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摘要 

我們應用Gross-Pitaevskii equation 來描述在一維光晶格中的玻色-愛因斯坦疑聚

態，基於光晶格位能的週期性，我們用Bloch function 來展開秩序參數(order 

parameter)可得到封包函數(envelope function)的一維非線性方程式。接著我們引用

K• P 微擾近似的方法(或等效質量理論) 在特定k0展開能量E(k)將群速度和等效質量帶

入我的討論中。在Thomas- Fermi 近似和流體力學(hydrodynamic)的方法可以解得密度

變化量的方程式。解此方程式可得激發模組頻率大小，發現與等效質量有關和群速的大

小無關，群速度只會影響密度變化的大小。 我們也解了在自由擴散中的隨時間變化的

密度函數, 我們也展示在自由擴散時密度和流量密度的變化情形。自由擴散的這些推導

是在由流體力學和非線性光學中的方法而得知的。 
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Abstract 

We applied the Gross-Pitaevskii equation for BEC condensate in 1D optical 

lattice. For the character of the periodic potential from optical lattice, the Bloch 

function is used to expand our order parameter to get a 1D nonlinear equation of the 

envelop function. We also introduce the K • P perturbation theory (effective mass 

theory) to expand the energy E to specific point k0 and bring the group velocity and 

effective mass into our discussion. To solve the nonlinear differential equation of 

envelope function we assume the Thomas Fermi approximation and use the 

hydrodynamic theory to get the equation for the density fluctuation. We solve the 

equation and get frequency of the excitation mode and find out that the frequency 

depends on the effective mass and is not influenced by the group velocity. The group 

velocity will influence only the change of density. The time dependent density of 

BEC in free expansion is also solved and we show how the density and the current 

density vary in free expansion. They are derived under the hydrodynamics with 

another method from nonlinear optics.   
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Chapter 1 Introduction 
 
 

1.1  Preface 

The Bose-Einstein condensation (BEC) was first predicted out in the 1925 when 

Einstein devoted to the statistical description of the quanta of light. He based on the 

paper of the Indian physicist S.N. Bose and considered the Bose-Einstein 

condensation as the condensation of atoms in the state of the lowest energy associated 

with a phase transition. For the gas of non-interacting massive bosons he concluded 

that below a certain temperature, a finite fraction of the total number of particles 

would occupy the lowest-energy single-particle state [1]. 

 

In 1938, Fritz London suggested the connection between the superfluidity of 

liquid 4He and the Bose-Einstein condensate. However, the interaction between 

helium atoms is strong, and this reduces the number of atoms in the zero-momentum 

state even at absolute zero. The fact that interactions in liquid helium reduce 

dramatically the occupancy of the lowest single-particle state led to the search for 

weakly interacting Bose gases with a higher condensate fraction. The difficulty with 

most substances is that at low temperatures they do not remain gaseous, but form 

solids or liquid and the effects of interaction thus become large. 

 

The experimental studies on the dilute atomic gases were much later until the 

1970 when the new techniques about magnetic trapping and advanced cooling 

mechanisms were developed in atomic physics. In a series of experiments hydrogen 

atoms were coming very close to BEC by being first cooled in a dilute refrigerator 
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and further cooled by evaporation. 

 

In 1980s the cooling and trapping techniques based on laser such as laser cooling 

and magneto-optical trapping were developed to cool and trap neutral atoms. Alkali 

atoms are also to be cooled by such method because their optical transition can be 

excited by available lasers and also have the energy-level structure which can be 

cooled to very low temperature. 

 

BEC in dilute alkali gas was then first observed by the team of Cornell and 

Wieman at Boulder and of Ketterle at MIT in 1995. This great achievement also won 

the Nobel Prize in physics in 2001. Following the successful experimental 

observations of BECs, more physical properties of BECs had been investigated such 

as loading BECs in optical lattices [2] generated by interference of laser beams.  The 

first experiment involving the dynamics of BECs in periodic potentials carried out by 

Anderson and Kasevich was demonstrating a mode-locked atom laser to observe 

atomic Josephson oscillations [3,4].  In addition, the other properties of coherent 

macroscopic matter waves in a lattice have been explored [5,6]. 

 

An optical lattice is practically perfect periodic potential for atoms, produced by 

the interference of two or more laser beams. A Bose–Einstein condensate is the 

ultimate coherent atom source: collective atoms, all in the same state, and with an 

extremely narrow momentum spread. Combining the BEC and optical lattice gives an 

opportunity for exploring an analog of electrons in a solid-state crystal but with 

unprecedented control over both lattice and the particles. 

 

The time-dependent behavior of Bose-Einstein condensed clouds such as 
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collective excitation modes and the expansion of a cloud releasing from a trap is an 

important source of information about the physical nature of the condensate. 

 

 

 

1.2  Motivation 

The study of elementary excitations is an important subject in the physics of 

quantum many-body system. In superfluid helium, Landau, Bogoliubov and Feynman 

all had pioneering theoretical work on this subject. After the experimental realization 

of Bose-Einstein condensation in trapped atomic gases, the study of collective 

excitations has become a popular subject of research in ultracold gases [7, 8]. From 

the theoretical side, new challenging features emerge for the nonuniform nature of 

these systems. From the experimental side the high precision of the measurement of 

collective frequencies provides a unique opportunity for a detailed comparison with 

theory to point out the role of the interactions and of quantum correlations. 

 

On the other hand, Bose-Einstein condensate is a macroscopic quantum system 

that is easy to be exactly controlled experimentally. Therefore, many phenomena 

studied in solid-state system can be re-examined in a more direct and dramatic way. It 

is now possible to experimentally realize those model systems that had previously 

been studied theoretically but were impossible to test experimentally. One example of 

these is the experimental realization of the Hubbard model leading to the 

demonstration of the superfluid to Mott insulator transition in a Bose condensate of 

87Rb atoms [9]. 
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Although the theory and experiment about the excitation and free expansion 

have been studied for a long time and many results were known, the studies about 

dynamics of BEC in optical lattice are still not been well discussed. The properties of 

elementary excitations can be investigated by considering small deviations of the state 

of the gas from equilibrium and finding periodic solutions of the time-dependent 

Gross-Pitaevskii equation.  

 

Bose-Einstein condensate in the optical lattice can be considered as the giant 

matter wave moving in the periodic potential. Therefore it will have group velocity, 

effective mass and the band structure. We put the BEC into the one dimension optical 

lattice to see its excitation mode and expansion behavior. Furthermore we want to see 

how the group velocity gυ  and effective mass m* affect these dynamic behaviors  

to have better understanding the dynamic of the BEC in optical lattice. 

 

 

 

1.3  Organization of the thesis 

In the thesis, we first introduce the Gross-Pitaevskii equation and method of effective 

mass (K• P perturbation) method to apply to the BEC in optical lattice and the basic 

theory about the excitation and free expansion in hydrodynamic approach in the 

Chapter 2. After the discussion we get the 1D G-P equation of BEC in optical lattice 

and then get the differential equation for the density fluctuation and velocity.  

Then in Chapter 3, we try to get the analytic solution of excitation modes. The current 

density and velocity in free expansion of the condensate are also solved in this 

Chapter. Finally we get some conclusion and further discuss the results. 
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Chapter 2 Theory and Methodology 
 

At low temperature the condensate evolution is described sufficiently well by 

the Gross-Pitaevskii (G-P) equation, which is originally three dimensional (3D) but in 

the case of a cigar-shaped trap potential it is reducible to a 1D nonlinear Schrödinger 

(NLS). The validity is based on the condition that s-wave scattering length is much 

smaller than the average distance between atoms and that number of atoms in the 

condensate is much larger than 1 . Under this condition, the BEC in optical lattice can 

be simplified as the nonlinear Schrödinger equation with periodic potential. As the 

numerous experiments of BEC had been observed, many physical properties of BEC 

might be predicted and investigated to understand the fabulous phenomenon. BEC in 

optical lattices are affected by the structures of optical lattices. The BEC spectrum has 

an associated band structure .If the atomic density is high, BEC behaves nonlinearly. 

The properties of the atoms are characterized by the depth and period of this optically 

induced potential.  
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2-1  Bose-Einstein condensates in optical lattices 

The dynamic of the Bose Einstein condensate can be described by the 

Gross-Pitaevskii (G-P) equation  

 
2

22
0

( , )   ( , ) ( ) ( , ) ( , ) ( , )  
2

r ti r t V r r t g r t r t
t m

∂Φ
= − ∇ Φ + Φ + Φ Φ

∂
  

 (2.1)                  
   
 
where 

2 2 2 2
1 2 0

1 V(r) ( ) sin ( )  
2 xV V m r x V x

L
πω ω⊥ ⊥= + = + +  (2.2) 

The Φ(r, t) here is the order parameter of the condensate, the x is the direction of the 

optical lattice and L  is the lattice constant. The  is nonlinear coefficient 

 and 

0g

2
0 4 /sg aπ= m sa  is the s-wave scattering length. Here the optical lattice is 

periodic potential V2. 

 

When the condensate is under the strongly elongated trap ( 1 ~ 10xw
w

−

⊥
) the model 

can be reduced to a one-dimensional G-P equation by the separable solution  

 

. (2.3)     ( , ) ( ) ( , ) r t r x tΦ = φ ψ⊥

 

And the  direction can be described by the quantum harmonic-oscillation equation:  r⊥
  

2
2 2 21  ( ) ( ) ( )

2 2
r m r r E r

m
φ ω φ φ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥− ∇ + =  (2.4) 

 

 

The first eigen-function and eigen-value are given by  
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2   ( ) exp ( )          
2

m mr r and Eω ωφ ω
π

⊥ ⊥
⊥ ⊥

⎡ ⎤= − =⎢ ⎥⎣ ⎦
⊥ ⊥  (2.5) 

 

By taking the ground-state solution and the normalization condition to integrate the 

Eq.(2.1), we finally get the one-dimension GP equation:  

 
2 2

2
02

( , ) ( , ) ( ) ( , ) ( , ) ( , )
2

x t x ti V x x t U x t x t
t m x

ψ ψ ψ ψ ψ∂ ∂
= − + +

∂ ∂
 (2.6) 

Where 

2 2 2
1 2 0

1 ( ) ( ) ( ) sin ( )
2 xV x V x V x mx V x

L
πω= + = +  (2.7) 

 
The potential V(x) includes two parts one is the periodic lattice potential and the other 
is the additional external potential (confining potential) which varying slowly on the 
scale of the lattice period.  
 

 

2-2  K • P perturbation method 

Here we show how to use the K• P perturbation method (effective mass theory) to 

introduce the group velocity and effective mass. The G-P equation will be reduced to 

the equation of the envelope function by expanding the order parameter in Bloch 

function basis. 

   

We first expand the stationary condensate wave function (order parameter) on the 

complete set of Bloch function , ( )n k xφ . For the periodic potential, it will have the band 

structure. 

 

/   ( , )  ( ) i tx t x e μψ ψ −=  ;  
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2

2
,   ( ) ( ) ( ) n n k

n
x A k x dk

π

πψ φ
−

= ∑ ∫  (2.8) 

 

,The ( ) satisfy the equationn k xφ  

 

2
,

2 , , ,2
( )

  ( ) ( ) ( )    
2

n k
n k n k n k

x
V x E x x

m x

φ
φ φ

∂
− + =

∂
 (2.9a) 

 

Where    2
2 0 sin ( )V V x

L
π

=  is the periodic lattice potential and subscripts n and k 

represent the band index and quasi-momentum, respectively. The Bloch function 

satisfy the orthonormal condition 

*
, , ,  ( ) ( )m k n k m n k kdx x x ,φ φ δ δ′ ′=∫  (2.9b)  

 

The solution of Eq. (2.9a) is called the Bloch function and we use its complete set to 

expand the order parameter. The expansion in Eq. (2.8) is for the rapid oscillation of 

the condensate cloud while the slowly varying envelope function can describe the 

slow part of its motion. Now we start to introduce the k• p perturbation method to get 

the effective mass equation which is known in semiconductor physics. The “k• p” 

perturbation approach is a method to relate the energies and wave functions at nearby 

points in the quasi-momentum space. In the process, we will find out the expressions 

for the first and second derivatives of En, k with respect to k. The power expansion 

around the central wave vector k0 of the energy-band function En,k will also be 

investigated. We proceed by writing the Bloch function , ( ) n k xφ as 
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, ,( ) ( )ikx
n k n kx e u xφ =  

 

where the  is periodic function.  , ( ) (n k n ku x u xλ+ = , )

 

For k is very close k0, the , ( )n k xφ  becomes: 

 

0

0
0

, ,
( - )

,

( )  ( )   ( )

            e  ( )    

ikx ikx
n k n k n k

i k k x
n k

,x e u x e u x

x

φ

φ

= ≅

=
 

 (2.10) 

where the 0k k−  is small, the term will vary slowly.  0( - )e i k k x

 
The ( )xψ  in Eq. (2.8) can be modified following one band approximation 
 

 

0 0

0 0

0

2 2

2 2

( ) ( )   ( ) ( )  ( ) ( )  ( )  

           ( ) ( )

i k k x i k k x
k k

k

x A k e x dk x A k e dk

x f x

π π

π πψ φ φ

φ

− −

− −= =

⎡ ⎤= ⎣ ⎦

∫ ∫

 (2.11a) 

where       

 02

2

( )( )  ( )  i k k xf x A k e
π

π−

−= ∫ dk  

The f(x) is the envelope function.  

 

We now go back to the Eq. (2.6) by using  

0

/ /( , ) ( ) ( ) ( )iEt i t
kx t e x e x f xμψ ψ φ= =   (2.11b) 

The equation becomes: 
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0 0

0 0

2 2

22

2
1 0

( ) ( ) ( ) ( ) ( )
2

                                        +   ( ) ( ) ( ) ( ) ( )

k k

k k

E x f x V x x f x
m x

V x U x f x x f x

φ φ

φ φ

⎡ ⎤∂
= − +⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥⎣ ⎦

 

 

 

We use the power expansion around k0 up to second order for the energy and rewrite 

the equation. 

 

0 ,k k kδ= +  

 

0
0

2
2

0 2
( ) 1 ( )( ) ( ) ( ) ( ) ( )

2k k

E k E kE k E k k k
k k

δ δ∂ ∂
= + +

∂ ∂
 

 

0

0

2

0 0

( ) ( ) ( )

ˆˆ              ( ) ( ) ( ) ( )
2 *

k

g k

E k x f x

pE k k p x f
m

x

φ

υ φ
⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Then we integral the equation over coordinate x with multiplying * ( )k xφ  and use 

the normalization condition Eq. (2.9b) to get the effective mass equation 

 

2 2
2

02
( , ) ( , ) ( , )   ( ) ( ) ( , ) ( , )) ( , )   

2 *g
f x t f x t f x ti V x f x t

t x m x
υ∂ ∂ ∂

+ = − + +
∂ ∂ ∂

U f x t f x t  (2.12) 

 

Where   2 2
0

1( ) ( )  
2 xV x E k mx ω= + , 

4

0 0( ) ( )kU x U x dxφ= ∫  
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Where the potential only have the confined potential term and a constant  and 

the mass become the effective mass and here the group velocity 

0( )E k

*m  gυ was shown 

into the equation.  

 

It is convenient to use the dimensionless quantities by 

0 1
21

   ,           ,             
( 2 )

x ft t T x f
L L

= = =  

2
2 0

0 1 0
( )     ,      ,    '   

4 2
s

r

a E km LT L m L E
E

ω⊥= = =  

2 24 /rE m= L    

 

After these transformation equation (2.12) become 

 

2 2
02

( , ) ( , ) 1 ( , )   ( ) ( ) ( , ) ( , )) ( , )  
2 *g

f x t f x t f x ti V x f x t u f x t f x t
t x m x

υ∂ ∂ ∂ ′+ = − + +
∂ ∂ ∂

 (2.13) 

 
Where 

2 2 4
2 2 2

0 2
1   ( ) '( ) ;   
2 16

xm LV x E k x ω′ = + Ω Ω = 0, *, '   are dimensionless.gand m V and uυ  

4
1

0 2
*, * ,    

2 4
g g o

mL LmL mm u U
m

υ υ= = =  

 

For convenience, we will use ,  ,  x t f   for ,  ,  x t f   and all the variables in the 

discussion below will be dimensionless. 

 

We begin with the equation  
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2
2

02
1 ( ) ( )    

2 *g
f f fi V x f
t x m x

υ∂ ∂ ∂ ′+ = − + +
∂ ∂ ∂

u f f  (2.14) 

 

Where 2 2
0

1( ) ( )  
2nV x E k x′ ′= + Ω and

0 0  ( , ) ( , ) ( ) exp( ( ) )kx t f x t x iE k tψ φ ′=  

 

Eq. (2.14) is the G-P equation under the effective mass theory. 

 

 

2-3  Excitation of BEC 

The Eq. (2.14) is the equation of envelope function f(x) which involved the group 

velocity and effective mass and the confined potential of BEC.  

Multiply the Eq. (2.14) by f* and use the complex conjugate of the equation, we get 

the equation 

 

(  ) ( )g
n n v nv
t x x

∂ ∂ ∂
+ + ⋅ =

∂ ∂ ∂
0  (2.15) 

 

 

Where    
2

2*

* *1 1,  
2 *

f f f f
x xn f v

m i m xf
φ

∂ ∂
− ∂∂ ∂= = =

∂
 

 

We define the new velocity v : ′

 

gv v v′ = +  (2.16) 
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The equation then becomes 

 

(  ') 0   n n v
t x
∂ ∂

+ =
∂ ∂

 (2.17) 

 

We can use the hydrodynamic theory to express the order parameter in terms of its 

modulus and phase. 

 

 if e φρ=  (2.18) 

 

Insert the Eq. (2.18) to Eq. (2.15), we have two equations from imaginary and real 

parts. 

 
2

21 ( ) (
* gv

t m x x x
ρ 2 )ρ φ∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂

ρ  (2.19) 

 

 

2
2

02

1 1-( ) * '( )  
2 * 2gv m v

t x m x
φ 2V r uφ ρ ρ

ρ
∂ ∂ ∂

+ = − + + +
∂ ∂ ∂

 (2.20) 

 

 

 

The Eq. (2.19) is the same equation to Eq. (2.17) and now we can rewrite the Eq. 

(2.20):   
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21* ( ' *
2

vm
t x

μ
′∂ ∂ ) m v′= − +

∂ ∂
 (2.21) 

 
 
 

Where      
2

02

1  '
2 *

n V r n u
xm n

μ ∂ ′= − + + ⋅
∂

( ) ( )  (2.22) 

 

 

For the excitation of BEC, we give a small perturbation quantity for the density to see 

how it evolves. 

Here the quantities ,  v ,   'n μ′ can be considered as the variables ( 0 g,  v  and  n 0μ ) add 

a small perturbation. 

 

0 g 0,   v v ,      '  n n n vδ μ μ δμ′= + = + = +  (2.23) 

 

Insert back to equation and take the zero order: 

 

0
0( ) 0   g

n n v
t x

∂ ∂
+ =

∂ ∂
 (2.24) 

 
 

0 0    
x
μ∂

=
∂

 (2.25) 

 

Then the first order: 
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0( ) 0d n n v
d x

 δ
τ

∂
+
∂

=  (2.26) 

 
 

*   (  )    dvm
d x

δμ
τ

∂
= −

∂
 (2.27) 

 
 

Where we define   = g
d v
d t xτ

∂
+

∂ ∂
∂  (2.28) 

 

 

When the number of the atoms in the trap is sufficiently large, the density
 
becomes 

smooth and the kinetic energy pressure term can be neglected. That is so-called 

Thomas-Fermi expression: 

 

2 2
0 0  )x

0 0

1 1 1( ) = (  ( )
2nn V E k

u u
μ μ′ ′= − − + Ω 0    u n, δμ δ=  (2.29) 

 

The TF approximation fails at the tails of density distribution where the density 

decays exponentially as x → ∞  instead of vanishing at finite distance 

02 (  ( )) /x E kμ ′→ − Ω (called TF radius) according to Eq. (2.29).Since a small 

part of the condensate’s mass is concentrated in these tails, in the limit μ Ω  

distribution in Eq. (2.29) is assumed to be a good approximation of the initial density 

distribution of BEC before switching off the external potential. 

 

Under Thomas-Fermi, we deal with the Eq. (16) and Eq. (17)  
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2
0

02 (ud n nn
d m* x x
δ δ
τ

∂ ∂
=
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)  (2.30) 

 

 

We can rewrite Eq. (2.28) by using Eq. (2.27) 

 
2 2 2

2
2 2 2

( ) 1( 2 )g g
V n Vv v n  

t t x x m* x m* x
n 

x
μ δ δδ∂ ∂ ∂ ∂ − ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (2.31) 

 

 

Here we have find the equation governing the density change nδ  and we see the 

effective mass and group velocity are involved. 

 

 

 

2-4  Free expansion of BEC 

Now we focus to another topic of “free expansion” in the dynamics of the BEC. Here 

we start from the hydrodynamic description of BEC in 1D optical lattice. By the 

hydrodynamic representation of the G-P Equation where the order parameter was 

treated in terms of its modulus and phase, we have the Eq. (2.18) and Eq. (2.10).  

When the number of the atoms in the trap is sufficiently large (which will let the 

density n0 becomes smooth), the kinetic energy pressure term can be neglected. 

 

The two equations therefore become: 

 

(  ') = 0  t xn n υ+  (2.32) 
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0 0
*t x x

un
m

υ υ υ′ ′+ + ′ =  (2.33) 

 

Where gυ υ υ′ = +  and initial condition 0( , 0) ,   ( , 0) 0 n x n xυ= =   

 

Compare the two equations above with that getting from the situation without optical 

lattice trap, we find that the difference is that the m become m* and the velocity v 

become v’. We can consider that the condensate is moving with the velocity v respect 

to a moving frame with velocity vg. 

 

For the situation of free expansion, the potential is switched off. The condensate 

evolves according to Eq. (2.14) with 0Ω = . If evolution does not lead to wave 

breaking of the pulse, then we still can neglect the dispersion effects and use the 

hydrodynamics approximation to describe the evolution.  

 

Here the equation (2.32) and (2.33) are the similar to the problem in the nonlinear 

optics [13, 14] for the opposite sign of the xn  in Eq(2.32) and (2.33)  which 

corresponds to evolution of an optical beam in a focusing Kerr medium. We will 

apply the same method [12] to the problem of BEC expansion. 

 

From Eq. (2.29): 

 

2 2
2 20 0

0 0
0

0 0 0

1 '( ) '( )  '2 [1 ]
2( )

E k xV r E xn
u u u

μμ μ
μ

− − Ω− − Ω
= = = −

′−
0

0 0E
  

 
 (2.34) 

 17



 

We then look for the solution of the form: 

 

2 2
0

2
0 0

( )( )( , ) 1 ,  
( ) 2( )  ( )

gx tμ En x t  ( ) 
u f t E f t

υ
μ
Ω −−

= −
−

 (2.34) 

 

'( , ) ( ) ( )g gx t x t   tυ υ φ υ= − +  (2.35) 

 
 

 

Where the function ( )f t  and ( )tφ   satisfy the initial condition  

 

(0) 1,  (0) 0f φ= =  (2.36) 

 

Here it is reasonable only when this function  f (t) will increase by the time which 

having the effect to make the density spread and broaden out to agree with the 

situation of the free expansion of BEC.    

 

Substitution n and v’ into the Eq. (2.32) and Eq. (2.33) and it will give the relations 

between ( )f t and ( )tφ : 

 

1( )   ft
f t

φ ∂
=

∂
  (2.37) 

 
2

2

*
f f

m
Ω′′ =  (2.38) 
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Where           
2

 
4

xm Lω
Ω =  

 

Now we try to solve the two equations and first we integral the Eq. (2.38). 

 
2

2 2   ( )  C
*

f
m f
Ω′ = − +  (2.39) 

 

 

Using the initial condition  (0) 1, '(0) 2 (0) (0) 0f f f φ= = = , we then get the 

differential equation of the f: 

2 11
*

f
m f
Ω′ = −

   (2.40) 

Integrate the equation above: 

 

 2  
*( 1)

f df dt c
mf f
Ω

= +
−∫ ∫  

 

Using the initial condition  (0) 1, '(0) 2 (0) (0) 0f f f φ= = =  the Eq. (2.37) and (2.38) 

can be resolved and give the Eq. (2.41) and (2.42):    

 

22 ( 1) ln 2 ( 1) (2 1) 2
 *

f f f f f
m

tΩ
− + − + − =  (2.41) 

 
 

Using Eq.(2.37) and Eq. (2.39), We get the φ  as a function of f : 
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2 1 1( 1
*m f f

φ Ω
= )−  (2.42) 

 
 

We finally get the  and f φ  which will influence the evolution of BEC in the 

expansion. Some further result will be discussed in the next Chapter. 

 

 

 

 

 

 

Chapter 3 Discussion and result 
 
 

3-1  Excitation mode 

We discuss “excitation” of the Bose Einstein condensate. The “excitation” here can be 

considered as “the coherent fluctuations in the density distribution”. The density 

change is what we considered about and we have already found the equation which 

influenced the density distribution.  

 

From the Eq. (2.31), we seek to find the excitation mode and see what are the factors 

affecting those modes. We show the Eq. (2.31) again: 

 
2 2 2

2
2 2 2

( ) 1( 2 )g g
V n Vv v n   

t t x x m* x m* x
n

x
μ δ δδ∂ ∂ ∂ ∂ − ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂ ∂ ∂ ∂
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We use ( ) cos ( ) sinn A x wt B x wtδ = +  to find the collective mode of the BEC in 

the lattice trap.  

 

Since the  cos (wt) and  sin (wt) are orthogonal, we have two equations: 

 
2 2

2 2
2 2

( ) 1( 2 ) cos ( ) cosg g
B A V A V Aw A v w v wt  wt
x x m* x m* x x

μ∂ ∂ − ∂ ∂ ∂
− + + = −

∂ ∂ ∂ ∂ ∂
  

  
 (2.43) 

 
2 2

2 2
2 2

( ) 1( 2 ) sin ( ) sing g
A B V B V Bw B v w v wt  wt
x x m* x m* x x

μ∂ ∂ − ∂ ∂ ∂
− − + = −

∂ ∂ ∂ ∂ ∂
    

  
 (2.44) 

 

Now we seek the series solution for A(x) and B(x) of the Eq. (2.43) and Eq. (2.44). 

We use the following series to describe A(x) and B(x). 

 

1 0
1 0

0
( )  = ...  , i

i
i

A x A x A x A x A x
η

η η η
η η η

− −
− −

=
= +∑ +  (2.45) 

 

1 0
1 0

0
( )  ...i

i
i

B x B x B x B x B x
η

η η η
η η η

− −
− −

=
= = + +∑  

 (2.46) 

At first, we put the A(x) and B(x) into the Eq. (2.43) and it then becomes 
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1 2
2 1 2

0 0 0
2 2 2

2 2

0 1
2 1

1

2 ( ) ( )( 1)

         [ ( 2)( 1) ( )( 1) ]
2

              ( )
*

i i
i g i g i

i i i

i i
i i

i i

i
i

i

w A x v w i B x v i i A x

i i A x i i A x
m*

i A x
m

η η η
η η

η η η

η η
η η

η η

η
η

η

η η η

λ η η η η

η

− −
− − −

− − −
= = =

− −

2iη− −

− − −
− −

= =
−

−
−

=

− + − + − − −

Ω
= − + − + − − − −

Ω
− −

∑ ∑ ∑

∑ ∑

∑

 

 (2.47) 

where 
2

2 2 2 2 0
0 2

2 ( )1( ) , , ( )
2 4

xm L E kV E k x Xω λ= + Ω Ω = = −
Ω

 

 

The equation can change as  

 

2  2  
1 2

0 1 2
2 2

2   
2

2 0
2

   2 ( 1)  ( 2)( 1)  

           [ ( 2)( 1)  ( )( 1) ]
2

                    ( ) 
*

i i
i g i g i

i i i

i i
i i

i i

w A x v w i B x v i i A x

i i A x i i A x
m*

i A
m

η η η
iη η η

η η

η η
η η

η η

η η η

λ η η η η

η

− −
− − +

= = =
−

− −
− + −

= =

− + − + + − + − +

Ω
= − + − + − − − −

Ω
− −

∑ ∑ ∑

∑ ∑
1

0

i
i

i
x

η
η

η

−
−

−
=
∑

η
−

− +

 

 (2.48) 

 

The equation for all value of x can exist only when each of the coefficients equals to 

zero. We begin to use i = 0 and set the coefficient of the xη  to be zero. 

 
 

2 2
2 ( 1)

2 *
w A A A

m* mη ηη η ηΩ Ω⎡ ⎤− − − − + =⎣ ⎦ 0η  

 

[ ]
2

2 ( 1) 0
2

w A
m* ηη η

⎧ ⎫Ω⎪ ⎪− + + =⎨ ⎬
⎪ ⎪⎩ ⎭

 

 

 22



When  0,    Aη ≠  

[ ]
2

2 ( 1) ,   =1,2..
2

w
m*

η η ηΩ
= +  (2.49) 

 

We also can change the frequency to original form and can compare to the 

dimensionless form above. 

 

1 ( 1)     ,   =1,2...
2 * x

mw w
m

η η η= +  (2.50) 

 
 

Here we have the low lying excitation modes by putting 1,2η =  and the frequencies 

are   
* x

m w
m

and 3   
* x

m w
m

.  

 

Such result can compare the result for the papers about the excitation of Bose-Einstein 

condensate. In Ref. [10] for the quasi-1D system and , the result shows 

that the collective modes are

/ 1 xw w⊥

1 ( 1)     ,  =1, 2...
2l xl l w lΩ = + . 

The influence of adding the optical lattice only has the difference by multiplying the 

factor  
*

m
m

.  

 

To this result of our research it also shows that the group velocity gυ  does not affect 

the collective modes. In Fig. 1 we show the relation between the collective mode and 

effective mass where the frequency of the mode is proportional to the inverse of 

square root of effective mass. 
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Fig. 1 The excitations of the lowest two modes are shown. It takes  =1,2η  to the Eq. 

(2.35) and frequency is proportional to inverse of the square root of effective mass. 

 

Furthermore, we let the coefficient of the 1xη− to be zero by set i =1 to collect the 

terms of 1xη− . 

 
2 2

2
1 1 (2 ) [ ( 1)( 2)  ] ( 1) 0

2 *gw A v w B A A
m* mη η η ηη η η η− −
Ω Ω

− + + − − − + − 1− =  

 (2.51) 

 
2

1 ( 2
2 gA v wB
m* η ηη −
Ω

− + ) 0=  (2.52) 

 

We then find the relation of 1 and  B Aη η− . 
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2

12 * g
B A

m v wη η−
Ω

=  (2.53) 

 

Noticed the η  here is a parameter and Bη and Aη is the highest term of each series. 

 
Finally, we can find the formula by use i n= and 2nη ≥ ≥  we get another 
formula 
 

2

2 1( )( 2 1) ( 2)( 1) 2 ( 1) 0
2 2 *n g n gn n A n n A w n B
m* mη ηη η η υ υ η− − +

⎡ ⎤Ω Ω⎡ ⎤− − + − + − + − + − + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
nη− +  

 (2.54) 

 

Repeat the process to another formula of Eq. (2.43) and get the two another formula 

of the relation of series. Collect these four formulas  

 

2

12 * g
A

m v w
Bη η−

Ω
= −  (2.55) 

 

2

12 * g
B A

m v wη η−
Ω

=  (2.56) 

 

2

2 1( )( 2 1) ( 2)( 1) 2 ( 1) 0
2 2 *n g n gn n A n n A w n B
m* mη ηη η η υ υ η− − +

⎡ ⎤Ω Ω⎡ ⎤− − + − + − + − + − + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
nη− +  

 (2.57) 

 

2

2 1( )( 2 1) ( 2)( 1) 2 ( 1) 0
2 2 *n g n gn n B n n B w n A
m* mη ηη η η υ υ η− − +

⎡ ⎤Ω Ω⎡ ⎤− − + − + − + − − − + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
nη− +  
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 (2.58) 

 
 

We then use   =2 η for the mode 3  
* x

mw
m

= w  to find the series of A(x) and B(x). 

The result is  
 

2 2
2 2

( )cos ( )sin

5 1 5 1( ) ( ) cos ( ) ( ) si
3 18 6 3 18 6

n A x wt B x wt

e bx e x wt b ex b x wtn

δ

λ λχ χ
χ χ χ χ

= +

⎡ ⎤ ⎡
= + + + − + − − + +⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 (2.59) 

where 

2
2

2
2

5 1( ) ( ) ( )
3 18 6

5 1( ) ( ) ( )
3 18 6

A x e bx

B x b ex b x

λχ
χ χ
λχ
χ χ

= + + + −

= − − + +

e x
 

    and  ,   are  constants.g b e
w
υ

χ =  

 

We can see where the group velocity will have the influence and the group velocity 

can let the condensate looking like moving with velocity gυ  respect to the rest frame. 

In the later discussion we will see how the group velocity affects dynamics of the 

condensate.  

 

 

Normalization condition can help to decide the parameters b and e. 

 

0
   ( )  ( ) ( )kx x f xψ φ⎡ ⎤= = ⎣ ⎦  (2.60) 
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where
0

   ( )k xφ  is the Bloch function with k=k0 and the function satisfy the equation 

 

0 0

2
2

02
1  sin ( ) ( ) ( ) ( )    

2 2 k kV x x E x
m x

π φ φ
⎡ ⎤∂
− + =⎢ ⎥

∂⎢ ⎥⎣ ⎦
x  (2.61) 

 

0

0
( ) ( )ik x i x

k x e e πφ α β −= +  (2.62) 

 

12 20 0
0

2
0 0

0

1 1Where           
42 [1 ( 2 )]

2                      ( 2 )

k V E
V

k V E
V

α
π

αβ

=
+ + −

= + −

 

 

We use the normalization condition the total number to be N. 

2( , )x t dx Nψ =∫ ,  
0

2
0   ( )kn x dxϕ N⋅ =∫  (2.63) 

 

The formula can change to include the small perturbation: 

0

22
0( , ) ( )  ( )kx t dx n n x dx Nψ δ ϕ= + ⋅ =∫ ∫  (2.64) 

 

We finally get the equation below:  

0

2
  ( ) 0kn x dxδ ϕ⋅∫ =  (2.65) 

 

When t =0   ( , 0) ( )n x A xδ =  and satisfy the normalization condition 
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0

22 2 25 1 ( ) {( ) ( ) }[( )( )] 0
3 18 6

i x i x
kA x dx e bx ex e e dxπ πλϕ χ α β α β

χ χ
−= + − + +∫ ∫ =  

 (2.66) 

 

The condition for the integral to be zero is only when 0e = . 

 

The equation of Eq. (2.59) then becomes: 

 

2
25 1cos [( ) ]sin

3 18 6
n b x wt x wtλδ χ

χ χ

⎧ ⎫⎪ ⎪= ⋅ + − − +⎨ ⎬
⎪ ⎪⎩ ⎭

 (2.67) 

 

where       
  *

 = .
3 

g g m
w
υ υ

χ =
Ω

 

 

We try to plot the nδ  respect to x in Eq. (2.67) with the
4

wt π
= . The result is shown 

in Fig. 2. 
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Fig.2  The density fluctuation in x direction is not symmetric with the zero point. 

The possible reason is that the group velocity makes the condensate move in the x 

direction. 
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3-2  Current density in free expansion 
 

Now we start to get some result in free expansion. We found that substitute ( )f t  

and ( )tφ of Eq. (2.40) and (2.41) into Eq.(2.34) and Eq.(2.35) will give us 

the and ( , )n x t ( , )x tυ ′ . 

Here are those equations:  

2 2
0

2
0 0

( )( )
( , ) (1 ) ,  

( ) 2( )  ( )
gx tμ E

n x t  
u f t E f t

υ
μ
Ω −−

= −
−

   

'( , ) ( ) ( )g gx t x t   tυ υ φ υ= − +  

where  

22 ( 1) ln 2 ( 1) (2 1) 2  
  *

f f f f f
m
Ω

− + − + − = t   

2 1 1 ( 1
   *m f f

φ Ω
= )−   

 

 

We plot the f(t) and t and find the f(t) is almost linear to t in Fig 3. When time is 

larger it can consider as a line with slope about 1.38. 
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Fig. 3  f(t) as a function of time. It is almost a straight line beside the point near 

origin point. 

 

 

 

Then we show in Fig. 4 the density n and position x at the t =1 (which is 

dimensionless unit = 0.3ms) k=0.7854, E0=0.7834, vg=2.2623, f(1)=1.4376 

The density of condensate for different time is shown in Fig. 5. Therefore, we can 

know how the density changes in the condition of free expansion. 
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Fig. 4 The function of density for different x when t =0.3 ms. 
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Fig.5  The density change with respect to time. Where time scale is for the 

dimensionless unit and one unit is equal to 0.3 ms. . The density becomes flat and 

starts the free expansion for large time.  
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If the optical lattice was removed, the result will be 

2 2

2( , ) (1 )
2 ( ) 2  ( )

xn x t  
f t f
μ

μ
Ω

= −
t

 (2.42) 

 

'( , ) ( ) x t x tυ φ=  (2.43) 

 

 

Now we can get the condensate front velocity by using the Eq. (2.35), Eq. (2.36), Eq. 

(2.37) and Eq. (2.38). 

 

 

0( ) 1 ( ) 2 (1 )
*f
Et

m f
μυ −

=  −  (2.44) 

 

We can also calculate the current density : ( , )J x t

 

2 2
0

2
0 0

( )( )( , ) [(1 )(( ) )]
( ) 2( )  ( )

g
g

x tEJ x t  x t
U f t E f t

υμ
gυ φ υ

μ
Ω −−

= − −
−

+  (2.45) 

We plot the current density for different k (wave number) in Fig.6 and it show how 

the increase of k will make the current density shift from the origin. The group 

velocity for different k is also shown in Fig.7. It give us the conclusion the higher 

group velocity will give the current density more shift from origin. Therefore it also 

means the amount of atoms move toward the direction +x and –x is not equal for 

group velocity is not zero. 
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Fig. 6  Current density for different k (wave vector) which related to different group 

velocity and effective mass. For k=0 it pass the point of origin and for high k also the 

velocity is high the current density that positive part is higher than negative part and 

where t =1 (0.3ms) and f =1.4376. 
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Fig. 7 The group velocity and effective mass for different k are shown. T he group 

velocity increase proportional to k and the effective mass is almost constant and rise 

up dramatically only when it above 1.0.  

 

From Fig.7, we find the group velocity is negative for negative k. The current density 

may therefore have the different change for the negative k. We then show the current 

density for –k and the result is shown in Fig.8. It shows that for negative group 

velocity there will have another shift of the current density and it means the amount of 

atoms moving toward the direction -x is more than the direction of +x while the group 

velocity is negative. 
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Fig. 8  The current density for negative k is shown. We can see the negative k make 

the current density have the shift from the origin in different way comparing with 

positive k. 

 

In asymptotic limit of large time (when ), the Eq. (2.40) and Eq. 

(2.40) can be reduced:    

( ) (0)  =1  f t f

 

2 1 ,         
   *

f t tm
φΩ

=  =  (2.46) 

 

 

In this limit the density and the velocity can be expressed by  
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2
0

2
0 0

( )( ) *   ( , ) (1 )
2 4( )  

g *x t mμ E mn x t  
U t E t

υ
μ
−−

= −
Ω −

 (2.47) 

 

( , )    xx t   
t

υ ′ =  (2.48) 

 

The current density will be  

 

2
0

2
0 0

( ) *( ) *( , ) [(1 )(( ) )]
2 4( )  

g
g g

x t mμ E m xJ x t   
U t tE t

υ
υ υ

μ
−−

= − −
Ω −

+  
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Chapter 4 Conclusion and Perspective 

4-1  Conclusion 

 

In the thesis, we use the G-P equation and K•P perturbation method to study the 

dynamic of BEC in one dimensional optical lattice. Our approach was under the 

method of the hydrodynamics. We get analytic solution of the excitation mode and 

realize the frequency is related to both the frequency of optical lattice and effective 

mass, while the group velocity affects the density fluctuation. We then introduce two 

time dependent function f(t) and φ(t) to seek the time dependent function of density 

and velocity for free expansion and finally get the result of the analytic from. We then 

know how the density and velocity change in free expansion.  

The current density can also be derived and we show the influence on current density 

from group velocity. 

 

4-2  Perspective 
 

We have applied the K•P perturbation method (effective mass theory) to dynamics of 

BEC condensate in 1D optical lattice. We get some results for excitation mode and 

also know more about free expansion. In future work, we can try to solve the same 

question for 3D system instead of the strong confinement in transverse direction to 

compare the result. Our method (effective mass theory) is only be used in the situation 

of optical potential not too high and we can also search for another method for the 

situation for highly trap such as tight binding method to compare the result. Also the 

researches related to BEC in optical lattice are large and many related topics can be 

also discussed. 
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