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This study develops a mathematical model for describing the steady-state head response to fluid injec-
tion into a fully penetrating well in a heterogeneous and anisotropic anticline reservoir. In the model,
the upper boundary of the anticline reservoir is approximated by a form of step change in reservoir thick-
ness and the domain of the reservoir is divided into two regions with different hydraulic conductivities.
By virtue of the properties of Fourier series, the method of separation of variables is employed to develop
the analytical solution of the model.

This new solution can be applied to estimating head distributions or injection rates for various geomet-
rical conditions of the reservoir. If the trap is absent, the solution can be utilized to analyze head distri-
butions in the reservoir system with two concentric transmissivity zones. Moreover, if the upper
boundary becomes flat and the reservoir is homogeneous and isotropic, the solution reduces to the Thiem
equation.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An anticline reservoir has long been known to play an impor-
tant role in subsurface recharge and waste disposal [1]; thus, the
study of well-flow systems in anticline formations is essential.
For example, the Chingtsaohu anticline under the Toukoshan for-
mation of northern Taiwan was assessed as a candidate for ground-
water recharge [2] and the Chinshui anticline was regarded as a
host formation for CO2 sequestration [3].

Al-Mohannadi et al. [4] pointed out the lack of literature sup-
port for analyzing the impact of curve boundaries due to anticline
structures on well injection or production. They therefore built a
finite-difference model to investigate the behavior of unsteady
state flow for a horizontal well in anticline reservoirs. Saripalli
et al. [5] developed a well injectivity decline simulator to simulate
well performance during deep-well injection of municipal and
industrial wastes as well as liquid hazardous wastes. Though sev-
eral analytical models for well-injection problems had been re-
ported (e.g., [6,7]), the shape of the host formation was however
limited to be flat. The development of a mathematical model to
simulate the head distribution for well injection into anticline res-
ervoirs is therefore needed.

Kirkham [8] developed a methodology for describing the flow of
a well partially penetrating a uniform confined aquifer. He pro-
ll rights reserved.
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h).
posed an efficient approach using domain partition to deal with a
mixed boundary value problem and developed a steady-state solu-
tion to problems of flow into a partial penetrating well. The critical
step leading to the analytical expression was to divide the target
field into two regions with a virtual interface satisfying the hydrau-
lic continuity requirements between individual ones. Javandel and
Zaghi [9] adopted a domain partition procedure similar to that
given by Kirkham [8] and developed an analytical solution for
steady-state flow in a uniform confined aquifer fully penetrated
by a well with bottom extensions.

The objective of this paper is to develop a mathematical model
for predicting the steady-state head response to fluid injection in
an anticline reservoir while maintaining a constant head at the
fully penetrating well. The steady-state model has the advantages
that the solution of the model can be applied to estimating the
head distribution easily and assessing long-term injection opera-
tion. The anticline reservoir is thought to have a finite remote
boundary as well as heterogeneous and anisotropic hydraulic con-
ductivity. When developing the analytical solution of the model,
the upper boundary of anticline reservoir is approximated by a
form of step change in reservoir thickness. The whole domain of
the reservoir with an irregular boundary is then split into two re-
gions; each region has its own hydraulic conductivity. By virtue
of the properties of Fourier series [10], the method of separation
of variables is employed to develop the analytical expression of
the model. This new solution can be utilized to predict the
steady-state head distribution after fluid injection into anticline
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Nomenclature

a0 constant used in (11) and (12)
am constants used in (11)
bn constants used in (12)
~c1; ~c2 constants used in (17)
hi hydraulic heads used in (1)
h1 hydraulic head of region 1
h2 hydraulic head of region 2
ho hydraulic head at the outer boundary
hw hydraulic head at the wellbore
Dh ¼ ho � hw difference between the heads at the injection well

and outer boundary
I0 modified Bessel function of the first kind of order zero
I1 modified Bessel function of the first kind of order one
K0 modified Bessel function of the second kind of order

zero
K1 modified Bessel function of the second kind of order one
Qf volumetric flow rate for flat reservoir with heteroge-

neous but isotropic conductivity defined by (40)
Qh volumetric flow rate for anticline reservoir with homo-

geneous and isotropic conductivity defined by (39)
Qo volumetric flow rate for flat reservoir with homoge-

neous and isotropic conductivity defined by (41)
Qw volumetric flow rate for anticline reservoir with hetero-

geneous and anisotropic conductivity defined by (38)
r radial coordinate
r1 distance from the center of the injection well to the

interface between regions 1 and 2 (trap width)
r2 distance from the center of the injection well to the out-

er boundary where the head change is negligible

rw well radius
V1; V2 volumes bounded by the upper boundary and its

approximate form of step change in reservoir thickness
as shown in Fig. 1

z vertical coordinate
z1 aquifer thickness of region 1
z2 aquifer thickness of region 2
zf uniform aquifer thickness ðzf ¼ z1 ¼ z2Þ
zd trap height z1 � z2

aj constants defined by (33)
bjm constants defined by (34)
nm; gn constants used in (18)
jri horizontal hydraulic conductivities where i = 1 for re-

gion 1 and i=2 for region 2
jzi vertical hydraulic conductivities where i = 1 for region 1

and i=2 for region 2
jh homogeneous and isotropic hydraulic conductivity
k1 mp=z1
k2 np=z2

s0 function of I0 and K0 defined by (13)
s1 function of I0; I1; K0 and K1 defined by (19)
x0 function of I0 and K0 defined by (14)
x1 function of I0; I1; K0 and K1 defined by (20)
Cj constants defined by (23)
Knm constants defined by (30) and (31)
Hjn constants defined by (24) and (25)

r2 Laplacian operator
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reservoirs or to design the injection rate of anticline reservoirs for
long-term operation.
2. Mathematical model

2.1. Governing equation and corresponding boundary conditions

Fig. 1 illustrates the schematic representation of a heteroge-
neous and isotropic confined aquifer with an injection well. The
upper boundary of the aquifer is convex upward and this aquifer
is thus regarded as an anticline reservoir. The well, located right
at the crest of the reservoir, with a radius of rw penetrates fully into
the reservoir. Consider that the reservoir, formed by compression,
has different hydraulic conductivities for the regions near the crest
Fig. 1. Schematic representation of an anticline reservoir.
and some distance away from the crest. Thus, the upper boundary
is approximated by a form of step change represented by the
dashed line shown in Fig. 1. Note that the new boundary should
ensure that the new reservoir volume remains the same as that be-
fore approximation, i.e., V1 ¼ V2 as shown in the figure. In addition,
the location of abrupt change in the shape is taken as a divide for
the formation conductivity.

Region 1, with hydraulic conductivities jr1 and jz1, has an area
bounded by rw < r < r1 and 0 < z < z1 while the area of region 2,
with hydraulic conductivities jr2 and jz2, is bounded by
r1 < r < r2 and 0 < z < z2. The hydraulic heads at the wellbore
and at r2 are maintained as constants hw and ho, respectively. The
variable r1 denotes the distance from the center of the well to
the interface of the two regions while r2 represents the distance
from the center of the well to the outer boundary [11,12].

The steady-state head distributions hi in both regions with
anisotropic formation can be described as

jri

r
@

@r
r
@hi

@r

� �
þ jzi

@2hi

@z2 ¼ 0 for i ¼ 1;2: ð1Þ

The appropriate boundary conditions for Eq. (1) are as follows:

h1ðrw; zÞ ¼ hw for 0 6 z 6 z1; ð2Þ
@h1ðr;0Þ

@z
¼ 0 for rw 6 r 6 r1; ð3Þ

@h1ðr; z1Þ
@z

¼ 0 for rw 6 r 6 r1; ð4Þ

h2ðr2; zÞ ¼ ho for 0 6 z 6 z2; ð5Þ
@h2ðr;0Þ

@z
¼ 0 for r1 6 r 6 r2; ð6Þ

@h2ðr; z2Þ
@z

¼ 0 for r1 6 r 6 r2: ð7Þ
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At r1, there are three conditions. First, a no-flow condition at the
upper right part of region 1 is imposed as:

jr1
@h1ðr1; zÞ

@r
¼ 0 for z2 6 z 6 z1: ð8Þ

Moreover, the continuity requirements for the head and flux at
the interface are respectively

h1ðr1; zÞ ¼ h2ðr1; zÞ for 0 6 z 6 z2 ð9Þ

and

jr1
@h1ðr1; zÞ

@r
¼ jr2

@h2ðr1; zÞ
@r

for 0 6 z 6 z2: ð10Þ
2.2. Development of solutions for hydraulic head distribution in
regions 1 and 2

The method of separation of variables is adopted to solve Eq. (1)
along with Eqs. (2)–(7). The detailed development for the hydraulic
head distribution solutions in regions 1 and 2 with unknown coef-
ficients a0; am, and bn is given in Appendix A and the results for
these two regions are respectively

h1 ¼ hw � a0
lnðrw=rÞ
lnðrw=r1Þ

�
X

m

ams0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r

� �
cosðk1zÞ ð11Þ

and

h2 ¼ ho � ða0 þ DhÞ lnðr2=rÞ
lnðr2=r1Þ

�
X

n

bnx0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r

� �
cosðk2zÞ; ð12Þ
Fig. 2. Flowchart to illustrate the solution procedure.
where k1 ¼ mp=z1 and k2 ¼ np=z2; m and n are positive integers
(i.e., 1,2,3, . . .); Dh represents the difference between the heads at
the injection well and outer boundary; s0 and x0 are lumped
parameters respectively defined as

s0ðk1rÞ ¼
K0

ffiffiffiffiffi
jz1
jr1

q
k1r

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �
� I0

ffiffiffiffiffi
jz1
jr1

q
k1r

� �
K0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �

K0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �
� I0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
K0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �

ð13Þ

and

x0ðk2rÞ ¼
K0

ffiffiffiffiffi
jz2
jr2

q
k2r

� �
I0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �
� I0

ffiffiffiffiffi
jz2
jr2

q
k2r

� �
K0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �

K0

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
I0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �
� I0

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
K0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� � ;
ð14Þ

where I0 and K0 are the modified Bessel functions of the first and
second kinds with order zero, respectively. A flowchart to illustrate
the procedure for the solution development is shown in Fig. 2.

2.2.1. Development of coefficients a0 and am

The coefficients a0 and am must first be determined. Substitut-
ing Eq. (11) into Eq. (8) yields:

~c1a0 þ
X

m

amnm cosðk1zÞ ¼ 0 for z2 6 z 6 z1: ð15Þ

Putting Eqs. (11) and (12) into Eq. (10) gives:

~c1a0 þ
X

m

amnm cosðk1zÞ ¼ ~c2ða0 þ DhÞ þ
X

n

bngn cosðk2zÞ

for 0 6 z 6 z2; ð16Þ

where

~c1 ¼
jr1

r1 lnðrw=r1Þ
; ~c2 ¼

jr2

r1 lnðr2=r1Þ
; ð17Þ

nm ¼ jr1

ffiffiffiffiffiffiffi
jz1

jr1

r
k1s1

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �
; gn ¼ jr2

ffiffiffiffiffiffiffi
jz2

jr2

r
k2x1

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �

ð18Þ

with

s1ðk1r1Þ ¼
K1

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �
þ I1

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �

K0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �
� I0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
K0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� � ;
ð19Þ

x1ðk2r1Þ ¼
K1

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
I0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �
þ I1

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
K0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �

K0

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
I0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �
� I0

ffiffiffiffiffi
jz2
jr2

q
k2r1

� �
K0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� � ;
ð20Þ

where I1 and K1 are the modified Bessel functions of the first and
second kinds with order one, respectively.

The procedure in determining a0 and am in Eqs. (15) and (16) is
given in Appendix B and the results are

a0 ¼
1

~c1z1=~c2z2 � 1
Dh ð21Þ

and

ajnj ¼ Cjða0 þ DhÞ þ
X

n

Hjngnbn; ð22Þ
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where j = 1,2,3, . . ., aj ¼ am, and

Cj ¼
2~c2

k1z1
sinðk1z2Þ; ð23Þ

Hjn ¼
sinðk2z2 þ k1z2Þ

k2z1 þ k1z1
þ sinðk2z2 � k1z2Þ

k2z1 � k1z1
for k1 – k2; ð24Þ

Hjn ¼
z2

z1
for k1 ¼ k2: ð25Þ
2.2.2. Development of coefficients bn

Substituting Eqs. (11) and (12) into Eq. (9) leads to

X
m

ams0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �
cosðk1zÞ ¼

X
n

bnx0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �
cosðk2zÞ

for 0 6 z 6 z2: ð26Þ

According to Eqs. (13) and (14), at r ¼ r1, one can obtain

s0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �
¼ 1; x0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �
¼ 1: ð27Þ

Eq. (26) can be simplified asX
m

am cosðk1zÞ ¼
X

n

bn cosðk2zÞ for 0 6 z 6 z2: ð28Þ

The development of coefficients bn is shown in Appendix C and the
result is

bn ¼
X

m

Knmam; ð29Þ

where

Knm ¼
sinðk1z2 þ k2z2Þ

k1z2 þ k2z2
þ sinðk1z2 � k2z2Þ

k1z2 � k2z2
for k1 – k2; ð30Þ

Knm ¼ 1 for k1 ¼ k2: ð31Þ
2.2.3. Determination of coefficients am and bn

The analytical expressions for hydraulic head distributions in
Eqs. (11) and (12) can be obtained after determining the coeffi-
cients am and bn given in Eqs. (22) and (29). One can insert Eqs.
(21) and (29) into (22) and obtain the following linear equationsX

m

ðbjm � njÞam ¼ ajDh; ð32Þ

where nj defined in Eq. (18) is equal to zero when j – m, and

aj ¼
1

~c2z2=~c1z1 � 1
Cj; ð33Þ

bjm ¼
X

n

HjngnKnm: ð34Þ

The constants am in Eq. (32) can be determined by solving the
system of equations. The coefficient of bn can then be obtained
from Eq. (29).

The solution describing the steady-state head distribution for
flow injection to the anticline reservoir with heterogeneous and
anisotropic conductivity is mainly composed of Eqs. (11), (12),
(21), (22), (29) and (32). In addition, these equations can be simpli-
fied for the case of a homogeneous and isotropic reservoir if one
sets jr1 ¼ jz1 ¼ jr2 ¼ jz2 and z1 ¼ z2 for the flat reservoir.

2.3. Injection rate

The volumetric flow rate due to injection at the wellbore can be
estimated by integrating the hydraulic head gradient along the rim
of the wellbore as

Q w ¼
Z z1

0
2pjr1rw

@h1

@r

����
r¼rw

dz: ð35Þ
According to Eq. (11), one can write

@h1

@r

����
r¼rw

¼ a0

rw lnðrw=r1Þ
þ
X

m

amk1

ffiffiffiffiffiffiffi
jz1

jr1

r
s1

ffiffiffiffiffiffiffi
jz1

jr1

r
k1rw

� �
cosðk1zÞ:

ð36Þ

Substituting Eq. (36) into Eq. (35) yields

Qw ¼
2pjr1z1

lnðrw=r1Þ
a0: ð37Þ

With Eqs. (17) and (21), Eq. (37) can be presented as

Qw ¼
2pjr1jr2z1z2

jr1z1 lnðr2=r1Þ � jr2z2 lnðrw=r1Þ
Dh: ð38Þ

Eq. (38) indicates that the injection flow rate depends on r2

which is defined as the distance from the center of the well to
the outer boundary. Mathematically, a constant-head condition
can be specified at the outer boundary if a water body is present
there. As such, r2 can be measured from the field. Otherwise, r2

is considered as the influence radius (or radius of influence) which
represents the distance from the center of the well to the edge of
the cone of depression. Therefore, the drawdown is zero at the out-
er boundary. Bear [13] mentioned three semi-empirical and two
empirical formulas for determining r2. For the semi-empirical for-
mulas, r2 depends on the time or precipitation and are thus not
applicable to Eq. (38). On the other hand, those two empirical for-
mulas relating hydraulic conductivity to aquifer drawdown (or
buildup for injection) can be employed to estimate r2. Since r2 is
in the form of ln r2, a large error produced when estimating r2

may not significantly affect the injection rate estimated by Eq.
(38) [14].

2.4. Special cases: homogeneous and isotropic anticline, two
conductivity zones, and Thiem equation

When the reservoir is a homogeneous and isotropic anticline,
i.e., jh ¼ jr1 ¼ jz1 ¼ jr2 ¼ jz2, Eq. (38) can be reduced to

Qh ¼
2pjhz2

lnðr2=r1Þ � ðz2=z1Þ lnðrw=r1Þ
Dh: ð39Þ

Consider an isotropic reservoir with two concentric conductiv-
ity zones being flat (the thickness of the reservoir is uniform, i.e.,
zf ¼ z1 ¼ z2) and the first zone of the reservoir may be taken as a
skin (i.e., jr1 – jr2Þ [15,16]. Eq. (38) can be simplified as

Qf ¼
2pjr2zf

lnðr2=r1Þ � ðjr2=jr1Þ lnðrw=r1Þ
Dh: ð40Þ

Furthermore, if the reservoir is homogeneous and flat, then Eq.
(40) becomes

Qo ¼
2pjhzf

lnðr2=rwÞ
Dh ð41Þ

which is indeed the Thiem equation.

3. Results and discussion

For demonstration, a case where fluid is injected into an anti-
cline reservoir through a fully penetrating well with rw ¼ 0:2 m is
assumed. The thicknesses of regions 1 and 2 (i.e., z1 and z2) of
the reservoir are respectively assumed to be 30 m and 20 m which
are commonly seen in western Taiwan [2]. The distance from the
center of the injection well to the interface between both regions
and the outer boundary (i.e., r1 and r2) are 10 m and 500 m, respec-
tively. For this homogeneous and isotropic reservoir, the hydraulic
conductivities in regions 1 and 2 are assumed to be 1 m/day. The
hydraulic heads at the wellbore and the outer boundary (i.e., hw



Fig. 3. Hydraulic head distribution in a homogeneous and isotropic formation for r1=z2 ¼ 0:5; r2=z2 ¼ 25; Dh ¼ 50 m with zd=z2 (a) 0.25, (b) 0.5, and (c) 0.75.
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and ho) are 100 m and 50 m, respectively. That is Dh ¼ 50 m which
is equivalent to a pressure of 9.36 MPa when considering injection
of CO2 under normal conditions [17]. The present solution is used
for investigating the effects of reservoir geometry as well as heter-
ogeneity and anisotropic on the head distribution in anticline
formations.
3.1. Effects of trap height and width on hydraulic head distribution

To investigate the influence of anticline trapping geometry on
the flow field, various values of the dimensionless trap height
ðzd=z2Þ and trap width ðr1=z2Þ are taken to simulate shallow and
deep traps of a homogeneous reservoir. Fig. 3(a)–(c) shows the
contour lines of the hydraulic head for the reservoir with
r1=z2 ¼ 0:5, r2=z2 ¼ 25, and Dh ¼ 50 m when the dimensionless
trap heights are 0.25, 0.5, and 0.75, respectively. These figures indi-
cate that the head drops quickly inside the trap for the case of a
reservoir with a large trap height. In contrast, a reservoir with a
small trap height will cause a mild head drop in the first zone.
Fig. 4. Hydraulic head distribution in a homogeneous and isotropic formation
The effect of trap width on the head distribution for reservoir
with a dimensionless trap height of 0.5 is shown in Figs. 3(b),
4(a), and (b). These figures indicate that the reservoir with a small
dimensionless trap width (say, 0.25) introduces higher hydraulic
head within the trap than those with larger dimensionless trap
widths such as r1=z2 ¼ 0:5 and 0.75.

Note that the trap areas are the same for the reservoirs shown
in Figs. 3(c) and 4(b). The trap in Fig. 3(c) has a dimension of
10 m (width) � 15 m (height) while that in Fig. 4(b) has a dimen-
sion of 15 m � 10 m. Comparing Fig. 3(c) with Fig. 4(b) for the head
distribution reveals that the hydraulic head shown in Fig. 3(c) is
significantly higher than that in Fig. 4(b). In other words, a steeply
folded anticline will introduce a higher head distribution than a
gently folded one if the areas of the trap in the anticlines are the
same for a constant head injection.

3.2. Effect of outer boundary on hydraulic head distribution

For a fixed trap geometry and constant Dh, the effect of outer
boundary (in terms of r2=z2) on the hydraulic head distribution is
for zd=z2 ¼ 0:5; r2=z2 ¼ 25; Dh ¼ 50 m with r1=z2 (a) 0.25 and (b) 0.75.



Fig. 5. Hydraulic head distribution in a homogeneous and isotropic formation for zd=z2 ¼ 0:5; r1=z2 ¼ 0:5, and Dh ¼ 50 m when r2=z2 ¼ 20.

Fig. 6. Hydraulic head distribution in a homogeneous but anisotropic formation with jr1=jr2 ¼ 10 for zd=z2 ¼ 0:5; r1=z2 ¼ 0:5; r2=z2 ¼ 25, and Dh ¼ 50 m.
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studied herein. Fig. 5 exhibits the hydraulic head distribution for
r2=z2 ¼ 20 with zd=z2 ¼ 0:5 and r1=z2 ¼ 0:5. The influence of the
outer boundary ðr2=z2Þ on the head distribution is insignificant,
especially in region 1 when comparing the contour distribution
in Fig. 5 with that in Fig. 3(b), where r2=z2 ¼ 25.

3.3. Effect of anisotropy on head distribution

The effect of anisotropy on head distribution in a homogeneous
formation (i.e., jr1 ¼ jr2 and jz1 ¼ jz2Þ is investigated herein. Fig. 6
demonstrates the head distribution of the anisotropic anticline res-
ervoir with jr1=jz1 ¼ 10. As seen when comparing Fig. 6 with 3(b),
high-pressure gradients and vertical flow in the upper part of the
trap are apparent because of the small vertical conductivity.
3.4. Effect of heterogeneity on head distribution

This section is to examine the effect of heterogeneity on the
head distribution in an isotropic formation (i.e., jr1 ¼ jz1 and
jr2 ¼ jz2Þ. The head distributions for reservoirs with uniform
thickness ðzd ¼ 0Þ but different conductivity ratios, such as
jr1=jr2 ¼ 0:5, 1 and 2, are plotted in Fig. 7(a)–(c), respectively. Re-
gion 1 has a lower conductivity than region 2 if jr1=jr2 ¼ 0:5 and a
higher conductivity than region 2 if jr1=jr2 ¼ 2. These figures indi-
cate that when the conductivity of region 1 is smaller than that of
region 2, region 1 has a denser head contour. In other words, the
head in region 1 drops rapidly for a smaller jr1=jr2. On the other
hand, the head change in region 1, which has a higher conductivity,
in Fig. 7(c) is relatively smaller than those in Fig. 7(a) and (b).



Fig. 7. Hydraulic head distribution in an isotropic but heterogeneous formation with jr1=jr2 (a) 0.5, (b) 1, and (c) 2 for zd=z2 ¼ 0; r1=z2 ¼ 0:5; r2=z2 ¼ 25, and Dh ¼ 50 m.
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3.5. Effects of trap shape and area on injection rate

The injection rate for a homogeneous, isotropic and flat reser-
voir system, Q o, can be determined from Eq. (41). On the other
hand, the injection rate for an anticline reservoir, Q h, can be ob-
tained from Eq. (39). The injection rate with conditions given at
the beginning of Section 3 obtained from Eq. (41) is
Qo ¼ 803:06 m3=day. Then the curves for Qh=Qo (dimensionless
injection rate) versus zd=r1 (ratio of trap height over width) can
be employed to assess the impact of trap shape and areas on injec-
tion rate.
The dashed line of Fig. 8 shows that Q h=Q o increases with zd=r1

when r1=z2 ¼ 0:5. This indicates that a taller trap has a higher
injection rate for a fixed trap width. In contrast, the solid line dis-
plays that Q h=Q o is inversely proportional to zd=r1 when
zd=z2 ¼ 0:5. In other words, the proportion of Qh to r1 implies that
a wider trap yields a higher injection rate for a fixed trap height.
Fig. 8 also shows that the solid line intersects the dashed line at
zd=r1 ¼ 1 and Qh=Qo ¼ 1:2. For a fixed trap width, a taller trap will
have a larger trap area. On the other hand, a wider trap also has a
larger trap area for a fixed trap height. Obviously, a larger trap area
causes a higher injection rate.



Fig. 8. Dimensionless injection rate versus trap shape with r1=z2 ¼ 0:5 and
zd=z2 ¼ 0:5 for r2=z2 ¼ 25 and Dh ¼ 50 m when considering jh ¼ jr1 ¼ jz1 ¼
jr2 ¼ jz2.
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Additionally, one can get Qh=Qo ¼ 1:25 for zd=r1 at 0.46 from the
solid line (i.e., gently folded anticlines) or 1.33 from the dashed line
(i.e., steeply folded anticlines) in Fig. 8. The trap area is 217.39 m2

for the former and 133 m2 for the latter. It is interesting to note
that different trap areas get the same injection rate. Obviously, a
steeply folded anticline can have the same injection rate as a gently
folded one even when the trap area of the steeply folded anticline
is smaller than that of the gently folded one.
4. Conclusions

A new analytical solution has been developed for simulating the
head distribution after fluid injection into a heterogeneous and
anisotropic anticline reservoir. This solution can be employed to
estimate volumetric flow rates of a flat reservoir with two concen-
tric transmissivity zones. One can further use this solution to as-
sess the skin effect on the head distribution if the reservoir is flat
and the first zone of the heterogeneous reservoir represents the
well skin. In addition, the equation developed for determining
the injection rate can be reduced to the Thiem equation if the res-
ervoir is flat, homogeneous and isotropic.

The effects of changes in trap height and width on head distri-
bution in the anticline formation are investigated. The results show
that the head within the trap increases with trap height and de-
creases with increasing trap width. Moreover, the impacts of for-
mation heterogeneity and anisotropy on the head distribution
are also assessed. The results indicate that when the conductivity
of the first region is smaller than that of the second region, then
the first region has a higher head distribution than the second
one. On the other hand, the first region with a higher conductivity
will introduce lower head distribution than the second one. A taller
trap results in a higher injection rate for a fixed trap width; on the
other hand, a wider trap causes a higher injection rate for a fixed
trap height. In other words, a larger trap area generally results in
a higher injection rate. However, a steeply folded anticline can
have the same injection rate as a gently folded one even when
the trap area of the steeply folded anticline is smaller than that
of the gently folded one. These results demonstrate that the pres-
ent solution can be used as a preliminary tool to assess the strate-
gies of long-term fluid injection, liquid waste sequestration, or
other similar engineering practices to anticline reservoirs.
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Appendix A. Development of Eqs. (11) and (12)

The solution describing the hydraulic head distribution in re-
gions 1 and 2 is developed in this appendix.

A.1. Region 1

One can solve Eq. (1) with Eqs. (3) and (4) using the method of
separation of variables. The result is

h1 ¼ E0 þ F0 ln r

þ
X

m

EmI0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r

� �
þ FmK0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r

� �� 	
cosðk1zÞ; ðA1Þ

where E0; F0; Em and Fm are constants and should be determined.
At r ¼ rw, with Eqs. (A1) and (2), we get

hw ¼ E0 þ F0 ln rw

þ
X

m

EmI0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1rw

� �
þ FmK0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1rw

� �� 	
cosðk1zÞ:

ðA2Þ
Since E0; F0; rw, and hw are all independent on z, the bracket

term in Eq. (A2) has to be zero. That is

EmI0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1rw

� �
þ FmK0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1rw

� �
¼ 0: ðA3Þ

Thus, one can obtain

hw ¼ E0 þ F0 ln rw: ðA4Þ

From Eq. (A1), the hydraulic head WðzÞ at r ¼ r1 can be ex-
pressed as

WðzÞ ¼ E0 þ F0 ln r1

þ
X

m

EmI0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �
þ FmK0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �� 	
cosðk1zÞ:

ðA5Þ
The average hydraulic head, H, over the thickness of z1 obtained
from Eq. (A5) is

H ¼ 1
z1

Z z1

0
WðzÞdz ¼ E0 þ F0 ln r1: ðA6Þ

The bracket term in Eq. (A5) is defined as an unknown constant, am

am ¼ � EmI0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �
þ FmK0

ffiffiffiffiffiffiffi
jz1

jr1

r
k1r1

� �� 	
: ðA7Þ

From Eqs. (A4) and (A6), one can obtain

E0 ¼ hw � ðH � hwÞ
ln rw

lnðr1=rwÞ
ðA8Þ

and

F0 ¼
H � hw

lnðr1=rwÞ
: ðA9Þ
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With Eqs. (A3) and (A7), one can solve for the constants Em and Fm.
The results are

Em ¼
amK0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �

K0

ffiffiffiffiffi
jz1
jr1

q
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ffiffiffiffiffi
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q
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� �
� I0

ffiffiffiffiffi
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q
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� �
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jz1
jr1

q
k1rw

� �

ðA10Þ

and

Fm ¼
�amI0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �

K0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
I0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� �
� I0

ffiffiffiffiffi
jz1
jr1

q
k1r1

� �
K0

ffiffiffiffiffi
jz1
jr1

q
k1rw

� � :
ðA11Þ

Substituting Eqs. (A8)–(A11) into Eq. (A1) results in Eq. (11).

A.2. Region 2

Similar to the development for Eq. (A1) given above, substitut-
ing Eqs. (6) and (7) into Eq. (1) results in

h2 ¼ E0 þ F0 ln r

þ
X

n

EnI0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r

� �
þ FnK0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r

� �� 	
cosðk2zÞ; ðA12Þ

where E0; F0; En and Fn are also unknown constants.
At r ¼ r2, the result after substituting Eq. (5) into Eq. (A12) is

ho ¼ E0 þ F0 ln r2

þ
X

n

EnI0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r2

� �
þ FnK0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r2

� �� 	
cosðk2zÞ: ðA13Þ

Because E0; F0; ho, and r2 are not function of z, the bracket term in
Eq. (A13) has to be zero. In other words,

EnI0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r2

� �
þ FnK0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r2

� �
¼ 0: ðA14Þ

Thus, one can get

ho ¼ E0 þ F0 ln r2: ðA15Þ

The hydraulic head WðzÞ at r ¼ r1 defined by Eqs. (A12) and (9)
is

WðzÞ ¼ E0 þ F0 ln r1

þ
X

n

EnI0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �
þ FnK0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �� 	
cosðk2zÞ:

ðA16Þ

The average hydraulic head at the interface between regions 1 and 2
can be obtained from Eq. (A16) as

H ¼ 1
z1

Z z1

0
WðzÞdz ¼ E0 þ F0 ln r1: ðA17Þ

Assume that

bn ¼ � EnI0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �
þ FnK0

ffiffiffiffiffiffiffi
jz2

jr2

r
k2r1

� �� 	
: ðA18Þ

The constant E0 and F0 obtained from Eqs. (A15) and (A17) are

E0 ¼ ho � ðH � hoÞ
ln r2

lnðr1=r2Þ
ðA19Þ

and

F0 ¼
H � ho

lnðr1=r2Þ
: ðA20Þ
With Eqs. (A14) and (A18), the constants En and Fn can then be
solved as

En ¼
bnK0

ffiffiffiffiffi
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ðA21Þ

and

Fn ¼
�bnI0

ffiffiffiffiffi
jz2
jr2

q
k2r2

� �

K0

ffiffiffiffiffi
jz2
jr2

q
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q
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ðA22Þ

Substituting Eqs. (A19) to (A22) into Eq. (A12) results in Eq.
(12).

Appendix B. Development of a0 and am

Integrating the right-hand side (RHS) of Eq. (16) from 0 to z2

and the RHS of Eq. (15) from z2 to z1, the sum of the integration re-
sults is further divided by z1 to determine ~c1a0

~c1a0 ¼
R z2

0
~c2ða0 þ DhÞ þ

P
nbngn cosðk2zÞ


 �
dz

z1
: ðB1Þ

Integrating Eq. (B1) leads to Eq. (21).
For the determination of amnm, both Eqs. (15) and (16) are first

multiplied by 2 cosðk1zÞ. Then one can integrate the RHS of Eq. (16)
from 0 to z2 and the RHS of Eq. (15) from z2 to z1. Summing up the
integrations and then dividing the result by z1 gives

amnm ¼
2
R z2

0
~c2ða0 þ DhÞ þ

P
nbngn cosðk2zÞ


 �
cosðk1zÞdz

z1
: ðB2Þ

The numerator terms in Eq. (B2) can be expressed respectively as

2
Z z2

0

~c2ða0 þ DhÞ cosðk1zÞdz ¼ 2
~c2

k1
ða0 þ DhÞ sinðk1z2Þ ðB3Þ

2
Z z2

0

X
n

bngn cosðk2zÞ cosðk1zÞdz

¼
Z z2

0

X
n

bngn½cosðk2zþ k1zÞ þ cosðk2z� k1zÞ�dz: ðB4Þ

The RHS of (B4) reduces to

X
n

bngn
sinðk2z2 þ k1z2Þ

k2 þ k1
þ sinðk2z2 � k1z2Þ

k2 � k1

� 	
ðB5Þ

if k1 – k2; otherwise, it turns into

z2

X
n

bngn: ðB6Þ

Substituting Eqs. (B3), (B5) and (B6) into (B2) results in

amnm ¼ Cmða0 þ DhÞ þ
X

n

Hmngnbn: ðB7Þ

Finally, Eq. (22) can be obtained when the subscript m in Eq. (B7) is
replaced by j to avoid confusing with the one in Eq. (29).

Appendix C. Development of bn

The constant bn can be determined from integrating the RHS of
Eq. (26) multiplied by 2 cosðk2zÞ from 0 to z2 and dividing it by z2 as

bn ¼
2
R z2

0

P
mam cosðk1zÞ cosðk2zÞdz

z2
: ðC1Þ
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Performing the integration of the numerator in Eq. (C1) over z re-
sults in

2
Z z2

0

X
m

am cosðk1zÞ cosðk2zÞdz

¼
Z z2

0

X
n

am½cosðk1zþ k2zÞ þ cosðk1z� k2zÞ�dz: ðC2Þ

The RHS of Eq. (C2) becomes

X
m

am
sinðk1z2 þ k2z2Þ

k1 þ k2
þ sinðk1z2 � k2z2Þ

k1 � k2

� 	
ðC3Þ

when k1 – k2; otherwise it reduces to

z2

X
m

am: ðC4Þ

Finally, one can obtain (29) after substituting Eqs. (C3) and (C4) into
(C1).
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