypothesis Scores

~/ —
vj or vp) < U} qooo = 0 P(v; O v,)<7!

= qo10 =0 D(w; OT o,)<0!

1
—y o
= v qio0 =0 D(w; OF wvy,)<,
/
K2

=
o
=
<
>

N N N N N N N

N B N Q.l

C o
=

. | 1
=

~— O~

<

)
)
)
q110 =0 P(w; or w,)<w!
)
D(v; )
)
)

!
3
/
k3
4
!
K3
! —
< V; qoo1 = 0 P(v; or wvy)=v}
/
7
/
!
2

Table 4.4: The 2 x 4 co

generated probabilities in the présenc as ent error
vg/vjvh 00 01 10 11 vg/vjvh 00 01 10 11
0 Tpoo 7010 100 7110 0 Tooo Toio0 7100 T110
1 Npo1 No11 Ni1o1 Ni11 1 Too1 To11 Tior Ti11
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in the 2 x4 table as a multinomial distribution with eight cells whose probabilities are
q000, 9001, - - - y G111 AS shown in the I'lght part of Table 4]_, where q000+q001+- . .+Q111 =

1. Similarly, we extract the data with measurement error for every output gene and

each pair of input genes as the 2 x 4 table. Now the counts ngg, 7901, - - -, 7111 are
not generated from the multinomial qggg, qoo1, - - - , ¢111, but from another multinomial
7000, 7001, - - - , 7111 as shown in Table 4.4, where roop9 + 7901 + ... + 111 = 1.

Table 4.5: Splitting counts caused by misclassification error

V] Jvjun 00 01 10 11

000,000 77000,001 7120105000 ) 11100,000 710100,001  77110,000 770110,001

0 Mp00,010 777000,01 mi10,010 77110,011

000,100 mi10,100 77110,101

M000,110 mijo,110 1110,111

001,000 M111,000 7M111,001

1 M001,010 mi11,010 M111,011
mi11,101
mii11,111

Because of t ranslate to other

seven cells. We use represent the counts of
eight cells translated f 0 i ed for Mo01, M010s - - - 5 M111-

The splitting is shown in eir generating probabilities
(qo00, Goot; - - - » q111) are redistributed as follows: gi,iyig 12 :Pl(i’j)(1—P)3_I(i’j)Qi1izi3,
where I(i,j) = Y}, |ir. — ji|. Here, we adopt the notation gi,iyi, j1j,js analogous to

Mivigis jriajs- Lhese two sets of counts and probabilities are linked as follows:

Tj1jogs = Z Miyigis,jijags
il 7i2 7i3=071
T'j1jajs = Z Qiyigis,j1j2j3
i1,i2,i3=0,1
and (4.1)
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Myjyigis = 2 : Miyizis,j1727s
J1,32,33=0,1

Qivigiz = § : Qi1izis,515253
J1,J2,J3=0,1

Under the full data {m,iyis 1255 |, the log-likelihood is given by

L= Z Myiyigiz,jij2gs log Qivizis,jij2js (4'2)

11,12,13,J1,J2,J3=0,1
where ¢;,iqis,51j25; are those splitting probabilities. Later we define p-scores via maxi-
mum likelihood estimates (MLE). Since the full data {m;,i,is j1j2j5 } 1S DOt Observable,
we use the famous E-M algorithm to maximize the likelihood of full data (2) to esti-
mate MLE. In the E-step, the splitting counts of full data {m,i,i, j, j»js } 1S evaluated

by the conditional expectations calculated at the current value of the parameter by

the formula

n L N d q . . . . .
1J2 212213,717273
713273 J1J2] (43)
E : ittt 15253

A B
13 05i5=0,1

E

D,4000,9001 5-++5g111 (mi1i2i37.j1j2j3 ’nj1j2j3) =

where 41,19, 13, J1,g2, 73 = 0,1.-One probabilities of qooo, qoo1, -+, G111 are zero in
the different hypotheses specified in Table 4.3: “In the M-step, we maximize the
conditional expeetation 'of the log-likelihood for the full data to calculate the MLE
of the parameters.

e first consider a problem simpler than reconstructing ‘a Time Delay Boolean
network: what is the most likely relation for one outputsgene and a pair of input

genes?

Definition 1 For one output géme v; and @ pair of input genes v; and vy, the p-

SCOTES Py or v)<v,» Pw; or ve)=<v,» Pro; or wp)=<v7 P, or w)<v, Plo; or v)=<v)» P@; or vy)=<u)’
P, or wo)<vls Plo, or v<v] 96 respectively, the maximum likelihood estimates of p
under the triangular model: gooo = 0, goro = 0, qro0 = 0, g110 = 0, goo1 = 0, go11 = 0,

qi01 =0, q111 =0

We compute p-scores by the E-M algorithm described earlier. The heuristic of
the definition is that we use the MLE p to measure how well each hypothesis fits:

the smaller the score, the more evidence that the corresponding hypothesis is true.
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The p-scores are more meaningful if they are generated from a Time Delay
Boolean network because we may discover significant relations by ranking the scores
in the ascending order. Here we use the mazimum compatibility criterion: choose
the maximum threshold value so that the selected relations contain no conflicts
(Li and Lu, 2005). We collect those relations whose p-scores are smaller than a
threshold. Known biological results are helpful for the determination of a threshold.
For example, if we know the relation (v; or ve) < vs is true, then the p-scores smaller
than p, or vs)<v; should be in our watch list. Please notice that as more relations
are included in the watch list, the more likely we are to observe incompatible ones.

Hence, we can choose the threshold which is the maximum number that contains no
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Chapter 5

Empirical Results

5.1 Emotion Detection by Physiological Signals

Due to the existence of physiological signals,
some of the feature are in the same state
of emotion. Besides ;—' quite near even for
different states of 1:- after removing the

daily effects by ) the fea 1 e state of emotion
would be more fere i of emotion, as

shown in Figure.& g i . OVA would be

O Neutral
o Anger
*  Joy

0.08

0.07

0.06 -
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Factor 2

0.04

=] o © = *
O a
0.03f o v *
B o © o *
0.02 8 . *
5 %0 o "
. *
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Factor 1

Figure 5.1: The scatter plot of three statuses of emotion without daily correction.
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Scatter plot with daily correction
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Figure 5.2: The scatter plot of three statuses of emotion with daily correction.

After getting the features from physiological signals and removing daily effects
by MANOVA] six classification methods would be.applied as discussed before. For
the first database, the classification results without 'daily correction and with daily
correction by leave-one-out cross-validation in three emotional statuses by six clas-
sification methods are listed in Table 5.1 and Table 5.2. From the classification
result of subjectsAlice, the highest correct recognition rate is 90.91% using the clas-
sification method.of logisticimodel.” As for the classification result of subject Jane,
the highest correct recognition rate is 93:94% by the same ¢lassification method of
logistic model. Hence; the leave-one-out cross-validation can be used to evaluate
the prediction accuracy and make comparisons.. Besides, the p-values of statistical
improvement are all significant in most elassification methods, except the subject
Jane with the classification method of C4.5.

For second database, in order to see how the statistical technique of MANOVA
influence classification, we compare the classification accuracy with and without
removing the daily and subject dependence in Table 5.3. In additional, the p-
value with statistical significance of the difference in classification between with and
without the technique of MANOVA for every classification method is also attached

in Table 5.3 as well. Among these six classification methods, the highest correct
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Table 5.1: Classification of three emotional statuses by the physiological signals of
subject Alice.

Alice
Method Without daily | With daily p-value of
correction correction |improvement
Bayesian Network 45.45% 81.82% 0.001
Naive Bayesian 48.48% 75.76% 0.011
SVM 45.45% 78.79% 0.003
C4.5 45.45% 78.79% 0.003
Logistic Model ( 0.001
0.001

Table 5.2: Class siological signals of

subject Jane.

p-value of
improvement

Bayesian Network . ) J 0.000
Naive Bayesian 48.48% 78.79% 0.005
SVM 69.70% 84.85% 0.073

C4.5 66.67% 75.76% 0.211
Logistic Model 60.61% 93.94% 0.000
KNN 63.64% 87.88% 0.011
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Table 5.3: Classification of three emotion status by the physiological signals of 10

subjects and 7 times.

Method Without daily | With daily p-value of

correction correction |improvement
Bayesian Network 49.05% 64.76% 0.001
Naive Bayes 48.57% 65.71% 0.000
SVM 45.24% 70.48% 0.000
C4.5 50.00% 61.90% 0.007
Logistic Model 54.29% 74.76% 0.000
KNN 42.38% 58.10% 0.001

recognition rate is 74.76% usi

of these classification m

significant impre

ethod of logistic model and all

PSE
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600 [
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500 |

verall accuracy rate after
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Cluster
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methods in the

The results are

6 7 8 9 10

no. of group

Figure 5.3: PSE comparisons of different number of clusters are shown for two

different clustering methods.
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Table 5.4: The detail values of PSE.

No. of groups| 2 3 4 ) 6 7 8 9 10
H. Cluster |642.1 559.9 532.4 529.8 531.2 502.2 491.2 486.6 483.4
C. Cluster [590.1 518.3 493.3 477.5 478.4 468.7 468.2 457.6 456.9

From the above comparisons, the results by curve clustering have smaller PSE
than those by hierarchical cluster do. In addition, we will check the consistency for
two clustering method as the mean curves shown in Figure 5.4.

From the above results for two clustering method, it often exist groups in hi-
erarchical clustering that do notshave consistent, gene expression profiles in three
experiments when the number of clusters is large. By these viewpoints of prediction
errors and consistency, the results by _curve clustering are preferred. Then, it is
necessary to decide the cluster size. When the number of cluster.size equals to five,
there will be one group that gene expressions appear negative correlation between
BY and RM strains.” As the cluster size increases, patterns of negative correlation
are recurrent. However, the number of’ genes with consistent expression profiles in
every group becomes fewer as the'cluster size increases. Hence, we will consider the
cluster size of five in this study.

The expression profiles of consistent genes are listed'in Kigure 5.5. Expression
profiles in group 2, 3, 4 and 5 show similar time trends and positive correlations in
two strains. However, consistent genes in group 1 show different time trends and
patterns that will be explored below.

The results of time shifts determined by regression models in these five clusters
are listed in Figure 5.6. From Figure 5.6, gene expressions appear to vary later
than glucose consumption do in most groups, except for group 1. Genes in group
1 are interesting because there are negative correlations between gene expressions
in BY and RM strains as shown in the mean curves in Figure 5.4 when the cluster

size is five. The regression results show that the gene expression profiles in group 1
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Figure 5.5: The clustering results by curve clustering are shown when

of cluster size is five.
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Tests of Between-Subjects Effects (Group 1)
Dependent Variable: Log Ratio

Type III Sum
Source of Squares df Mean Square F Sig.
Corrected Model 266.0634 93 2.861 4,024 .000
Intercept 43393 1 48.393 68.060 .000
Exp 20.697 2 13.348 18.773 .000
Gene_Name 62.734 9 6.970 9.803 .000
Time 79.745 8 9.968 14.019 .000
Strain 53.011 1 53.011 74.554 .000
Gene_Name * Time 103.123 72 1.432 2.014 .000
Glucose_Timel 52.333 1 52.333 73.602 .000
Error 317.122 446 11
Total 583.414 540
Corrected Total 583.185 539

a. R Squared = 456 (Adjusted R Squared =.343) (Group time shift =1)
Tests of Between-Subjects Effects (Group 2)

Dependent Variable: Log Ratio

Type III Sum
Source of Squares df Mean Square F Sig.
Corrected Model 12727.843% 696 18.287 98.080 .000
Intercept 1870.725 1 1870.725 | 10033.340 .000
Gene_Name 235350 76 3.097 16.609 .000
Exp 64.590 2 32.295 173.208 .000
Strain 15.156 1 15.156 81.289 .000
Time 334.420 8 41.803 224.201 .000
Gene_Name * Time 156.854 608 258 1.384 .000
Glucose_Timel _A 942.628 1 942,628 5055.636 .000
Error 645.307 3461 186
Total 25044.593 4158
Corrected Total 13373.149 4157

a. R Squared = .952 (Adjusted R Squared = .942) (Group time shift =-1)
Tests of Between-Subjects Effects (Group 3)

Dependent Variable: Log Ratio

Type III Sum
Source of Squares df Mean Square F Sig.
Corrected Model 8287.8814 345 24.023 40.464 .000
Intercept 582.225 1 582.225 980.708 .000
Gene_Name 426.397 37 11.524 19.412 .000
Exp 53.377 2 26.689 44,955 .000
Time 69.501 8 8.688 14.634 .000
Strain 75.522 1 75.522 127.210 .000
Gene_Name * Time 682.426 296 2.305 3.883 .000
Glucose_Timel_A 247515 1 247515 416917 .000
Error 1044 874 1760 594
Total 1464 1.449 2106
Corrected Total 9332.754 2105

a. R Squared = .888 (Adjusted R Squared = .866) (Group time shift=-1)

o7




Tests of Between-Subjects Effects (Group 4)
Dependent Variable: Log Ratio

Type I Sum
Source of Squares df Mean Square F Sig.
Corrected Model 4710.936% 723 6.516 24.122 .000
Intercept 280.220 1 280.220 1037.403 .000
Gene_Name 240.983 79 3.050 11.293 .000
Exp 33.762 2 16.881 62.495 .000
Time 29.905 8 3.738 13.839 .000
Strain 36.177 1 36.177 133.930 .000
Gene_Name * Time 296.629 632 469 1.738 .000
Glucose_Timel_A 111.298 1 111.298 412,037 .000
Error 971.338 3596 270
Total 8492.808 4320
Corrected Total 5682.274 4319

a. R Squared = .829 (Adjusted R Squared =.795) (Group time shift=-1)

Tests of Between- Subjects Effects (Group 5)
Dependent Variable: Log Ratio

Type I Sum
Source of Squares df Mean Square F Sig.
Corrected Model 4397.232% 624 7.047 44.617 .000
Intercept 476.824 1 476.824 3019.020 .000
Gene_Name 105.873 68 1.557 9.858 .000
Exp 41.536 2 20.768 131.492 .000
Time 74.690 8 9.336 59.112 .000
Strain 4.357 1 4357 27.584 .000
Gene_Name * Time 144.470 544 266 1.681 000
Glucose_Timel _A 237.392 1 237392 1503.050 .000
Error 4%9.772 3101 158
Total 7947.709 3726
Corrected Total 4887.004 3725

a. R Squared = .900 (Adjusted R Squared = .880) (Group time shift=-1)

Figure 5.6: Results of regression models with the most significant effects of glucose

association among three time shifts are listed for five groups.
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Figure 5.7: Time profiles of genes for two strains in group 1 are shown when the

number of cluster size equal to five
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Table 5.5: Consistent genes are reported for five groups.

Group Consistent genes included in the group
1 yorl28c  ydr170w-a ymrl20c  yoll43c yor375c-r ylr346c  yor375c
yhrl163w yor273c  ygr23dw
2 ygrld8c ylr3ddw  yml063w  yoll20c  yfr03lc-a yjr123w  ylrO75w
ylr388w ynl096¢  ymrl42c¢  ynl30lc  yor096w  yor369c yjll191w
yml024w  yplO8lw  ydr064w ymrll6c ynll78w ynll62w yorO63w
yol127w  yprl32w  yhl00lw  yil018w  yhrldlc  yjrl45¢c ymr242c
ymr230w  yhl01ow yjl190c yg1147c yil0b3w  ylrO61w  yor234c
ydrdd7c  yfr032c-a  ygrO85¢c ypll43w  ydl083c ydlO75w
ylrl0lc ay Wygll23w. w o yell03w  yill89w  yml026c
ynl209w i yil052¢  ylr048w
ymr(098c ymrl2lc  ynl069c
yol040c yerl3lw  ykr094c
yor293w  yprl02c
3 ygr043c  ykl148c
yhr00 1w~ (r ygll91lw  yjli66w
ymrl07w  yerl83c
ylr3 c-a yer06 ] yel039¢  ymrl75w
ynlll yIrlz ynl160w  yf030w
yer150 , 39 i
4 ynl055¢ =, ykr(76v Agl188 yillllw  yjl163c
ymr251w-a 5 i yel060c  yhl032c
ymrl8lc ydl124w  ydl021w
ydrb30c » yel064c  ydr377w
yhr138c = ymr08lc yol077w-a ydr343c  ykr049c
ynl237w ypl123c yor3l7w  yer015w ymlO8lc-a yoll26c ypll35w
ypl222w ydr018c ydl067¢  yilll3w  yjll6lw  ykl142w  ylr295¢c
yml120c yol084w  ypr006¢c  ypr002w  ypll86¢c  yplO87w  ydl110c
ykl016¢ y11020c yorl36w  ypl20lc  ygrl74c yjllddw  ylrO80w
yol048c ypll34c ydl168w  ygrl94c  yjll64c  ylr294c  yor374w
ypllHdc yhl021c yll009¢  ymll131lw  ynl037c¢  yol083w yor289w

yor285w ypl271w ypl078c
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Group Consistent genes included in the group

) ydr34lc ykr059w yjr016c ymr307w ynll75c  ydl08lc  yer(036¢
yorl82c yor272w ygl029w yklO81w ykr059w-r ymrO75c-a yorlO8w
ymr290c ypl21lw yor310c ydrO87c¢  yerllOc  yglO76¢c  ygr272c
yjl158c¢  yjl138c yH045c-r ynll82c¢c  yor344c  ydrlOlc  ykl056¢
ynll10c ypll60w ydr324c yer055c¢  ygll20c  ykl006w  yjrO63w
yol097c ypl273w ykr057w ykl009w  ydl229w  ylrl67w  yor2b4c
ypll3lw yjl177w ylr287c-a ypr187w yhr064c  yjr070c  ylr12lc
ylrd06c yml022w yol077c  ypr069c yhr170w  ylrd32w  yplO43w
yor340c ypll26w ygrll8w yil096c  yhr216w  ykr08lc ydl192w
yH045c  ykl153w ynl132w  ypl090c yor247w-r  yprl90c

all genes are tabulated.

are inhomogen 0 strains in group
1 are further in ybserved that the
negative correlatio ences in time shifts
or time trends of ti Lherefore, the regression
results of group 1 in Fg sof these two types. These

interesting phenomena occur not o iree experiments of the training set but
also the experiment in the test set. These are interesting observations that need
more investigations in the future.

The lists of consistent genes in these five groups are reported in Table 5.5. The
clustering consistency for all genes can be further evaluated by Table 5.6. From

Table 5.6, the probabilities of consistent genes in three experiments of the training set

among all and reference genes are over 56%. This is very high because the consistent
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probability is only 5/125 = 4% when one gene is randomly clustered 5 clusters for
three experiments. Hence, these consistent genes have consistent patterns among

three experiments in the training set.

5.3 Example with simulation and real data

For the pair of samples consisting of three elements as list in the right part of
Fig. 4.2, we uniformly generate 100 input samples and their corresponding possible
output samples with misclassification probability p = 0.05. For the prerequisite
relation, if the state of Boolean with input genes is ON, then we let the output value
have equal probability with ON and OFF. Thedagta can be arranged as input/output
sample similar to that obtained from micorarray data with time. Namely, the input
of each sample cangrepresent the gene expressions at time % and the output can
represent the gene expression at time ¢ +1. For each pair of input, and output genes,
we compute the 8 p-scores which represent-the 8 basic hypotheses in Table 4.3 for
all of pair input'genes and output genes. After calculating, the results are shown in

Table 5.7.

Table 5.7: For the Time Delay Booléammetwork-iirfigtte 1, we generate 100 samples,
and take p=0.05

Samples Hypotheses Relation

Input Output  gooo=0 ¢o10=0" ¢100=0 g116=0-9001=0 qo11=0 q101=0 ¢111=0

v1,U2 Uy 0.569 0.192 0.243[ 0.230 '0.016* 0.251 0.419 0.210
U1,03 Uy 0.459 0.419 0.226 0.253 0.218 0.089 0.344 0.435  (vj0r ve)=<v]
U2, U3 Uy 0.547 0.411 0.297 0.422 0.194 0.315 0.432 0.244

vive vy 0327 0272 0.331 0.266 0.018 0.075 0.172 0.214
vy v, 0.337 0.235 0.323 0.248 0.042 0.081 0.056 0.293  (vjandus)<u),
vy v,  0.367 0.283 0.316 0.218 0.017 0.169 0.072 0.150

V1,U2 U 0.210 0.038 0.361 0.015 0.047 0.211 0.034 0.346
V1,03 U 0.339 0.478 0.386 0.644 0.640 0.260 0.374 0.467 Vg ~ V4
U2,U3 s 0.274 0.293 0.029 0.029 0.049 0.040 0.291 0.264
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Next, we have to decide the threshold for choosing the relations. When we
increase the threshold of the p-score, there are some relations whose p-scores are
smaller than the threshold, and the relations would been choose. Moreover, when the
number is 0.089, the conflict occurs, since we have (v; or vy) < v} and (vy or 73) <
vj. However, in our model, there are at most two genes which would affect a output
gene. Therefore, we can choose 0.089 as our threshold and include the relations
whose p-score is smaller than the threshold. By these procedure, we can reconstruct
the Time Delay Boolean network identical with Fig. 4.2.

In the area of gene regulatory network study, (Schuller, 2003) summarized regu-
latory cis-acting elements of structural genes of the nonfermentative metabolism and
described the molecular interactions among general régulators and pathway-specific
factors. In the gene regulation of gluconeogenesis by Sip4.and Cat8 pathway, the
carbon source congrol eould be identified for the regulator Cat8; see (Figure 6) in
(Schuller, 2003) ... For the experimentalydata; ¢collection, we use the microarray ex-
pression dataset“of yedast Saccharomyces cerevisiae produced by (Spellman et al.,
1998) and (DeRisi et al.; 1997). By theserdata sets, we can reconstruct the biolog-
ical pathway using our proposed method. Under the Time Delay Boolean network
model, we reconstruct the genetie regulation network as shownin Figure 5.8. The
result is consistent with the genetic network in literatures That is, the restraint of
Migl or activation of Sufl is prerequisite for the decreasing of Cat8. Moreover, the
restraint of Snfl or Cat8 is prerequisite for the decreasing of Mlsl. However, the

negative similarity between Snfl and Migl is undetectable in our current model.
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Chapter 6

Conclusion and Discussion

In the study of emotion recognition, we have compared six typical classifiers
by their performances in emetion recognition using physiological signals with daily
and personal correctionby MANOVA. As the results mentioned above, these clas-
sification methods can' be very useful to perform’emotion recognition by using the
physiological signals with daily and personal correction. In particular, we can suc-
cessfully correctidaily effects using the statistical’techniques of MANOVA.

There are still ¢hallenges for future studies. For example, we eould investigate
and determine significant features using féature selection and dimensional reduction
methods. In addition, more data“eollectionreould™be performed in future stud-
ies to improve therageuracy. 'Real-time applications could be further investigated
for the prediction of emotional states based on the physiological signals with daily
correction. Further adjustments of parameters in classification methods could be
investigated. These are interesting topics that we plan to study in the future based
on the framework of the current research results.

Regarding the analysis of yeast, five major clusters of gene expression time pro-
files were discovered in this study. Four clusters show positive correlations between
gene expression profiles in BY and RM strains. The estimated time shifts of expres-
sion time profiles in these four clusters are mainly 1 hour after the time that glucose

consumption drops. The first cluster shows very interesting pattern of negative cor-
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relations between gene expression profiles in BY and RM strains. In this group,
the estimated time shift of expression time profiles are mainly 1 hour before the
time that glucose consumption drops. These consistent genes show negative correla-
tions in two strains are: yorl128c, ymrl20c, ydr170w-a, yol143c, yor375c-r, ylr346c,
yor375¢c, yhr163w, yor273c, ygr234w. The negative correlations in two strains could
be due to the differences of time shifts or the differences in expression shapes in two
strains according to the time profiles from microarray data. The experiment data by
RT-PCR can be studied to confirm the time profiles of consistent genes in the group
of negative correlation of expressions in BY and RM strains in the future. Other
models are possible to analyze these microarray data. For instance, time series mod-
els with dependent errors, longitudinal models, models of functional data analyses
and so forth. Besidespnetwork analysis such as Boelean network or Bayesian net-
work could be usedsto investigate-the causal relationship-of these interesting genes.
These will be of jinterest to linvestigate in future studies.

For the study of Time Delay Boolean network; we introduced the Time Delay
Boolean network which generalizes the Boolean network model in order to cope
dependencies that have time delay.relationships. The approach tor genetic network
inference from gene expression data rely on the.assumption that only the expression
of a gene is likely to be:controlled by a relatively small . number (say k) of genes.
Some bounds on the size of data needed for the identification of the Time Delay
Boolean networks under constant of indegree are stated. Moreover, the algorithm
of the network reconstruction from data with noise are developed.

In practice, there exists differences between real biological systems and Boolean
networks. Nodes in a Boolean network take binary values updated synchronously.
In contrast, quantities of gene expression in real cells are continuous and vary with
time. Hence, we need to discretize them. The gene expression which is increasing
or decreasing with time is also a possible discretization choice.

Work in progress is aimed at evaluating the effectiveness of the described ap-
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proach for inferring genetic networks from biological gene expression time series
data. Besides, implementation on some other real biological data is also an impor-
tant task.

For the implement of the inference algorithm, the most complexity is the com-
putation of p-score for each of the #lk), input elements and n output elements,
where n is the number of elements and k is the number of indegree. It is an iter-
ative algorithm to compute the MLE for the p-scores by E-M procedure and the
common practice is setting an upper bound for iterations in numerical implementa-
tion. Consequently, this keeps the O(n**1) complexity for the computation of MLE.

Moreover, the sorting algorithm for the ——™-—n data cost O(n***log(n)) in time.
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