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基於影像之 3D 物體重建 
 

研究生：鄭文昌 指導教授：林進燈 博士

 

國立交通大學電機與控制工程學系﹙研究所﹚博士班 
 
 

摘    要 
在這篇論文中我們提出改善 3D 物體表面重建以及場景顏色重建的相關新

技術。對於 3D 物體的表面重建，我們主要是採用 photometric stereo 的立體重

建技術方法，這個方法是基於多張不同光源方向但是相同物體場景的影像來重

建影像中物體的深度(depth)資訊，依據以往的研究，反射(specular)成分與散射

(diffuse)成分的影響是必須被一起考慮，因此我們將改善的方法分成兩個階段來

完成，第一階段我們先針對反射成分與散射成分的結合比例問題提出結合兩個

對稱型的類神經網路來取代傳統利用固定比例結合的方法，透過我們提出的類

神經網路學習機制，最後可以得到影像中每一個點對應到表面散射及反射成分

最適當的混合比例及表面法線向量，進一步利用表面的法線向量，我們使用

Enforcing Integrability 方法重建出影像中物體表面的深度資訊，經實驗驗證我們

所提出的類神經網路的方法比傳統固定比例結合的方法能更有效的重建 3D 表

面的結果。 
為了更有效的結合反射成分與散射成分，第二個階段我們提出一個單一非

線性(nonlinear)混合模型同時用來表現物體表面的散射及反射成分，我們不需要

從這個模型中將這兩個成分分開，透過非線性獨立成成分分析(independent 
component analysis)技術的計算，我們最後可以從這單一非線性混合模型中分解

出對應到影像中每一點的表面法線向量，接著利用表面法線向量可以重建出影

像中物體表面的深度資訊，經實驗驗證我們知道物體表面的反射成分與散射成

分是可以用單一模型來表現，其次證實非線性獨立成分分析技術可以有效的應

用在此一問題上。 
對於 3D 物體的色彩重建，我們也提出一個基於類神經網路的影像中外在

環境光源的估測方法，這個估測方法是依據影像上所有顏色在色域圖上的統計

直條圖分佈來估測影像外在光源，我們以影像色域統計圖分佈的中心值當作類

神經網路的輸入，透過 BP 學習法則學習過的類神經網路，我們可以得到相對

應於光源參數的輸出，利用這些估測的光源參數，我們能完成色彩的重建，從

實驗的結果可以驗證，不管是定量或定性的實驗顯示，我們所提出的方法確實

能正確且有效快速的完成光源的估測及色彩的重建。 
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Abstract 
In this thesis, we propose three new techniques to improve the surface 

reconstruction and color reconstruction of 3D objects. For the surface reconstruction 
of 3D objects, photometric stereo is able to estimate local surface orientations by 
using several images of the same surface which are photographed from the same 
viewpoint but under the illuminations from different directions. According to 
previous researches, a successful reflectance model for surface reconstruction of 3D 
objects should combine two major components, the diffusion and specular 
components. As a result, in this thesis, we categorize the improvement by our 
methodology into two stages. In the first stage, a new neural-network-based adaptive 
hybrid-reflectance model is proposed for combining the diffusion and specular 
components automatically. The supervised learning algorithm is adopted and the 
hybrid ration for each point is updated in the learning iterations. After the learning 
process, the neural network can estimate the normal vector for each point on the 
surface of 3D objects in an image. The enforcing integrability method is applied to 
the reconstruction of 3D objects by using the obtained normal vectors. The 
experimental results demonstrate that the proposed network estimates the 
point-wisely adaptive combination ratio of the diffusion and specular intensities 
such that the different reflection properties of each point on the object surface are 
considered to achieve better performance on the surface reconstruction. 

In the second stage, we further propose a new nonlinear reflectance model 
consisting of diffusion and specular components for modeling the surface 
reflectance of 3D objects in an image. Unlike the previous approaches, these two 
components are not separated and processed individually in the proposed model. An 
unsupervised learning adaptation algorithm is developed to estimate the reflectance 
model based on image intensities. In this algorithm, the post-nonlinear independent 
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component analysis (ICA) is used to obtain the surface normal on each point of an 
image. Then, the 3D surface model is reconstructed based on the estimated surface 
normal on each point of image by using the enforcing integrability method. The 
results clearly indicate the superiority of the proposed nonlinear reflectance model 
over the other linear hybrid reflectance model. The experimental results demonstrate 
that the post-nonlinear ICA method can be used in the problems of surface 
reconstruction. 

For color recovering of 3D objects, a new neural-network-based algorithm for 
surrounding illumination estimation of image scenes is proposed. This estimation is 
based upon the chromaticity histogram of a color image, which is obtained by the 
accumulation of CIE chromaticity values corresponding to all the colors in the 
image. A neural network with a BP learning algorithm is used to model the 
nonlinearly functional relationship between the central values of the chromaticity 
histogram and the coefficients of illuminant functions. The trained BP network can 
then be used to estimate the spectral power distribution of the surrounding 
illuminant. By substituting this illuminant estimates into the finite-dimensional 
linear model of surface reflectance, the colors of the image can be recovered with 
the standard illuminant (such as D65) for color constancy. The experimental results 
show that the new algorithm outperforms the existing popular compared algorithms, 
both in quantitative error indices and in qualitative visual perception. 
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1. Introduction 
 

 

 

 

1.1. Motivation 

When we use the camera to capture the images of 3D objects and scenes, we also 

loose the depth information of 3D objects and only obtain the 2D image information. 

However, the depth information of 3D objects plays an import role in many 

applications such as the 3D-object recognition and 3D-object display. Moreover, when 

we use the camera to capture images, the colors of objects in an image will change 

because of the various camera characteristics and environment illuminations. In order 

to show the original information of 3D objects, we must recover the true object colors. 

Hence, the problems of 3D object reconstruction from 2D images including the 3D 

surface reconstruction and the true color reconstruction. In this thesis, we propose 

thee new techniques to attack these two problems. 

1.2. Surface Recovering Methods 

Several candidate approaches exist for the recovery of surface topography, 

including binocular stereo, shape from shading, and photometric stereo. 

1.2.1. Binocular stereo 
Binocular stereo is a means of recovering depth by identifying corresponding 

points in two images developed from different viewpoints. Although binocular stereo 

has been used successfully in computer vision, it still has several drawbacks that 

should be overcome: (1) Additional hardware is necessary; as this method required 
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two cameras. (2) The difficulty in using binocular stereo arises from reliably 

determining the corresponding features between two separate images. It is essential 

that the position for us to observe remains fixed during the phase in image acquisition 

in order to prevent the so called correspondence problem. Implementing the matching 

algorithm also results in additional computation. (3) The missing depth information 

can be obtained by using stereoscopic imaging techniques. (4) The depth of surface is 

preferred to recovering than the surface orientation. All of above conditions introduce 

noises and artifacts.  

1.2.2. Shape from shading from a single image 
The image typically exhibits a smooth variation in brightness from one point to 

another, which is known as shading. This perception of shape from gradual changes in 

brightness is denoted as shape from shading (SfS). It was one of the first areas of 

studies in computer vision and was proposed by Horn [1] in the early 1970s.The topic 

of shape from shading (SFS) is concerned with determining the shape of an object 

solely from the intensity variation in the image plane [2]-[10]. Unfortunately, 

measurements of brightness at a single point in the image only provide one condition 

whereas describing surface orientation requires two variables. The problem is illposed 

unless further assumptions are made. 

The single-image shape from shading algorithm is still limited even if the exact 

lighting condition and surface reflectivity are known. One extreme case is that the 3D 

surface information may be totally lost under certain lighting conditions, and so there 

is no way to recovery the surface orientation. The problems in extracting shapes from 

shading by a single image are as follows. (1) It is assumed that an approach relies on 

having a known reflectance function for a surface. (2) One constraint exists in terms 

of the mathematical solution for this method. The method relies on the continuity of 
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I(x, y). This means there are no discontinuities on the surface, which is therefore 

unsuitable for 3D texture surface estimation. (3) We really need a starting point to 

grow a solution. The equations that we solved are not over-constrained so the method 

will be extremely susceptible to noises in the image. 

1.2.3. Photometric stereo 
Photometric stereo gives us the ability to estimate local surface orientation by 

using several images of the same surface taken from the same viewpoint but under the 

illumination from different directions. It was first introduced by Woodham [11]. The 

light sources are ideally point sources from some distance away in different directions, 

so that in each case there is a well-defined direction of light source from which we 

can measure the surface orientation. Therefore, the change of the intensities in the 

images depends on both local surface orientation and illumination direction. 

Photometric stereo is a way in which the ill-posed problems in shading from 

shading can be resolved. It uses several images of the same surface under different 

illumination directions. The advantages of photometric stereo are as follows. (1) 

Unlike single image by shape from shading algorithms, photometric stereo makes no 

assumption of the smoothness of the surface. (2) Furthermore, it requires only 

additional lighting and can be easily implemented at a reasonable computational cost. 

(3) Each image brings along its own unique reflectance map, therefore we will define 

a unique set of possible orientations for each point in each image. (4) Photometric 

stereo can recover not only surface normal but also surface albedo. 

1.3. Candidate Color Recovering Methods 

Without light there is no color. Light sources therefore play a very important part 

in colorimetry. If the color is self-luminous, such as in the case of fireworks, for 

example, then the light source itself is the color. But, more often, colors are associated 



 4

with objects that, instead of being self-emitting, reflect or transmit light emitted by 

light sources. Thus, a variation of the illuminant in the scene changes the color of the 

surface as it appears in an image. As far as the human eyes are concerned, the color of 

the surface is almost different from each other. This phenomenon is called the color 

constancy. However, this function of color constancy does not exist for cameras, so 

we need to have an automatic color constancy function in order to obtain the correct 

color images from cameras.  

The goal of color constancy can be defined as the transformation of a source 

image while being taken under an unknown illuminant for a target image which is 

identical to that which would have been obtained by the same camera in the same 

scene under a standard illuminant (such as D65). Thus, there are two stages in the 

process of color constancy. The block diagram in Fig. 1-1 illustrates this process. The 

first stage estimates the spectral power distribution of the surrounding illuminant of an 

input image, )(ˆ λE , and based on which we can correct the image pixel-wisely in the 

second stage with standard illuminant D65. 

Illuminant
Estimation

Illuminant
correction

based on D65

)(ˆ λE
Input image Desired image

 
Figure 1-1. Block diagram of the color constancy process. 

 

It is difficult to estimate the surrounding illumination from an image itself, 

because we totally have no idea about what color consists of an image. There are 

several methods that have been proposed for determining the surrounding illumination 

based on some strict assumptions [12]. These candidate approaches exist for the 

surrounding illumination estimation, including gray-world methods, color by 

correlation, and neural networks methods. 
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1.3.1. Gray World Methods 
The “Gray-World” method is one well-known prior art technique, which 

estimates the color of the surrounding illumination as the average of color in the 

camera image [14]-[16]. This method is quite unreliable because the average is very 

unstable. For example, the color of the image of a large field of grass will be primarily 

green, so the average color in the image will be green. Color correction of such an 

image based on the gray-world technique produces readily perceptible color errors 

throughout the image. Another prior art method of estimating the color of the 

surrounding illumination is the brightest surface method [13], [17]-[20]. This method 

effectively uses the maximum value found within the image for each of the three RGB 

channels of color information as the estimate of the color of the surrounding 

illuminant. This method is also unstable because it depends on the assumption that 

there will be a surface that is maximally reflective in each of the three RGB channels 

of color information everywhere in the scene. This assumption is frequently violated. 

These methods are improper in general, though they are simple and easy. 

1.3.2. Neural Network Methods 
Usui [21] described a method of estimating the surrounding illumination by 

using a simple neural network as a decorrelator to minimize the correlation among the 

RGB information of an image. This simple neural network has three inputs and three 

outputs, but by itself does not accomplish satisfactory color constancy. In 1999, Funt 

et al. [22] proposed another neural network approach. The image colors are first 

mapped into a chromaticity space that is then divided into a plurality of separate 

regions. For each region, the binary value “1” is assigned to the region if the region 

contains chromaticity values, and the other binary value “0” is assigned to the region 

if it does not contain a chromaticity value. The assigned values are then used as inputs 



 6

to a pre-trained neural network, in which there are two output nodes representing the 

white point chromaticity of the surrounding illuminant. The drawbacks are that the 

input part is too complex and the weighting values are not easy to converge within the 

back-propagation (BP) algorithm. 

1.3.3. Color by Correlation 
The color correlation approach for the surrounding illumination estimation is 

proposed in [23]-[25]. A correlation matrix memory is built to correlate the data from 

any camera image to reference images under a range of illuminants. The vertical 

dimension of the matrix memory (the columns) is a rearrangement of the 

two-dimensional chromaticity space into a raster list of points. The horizontal 

dimension corresponds to a similar raster list that is the chromaticity for all possible 

illuminants from the view of the device. When a camera produces a picture image, the 

data are converted to chromaticity and a vector is created corresponding to the values 

existing in the scene. We can then multiply this vector by each column in the 

correlation matrix to create a new matrix. Each column is then summed, and the 

resulting values form a vector that represents the likelihood of each reference source 

being the surrounding illumination. Despite of this successful method, it suffers from 

some important drawbacks: (1) It needs to have enough memory space to save the 

correlation matrix, so it would make it difficult to implement. (2) This method uses a 

finite quantum of light sources to approximate all possible illuminants, and 

approximating errors exist since the majority determines the winner in estimating the 

light sources. Although increasing the number of light sources in the correlation 

matrix could solve this problem, it also results in the increase of the need of memory 

at the same time. (3) The color of the surrounding illuminant has two important 

attributes: chromaticity and luminance. The correlation method shows promise as a 
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means of selecting an appropriately adopted white chromaticity, but it does not 

provide information about the white point of the surrounding illuminant. Conversely, 

the previously described prior art methods provide a means of selecting the white 

point of the surrounding illuminant, but not by the chromaticity. (4) In some situations, 

some colors would occupy most range of the image. For examples, the green region 

would dominate the whole image if we got images from grass, or the images gotten 

from a whole blue sky or the ocean all belong to this kind of images. In these 

situations, we call most colors in the image as the dominant color. The dominant color 

usually leads to estimation error in the existing approaches. 

1.4. Concluding Remarks 

In this chapter, several traditional approaches for the recovery of surface 

topography were presented, where photometric stereo approach is able to estimate 

local surface orientation. Therefore, two approaches based on photometric stereo for 

improving the surface reconstruction were proposed in this thesis. First, a new 

neural-network-based adaptive hybrid-reflectance model is proposed to combine the 

diffusion and specular components automatically. The supervised learning algorithm 

is adopted and the hybrid ration for each point is updated in the learning iterations. 

Second, we further proposed a new nonlinear reflectance model that consists of the 

diffusion and specular components for modeling the surface reflectance of 3D objects 

in an image. Unlike the previous approaches, these two components are not separated 

and processed individually in the proposed model. An unsupervised learning 

adaptation algorithm is developed to estimate the reflectance model based on image 

intensities. In this algorithm, the post-nonlinear independent component analysis (ICA) 

is used to obtain the surface normal on each point of an image. Then, the 3D surface 

model is reconstructed based on the estimated surface normal on each point of the 
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image by using the enforcing integrability method. 

For color recovering of 3D objects, we proposed a new neural-network-based 

algorithm for surrounding illumination estimation of the image scene. This estimation 

is based upon the chromaticity histogram of a color image, which is obtained by the 

accumulation of CIE chromaticity values corresponding to all colors in the image. The 

experimental results show that the new algorithm outperforms those existing popular 

algorithms in both the quantitative error index and the qualitative visual perception. 
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2. Photometric Stereo 
 

 

 

 

The appearance of a surface in an image results from the effects of illumination, 

shape, and reflectance. Reflectance models have been developed to characterize the 

image radiance with respect to the illumination environment like viewing angles and 

material properties. These models provide a local description or reflection mechanism 

that can serve as a foundation on the representations of appearance. Photometric 

stereo approaches utilize reflection models for estimating surface properties from 

transformation of image intensities that arise from illumination changes [11]. 

Furthermore, photometric stereo methods are simple and elegant for Lambertian 

methods. 

2.1. Introduction 

Determining the shape of objects from an image in a scene is extremely difficult. 

The image typically exhibits a smooth variation in brightness from one point to 

another, which is known as shading. This perception of shape from gradual changes in 

brightness is denoted as shape from shading (SfS). It was one of the first areas of 

study in computer vision and was proposed by Horn [1] in the early 1970s. 

Unfortunately, measurements of brightness at a single point in the image only provide 

one constraint, whereas describing surface orientation requires two variables. 

Therefore, it is an ill-posed problem. 
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Figure 2-1 Illustration of photometric stereo geometry. 
 

Photometric stereo approach is able to estimate local surface orientation by using 

several images of the same surface taken from the same viewpoint but under 

illuminations from different directions. It was first introduced based on the 

Lambertian reflectance model by R. J. Woodham [11]. It has received wide attention 

and several efforts have been made to improve the performance of recovery [26]-[44]. 

The main limitation of classical photometric stereo approach is that the light source 

positions must be accurately known and this necessitates a fixed, calibrated lighting 

rig. Hence, an improved photometric stereo method for estimating the surface normal 

and the surface reflectance of objects without a priori knowledge of the light source 

direction or the light source intensity is proposed by Hayakawa [43]. The method used 

the singular-value decomposition (SVD) method to factorize image data matrix of 

three different illuminations into surface reflectance matrix and light source matrix 

based on the Lambertian model. However, they still used one of the two added 
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constraints (i.e., at least 6 pixels in which relative value of the surface reflection is 

constant or known and at least 6 frames in which the relative value of the light-source 

intensity is constant or known) for finding the linear transformation between the 

surface reflectance matrix and the light source matrix. McGunnigle [30] introduced a 

simple photometric stereo scheme which only considered a Lambertian reflectance 

model, where the self and cast shadow as well as inter-reflections were ignored. Three 

images at tilt angle of 90∘increments were captured. He suggested using his method 

as a first estimate for an iterative procedure. In fact, this method is a simplified 

version of Woodham’s method in which the illumination directions are chosen by 

mathematics simplification. Belhumeur etc. [33] showed that a generalized bas-relief 

transformation is a transformation of both the surface shape and the surface albedo for 

an arbitrary Lambertian surface. The set of images of an object in fixed post but under 

all possible illumination conditions is a convex cone (illumination cone) in the space 

of images. When the surface reflectance can be approximated as Lambertian, this 

illumination cone can be constructed from a handful of images acquired under 

variable lighting. They used as few as seven images of a face seen in a fixed pose, but 

illumination by point light sources at varying, unknown position, to estimate its 

surface geometry and albedo map up to a generalized bas-relief transformation. 

Despite they announced their success under unknown light source directions, the 

estimation of surface methods still need to be assisted with some added constraints or 

more images. 

Another more difficult problem is estimating a surface with an unknown 

reflectance map. Cho and Minamitani [27] tried to reduce 3D reconstruction errors 

due to specularities. Since the specular reflection produced incorrect surface normal 

by elevating the image intensity, they readjusted the pixel with greatest intensity by 
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re-scaling with a modified reflectivity. Kay and Caelli [29] used the photometric 

stereo method to estimate not only the surface normal but also the roughness 

parameters associated with the Torrance-Sparrow (TS) reflectance model. The basis 

they used was to apply non-linear regression techniques to the photometric stereo 

method. Nayar [31] used a linear combination of Lambertian and an impulse specular 

component. He used distributed light sources for photometric stereo of surface whose 

reflection is a linear sum of specular and Lambertian components. A proper 

reflectance model could help us to reconstruct the surface shape accurately from the 

variation of image intensity corresponding to the reflection characteristic of the 

surface. In next section we shall discuss the basis reflectance models. 

2.2. The Basic Reflectance Models 

There are mainly two kinds of light reflection components considered in 

computer vision: diffuse reflection and specular reflection. Diffuse reflection is a 

uniform reflection of light with no directional dependence for the viewer. The 

phenomenon of diffuse reflection is illustrated in Fig. 2-2(a). s is a point light source, 

n is the normal vector of the surface on point P, θ  is the angle between light source 

direction and the normal vector of the surface. When s illuminates straightly to the 

surface, the diffuse reflection scatters incoming light equally in all directions. Thus 

we have identical reflected energy for all viewing directions. The light reaching the 

surface is reflected in the reflected direction with the same angle. The phenomenon of 

specular reflection is illustrated in Fig. 2-2(b). It means if a point light source s 

illuminates to the surface, the reflected light is visible only at the reflected direction r, 

where ri θθ = . 

It is important that a good reflectance model should be able to describe the 

surface shape accurately from the image intensity [31]. Basically, the reflectance 
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surface can be categorized to be Lambertian or non-Lambertian. The Lambertian 

surfaces are surfaces that only have diffuse reflectance, which implies that the surface 

reflects light equally in all direction. On the other hand, the non-Lambertian model 

considers the specular component in addition to the diffuse component in the 

Lambertian model. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2-2 Illustration of diffuse reflection. s is a point light source, n is the normal 
vector of surface on point P, θis the angle between light source and the 
normal. The diffuse reflection scatters incoming light equally in all 
directions. (b) Illustration of specular reflection. It obeys Shell’s law, 
that is, ri θθ = . 

 

2.2.1. Lambertian Model 
Suppose that the recovering of surface shape, denoted by ) ,( yxz , from shaded 

images depends upon the systematic variation of image brightness with surface 

orientation, where z is the depth field, and x and y form the 2D grid over the domain D 

of the image plane. Then, the Lambertian reflectance model used to represent a 

surface illuminated by a single point light source is written as: 

( ) ( )( ) ( ) ( ){ }0 , ,  , max ,, , yxyxLyxyxR T
d nsn αα = , Dyx ∈∀ , ,     (2-1) 

where ( )⋅dR  is diffuse component intensity, ( )yx,α  is diffuse albedo on position 

( )yx,  of surface, s is a column vector indicating the direction of point light, and L is 

light strength. The surface normal on position ( )yx, , denoted by ( )yx  ,n , can be 

represented as 

n

iθ rθ  
r s

P

s 
n 

P 

θ
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where ),( yxp  and ),( yxq are the x- and y- partial derivatives of ),(z yx , 

respectively. In Eq. (2-1), }max{⋅  sets all negative components that correspond to the 

surface points lying in attached shadow to zero, where a surface point ( )yx,  lies in 

an attached shadow iff 0 ) ,( <sn yx  [11]. 

The Lambertian model describes a simple non shiny surface where any incident 

light is reflected evenly in all directions after modulation by the surface’s reflectivity. 

It is a simple but useful reflectance model. It is commonly adopted in the field of 

computer vision as a model of the ideal surface. Despite the simplicity and the 

popularity of the Lambertian model, it is quite well known that this model is unable to 

generalize with strong specular components. However, in most cases, the surface does 

not often contain the Lambertian surface because the light source is often located at 

finite distance and at an unknown position. Therefore, as far as practical application in 

general is concerned, it is not enough for considering only diffuse component. As a 

result, the non-Lambertian surface model is considered. 

2.2.2. Non-Lambertian Model 
In order to effectively exhibit the reflectance model, both the diffuse component 

and specular component should be considered for reconstructing the surfaces of 3D 

objects. The kind of hybrid model is called non-Lambertian model. Specular 

component occurs when the incident angle of the light source is equal to the reflected 

angle and this component is formed by two terms: the specular spike and the lobe. 

The specular spike is zero in all directions except for very narrow range around the 

directions of specular reflectance. The specular lobe spreads around the direction of 

specular reflectance. 
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Healy and Binford [45] derived a more refined model by simplifying the 

Torrance-Sparrow model [46], in which the Gaussian distribution is used to model the 

facet orientation function and the other components are considered as constants. 

Defining the halfway-vector as ( ) vsvsh ++=  which represents the normalized 

vector sum between the light source direction s  and the viewing direction v , the 

specular component is represented as: 

)
2

exp(
2
1

2

2

σ
ϕ

πβ
−=sR ,                      (2-3) 

where ϕ  is the angle between the surface normal n(x, y) and the halfway-vector  

h(x, y) at point (x, y) such that ( )) ,() ,(cos 1 yxyx hn−=ϕ , and σ  is the standard 

deviation, which can be interpreted as a measure of the roughness of the surface. The 

specular reflectance model in Eq. (2-3) is popular, but it has many parameters to be 

determined.  

The other well-known specular model is Phong’s model [47]. For specular 

reflection, the amount of light seen by the viewer depends on the angle δ  between 

the perfect reflected ray r and the direction of the viewer v . Phong’s model says that 

the light perceived by the viewer is proportional to rδcos  and it can be represented 

as 

( ) ( )( ) ( )( ) ( ) ,cos) ,( , , , , , rr
s yxyxyxyxR φ=><= hnhn Dyx ∈∀  ,          (2-4) 

where r is a constant. Different values of the constant r represent different kinds of 

surfaces which are more or less mirror-like. The mathematical model of Phong’s 

model [47] is simpler than that of Healy and Binford [45]. 

With the specular component described in Eq. (2-4), the non-Lambertian model 

proposed in [31] can be represented as following linear combination equation: 
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( ) ( ) ( ) ( )yxRyxRyxR sdhybrid ,1,, λλ −+= , Dyx ∈∀  , ,              (2-5) 

where hybridR  is the total intensity of the hybrid surface, and dR  and sR  are the 

diffuse intensity and the specular intensity, respectively, and λ  is the weight of the 

diffuse component. However, the existing approach considers only the linear hybrid 

combination as described by Eq. (2-5). It is not enough to model a nonlinear hybrid 

reflectance model.  

2.3. Concluding Remarks 

Photometric stereo allows us to estimate local surface orientations by using 

several images of the same surface taken from the same viewpoint but under 

illuminations from different directions. Unlike single image by the shape from 

shading algorithms, photometric stereo makes no assumption of the smoothness of the 

surface. Furthermore, it requires only additional lighting and can be easily 

implemented at a reasonable computational cost. In addition, photometric stereo can 

recover not only surface normal but also surface albedo. 

On the other hand, we introduce the Lambertian reflectance model. The 

Lambertian model describes a simple non shiny surface where any incident light is 

reflected in all directions after the modulation by the reflectivity of surface. It is a 

simple but useful reflectance model. However, in most cases, the surface does not 

often contain the Lambertian surface. Next, the non-Lambertian surface model is 

considered.  

In this thesis, we propose two novel nonlinear reflection models that consist of 

the diffusion and specular components for photometric stereo. In the next section, we 

shall give more discussions in the novel nonlinear reflection models. 
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3. A Neural-Network-Based Adaptive 
Hybrid-Reflectance Model for 3D 
Surface Reconstruction 

 

 

 

 

In this chapter, a new neural-network-based adaptive hybrid-reflectance model 

is proposed for 3D surface reconstruction. The neural network combines the diffuse 

component and specular component into a hybrid model automatically. The 

characteristic of each point as well as variant albedo is also considered individually in 

the proposed model to avoid the distortion of surface reconstruction. The inputs of the 

neural network are the pixel values of the 2D images to be reconstructed, and then the 

normal vectors of the surface can be obtained from the output of the neural network 

after supervised learning, where the illuminant direction does not need to be known in 

advance. Finally, the enforcing integrability method is applied for the reconstruction 

of 3D objects by using the obtained normal vectors. In our experiments, facial images 

and images of other general objects are used to test the performance of the proposed 

method. The experimental results demonstrate that our neural-network-based adaptive 

hybrid-reflectance model can be successfully applied to more general objects and 

achieve better performance for 3D surface reconstruction as compared to some 

existing approaches. 

3.1. Introduction 

Recently, multi-layer neural networks have also been employed to deal with the 
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photometric stereo problem [48]-[50]. However, these approaches are still under the 

restriction of the Lambertian model in which the direction of light source must be 

given or reasonably estimated. Obviously, this restriction makes the algorithm 

impracticable for many applications in which information of the illumination is not 

available. In addition, the reflectance of objects do not always follow the Lambertian 

model, therefore, a more general model is required. According to the study in [49], a 

successful reflectance model for surface reconstruction of objects should combine two 

major components: the diffuse component and the specular component. The 

Lambertian model was established to describe the relationship between the surface 

normal and the light source direction by generally assuming the surface reflection is 

due to diffuse reflection only. It implies that the surface reflects the light equally in all 

directions. Thus the specular component is ignored in the Lambertian model.  

In order to model the specular component, some specular models or 

non-Lambertian models have been proposed. Healy and Binford [45] employed the 

Torrance-Sparrow model [46], which assumes that a surface is composed of small, 

randomly oriented, mirror-like facets, to obtain local shape from specularity. Cho and 

Chow [50] proposed a novel hybrid approach using two self-learning neural networks 

to generalize the reflectance model by modeling the pure Lambertian surface and the 

specular component of the non-Lambertian surface, respectively. The viewing 

direction and the light source direction are no longer required for this model and the 

performance of shape recovery is more robust than that of former approaches. 

However, it still has two drawbacks that should be overcome: (1) The albedo of the 

surface is ignored or considered as constant; therefore, the recovered shape will be 

distorted. In general cases albedo is variant in different regions of the surface. (2) The 

combination ratio between diffuse component and specular component is regarded as 



 19

a constant which is determined by tried and error. Thus, the hybrid combination 

method proposed in [50] is not suitable for the surface reconstruction of human faces 

or some general objects whose albedo and reflecting characteristic is not the same for 

the whole surface. 

In this chapter, a novel adaptive hybrid-reflectance model is proposed to 

represent more general conditions. This model intelligently combines both diffuse 

reflection component and specular reflection component, and the hybrid ratio does not 

need to be determined in advance. Both pure diffuse reflection component and pure 

specular reflection component are generated by the similar feed-forward neural 

network structures. A supervised learning algorithm is used to tune up the pointwise 

hybrid ratio automatically based on image intensities and to obtain the normal vectors 

of the surface for reconstruction. The proposed model will estimate the illuminant 

direction, viewing direction and normal vectors of surfaces of the object for 

reconstruction after training. Therefore, we could produce new shaded images under 

different illuminant conditions by controlling the above parameters. We can also 

reconstruct the 3D surface according to these normal vectors by employing the 

existing approaches such as the enforcing integrability method [51], etc. In addition, 

the albedo and the reflecting characteristic of each point of the surfaces are considered 

individually in our method. According to the experimental results presented in Section 

3.4, our shape recovery algorithm is more robust for the recovery of the surfaces with 

variant albedo and complex reflecting characteristic. 

The rest of this chapter is organized as follows. Section 3.2 describes the 

proposed hybrid-reflectance model that includes the diffuse component and the 

specular component. The details of the neural-network-based hybrid-reflectance 

model and its derivations of learning rules are presented in Section 3.2 and Section 
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3.3. Extensive experiments have been performed to evaluate the performance of the 

proposed approach, and parts of the results are presented in Section 3.4. Conclusions 

are summarized in the last section. 

3.2. Neural-Network-Based Adaptive Hybrid-Reflectance 
Model 

In this section, we propose a novel neural-network-based hybrid-reflectance 

model, in which the hybrid ratio of diffuse and specular components is regarded as 

adaptive weights of neural network. The supervised learning algorithm is adopted and 

the hybrid ratio for each point is updated in the learning iterations. After the learning 

process, the neural network can estimate the proper hybrid ratio for each point on the 

3D surface of any object in an image. In this manner, we can integrate diffuse 

component and specular component intelligently and efficiently. In addition, the 

variant albedo effect is also considered in our hybrid-reflectance model. It has been 

claimed that the variant albedo effect will influence the performance of 3D surface 

reconstruction and cause distortion in conventional methods [52]-[54]. 

The schematic block diagram of our proposed adaptive hybrid-reflectance model 

is shown in Fig. 3-1. The structure diagram consists of the diffuse part and the 

specular part. They are used to describe the characteristic of the diffuse component 

and specular component of our adaptive hybrid-reflectance model, respectively, by 

two neural networks with similar structure. The composite intensity hybridR  is 

obtained by using the adaptive weights ),( yxdλ  and ),( yxsλ  to combine the 

diffuse intensity dR  and the specular intensity sR . The inputs of the system are 2D 

image intensity of each point and the outputs are the learned reflectance map. In 

solving the photometric stereo problem by our neural-network-based reflectance 
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model, the cost function TE  is minimized to update the neural parameters. After 

training, the normal vectors of the surface can be obtained from the reflectance model 

to reconstruct the 3D shape of the object for reconstruction and we can also combine 

it with different light source directions and viewing directions to produce new shaded 

images. 

 

 

 

 
Figure 3-1. Block diagram of the proposed adaptively hybrid reflectance model. 

 

 

 

The structure of the proposed symmetric neural network used to simulate the 

diffuse reflection model is shown in Fig. 3-2. The input/output pairs of the network 

are arranged in a form like a mirror in the center layer and the number of input nodes 

is equal to the number of output nodes; therefore, we call it a symmetric neural 

network. We separate the light source direction and the normal vector from the input 

2D images in the left part of the symmetric neural network and then we combine them 

inversely to generate the reflectance map for diffuse reflection in the right part of the 

network. In the following, we will discuss the function of each layer in details. 
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Figure 3-2. Structure of the symmetric neural network for diffuse reflection model. 

 

 

 

Assuming an input image has m pixels totally, therefore, there are m input 

variables in the symmetric neural network. The 2D image is rearranged to a 1×m  

column vector denoted as ( )TmIII  ..., , ,I 21=  and fed into the symmetric neural 

network. Through the symmetric neural network, the reflectance map for diffuse 

reflection ( )
mddd RRR  ..., , ,

21
 can be obtained in the output of the symmetric neural 

network.  

Each node in the symmetric neural network has some finite “fan-in” of 

connections represented by weight values from the previous nodes and “fan-out” of 

connections to the next nodes. Associated with the fan-in of a node is an integration 

function f which serves to combine information, activation, or evidence from other 

nodes. The function provides the net input for this node, 

net-input = f (inputs to this node; associated link weights).     (3-1) 
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A second action of each node is to output an activation value as a function of its 

net-input, 

node-output = )(la (net-input) = )(la (f),               (3-2) 

where ( )⋅)(la  denotes the activation function and the superscript l indicates the layer 

number. There are 6 layers in the proposed symmetric neural network and the 

functions of the nodes in each layer are described in the following. 

Layer 1: This layer collects the intensity values of the input images as the inputs 

of the network. Node iI  represents the ith pixel of the 2D image and m is the 

number of total pixels of the image. That is 

. ..., ,1       ,

, ..., ,1         ,
)1( mifa

miIf

ii

ii

==

==
                       (3-3) 

This notation will also be used in the following equation. 

Layer 2: This layer adjusts the intensity of the input 2D image with 

corresponding albedo value. Each node in this layer, which corresponds to one input 

variable, divides the input intensity by corresponding albedo and transmits it to the 

next layer. That is  

. ..., ,1       ,ˆ

, ..., ,1              ,

)2( mifaI

miIf

iii

i

i
i

===

==
α                     (3-4) 

The output of this layer is the adjusted intensity value of the original 2D image and 

we label the nodes of this layer as mIII ˆ ..., ,ˆ ,ˆ
21 . The iα  is the ith albedo value 

corresponding to the ith pixel of the 2D image and 
iα

1  is the weight between iI  

and iÎ .  

Layer 3: The function of layer 3 is to separate the light source direction from the 
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2D image. The light source direction of this layer is un-normalized, and we label them 

as 321  and s, s, s ′′′ . The link weight in layer 3 is denoted as 
ijdw  for the connection 

between node i of layer 2 and node j of layer 3. 

.3 ,2 ,1      ,

,3 ,2 ,1  , ..., ,1       ,ˆ

)3(
1

===′

=== ∑
=

jfas

jmiwIf

jjj

m

i
dij ij              (3-5) 

Layer 4: The nodes of this layer represent the unit light source and we normalize 

the un-normalized light source direction obtained in layer 3 by Eq. (3-6). These nodes 

in layer 4 are labeled as 321  and , , sss , respectively, and the light source direction is 

represented as ( )Tsss 321  , ,=s . The output of js  can be calculated by:  
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          (3-6) 

Layer 5: The function of layer 5 is to combine the light source direction s and 

normal vectors of the surface to generate the reflectance map of diffuse reflection. The 

link weight which connects node j of layer 4 and node k of layer 5 is denoted as 
jkdv  

and it represents the normal vectors of the surface for the diffuse component. That is, 

( )Tddd kkk
vvv

321
,,  represents the normal vector of the surface for the diffuse component 

on the point k, where k = 1, …, m. The outputs of the nodes in this layer are denoted 

as 
kdR̂  and can be calculated as: 
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It is noted that 
kdR̂  represents the un-normalized reflectance map of diffuse 
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reflection; therefore, we will normalize these values in layer 6. 

Layer 6: The function of this layer is to transfer the un-normalized reflectance 

map of diffuse reflection obtained in layer 5 into the interval [0, 255]. These nodes, 

mddd RRR  ..., , ,
21

, represent the normalized reflectance map of diffuse reflection, and 

the output of these nodes can be calculated by: 

( )( )
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where ( )Tdddd k
RRR ˆ ..., ,ˆ ,ˆˆ

21
=R , and the link weights between layer 5 and layer 6 are 

unity. 

Similar to the diffuse reflection model, we also use a symmetric neural network 

as Fig. 3-2 to simulate the specular component in our hybrid-reflectance model. The 

major differences between these two networks are the representation of nodes in layer 

3 and layer 4, and the active function of layer 5. The nodes of layer 3 represent the 

un-normalized half-way vector, labeled as ( )Th, h, h 321 ′′′=′h , and the nodes of layer 4 

represent the normalized half-way vector labeled as ( )Thhh 321  , ,=h . According to Eq. 

(2-5), layer 5 of the symmetric neural network for specular component combines the 

half-way vector h and normal vectors of the surface to generate the reflectance map of 

specular reflection. Let the link weight connects node j of layer 4 and node k of layer 

5 be denoted as 
jksv  and it represents the normal vectors of the surface for the 

specular component. Then the outputs of the nodes in layer 5 denoted as 
ksR̂  can be 

calculated as: 

( ) , ..., ,1        ,ˆ

, ..., ,1           ,
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kks

j
sjk
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== ∑
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where the active function )5(
ka  in this layer is the r degree of the net-input of this 

layer. It is noted that 
ksR̂  represents the un-normalized reflectance map of specular 

reflection and it will also be normalize in layer 6. 

Through the supervised learning algorithm derived in the following section, we 

can get the normal vectors of the surface automatically and then we can use the 

enforcing integrability approach [51] to obtain the depth information for 

reconstructing the 3D surface of an object by the obtained normal vectors. In our 

approach, the reflectance characteristic of the hybrid surfaces can be determined 

without a priori information of the relative strengths of the diffuse and specular 

components. This is an important improvement of the conventional algorithms. The 

hybrid intensity of each point on the surfaces is considered individually such that we 

can reduce the distortion that the conventional methods met in the recovery process. 

In addition, by the symmetric neural network for diffuse reflection, we can get the 

light source direction s  in the hidden nodes of the symmetric neural network and we 

can solve the photometric stereo problem without specifying illuminant positions in 

advance. This also relaxes the constraint in the conventional approaches and is more 

suitable for practical applications to 3D surface reconstruction. 

3.3. Training Algorithm of the Proposed Model 

The back-propagation learning method is used for the supervised training of the 

proposed model and the goal is to minimize the error function defined as 

( )
2

1
∑
=

−=
m

i
ihybridT DRE

i
,                       (3-10) 

where m is the number of total pixels of the 2D image, 
ihybridR  is the ith output of the 

neural network, and iD  is the ith desired output that is equal to the ith intensity of 



 27

the original 2D image. For each 2D image, starting at the input nodes, a forward pass 

is used to compute the activity levels of all the nodes in the network to obtain the 

output. Then starting at the output nodes, a backward pass is used to compute 
ω∂

∂ TE , 

where ω  represents the adjustable parameters in the network. The general parameter 

update rule is 

( ) ( ) ( ) ( ) ( )






∂
∂

−+=∆+=+
t

Etttt T

ω
ηωωωω 1 ,             (3-11) 

where η  is the learning rate. 

    In the following, we will show the details of the learning rules corresponding to 

each adjustable parameter. 

    Output layer: The combination ratio for each point, ( )t
kdλ  and ( )t

ksλ , are 

calculated iteratively by 

( ) ( ) ( )
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where ( )tDk  is the kth desired output, ( )tR
khybrid  is the kth system output, ( )tR

kd  is 

the kth diffuse intensity obtained from the up sub-network, ( )tR
ks  is the kth specular 

intensity obtained from the low sub-network (as shown in Fig. 3-1), m is the number 

of total pixel of an 2D image, and η  is the learning rate of the neural network. 

For a gray image, the intensity value of a pixel is in the interval of [0, 255]. If we 

want to avoid the intensity value of 
khybridR  exceeding the interval [0, 255], we must 

force  

1=+ sd λλ ,                          (3-14) 
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where 0≥dλ and 0≥sλ . Therefore, we normalize the combination ratio
kdλ and 

ksλ  

by 
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Sub-networks: The normal vector calculated from the sub-network 

corresponding to the diffuse part is represented as ( )
kkkk dddd vvv

321
,,=n  for kth point 

on the surface; the normal vector calculated from the sub-network corresponding to 

the specular part is represented as ( )
kkkk ssss vvv

321
,,=n  for kth point. The normal 

vectors 
kdn  and 

ksn  are updated iteratively by the gradient method as: 
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where ( )ts j  is the jth element of illuminant direction s, ( )th j  is the jth element of 

the halfway-vector h, r is the degree of the specular equation shown in Eq. (3-9). The 

updated 
kjdv
 ,

 and 
kjsv
 ,

 should be normalized as follows: 
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In order to get the reasonable normal vectors of the surface from our adaptive 

hybrid-reflectance model, we compose 
kdn  and 

ksn  as the hybrid normal vector, 

kn , of the surface on the kth point by 

( ) ( ) ( ) ( ) ( )ttλttλt
kkkk ssddk nnn   1 +=+ ,                (3-18) 

where ( )tλd  and ( )tλs  are the combination ratios for the diffuse and specular 
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components. 

Since the structure of the proposed neural networks is like a mirror in the center 

layer and thus the update rule for the weights between layer 2 and layer 3 of the two 

sub-networks denoted as dW  and sW  (see Fig. 3-2) can be calculated by least 

square method. Hence, dW  and sW at time 1+t can be obtained by  

( ) ( ) ( )( ) ( )Tdd
T

dd tttt 1111
1

+++=+
−

VVVW ,               (3-19) 

( ) ( ) ( )( ) ( )Tss
T

ss tttt 1111
1

+++=+
−

VVVW ,               (3-20) 

where ( )1+tdV  and ( )1+tsV  are weights betweens the output layer and the center 

layer of the two sub-networks for diffuse and specular components, respectively.  

In addition, for fast convergence, the learning rate η  of the neural network is 

adaptive in the updating process. If the current error is smaller than the errors of the 

previous two iterations, it indicates that the current direction of adjustment is correct. 

Thus we should maintain the current direction and increase the step size to speed up 

convergence. On the contrary, if the current error is larger than the errors of the 

previous two iterations, we must decrease the step size because the current adjustment 

is wrong. Otherwise, learning rate η  will not change. In this manner, the cost 

function TE  could reach minimum quickly and avoid oscillation around the local 

minimum. The adjustment rule of the learning rate is shown as follows: 

If (Err(t-1) > Err(t) and Err(t-2)> Err(t)) 

   ξηη +=+ )()1( tt , 

Else If (Err(t-1) < Err(t) and Err(t-2) < Err(t)) 

ξηη −=+ )()1( tt , where ξ  is a given scalar.      

Else )()1( tt ηη =+ . 

We also used the prior knowledge as the initial values of the proposed neural 

network for specific object classes to improve the results of 3D surface reconstruction 
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and reduce the learning time. For example, for the face surface reconstruction 

problem, the normal vectors of a sphere’s surface were used as the initial values of the 

proposed neural network due to their similar structures. 

3.4. Experimental Results and Discussions 

In this section, four experiments are performed to demonstrate the proposed 

method. In these experiments, both direction of the light and the observer’s viewing 

direction are unknown. It is used to test whether our algorithm can reconstruct the 

objects well even if we don’t have the information about lighting and viewing 

directions in advance. In the first experiment, images of the synthetic objects are used 

for testing. The estimated depth map is compared with the true depth map to examine 

the performance of reconstruction. In the second experiment, several images 

corresponding to real surfaces of human faces are used for testing. These images are 

downloaded from the Yale Face Database B [55]. They are under different lighting 

conditions with variant albedos. In the third and fourth experiments, images of human 

faces and general objects captured in our photographing environment are used to 

show the generality of our method.  

3.4.1. Experiment on Images of Synthetic Objects 
In this experiment, quantitative results of synthetic-object reconstruction are 

presented. The results of the proposed method are compared with three existing 

methods including the diffuse model [56], the specular model [57], and the hybrid 

model [50]. Three synthetic objects, sphere, sombrero, and vase mathematically 

generated by Eqs. (3-21), (3-22), and (3-23), respectively, are used for testing. 

( )




 ≤+−−=

                    otherwise   ,0
 if    ,,

222222 ryxyxryxz ,              (3-21) 
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)
17

(cos 1515) ,(
22 yxyxz +

+=
π ,                      (3-22) 

22)(),( xyfyxz −= .                              (3-23) 

In Eq. (3-21), r = 45, 100 ,0 ≤≤ yx , and the center is located at (x, y) = (50, 50). 

In Eq. (3-23), )23()1()16(3.06.0)( 22 −−+−= yyyyyf . The shaded images of the 

sphere are synthesized with variant albedo and different directions as shown in Fig 

3-3. The different albedos are, 0.6 for right-bottom of the sphere, 0.8 for left-top of the 

sphere, and 1 for the rest part. The locations of light sources in Figs. 3-3(a)-(i) are 

S1=(60,135), S2=(60,180), S3=(60, -135), S4=(60, 90), S5=(90, 0), S6=(60, -90), 

S7=(60, 45), S8=(60,0), and S9=(60, -45), where the first component is the degree of 

tilt angle and the second component is the degree of pan angle. The center of image is 

set as the origin of the coordination. The x-y plane is parallel to the image plane. The 

z-axis is perpendicular to the image plane. The experimental results are shown in Fig. 

3-4 and Table 3-1. In Table 3-1, we take 5 groups of images with different illuminant 

angles from the left, the right, and the front for 3D reconstruction. Both estimated 

surface and synthetic one are normalized within the interval [0, 1]. According to the 

first row (sphere object) of Fig. 3-4, the surface with variant albedo is hard to handle 

by the conventional methods and our proposed method performs superior 

reconstruction result. According to Table 3-1, it is found that the proposed method can 

achieve the lowest mean errors compared with the other methods in all illumination 

conditions. 
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(a) S1=(60, 135) (d) S4=(60, 90) (g) S7=(60, 45) 

   
(b) S2=(60, 180) (e) S5=(90, 0) (h) S8=(60, 0) 

   
(c) S3=(60, -135) (f) S6=(60, -90) (i) S9=(60, -45) 

Figure 3-3. The 2D sphere images generated with varying albedo and different 
lighting directions (the degree of tilt angle, the degree of pan angle). 
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The original 
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The diffuse 
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model ([56]) 

The specular 
reflectance 

model ([57]) 

The hybrid 
reflectance 
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Proposed 
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Sphere 
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constant 
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Vase 

 (a) (b) (c) (d) (e) 
Figure 3-4. Comparisons of synthetic images and the recovered surfaces of sphere, 

sombrero and vase. (a) The depth map of the objects. (b) The recovered 
result by the diffuse reflectance model [56]. (c) The recovered result by 
the specular reflectance model [57]. (d) The recovered result by the 
hybrid reflectance model [50]. (e) The recovered result by the proposed 
method. 
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Table 3-1. The absolute mean errors between estimated depths and desired depths 

of synthetic object’s 3D surfaces. (Both light and viewing directions are 
unknown in the experiment.) (Iterations = 10) 

Mean absolute 
depth error and 

CPU time 
Lights  

The diffuse 
reflectance 

model ([56])

The specular 
reflectance 

model ([57])

The hybrid 
reflectance 

model ([50]) 

The proposed 
reflectance 

model 
S1, S4, S7 0.1738 0.5542 0.5270 0.153 
S2, S5, S8 0.1699 0.6079 0.6300 0.151 
S3, S6, S9 0.1730 0.5555 0.5337 0.154 
S1, S5, S9 0.1669 0.5584 0.6031 0.148 
S3, S5, S7 0.1669 0.5944 0.6073 0.148 

Sphere with 
Variant albedo 

CPU time (Avg.) 50.102 sec 309.325 sec 405.283 sec 58.885 sec 
S1, S4, S7 0.4125 0.4319 0.4034 0.1396 
S2, S5, S8 0.4125 0.4446 0.4334 0.1395 
S3, S6, S9 0.4124 0.4421 0.4086 0.1399 
S1, S5, S9 0.5126 0.4320 0.4161 0.1514 
S3, S5, S7 0.5124 0.4319 0.4130 0.1516 

Sombrero 

CPU time (Avg.) 50.953 sec 310.667 sec 410.490 sec 60.067 sec 
S1, S4, S7 1.3145 0.982 0.854 0.1808 
S2, S5, S8 1.3077 1.018 0.920 0.1859 
S3, S6, S9 1.3103 1.010 0.887 0.1886 
S1, S5, S9 1.3055 1.004 0.887 0.1861 
S3, S5, S7 1.3207 0.725 0.595 0.1877 

Vase 

CPU time (Avg.) 52.465 sec 316.055 sec 412.783 sec 60.798 sec 
 

For the sombrero object, the results of the diffuse reflectance model and our 

method are very similar to the original shape, and the results of the specular 

reflectance model and the hybrid reflectance model are not very well. The shape of 

sombrero object is very sharp and their images have many shadows (both cast and 

attached shadows). It is very likely to cause distortion by Cho’s methods (the specular 

reflectance model [57] and the hybrid reflectance model [50]) because they use single 

image to recover the shape. The image may have invalid pixel values because of 

saturated pixels in shadows; therefore, the information of single image may be not 

enough. 

For the vase object, our method reconstructs the synthetic vase very successfully, 

but the result of the diffuse reflectance model has obviously distortion. This may be 



 34

caused by the convex of the vase. When the vase is illuminated, the convex of the 

vase will be shiny and the Lambertian assumption could not approximate it well. 

In addition, the CPU time used by each method for shape reconstructions is also 

included in Table 3-1. We implemented each method in Matlab 6.1 software on a 

1.2GHz Pentium III-based PC with 256 MB RAM. According to the results, the CPU 

time used by the proposed method is close to that used by the Lambertian method [56] 

and it is greatly reduced compared with the specular reflectance method [57] and the 

hybrid reflectance method [50]. 

The data set in the University of Notre Dame Biometrics Database [58] is also 

used in our experiments for objective comparison. The database consists of 3D face 

coordinate data and their corresponding 2D front view. Fig. 2-5 shows 6 individuals 

in the database with 160*160 image size. Unlike the synthetic objects, both the 

estimated surface and 3D face surface are not normalized within the interval [0, 1]. 

In order to evaluate the performance of our approach and other existing methods, we 

define a function that use the x- and y- partial derivatives of z(x, y) instead of 

absolute mean error to compute the error between the estimated depths and desired 

depths of 3D face surfaces as: 
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where xyxz ∂∂ ),(  and xyxz ∂∂ ),(ˆ  are the x-partial derivatives of ),( yxz  and 

),(ˆ yxz , respectively, yyxz ∂∂ ),(  and yyxz ∂∂ ),(ˆ  are the y-partial derivatives of 

z(x, y) and ),(ˆ yxz , respectively, and M and N are x and y dimensions. Table 3-2 

shows the mean errors between the desired depths of 3D face surfaces and the 

estimated depths by using different methods. According to the experiment on the 
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images of the three synthetic objects and the dataset in the University of Notre Dame 

Biometrics Database, our approach can be applied to more general objects and can 

achieve better performance than the existing methods. 

In order to evaluate the impact of adaptive hybrid ratio on the performance of the 

proposed network, the performance of the proposed neural network with constant 

hybrid ratio is also provided in the experiments. According to Table 3-2, it is obvious 

that the mean errors of the proposed network with constant hybrid ratio are less than 

those of other approaches and can be further reduced if the hybrid ratio is adjusted in 

the learning process. 

 

   
(a) (b) (c) (d) (e) (f) 

Figure 3-5. Six individuals in the Notre Dame Biometrics Database D [58] used to 
test our algorithm (these images include both males and females.). 

 
 
Table 3-2. The mean errors between the estimated depths and desired depths of 3D 

face surfaces shown in Fig. 3-5. (Iterations = 20) 

Mean error 
(Eq. 3-24) 

The diffuse 
reflectance 

model ([56]) 

The specular 
reflectance 

model ([57])

The hybrid 
reflectance 

model ([50])

The proposed 
reflectance 
model with 

const of hybrid 
ratio 

The proposed 
reflectance 

model 

Fig. 3-5(a) 1.5524 1.5268 1.5259 1.1586 1.0992 
Fig. 3-5(b) 1.3517 1.3550 1.3533 1.0358 0.9644 
Fig. 3-5(c) 1.9476 1.9542 1.9546 1.5963 1.5348 
Fig. 3-5(d) 1.6007 1.6018 1.6039 1.2913 1.2243 
Fig. 3-5(e) 1.2396 1.2457 1.2443 0.9576 0.9060 
Fig. 3-5(f) 1.9240 1.9155 1.9160 1.5613 1.5224 
Average 1.6027 1.5998 1.5997 1.2668 1.2085 
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3.4.2. Experiment on Yale Face Database B 
In this experiment, face images downloaded from the Yale Face Database B [55] 

are used for testing. For each person, we take three images in which their pose is fixed 

and they are illuminated by three different light directions. After processing by our 

algorithm, we can get the diffuse intensity, the specular intensity, and the hybrid 

intensity. Besides, we can also get the surface normal vectors and use them to 

reconstruct the surface. Fig. 3-5 shows an example that uses the proposed method to 

estimate different reflection components and normal vectors of a human face in the 

Yale Face Database B [55]. Fig. 3-6 shows the comparison between three existing 

approaches and the proposed method for human face reconstruction. Figs. 3-6(b), (c), 

and (d) are the reconstructed results of the diffuse reflectance model [56], the specular 

reflectance model [57], the hybrid reflectance model [50], respectively. The result of 

our method is shown in Fig. 3-6(e). The results clearly indicate that the performance 

of our proposed algorithm is better than that of these three approaches. From the 

comparison between Fig. 3-6(b) and Fig. 3-6(e), the reconstructed shape by our 

method is sharper and more apparent, especially on the part of nose. The 

reconstructed results of the specular reflectance model by [57] and the hybrid 

reflectance model by [50] as shown in Figs. 3-6(c) and (d) have serious distortions.  

From the above reconstructed results, the reconstructed performance of the 

specular model [57] and the hybrid reflectance model [50] are obviously not good for 

human faces. Therefore, we will only compare the diffuse reflectance model [56] and 

the proposed method in the following experiments. Fig. 3-7 shows the comparison of 

the reconstructed results between the diffuse reflectance model [56] and the proposed 

method. According to the experimental results, the reconstructed results of the two 

methods are similar. Finally, more reconstructed results of human faces in Yale Face 
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Database B by using the proposed method are shown in Fig. 3-8. In order to compare 

them easily, the angles of the faces are set to be equal. The reconstructed results 

demonstrate that our algorithm performs well on different human faces in Yale Face 

Database B. 

 

 
Figure 3-6. Estimated reflection components and normal vectors of a human face in 

the Yale Face Database B [55] by the proposed method. (a) The diffuse 
intensity. (b) The specular intensity. (c) The hybrid intensity. These three 
images are the estimated results of the proposed method. (d) The 
X-component of the normal vector. (e) The Y-component of the normal 
vector. 

 
 

  

(a) (b) (c) (d) (e) 
Figure 3-7. Reconstructed surfaces of the proposed algorithm compared with three 

existing approaches. (a) The original 2D facial image. (b) The recovered 
result by the diffuse reflectance model [56]. (c) The recovered result by 
the specular reflectance model by [57]. (d) The recovered result by the 
hybrid reflectance model [50]. (e) The recovered result by the proposed 
method. 
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(a) (b) (c) 

Figure 3-8. Reconstructed results of two different methods. (a) The original 2D 
image of the human face. (b) Reconstructed result of the diffuse 
reflectance model [56]. (c) Reconstructed result of the proposed method. 

 

     

    

    
Figure 3-9. More reconstructed results of the human faces in Yale Face Database B 

by using the proposed method. 
 

3.4.3. Experiment on Images of Human Faces Captured in Our 

Photographing Environment 
In order to test and verify the performance of our proposed algorithm on the 

facial images of our laboratory members and other images of general objects, we 

design and construct a photographing environment as shown in Fig. 3-10. To make the 

strength of different light sources to photographed objects equal, the photographing 

environment is constructed as a hemisphere. The radius of the hemisphere is 2 meters 

and there are eight computer-controlled electronic flashes (Mikona MV-328) placed 
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on the hemisphere and the positions of these eight light sources are s1 = (53, 30), s2 = 

(30, 63), s3 = (20, 30), s4 = (15, 45), s5 = (-20, 30), s6 = (-30, 63), s7 = (-53, 60), and s8 

= (-53, 30), respectively. The representation of light position is (degree of pan angle, 

degree of tilt angle) where the center of the hemisphere is as the origin of the 

coordinate. The captured images of a bear pottery that are illuminated by the 8 light 

sources are shown in Fig. 3-10. The images of Figs. 3-10(a)-(d) are illuminated by the 

light sources at the right-hand side of the object; Figs. 3-10(e)-(h) are illuminated by 

the light sources at the left-hand side of the object, and their angles and positions are a 

little different. 

 

 
Figure 3-10. The photographing environment with eight electronic flashes used to 

capture images under variations in illumination set up in our lab. 
 

In order to understand the influence of illuminant positions and angles on the 

performance of the proposed method, we test our approach on three groups of images: 

left-hand-side illuminated images (by s1, s2, s3), right-hand-side illuminated images 

(by s6, s7, s8), and front illuminated images (by s3, s4, s5). The illuminant direction is 
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determined based on the photographed objects’ viewpoint. Fig. 3-12 shows the 

reconstructed results that are calculated from the images corresponding to these three 

groups, respectively. The reconstruction in Fig. 3-12(a) is calculated from the images 

of Figs. 3-11(a), (b), and (c); the reconstruction in Fig. 3-12(b) is calculated from the 

images of Figs. 3-11(f), (g), and (h); and the reconstruction in Fig. 3-12(c) is 

calculated from the images of Figs. 3-11(c), (d), and (e). 

    
(a)By s1 (b)By s2 (c)By s3 (d)By s4 

    
(e)By s5 (f)By s6 (g)By s7 (h)By s8 
Figure 3-11. (a)~(h) The images of an object illuminated by the eight different light 

sources, respectively. They can be separated to three groups: 
left-hand-side illuminated images (by s1, s2, s3), right-hand-side 
illuminated images (by s6, s7, s8), and front illuminated images (by s3, 
s4, s5). 

 

For the reconstructed result in Fig. 3-12(a), the object is illuminated from the 

right-hand-side, so its variant intensities are more obvious on the left part of the 

object’s surface. Therefore, the left part of the reconstructed object is better than its 

right part. Similarly, in Fig. 2-12(b), the object is illuminated from the left-hand-side 

and the reconstructed result is better in the right part of the object. Besides, Fig. 

2-12(c) is calculated from the images in Figs. 2-11(c), (d), and (e). These images are 

illuminated from the front and they are very similar, and the variant intensities in 

images are not obvious. Thus the provided information is not enough to reconstruct 

the 3D surface well. If the input images are too similar, it is hard to solve the least 
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square problem for the unique solution of the irradiance equation. The experimental 

results indicate that the information of only one-side-illuminated images is not enough 

for 3D reconstruction. Therefore, to perform better recovery, we should take more 

different illuminated conditions to obtain more information of the object’s surface. 

 

   
(a) (b) (c) 

Figure 3-12. The reconstructed results of the object that are calculated from images in 
Fig. 3-11. (a) From the images illuminated by s1, s2, and s3. (b) From the 
images illuminated by s6, s7, and s8. (c) From the images illuminated by 
s3, s4, and s5. 

 

  
(a) (b) (c) (d) (e) 

Figure 3-13. The better reconstructed results of the object from the images in Fig. 
3-11. (a) From the images illuminated by s2, s4, and s7. (b) From the 
images illuminated by s2, s3, and s7. (c) From the images illuminated by 
s2, s5, and s6. (d) From the images illuminated by s2, s3, and s8. (e) From 
the images illuminated by s1, s3, and s8. 

 

Figure 3-13 shows some better reconstructed results of the objects and they are 

calculated by different combinations of the left-hand-side illuminated, right-hand-side 

illuminated, and front illuminated images. Therefore, in order to perform better 

reconstructed results, we should take images with different illuminant angles from the 

left, the right, and the front to provide sufficient information of the surface for 3D 

reconstruction. 

In order to check the performance of the proposed reconstruction method under 
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different numbers of light sources, the experimental results by using 1, 2, 3, 4, 7, and 

8 images (light sources) are shown in Fig. 3-14. Obviously, the results in Figs. 3-14(a) 

and (b) that use 1 and 2 images are not good, and many features of the bear are not 

recovered. On the contrary, the results in Figs. 3-14(c)-(f) that use more than 2 images 

are better than the results in Figs. 3-14(a) and (b). The key features of the bear are 

obvious and the details of the shape are not lost. According to the experimental results 

shown in Fig 3-14, it is concluded that we should use three images at least for fine 

reconstruction. However, the reconstructed results by using more than three images 

are not necessarily better than the reconstructed result by using three images. This 

experimental result is consistent with the theoretical basis of the proposed scheme, in 

which three sets of variables are to be determined, so two images only make it a 

under-determined problem, and more than three images make it a over-determined 

problem. Therefore, we use three 2D images to reconstruct the surface of a 3D object 

in the proposed method and the unnecessary calculation could also be avoided. 

As a result, we know the influence of the illuminant angles and positions is very 

important. Because our approach is based on the shape from shading method, the 

reconstructed information from 2D images will determine the performance of results. 

From the experimental results, it is concluded that the illuminant positions and angles 

should not be too close. 

Fig. 3-15 shows the reconstructed results of human faces of our laboratory 

members by the diffuse reflectance model [56] and by our method. For the purpose of 

comparison, all angles of the faces are set to be similar. The reconstructed faces by 

our method are sharper and the face features are more apparent. For example, the 

noses of the reconstructed results by our method are more conspicuous. 
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(a) By s1 (b) By s1, s8 (c) By s2, s5, s6 

   

(d) By s1,s2,s3,s8 ( e ) By s1,s2,s3,s4,s5,s6,s8
( f ) By s1,s2,s3,s4,s5, 

s6,s7,s8 
Figure 3-14. Results of 3D object reconstruction using different numbers of images 

(light sources) in Fig. 3-11. (a) The reconstruction uses one 2D image. (b) 
The reconstruction uses two 2D images. (c) The reconstruction uses 3 2D 
images. (d) The reconstruction uses 4 2D images. (e) The reconstruction 
uses 7 2D images. (f) The reconstruction uses 8 2D images. 

 
 
 

Original 2D 
images 

  

3D surfaces 
reconstructed 
by the diffuse 

reflectance 
mode [56] 

     

3D surfaces 
reconstructed 

by the 
proposed 

hybrid model 
     

Figure 3-15. The reconstructed 3D facial surfaces from the 2D pictures of our 
laboratory members by the diffuse reflectance model [56] and our 
proposed method. 
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3.4.4. Experiment on Images of General Objects Captured in Our 

Photographing Environment 
In that last experiment, images of a pottery bear, a dummy head, a toy figurine, a 

basketball, and an octagon iron box captured in our photographing environment are 

used for testing. The 2D images and the results of 3D reconstructions by using the 

diffuse reflectance model [56] and the proposed method are shown in Fig. 3-12. The 

reconstructed results by the proposed method seem well. In Fig. 3-12(d), the imprint 

of the English words of the basketball clearly appears on the reconstructed surface. In 

Fig. 3-12(e), the details of the box such as the ridge and the edge are also well 

reconstructed. However, the reconstructed results by the diffuse reflectance model [56] 

are not as well as the results of our method and the diffuse reflectance model even 

cannot reconstruct the surfaces of objects in Fig 3-15(e). It indicates that our method 

can reconstruct not only the rough sketch but also the details of the surface.  
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2D image Reconstructed by [56] Reconstructed by our 
method 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

   
(e) 

Figure 3-16. The reconstructed 3D surfaces of general objects by the diffuse 
reflectance model [56] and the proposed method. The left side of each 
raw is the 2D image of the object, the center part is the reconstructed 
surface by the diffuse reflectance model [56], and the right side is the 
reconstructed surface by the proposed method. (a) A pottery bear. (b) A 
dummy head. (c) A toy figurine. (d) A basketball. (e) An octagon iron 
box. 
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3.5. Concluding Remarks 

In this chapter, a novel 3D image reconstruction method was proposed. This 

method considers both the diffuse and specular reflection components of the 

reflectance model simultaneously. We used two neural networks with symmetric 

structure to estimate these two reflection components separately and combine them 

with an adaptive ratio for each point on the object surface. We also tried to reduce the 

distortion due to variable albedo variation by adjusting the intensity value for each 

pixel by dividing the pixel’s intensity by the corresponding rough-albedo value. Then 

these intensities were fed into the neural network to learn the normal vectors of the 

surface by the back-propagation learning algorithm. The critical parameters, such as 

the light source and the viewing direction and so on, are also obtained from the 

learning process of the neural network. The obtained normal vectors of the surface 

can then be applied to 3D surface reconstruction by enforcing integrability approach. 

Extensive experimental results based on public image database and the images 

captured in the photographing environment built in our lab have demonstrated that the 

proposed technique can reconstruct the 3D surfaces of more general and real-world 

objects better as compared to several exiting approaches. 

The contributions of this chapter can be summarized as follows. (1) We used the 

images caught under three different light sources to solve the photometric stereo 

problem without the information of exact light source locations. (2) The proposed 

method considers the changes of the albedo on the object surface, so we can obtain 

good reconstruction results not only for human faces but also for general objects with 

variant albedo. (3) The proposed symmetric neural network structure with adaptive 

learning procedure dose not need any special parameter setting and the smoothing 

conditions. It is also easier to converge and makes the system stable. (4) The proposed 
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network estimates point-wise adaptive combination ratio of the diffuse and specular 

intensities such that the different reflecting properties of each point on the object 

surface are considered to achieve better performance of surface reconstruction. 
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4. A Post-Nonlinear ICA Reflectance 
Model for 3D Surface Reconstruction 
 

 

 

 

In this chapter, we propose a new photometric stereo scheme based on a new 

reflectance model and the post-nonlinear independent components analysis (ICA) 

method. The proposed nonlinear reflectance model consists of diffuse components 

and specular components for modeling the surface reflectance of a stereo object in an 

image. Unlike the previous approaches, these two components are not separated and 

processed individually in the proposed model. An unsupervised learning adaptation 

algorithm is developed to estimate the reflectance model based on image intensities. 

In this algorithm, the post-nonlinear ICA method is used to obtain the surface normal 

on each point of an image. Then, the 3D surface model is reconstructed based on the 

estimated surface normal on each point of image by using the enforcing integrability 

method. Two experiments are performed to assess the performance of the proposed 

approach. We test our algorithm on synthetically generated images for the 

reconstruction of surface of objects and on a number of real images captured from the 

Yale Face Database B. These testing images contain variability due to illumination 

and varying albedo in each point of surface of human faces. All the experimental 

results are compared to those of the existing photometric stereo approaches tested on 

the same images. The results clearly indicate the superiority of the proposed nonlinear 

reflectance model over the conventional Lambertian model and the other linear hybrid 

reflectance model. 
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4.1. Introduction 

In this chapter, we propose a novel post-nonlinear ICA-based reflection model 

that consists of the diffuse components and the specular components. We do not need 

to separate the two components from the novel nonlinear reflection model. An 

unsupervised learning adaptation algorithm is used to tune up the proportion of hybrid 

automatically based on image intensities. The technique of the post-nonlinear 

independent components analysis (ICA) model [59]-[61] is used to solve the surface 

normal on each point of an image. The goal of post-nonlinear ICA is to nonlinearly 

transform the data such that the transformed variables are as statistically independent 

from each other as possible. Finally, the 3D surface model is reconstructed from the 

surface normal on each point of an image, obtained by the post-nonlinear ICA 

technique, using the method of enforcing integrability [51]. The reason is that it is 

easy to implement. 

The rest of this chapter is organized as follows. Section 4.2 describes the basic 

reflectance models, including the Lambertian model and non-Lambertian. The details 

of the proposed post-nonlinear ICA-based reflectance model and its derivations are 

presented in Section 4.3. Extensive experiments have been performed to evaluate the 

performance of the proposed approach, and parts of the results are presented in 

Section 4.4. Conclusions are summarized in the last section. 

4.2. The Proposed Non-linear Reflectance Model  

In this chapter, we propose a new nonlinear reflectance model; it can model both 

the diffuse components and specular components into a single model. This model is 

described by  

( ) ( ) ( )( ) ( ) ( )( )( )
( ) 










−=

−

yx
yxyxLyxyxyxR

T

nonlinear ,2
,cosexp,,,,,, 2

21

σ
γγσ nan ,       (4-1) 
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where ( )⋅nonlinearR  denotes the nonlinear reflectance intensities, a is a 3×1 column 

vector and it represents to the light direction and viewing direction, L is light strength, 

and ( )yx,γ  is composite albedo on position ( )yx,  of surface. ( )yx,σ  is the 

variance of exponential function. Fig. 4-1 shows the normalized exponential functions 

with different sigma values, where angle is from 2π−  to 2π . When ( )yx,σ  is 

large, the ( )⋅nonlinearR  models more the diffuse component intensity. When ( )yx,σ  

gets smaller, ( )⋅nonlinearR  models more the specular component intensity. So, we can 

obtain the best approximation by the adjustment of ( )yx,σ . However, the following 

task is to solve the surface normal, ( )yx,n  for all x  and y , of Eq. (4-1) from 2-D 

intensities images. Since the ( )yx,n  vector is a 3×1 column vector, it is a limit that 

we need at least three images under different light directions. If the location of light 

sources were given, we could solve the normal vector on surfaces of every location 

( )yx, . But unfortunately, light sources could not be known in the general applications. 

Because the problem of solving Eq. (4-1) is a blind separation problem, an 

unsupervised learning adaptation algorithm based on images intensities can be used in 

solving Eq. (4-1). The technique of the nonlinear independent components analysis 

(ICA) model is used to solve the surface normal on each point of image. The 

post-nonlinear ICA is a technique that exploits higher-order statistical structure in data. 

This method has recently gained attention due to its applications to signal processing 

problems including speech enhancement, discrete signal processing and image 

processing. The goal of post-nonlinear ICA is to nonlinearly transform the data such 

that the transformed variables are as statistically independent from each other as 

possible. The detail for how to find ( )yx,n  of each point in image is showed in the 

following post-nonlinear ICA model. 
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Figure 4-1. Normalized exponential functions with different sigma values 

(Angle:
2

~
2

ππ
− ). 

4.3. Post-Nonlinear ICA Model 

In this section, we introduce the particular nonlinear mixtures, which can be 

considered to be a hybrid structure consisting of a linear stage followed by a nonlinear 

stage. It is shown in Fig. 4-2. This structure, which was introduced by Taleb and 

Jutten [59], provides the observation ,))(,),(),(()( 21
T

n txtxtxt K  x =  which is the 

unknown nonlinear mixture of the unknown statistically independent source 

:))(, ),( ),(()( 21
T

n tststst K=s  

, ..., n,, , itsaftx
n

j
jijii 21)()(

1

=









= ∑

=

                 (4-2) 

where )(⋅if  are unknown invertible derivable nonlinear functions, and 

) , ,2 ,1 ,( njiaij K=  denote the scalar elements of a regular mixing matrix A. In the 

following, the mixture vector )(tx , and by extension the pair (A, f), will be called a 

post-nonlinear (PNL) model.  
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f1

f2

f3

s1(t)

s2(t)

s3(t)

A x1(t)

x2(t)

x3(t)  
Figure 4-2. Post-nonlinear mixing ICA model (n = 3). 
 

Contrary to general nonlinear mixtures, the PNL model has a favorable 

separability property. That is, using the separation structure (g, B) shown in Fig. 4-3, 

it can be demonstrated, under weak conditions on the mixing matrix A and on the 

source distribution, that the output independence can be obtained if and only if 

ii gf •  are linear for all index i from 1 to n. This means that the sources 

T
n tytytyt ))(, ),( ),(()( 21 K=y , which was estimated using an independence criterion 

on the outputs, are equal to the unknown sources with the same indeterminacies noted 

in linear mixture model. 

y1(t)

y2(t)

y3(t)

Bx1(t)

x2(t)

x3(t)  
Figure 4-3. Separation architecture of the post nonlinear ICA model (n = 3). 

 

A very popular approach to estimating the ICA model is the maximum likelihood 

(ML) estimation. Maximum likelihood estimation is a fundamental method of 

statistical estimation. One interpretation of ML estimation is that we take those 

( )( )txg 111 ,θ

( )( )txg 222 ,θ

( )( )txg 333 ,θ
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parameter values as estimates that give the highest probability for the observations. In 

following section, we show how to apply ML estimation technique to post-nonlinear 

ICA estimation. The similar derivations of equations (4-3)-(4-13) based on the mutual 

information as a cost function is shown in the chapter by Taleb [59], [60]. 

4.3.1. Independence Criterion and Deriving the Likelihood 
The statistical independence of the sources is the main assumption. Then, any 

separation architecture is tuned so that the components of its output y become 

statistically independent. This is achieved if the joint density factorizes as the product 

of the marginal densities 

( ) ( ).
1
∏
=

=
n

i
ii ypp y                             (4-3) 

According to this result, the density )(xxp  of the mixture vector )(Asfx =  

can be formulated as 
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iix ypxgpxgp θByθBx      (4-4) 

where 1−= AB , )(⋅g  is the inverse function of )(⋅f , the parameters iθ  are 

adjusted to cancel the effect of nonlinear function )(⋅f , and the )( jj yp  denote the 

densities of the independent components. Equation (4-4) can be expressed as a 

function of T
n ) ..., , ,( 21 bbbB =  and x, giving 

( ) ( )( )∏∏
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n

j

T
jj

n

i
iix pxgp

11

,,det)( xθgbθBx ,                (4-5) 

where ( ) ( ) ( ) ( )( )Tnnn xgxgxg  , ..., , , , , , 222111 θθθxθg = . 

Assume that we have T observations of x, denoted by x(1), x(2), …, x(t), …, x(T). 

Then the likelihood can be obtained as the product of this density evaluated at the T 

points. This is denoted by ) ,( θBL  and we have 
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In general, it is more practical to use the logarithm of the likelihood, since it is 

algebraically simpler. This does not make any difference here since the maximum of 

the logarithm is obtained at the same point as the maximum of the likelihood. The 

log-likelihood is given by 
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To simplify notation and to make it consistent to what can denote the sum over the 

sample index t by an expectation operator, thus we have 
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where the expectation operator here is an average computed from the observed 

samples. 

4.3.2. The Derivation of Adaptation Rules with Maximum 

Likelihood (ML) Estimation 
To perform maximum log-likelihood estimation in practice, we need an 

algorithm to perform the numerical maximization of log-likelihood. In this section, we 

perform the numerical maximization of log-likelihood by gradient methods. First, the 

maximization of the log-likelihood requires the computation of its gradient with 

respect to the separation architecture parameters B and . ..., ,2 ,1 , nii =θ   

The first layer: To estimate the linear stage parameters, we must compute the 

gradient of log-likelihood of Eq. (4-8) with respect to the separation architecture 

parameters B. Therefore, we have 
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Therefore, this immediately gives the following adaptation rule for ML 

estimation: 
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( )BBB B ∆+=+ η)()1( kk ,                       (4-11) 

where Bη  is the learning rate for adapting B. This result has the same expression as 

in the linear source separation. This algorithm is often called the Bell-Sejnowski 

algorithm [61]. It is the simplest algorithm for maximizing likelihood by gradient 

methods. However, due to the inversion of the matrix B in Eq. (4-10) is needed in 

every step, it converges very slowly. The convergence can be improved by whitening 

the data, and especially by using the natural gradient [63] that is based on the 

geometrical structure of the parameter space. Therefore, Eq. (4-12) is used to estimate 

the linear stage instead of the Eq. (4-10). 
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where ( )( )tt T
j xθgby ,)( = . 

The second layer: The derivation of the log-likelihood with respect to parameters iθ  

of the nonlinear function ),( iii xg θ  is 

 



 56

( )








∂

′∂
=

∂
∂

i

iii

i

xg
EL

T θ
θ

θ
θB  ,log) ,(log1 ( )( )( ) ( )













∂
∂









+ ∑

= i

iii
n

j
ji

T
jj

xg
bthE

θ
θ

xθgb
 ,

  ,
1

. 

(4-13) 

From the derivation of the log-likelihood with respect to parameters iθ , we 

update the parameters iθ  of the ( ))(, tg ii xθ  function by the following adaptation 

rule: 
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where 
iθ

η  is the learning rate of adapting iθ . 

4.3.3. Estimation of the Source Densities 
Denoted by ( )yyp  the assumed densities of the independent components, and  
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Constrain the estimates of independent components ( ))( , ty T
jj xθgb=  to be 

uncorrelated and to have unit variance. Then the ML estimator is locally consistent, if 

the assumed densities ( )jjy yp  fulfill 

( ) ( ){ } .   ,0 jyhyhyE jjjjj ∀>′−                        (4-17) 

The proof can be found in the [64]. Therefore, the limitation shows how to 

construct families consisting of only two densities, so that the condition in Eq. (4-17) 

is true for one of these densities. For example, consider the following log-densities: 

( ) ( )ssp coshlog2log 1 −=+ α                        (4-18) 
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where 21  ,αα  are positive parameters that are fixed so as to make these two 

functions logarithms of probability densities. Actually, these constants can be ignored 

in the following. Then, for super-Gaussian independent components, the pdf defined 

by Eq. (4-18) is usually used. This means that the nonlinear function ( )⋅h  is the tanh 

function: 

( ) ( )yyh tanh2−=+ .                        (4-20) 

For sub-Gaussian independent components, the other pdf defined by Eq. (4-19) is 

used. Then the nonlinear function ( )⋅h  can be written as: 

 ( ) ( ) yyyh −=− tanh .                        (4-21) 

Finally, the choice between the two nonlinearities in Eq. (4-20) and Eq. (4-21) can be 

made by computing the nonpolynomial moment: 

 ( ) ( )( )[ ]{ } , ..., ,2 ,1 ,tanh1tanh 2 njyyyEsignk jjjj =−+−=          (4-22) 

using some estimates of the independent components. Then, the source distribution is 

super-Gaussian when 1=jk  and sub-Gaussian when 1−=jk , where the 

expectation value in the formulas is for all t, t = 1, 2, …, T. 

4.4. Solving the Proposed Nonlinear Reflectance Model by 
Post-Nonlinear ICA Model 

In this section, we shall describe the way of applying the post-nonlinear ICA 

model to estimate the normal vector ( )yx,n  on the object surface corresponding to 

each pixel in the image. Since the ( )yx,n  vector is a 3×1 column vector, it is 

required that we need at least three images under different light directions for its 

estimation. Hence, to reconstruct the 3D surface of an object through its images, we 

have to take three gray-value images under three different illuminants. Assuming an 

image contains T pixels in total, then we can rearrange all the gray values of the three 
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images into a T×3 matrix, with each row representing an image, and each column 

the gray values of a single pixel under three different illuminants. Putting this matrix 

into Eq. (4-1), and comparing Eq. (4-1) with Eq. (4-2), we can define the nonlinear 

function in the post-nonlinear ICA model as:  
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= and )(ts is the ),( yxn  vector that we are looking for. From 

Eq. (4-23), we can obtain the inverse nonlinear )(⋅f  function as  
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where I(t) is the input vector, i.e., the three gray values of the tth pixel of the three 

images with different illuminants, and )(tσ  is the variant of the tth pixel in the exp() 

function in Eq. (4-23). We shall feed the input vectors, I(t), t=1, 2, …, T, to the input 

of the network shown in Fig. 4-3. Because all these input vectors come from the 

images belonging to the same object, the estimated reflectance model should be 

exactly the same for each of the three images; i.e., all the )(⋅ig , i=1, 2, 3 are the 

same. With such setting, we can obtain the final outputs through the network 

computations shown in Fig. 4-3. To ensure the final outputs to be independent 

components, we apply the unsupervised adaptation rules derived in Subsection 4.3.2 

to tune )(tσ  and B matrix. Upon convergence, the final output is the estimated 

normal vector ( )yx,n  on the object surface corresponding to the tth pixel in the 

image for t=1, 2, …, T. The complete algorithm for the above computation is shown 

in Fig. 4-4, which consists of 9 steps. 
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Algorithm: 

1. Set 1=k  and arbitrarily assign the initial values of )(tσ  and )(tγ , 
Tt  ,,1 K= , and B。 

2. Set sampling index 1=t . 
3. Compute )(te  from Eq. (4-23), 
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4. Compute )(ty  as follows: 
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5. Calculate the normal vector of surface 
)(
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y
yn =  and the surface 
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6. Update B matrix by 
( )[ ]{ } )()()1( )()( kTkk tt ByyhIBB B ++=+ η , 

where Bη  is the learning rate of B. 
7. Update )(tσ  value using the following equation: 
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where ση  is the learning rate of σ . 
8. Repeat Step 3~Step 7, until t equal to T. 
9. Set 1+= kk  and repeat Step 2~Step 8, until convergence. 

Figure 4-4. Unsupervised updating rules for the proposed 3D surface reconstruction 
scheme. 

 

The separation architecture of the post-nonlinear ICA model can be considered to 

be a hybrid structure consisting of a nonlinear stage followed by a linear stage. 

Therefore, after compensating for the post-nonlinearities, the problem is essentially 

reduced to a linear mixture of the form [matrix depending on lighting and viewing 

directions] * [surface normal vector]. Using the ICA decomposition, we rewrite the 

equation in Step 4 in Fig. 4-4 as 

)(ˆˆ)()()(or  ),()( 1 tttttt T nAyBeBey γ=== − ,               (4-25) 

where 1
321 ],,[ˆ −== BaaaA TT  is the matrix depending on lighting and viewing 
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directions and has unit length, )(ˆ tn  is the estimated normal vector corresponding to 

the tth pixel, t = 1, 2, …, T, and )(tγ  is albedo of the tth pixel. However, the 

decomposition in Eq. (4-25) is not unique. If there is an invertible matrix G, which 

satisfies 

GAA TT ˆ=  and nGn ˆ1−= ,                     (4-26) 

where A  and )(tn  are, respectively, the true matrix depending on lighting and 

viewing directions of images I, and the normal vector of the tth pixel in the standard 

XYZ coordinates, then the linear ambiguity is belonging to subset of GBR [33]-[35]. 

On the one hand, according to Georghiades’s [35] studies, if the surface of an object is 

seen under variable light direction, but with fixed viewpoint, then the linear ambiguity 

can be reduced to three GBR parameters. As far as the surface normal vectors are 

concerned, we can only recover 

nGn ˆ1−≅ , 

and 
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where gi are the three GBR parameters. On the other hand, the three light sources 

corresponding to the three images do not lie in the same plane (non-coplanar), so the 

columns of matrix A are linearly independent. In addition, using the ICA 

decomposition in Eq. (4-25), we can obtain an independent basis matrix Â , so the 

ambiguity can further be denoted a diagonal matrix, i.e., g1 = 0 and g2 = 0. So, the 

relation between the normals in the standard XYZ coordinates and those in the most 

independent coordinates system is only by g3 factor. For the performance evaluation 

of 3D image reconstruction, both estimated surface and synthetic one are normalized 
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within the interval [0, 1]. Therefore, the influence of g3 factor on the estimated 3D 

surface can be removed.  

Fig. 4-5 shows a simple example of a sphere object. The first row shows a set of 

shadow images and the second row shows the other set of shadow images. This 

synthetic image was generated using the depth function of a sphere object with 

different light directions. So the content of the images is different. Fig. 4-6(a) shows 

the true normal vectors of the sphere. The estimated normal vectors in Fig. 4-6(b) and 

4-6(c) were generated by using our approach corresponding to the two sets of shadow 

images in the first row and second row of Fig. 4-5. According to the estimated normal 

vectors in Fig. 4-6(b) and 4-6(c), it is obvious that the waveforms are similar to the 

true normal vectors. So, the estimated normal vectors do not depend on the content of 

the images. Furthermore, as far as the order of the sources being concerned, the 

similarity between human face and sphere is adopted in the supervised ICA algorithm 

to find the order of sources in the proposed scheme. We compute the correlation 

between the estimated normal vectors of surface of faces and the normal vectors of a 

sphere due to their similar structure, so the order of normal components can be 

identified. 

   

Figure 4-5. Shadow images of sphere object with different light directions. 
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(a) 

 
(b) 

 
(c) 

Figure 4-6. The estimated normal vectors of sphere object by our approach. (a) The 
true normal vectors. (b) The estimated normal vectors from the first row 
of Figure 4-5. (c) The estimated normal vectors from the second row of 
Figure 4-5. 
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4.5. 3D Surface Reconstruction from the Surface Normal by 
Enforcing Integrability 

In this section, we use the enforcing integrability approach to obtain the deeper 

information for reconstructing of the surface of an object by its normal vectors. This 

approach was proposed in the earliest stage by R. T. Frankot and R. Chellappa in 1988. 

Suppose that we represent the surface ( )yxz  ,  by a finite set of integrable basis 

functions ( )ω , , yxφ  so that 

( ) ( ) ( )ωω
ω

 , ,  , yxcyxz φ∑
Ω∈

= ,                      (4-28) 

where ( )vu  ,=ω  is a two-dimensional index,Ω  is a finite set of indexes, and 

( ){ }  , , ωyxφ  is a finite set of integrable basis functions which are not necessarily 

mutually orthogonal. We chose the discrete cosine basis so that ( ){ }  ωc  is exactly 

the full set of discrete cosine transform (DCT) coefficients of ( )yxz  , . Since the 

partial derivatives of the basis functions, ( )ω,, yxxφ  and ( )ω,, yxxφ , are integrable, 

the partial derivatives of ( )yxz  ,  are guaranteed to be integrable as well; that is, 

( ) ( ).,, yxzyxz yxxy =  Note that the partial derivatives of ( )yxz  ,  can also be 

expressed in terms of this expansion, giving 

( ) ( ) ( )ωω
ω

 , ,  , yxcyxz xx φ∑
Ω∈

=                       (4-29) 

( ) ( ) ( )ωω
ω

 , ,  , yxcyxz yy φ∑
Ω∈

= ,                     (4-30) 

where ( ) ( ) xyxx ∂⋅∂= φφ ω,,  and ( ) ( ) yyxy ∂⋅∂= φφ ω,, . 

Suppose we now have the possibly nonintegrable estimate ( )yx,n  from which 

we can easily deduce from Eq. (2-2) the possibly nonintegrable partial derivatives 

( )yxz x ,ˆ  and ( )yxz y ,ˆ . These partial derivatives can also be expressed as a series, 
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giving 

( ) ( ) ( )ωω
ω

 , , ˆ ,ˆ 1 yxcyxz xx φ∑
Ω∈

=                      (4-31) 

( ) ( ) ( )ωω
ω

 , , ˆ ,ˆ 2 yxcyxz yy φ∑
Ω∈

= .                    (4-32) 

A method has been proposed for finding the expansion coefficients ( )ωc  given 

a possibly nonintegrable estimate of surface slopes ( )yxz x ,ˆ  and ( )yxz y ,ˆ : 

( ) ( ) ( ) ( ) ( )
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pp
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= 21 ˆˆ
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where ( ) ( ) dxdyyxp xx ∫∫= 2,, ωω φ  and ( ) ( ) dxdyyxp yy ∫∫=
2

,, ωω φ . Finally, we 

can reconstruct the object’s surface by performing the inverse 2-D DCT on the 

coefficients ( )ωc . 

4.6. Experimental Results and Discussions 

In this section, two experiments are performed to assess the performance of the 

proposed approach. In the first experiment, we test the algorithm on synthetically 

generated images for the reconstruction of surface of objects. The light direction and 

viewing direction are unknown. In the second experiment, we test the algorithm on a 

number of real images captured from the Yale Face Database B showing the 

variability due to illumination and there is varying albedo in each point of surface of 

human faces. All the experimental results are compared to those of the Georghiades’s 

approach in [34] and the Hayakawa’s approach in [43] tested on the same images. 

4.6.1. Quantitative Experimental Results by Reconstructing a 

Synthetic Sphere Object 
Quantitative experimental results have been obtained by reconstructing a 

synthetic sphere object. The true depth map of the synthetic sphere object is generated 
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mathematically as 

( )




 ≤+−−=

                    otherwise   ,0
 if    ,,

222222 ryxyxryxz ,              (4-34) 

where r=48, 100 ,0 ≤< yx , and the center is located at (x, y)=(51, 51). The 

sphere object is showed in Fig. 4-7. This synthetic image was generated using the 

depth function in Eq. (4-34) and the surface gradients were computed using the 

discrete approximation. Fig. 4-8 shows the synthetic images generated according to 

the non-Lambertian model with varying albedo and different directions. The different 

albedos are, 0.6 for right-bottom of the sphere, 0.8 for left-top of the sphere, and 1 for 

the rest part. The locations of light sources in Figs. 4-9(a)-(i) are S1=(30, 140), 

S2=(30, 90), S3=(30, 40), S4=(30, 180), S5=(0, 0), S6=(30, 0), S7=(30, -140), S8=(30, 

-90), and S9=(30, -40), where the first component is the degree of tilt angle and the 

second component is the degree of pan angle. The center of image is set as the origin 

of the coordination. The x-y plane is parallel to the image plane. The z-axis is 

perpendicular to the image plane. The experimental results are shown in Table 4-1 and 

the proposed method is compared with two photometric stereo algorithms, 

Hayakawa’s method and Georghiades’s method. In Table 4-1, we take 5 groups of 

images with different illuminant angles from the left, the right, and the front for 3D 

reconstruction. Both estimated surface and synthetic one are normalized within the 

interval [0, 1]. According to Table 4-1, it is found that the proposed method can 

achieve the lowest mean errors compared with the other methods in all illumination 

conditions. In addition, we implemented each method in Matlab 6.1 software on a 

1.2GHz Pentium III-based PC with 256 MB RAM. According to the results, the CPU 

time used by the proposed method is close to that used by the Georghiades’s method 

([34]) and it is greatly reduced compared with the Hayakawa’s method ([43]). 
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Figure 4-7. Synthetic sphere surface object. 

 

   
(a) S1=(30, 140) (b) S2=(30, 90) (c) S3=(30, 40) 

   
(d) S4=(30, 180) (e) S5=(0, 0) (f) S6=(30, 0) 

   
(g) S7=(30, -140) (h) S8=(30, -90) (i) S9=(30, -40) 

Figure 4-8. The 2D sphere images generated with varying albedo and different 
lighting directions (the degree of tilt angle, the degree of pan angle). 

 

Table 4-1 The absolute mean errors between estimated depths and desired depth of 
synthetic object’s 3D surfaces. (Both light and viewing directions are 
unknown in the experiment.) 

Mean absolute 
depth error  Lights Georghiades’s 

method ([34])
Hayakawa’s 

method ([43])
Our proposed 

method 
S1, S2, S3 0.048875 0.07688 0.02025 
S7, S8, S9 0.050316 0.07924 0.02687 
S1, S5, S3 0.033133 0.07279 0.02055 
S1, S8, S6 0.033529 0.07869 0.01837 
S1, S5, S7 0.031729 0.07621 0.01829 

Sphere with 
Variant albedo 

CPU time(Avg.) 27.38 sec 
(Iterations = 10) 56.85 sec 25.9 sec 

(Iterations = 10)
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4.6.2. Experimental Results on Real Images with Varying Albedo 
In the second experiment, we test the algorithm on a number of real images from 

the Yale Face Database B [55] showing the variability due to illumination and there is 

varying albedo in each point of surface of human faces. This subset contains 444 

viewing conditions (1 pose ×  37 illumination conditions, where these illumination 

conditions contain Subset1 ( °12 ) and Subset2 ( °25 ) in the Yale Face Database B.) for 

10 individuals. Fig. 4-9 shows the 10 individuals from the Yale Face Database B used 

to test our algorithm, where each image size is 100100×  in pixels. 

 

  

  
Figure 4-9. 10 individuals from the Yale Face Database B used to test our algorithm. 

 

First, we take the images of the same person that was photographed under three 

different light sources from these testing images arbitrarily shown in Fig. 4-10. We 

feed the normalized images into our algorithm. After updating the parameters by 

several iterations, we can get the normal vector of the surfaces of human faces 

corresponding to each pixel in an image in the output nodes. The results are shown in 

the second row in Fig. 4-10, which are the first component, the second component, 

and the third component of the surface normal vector in order. Fig. 4-11 presents the 

results of 3D human face reconstruction. Fig. 4-11(a) shows the surface albedo of 

human face in Fig. 4-10. Fig. 4-11(b) shows the result with our proposed algorithm. 
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By using the Georghiades’s approach [34] and the Hayakawa’s approach [43], the 

reconstructed results are demonstrated in Fig. 4-11(c) and 4-11(d), respectively. The 

results clearly indicate that the performance of our proposed nonlinear reflectance 

model is better than that of the Georghiades’s approach and the Hayakawa’s approach. 

Comparing to the results obtained by the Georghiades’s approach, the reconstructed 

surfaces with the consideration of specular components in our algorithm, are 

obviously better in high-gradient parts such as the nose. Besides, the Hayakawa’s 

approach did need added constraints, it could reconstruct the 3D model of human face 

similar as our approach, but when the constraints is unavailable, then it could not 

reconstruct the 3D model of human face. Finally, the reconstructed results for the 

testing patterns are shown in Fig. 4-12 and Fig. 4-13. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4-10. Three training images with differ light source positions from Yale Face 
Database B in frontal. (b) Surface normal corresponding to the three 
source images. 
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(a) (b) 

 
(c) (d) 

Figure 4-11. The surface albedo of human face in Fig. 4-10. The results of 3D model 
reconstruction by (b) our proposed algorithm, (c) Georghiades’s 
approach in [34], and (d) Hayakawa’s approach in [43]. 
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(a) (b) (c) (d) 

Figure 4-12.The results of 3D model reconstruction by (b) our proposed algorithm, (c) 
Georghiades’s approach in [34], and (d) Hayakawa’s approach in [43]. 
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(a) (b) (c) (d) 

Figure 4-13.The results of 3D model reconstruction by (b) our proposed algorithm, (c) 
Georghiades’s approach in [34], and (d) Hayakawa’s approach in [43]. 
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4.7. Concluding Remarks 

It has been claimed that methods based on reconstructing 3D face model for face 

recognition are quite successful. When we are estimating the surface shape, the 

success of the reflectance model for surface reconstruction of objects depends on two 

major components: the diffuse component and the specular component. Therefore, in 

this chapter, we proposed a new nonlinear reflection model consisting of the diffuse 

components and the specular components. The past researches only considered the 

linear combination of the diffuse components and the specular components. We do not 

need to separate the two components in the proposed novel nonlinear reflection model. 

In addition to this major contribution, several contributions of the proposed algorithm 

are listed below: 

(a). In the past, we have to know the locations of light sources first for solving the 

photometric stereo problems. But this is not practical in the real situations. In 

this chapter, we used the images under three different light source locations to 

solve this problem. In our method, we can still obtain a very good result even 

if the locations of light sources are not given. 

(b). Using the unsupervised non-linear ICA network for solving photometric 

stereo problems does not need any desired output value and the smoothing 

conditions. It is easier to converge and make the system stable.  

The performance comparisons of our proposed nonlinear reflectance model to 

the Georghiades’s approach in [34] and the Hayakawa’s approach in [43] were made. 

In the first experiment, we test the algorithm on synthetically generated images for the 

reconstruction of surface of objects. The results clearly indicate that the performances 

of our proposed nonlinear reflectance model are better than that of the Georghiades’s 

approach in [34] and the Hayakawa’s approach in [43]. In the second experiment, we 
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test the algorithm on a number of real images from the Yale Face Database B 

containing the variability due to illumination and varying albedo in each point of 

surface of human faces. All the experimental results showed that the performance of 

the proposed nonlinear reflectance model is better than those of the two proposed 

existing photometric stereo methods. 
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5. An Illumination Estimation Scheme 
for Color Reconstruction 

 

 

 

 

In this chapter a new algorithm for surrounding illumination estimation of image 

scene for color constancy was proposed. This estimation is based upon the 

chromaticity histogram of a color image, which is obtained by the accumulation of 

CIE chromaticity values corresponding to all colors in the image. Unlike the existing 

approaches, the proposed scheme estimates the white-point values of the surrounding 

illuminant by detecting the central value of all color’s distribution in the chromaticity 

histogram. The white point estimation of a color image based on the chromaticity 

histogram has the advantages of high efficiency, good robustness, and no strict 

assumptions. After the illumination estimation, a neural network with 

back-propagation (BP) learning algorithm is used to model the nonlinear functional 

relationship between the central value of chromaticity histogram and coefficients of 

illuminant functions. The trained BP network can then be used to estimate the spectral 

power distribution of surrounding illuminant. Substituting this illuminant estimate 

into the finite-dimensional linear model of surface reflectance, the colors of the image 

can be corrected and recovered with the standard illuminant (D65) for color constancy. 

For performance evaluation, two sets of color-recovery experiments are performed in 

this chapter based on synthetic images and nature images captured from a still digital 

camera, respectively. All the results are compared to those of two existing popular 

algorithms (Max-RGB and Gray-World algorithms) on the same sets of images. The 
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experimental results show that the new algorithm outperforms these two popular 

compared algorithms, both in quantitative error index and in qualitative visual 

perception. 

5.1. Introduction 

In this chapter, we propose a new illumination estimation scheme based on 

chromaticity histogram and neural network. At first, the central values of the 

chromaticity histogram characterize the distribution of image colors with an unknown 

surrounding illuminant is detected. When the color of the surrounding light source of 

the sampling image approaches to red, the image colors in the chromaticity histogram 

would be obviously distributed in the region of lower color temperatures. Conversely, 

the image color in the chromaticity histogram will be obviously distributed in the 

region of higher color temperatures, when the color of the surrounding light source of 

the sampling image approaches to blue. That is why we use the chromaticity 

histogram to detect the central values of the main distribution of image colors. Next, 

the BP neural network is applied to approximate the nonlinear functional relationship 

between the central values of chromaticity histogram and coefficients of basis 

function of illuminant sources. Finally, the spectral power distribution of the 

surrounding illuminant, )(ˆ λE , estimated by the BP network is substituted into the 

finite-dimensional linear model of surface reflectance to complete the color correction 

with the standard illuminant (as D65). 

The rest of this chapter is organized as follows. Section 5.2 describes the 

finite-dimensional linear model of surface reflectance for correcting the image color 

pixel-wisely based on the estimation of scene illumination. The details of the 

proposed illumination estimation algorithm are presented in Section 5.3. The 

chromaticity histogram is used to extract the distribution of image colors and the 
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spectral power distribution of the surrounding illuminant is estimated using a BP 

network. In Section 5.4, two sets of experiments are performed to evaluate the 

proposed approach, and the results are compared to those of two popular existing 

color constancy schemes. Conclusions are summarized in the last section. 

5.2. Finite-Dimensional Linear Model of Surface 
Reflectance 

As shown in Fig. 1-1, the complete procedure of the color constancy process 

involves two steps. The first step estimates the spectral power distribution of the 

surrounding illumination of an image, and based on which the second step corrects the 

image color pixel-wisely to the colors under desired illuminant such as the standard 

illuminant D65. In this section, we shall introduce the method of the second step, i.e., 

color correction of an image from a known (estimated) illuminant to another desired 

(standard) illuminant. Most algorithms [65]-[74] have solved this problem based on 

finite-dimensional linear models of surface reflectance or called illuminant functions. 

The model condenses all spectral information into a few numbers by supposing that 

illumination and reflectance can each be approximated by weighted sums of basis 

functions. In this chapter, we also exploit this scheme to perform the color correction 

in the second stage of color constancy. 

The linear models (see Eq. (5-1) below) were developed to explain the 

relationship of the illuminant and the object surface reflections, and they also played a 

significant role in the study of color recovery. Given a spectral power distribution of 

the illuminant )(λE  and the spectral reflectance function of a surface )(λR , we 

have the definition of the color signal as: 

)()()( λλλ REC = .                         (5-1) 

The researches of Maloney and Wandell [65], Buchsbaum [66], Sallstrom [67], and 
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Brill [68] assume a linear model for the illuminant and the reflectance, and it can be 

written as a sum of weighted basis functions: 

∑
=
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)()( λλ  and                       (5-2) 
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where )(λiE  and )(λjR  are the sets of basis functions, ie  and jr  are coefficients 

of the basis functions that uniquely determine the illuminant and reflectance, and m 

and n are the numbers of basis functions corresponding to )(λiE  and )(λjR , 

respectively. This is called the finite-dimensional linear model. Substituting Eqs. (5-2) 

and (5-3) into Eq. (5-1), we have 
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Assume that there are p distinct classes of receptors in a visual system. The response 

of the class-k receptor is  

 ∫=
λ

λλλ dSCq kk )()( ,                        (5-5) 

where )(λkS  is the corresponding spectral sensitivity function. Transforming the 

above equations into the discrete case, we have 
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where nλ  is sample wavelengths and  

∑=
n

nknjniijk SREa
λ

λλλ )()()( . 

There are several restrictions in the finite-dimensional linear model. It assumes 

that the object surfaces are nonfluorescent and geometric properties of surfaces are 

embedded in surface spectral reflectance. Another necessary constraint is imposed to 

the dimensionality of surface reflections: n must be more than and equal to the 

number of classes of receptors; otherwise the solution is underdetermined [13]. 

If the finite-dimensional linear model is used, the spectral power distribution of 

the illuminant has to be estimated so that colors can be recovered. Rewriting Eq. (5-6) 

as 
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Assume that there are three classes of receptors X, Y, and Z. Use three basis functions 

to describe surface reflectance, and rewrite Eq. (5-7) by using matrix form, we have 
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 Mrq = ,                         (5-8) 

where ∑=
n

nknjnkj SREM
λ

λλλ )()()( ,  j, k=1, 2, 3.          

Assume that the column vector of tristimulus values of a surface with the original 

illuminant is illq  and the transformation matrix is illM . From Eq. (5-8), we obtain 
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illill qMr 1−= .                          (5-9) 

Therefore, the tristimulus values with the CIE Standard Illuminant D65 can be 

calculated by substituting Eq. (5-9) into Eq. (5-8), and then we have 

illillDD qMMq 1
6565

−= .                    (5-10) 

The above derivation indicates that if we can estimate the spectral power 

distribution, )( nE λ , of the surrounding illuminant for a given color image, we can 

obtain the corresponding color image of the same scene under the standard illuminant 

D65 according to Eq. (5-10). The estimation of )( nE λ  from a color image directly is 

a hard task. As mentioned in the last section, the existing estimation approaches 

usually rely on impractical assumptions. For example, the two popular schemes, 

Max-RGB [13], [18]-[20] and Gray-World [14]-[17] methods, assume the white-point 

value of the illuminant to be the maximum value of the RGB channels or the average 

of all colors in an image, respectively. These assumptions do not usually hold 

practically, and thus make these estimation schemes susceptible to dominant color in 

an image. Another existing estimation scheme is based on the color distribution of the 

image on the chromaticity map. Although this scheme avoids the unrealistic 

assumptions, it takes into account the chromaticity only and ignores the luminance. Its 

assumption that all the colors on the chromaticity map have the same luminance 

usually results in obvious estimation errors. In the following section, we shall propose 

a new illumination estimation scheme based on chromaticity histogram. This scheme 

is reliable and efficient since it considers both factors of chromaticity and luminance, 

and eludes the affect of dominant colors in an image. 
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5.3. A Neural-Network-based Illumination Estimation 
Scheme 

As we knew from Chapter 1, an object might appear differently in color when it 

was illuminated with different light sources. For example, when a white object is 

illuminated with the light source of a lower color temperature, the reflection becomes 

reddish. On the other hand, the light source of the high temperature causes bluish in 

color to the same white object. It will be very obvious by observing the phenomena of 

color unbalance of one image in the chromaticity histogram. Therefore, we propose to 

estimate the spectral power distribution of the surrounding illuminant by detecting the 

central value of the distribution of image colors in the chromaticity histogram.  

Figure 5-1 is the block diagram of the proposed estimation algorithm. It consists 

of seven steps, which are divided into two parts. The first part constructs the 

chromaticity histogram of the input image, determines the center point of the 

chromaticity histogram to represent the major color distribution of the image on the 

chromaticity map, and also eludes the affect of dominant color. The second part uses a 

pre-trained neural network with back-propagation (BP) learning algorithm for 

illumination estimation. The BP network is trained to model the nonlinear functional 

relationship between the center value of the chromaticity histogram and the spectral 

power distribution of the surrounding illuminant. In the rest of this section, we shall 

explain the details of each step in the block diagram of Figure 5-1. 
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Figure 5-1. Diagram of the proposed illumination estimation scheme. 
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5.3.1. Center value estimation of the chromaticity histogram 
(a) Color space transformation and chromaticity histogram computation 

In our approach, we first convert and map the values of three color channels of 

an image to CIE’s XYZ color space and then get the (x, y) values of chromaticity 

through normalization according to the following equation: 

ZYX
Xx
++

=  and 
ZYX

Yy
++

= ,                (5-11) 

where the values of x and y are in the range [0, 1]. A chromaticity histogram of a color 

image is a function of x and y, denoted by f(x, y). It is built by the accumulation of 

every pair of (x, y) values of chromaticity corresponding to all colors in the image. A 

plot of this function for all chromaticity provides a global description of the 

appearance of a color image. For example, Fig. 5-2 shows the chromaticity histograms 

of two images of the same scene with two different surrounding illuminants. The 

chromaticity histogram in Fig. 5-2(a) corresponds to the illuminant with a low color 

temperature, and that in Fig. 5-2(b) corresponds to the illuminant with a high color 

temperature. Thus the chromaticity histogram can reflect the information of white 

points of the surroundings faithfully. We shall next detect the central values of all 

color distributions of chromaticity histogram. The central values can represent how all 

the colors in an image are distributed in the chromaticity histogram. 

  
(a) Low color temperature (b) High color temperature 

Figure 5-2. Chromaticity histograms of two images of the same scene under two 
different illuminants with two different color temperatures. 
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(b) Projecting the chromaticity histogram into x-axis and y-axis 

In order to detect the main color distribution region on the chromaticity 

histogram more efficiently and fast, we project the chromaticity histogram to x-axis 

and y-axis, respectively, to get two projection function curves. Its sample results are 

shown in Figs. 5-3(a) and (b), and can be expressed in the following mathematical 

forms: 

)),(max(

),(max
)( 1

_ yxf

yxf
xg yDy

xproj
≤≤

=  and 
)),(max(

),(max
)( 1

_ yxf

yxf
yg xDx

yproj
≤≤= ,         (5-12) 

where )(_ xg xproj and )(_ yg yproj  are the projection distribution functions in x-axis and 

y-axis of the chromaticity histogram whose values are between 0 and 1 through 

normalization by the maxima of projection functions, Dx and Dy are the dimensions of 

the chromaticity histogram in x-axis and y-axis, respectively, and f(x, y) is the 

chromaticity histogram. By the projection operation, we can also decrease the 

calculation cost of chromaticity histogram from 2D to 1D spaces. This leads to a 

faster and more efficient detection scheme of the main color distribution of an image.  

(c) Eliminating the dominant colors from projected signals and detecting the center of 

the projection distributions 

For most cases, the assumption that there could be enough colors (full-color) in 

the image is reasonable. But in some situations, some colors would occupy most range 

of the image, which are called dominant colors. For examples, green and blue will be 

the dominant colors for the images gotten from a large grass field and from a whole 

blue sky or ocean, respectively. Obviously, if an image possesses a dominant color, we 

can easily locate the corresponding position of the dominant color in the chromaticity 

histogram, which appears to be an impulse. The same phenomena can be observed in 

the projection curves of chromaticity histogram. As Figs. 5-3(a) and (b) show, there 
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exists a dominant color at x=190 and y=100, where these two figures are relative to 

the projection of chromaticity histogram in x-axis and in y-axis, respectively. 

The dominant color will bias the estimation of major colors in the image and 

causes obvious estimation error of surrounding illumination. Hence, we have to 

remove the effect of dominant colors from the projection curves of chromaticity 

histogram on x-axis and y-axis before we find the central values of color distribution. 

As shown in Figs. 5-3(a) and (b), the projection distributions of the dominant colors 

onto x-axis and y-axis both belong to the variations of high frequency. So we can pass 

the )(_ xg xproj  and )(_ yg yproj  functions in Eq. (5-12) through an ideal low pass 

filter to remove the effect of dominant colors. The low-pass filtered projection 

distributions of chromaticity histogram can more authentically represent the 

distribution of all colors of the image in the chromaticity histogram for central point 

location. The low-pass filtering process is demonstrated in Figs. 5-3(c)~(f). Figs. 

5-3(c) and (d) are the results of DCT (discrete cosine transform) of Figs. 5-3(a) and 

(b), respectively. After we apply the ideal low-pass filtering on the curves in Figs. 

5-3(c) and (d), and then take the inverse DCT (IDCT), we obtain the filtered 

projection curves of chromaticity histogram as shown in Figs. 5-3(e) and (f). 

Comparing Figs. 5-3(a), 5-3(b) and 5-3(e), 5-3(f), we observe that the effect of 

dominant colors have been removed effectively, and the central values can be 

estimated more correctly on the filtered curves.  

The center (Cx, Cy) of the distribution of chromaticity histogram of the 

surrounding illuminant can be computed by the following formulas on the filtered 

projection distributions: 
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xhxgC xprojDxx
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 and                    

[ ])()(maxarg _1
yhygC yprojDyy

y

∗=
≤≤

,                 (5-13) 

where * is the convolution operator and )(⋅h  is the inverse DCT function of an ideal 

low pass filter )(uH  with cut-off frequency cu  as described below: 
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)( cuu

uH .                   (5-14) 

 

 
Figure 5-3. (a) and (b) are the projections of chromaticity histogram onto x-axis and 

y-axis, respectively, where the impulses correspond to the dominant 
colors in the image; (c) and (d) are the results of DCT of (a) and (b), 
respectively; (e) and (f) are the results of IDCT of ideal low-passed 
filtered (c) and (d), respectively, with cut-off frequency being 30. 
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5.3.2. Determination of spectral power distribution of illuminant  
From the previous discussions, any light source )(λE  can be expressed as the 

discrete form )( jE λ  in a whole visible spectrum, where j=1, 2, …, P, and P is the 

number of samples in the spectrum. Since P is usually a big number, it is impossible 

that the spectral power distribution of illuminant can be fully reconstructed directly 

based on the detected center values of chromaticity histogram. From the 

finite-dimensional linear model described in Section 5.2, we know the spectral power 

distribution in the discrete time can be represented as the summation of weighted 

basis functions: 

,)()(
1
∑
=

=
m

i
jiij EeE λλ   j=1, 2, …, P,            (5-15) 

where )( jiE λ  is the set of basis functions, ie  is the coefficient of the basis 

functions that uniquely determine the illuminant, and m is the number of the sets of 

basis functions corresponding to )( jiE λ . When the sets of basis functions )( jiE λ  

are already known, it only remains to decide the coefficients of the basis functions in 

the estimation of the spectral power distribution of the illuminant. In that way we can 

obtain a complete distribution of light sources from the detection of the center values 

of chromaticity histogram. 

The basis functions in Eq. (5-15) can be computed by the principal component 

analysis (PCA) technique. Assume that we have N known sets of light sources of 

spectral power distributions. We can then arrange it as a NP ×  matrix: 
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Each column represents an independent light source, and it includes a vector of P 
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sampling values. All information in the matrix E can be denoted as the covariance 

matrix S defined by 

∑
=

−−=
N

j

Tjj

N 1

)()( ))((1 µEµES ,                 (5-17) 

where µ  is a mean vector of all illuminants in E, and N is the number of light 

sources included in the set. From the theory of PCA, the sets of basis functions )( jiE λ  

can be obtained by the calculations of eigenvectors of the covariance matrix S. 

In this chapter, we mainly take the standard D light source in different color 

temperatures according to the administration of CIE for acquiring the information 

required in the calculations of the basis functions. We take one light source every 

200°K in the range of 4000°K~6000°K, every 400°K in the range of 6400°K~8000°K, 

every 500°K in the range of 8500°K~10000°K, every 1000°K in the range of 

11000°K~15000°K, and 17000°K, 20000°K and 25000°K (as shown in the first 

column of Table 5-2). Hence we have 28 light sources totally. We can then use the 

method mentioned above to calculate the corresponding covariance matrix and its 

eigenvectors. The two eigenvectors corresponding to the two largest eigenvalues and 

the mean vector of all illuminants are taken to form the sets of basis functions shown 

in Table 5-1. Next, we convert all the standard D light sources in the matrix E to the 

corresponding coefficients of the basis functions through linear transformation, and 

the results are given in Table 5-2. The first column represents the light sources of 

different color temperatures. The second to fifth columns list the chromaticity values 

) ,( DD yx  and ) ,( DD vu ′′  relative to different color temperatures. The sixth and 

seventh columns in Table 5-2 list the corresponding coefficients of the basis functions 

in different color temperatures. 

With the data available in Table 5-2, we can use them to train a neural network 
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with back-propagation (BP) learning algorithm for the coefficient estimation of basis 

functions of the illuminants with various color temperatures. The BP network 

structure is a fully-connected 2-10-2 network with ten hidden nodes. The BP network 

describes the nonlinear relationship between the center values of chromaticity 

histogram of an image and the coefficients of basis functions of the illuminant. The 

two input variables of the BP network is the center (Cx, Cy) of chromaticity histogram 

of the surrounding illuminant detected in Eq. (5-13). The two output variables of the 

BP network are the coefficients e1 and e2 of the two basis functions in Eq. (5-15). 

Hence, once we obtain the center values of the chromaticity histogram as described in 

Section 5.3.1, we can feed them into the pre-trained BP network and obtain the two 

coefficients of basis functions as the network outputs. Substituting these coefficients 

of basis functions of the illuminant into the following equation, 

),()()()(ˆ
2211 jjjjill EeEeE λµλλλ ++=   j=1, 2, …, P,       (5-18) 

we can obtain the estimated spectral power distribution of the surrounding illuminant 

)(ˆ
jillE λ . Finally, the colors of the color-biased images can be corrected according to 

the illumination estimation )(ˆ
jillE λ  by using Eqs. (5-8) and (5-10) given in Section 

5.2.  
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Table 5-1. The sets of basis functions of the standard D illuminant. 
Wave-length 

(nm) Mean  First Second 

380 63.40 38.50 3.00 
390 65.80 35.00 1.20 
400 94.80 43.40 -1.10 
410 104.80 46.30 -0.50 
420 105.90 43.90 -0.70 
430 96.80 37.10 -1.20 
440 113.90 36.70 -2.60 
450 125.60 35.90 -2.90 
460 125.50 32.60 -2.80 
470 121.30 27.90 -2.60 
480 121.30 24.30 -2.60 
490 113.50 20.10 -1.80 
500 113.10 16.20 -1.50 
510 110.80 13.20 -1.30 
520 106.50 8.60 -1.20 
530 108.80 6.10 -1.00 
540 105.30 4.20 -0.50 
550 104.40 1.90 -0.30 
560 100.00 0.00 0.00 
570 96.00 -1.60 0.20 
580 95.10 -3.50 0.50 
590 89.10 -3.50 2.10 
600 90.50 -5.80 3.20 
610 90.30 -7.20 4.10 
620 88.40 -8.60 4.70 
630 84.00 -9.50 5.10 
640 85.10 -10.90 6.70 
650 81.90 -10.70 7.30 
660 82.60 -12.00 8.60 
670 84.90 -14.00 9.80 
680 81.30 -13.60 10.20 
690 71.90 -12.00 8.30 
700 74.30 -13.30 9.60 
710 76.40 -12.90 8.50 
720 63.30 -10.60 7.00 
730 71.70 -11.60 7.60 
740 77.00 -12.20 8.00 
750 65.20 -10.20 6.70 
760 47.70 -7.80 5.20 
770 68.60 -11.20 7.40 
780 65.00 -10.40 6.80 
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Table 5-2. Chromaticity co-ordinates Dx , Dy , chromaticity co-ordinates Du′ , Dv′ , 

and coefficients 1e , 2e  of basis functions for the illuminants with 
different color temperatures. 

Color temp. (°K) Dx  Dy  Du′  Dv′  1e  2e  

4000 0.3823 0.3838 0.2236 0.5049 -1.5046 2.8265 
4200 0.3737 0.3786 0.2200 0.5014 -1.4223 2.1271 
4400 0.3658 0.3734 0.2168 0.4979 -1.3329 1.5505 
4600 0.3585 0.3684 0.2139 0.4946 -1.2384 1.0759 
4800 0.3519 0.3634 0.2114 0.4913 -1.1403 0.6860 
5000 0.3457 0.3587 0.2091 0.4882 -1.0401 0.3667 
5200 0.3401 0.3541 0.2071 0.4851 -0.9387 0.1061 
5400 0.3349 0.3497 0.2053 0.4822 -0.8371 -0.1055
5600 0.3302 0.3455 0.2036 0.4795 -0.7358 -0.2759
5800 0.3258 0.3416 0.2021 0.4768 -0.6354 -0.4119
6000 0.3217 0.3378 0.2007 0.4743 -0.5363 -0.5190
6400 0.3144 0.3308 0.1983 0.4695 -0.3434 -0.6639
6800 0.3082 0.3245 0.1963 0.4652 -0.1586 -0.7391
7200 0.3027 0.3189 0.1946 0.4613 0.0175 -0.7646
7600 0.2980 0.3138 0.1932 0.4578 0.1844 -0.7548
8000 0.2938 0.3092 0.1919 0.4545 0.3419 -0.7198
8500 0.2892 0.3041 0.1906 0.4508 0.5262 -0.6518
9000 0.2853 0.2996 0.1894 0.4475 0.6971 -0.5665
9500 0.2818 0.2956 0.1884 0.4446 0.8556 -0.4706
10000 0.2788 0.2920 0.1876 0.4419 1.0027 -0.3689
11000 0.2737 0.2858 0.1861 0.4373 1.2663 -0.1599
12000 0.2697 0.2808 0.1850 0.4335 1.4946 0.0450 
13000 0.2664 0.2767 0.1841 0.4303 1.6934 0.2390 
14000 0.2637 0.2732 0.1834 0.4275 1.8675 0.4194 
15000 0.2614 0.2702 0.1828 0.4252 2.0209 0.5857 
17000 0.2578 0.2655 0.1818 0.4214 2.2778 0.8780 
20000 0.2539 0.2603 0.1809 0.4172 2.5714 1.2308 
25000 0.2499 0.2548 0.1798 0.4126 2.9069 1.6551 
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5.4. Experiments and Results 

In this section, two experiments are performed to assess the performance of the 

proposed approach. In the first experiment, we test the algorithm on synthetically 

generated images for the estimation of surrounding illumination of images of the same 

scene. In the second experiment, we test the algorithm on a number of real images 

captured from a still digital camera and show the color recovery results under the 

desired illuminant by using the finite-dimensional linear model of surface reflectance. 

All the experimental results are compared to those of the Max-RGB and Gray-World 

algorithms tested on the same images. These two algorithms are chosen for 

comparisons because they are easy to implement and are widely used to perform the 

function of auto-white-balance in digital cameras currently. 

5.4.1. Illumination estimation of synthetic images 
In this experiment, we used a simple feedforward neural network with two input 

and two output nodes to approximate the nonlinear mapping between the center of 

chromaticity histogram and the coefficients of basis functions of illuminants. The 

weights of this neural network were adjusted by using back-propagation (BP) learning 

rule. To train the neural network, we need a set of images under different illuminants 

whose spectral power distributions are known in advance. However, such spectral 

information is not easy to measure in natural surrounding environments. To solve this 

problem, we use synthetic images with known illumination distributions in this 

experiment to produce the required training samples for the BP network. We also 

produce a set of testing images using the same procedure for testing the performance 

of the trained network.  

To synthesize the images of a scene under different illuminants, we need to have 

the spectral reflectance )(λR  of different colors. In this experiment, we use the 
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colors defined in the color chart, AgfaIT8.7/2 [75], to form the colors in our synthetic 

images. Although AgfaIT8.7/2 consists of only 288 colors, they are enough for 

representing the colors of normal pictures. With the spectral reflectance )(λR  of all 

288 colors and the spectral power distribution of the standard D illuminants for 

different color temperatures, we can then apply the linear combination of CIE’s color 

matching functions to synthesize the images of a scene under different illuminants. As 

listed in Table 5-2 and explained in Section 5.3.2, we select 28 standard D illuminants 

with 28 different color temperatures falling in the range of 4000°K~25000°K as the 

light sources for image synthesis. On the other hand, to make the synthetic images 

having the scenes close to the real captured ones, we randomly chose 50 colors from 

the AgfaIT8.7/2 color chart to form the colors in the images for the training and 

testing of BP network. We then apply the algorithm proposed in Section 5.3.1 to find 

the center values of chromaticity histogram, (Cx, Cy), on the synthetic images. The (Cx, 

Cy) values of the synthetic images for each of the 28 color temperatures are collected 

and used as the inputs of the training network, and the coefficients of the basis 

functions of illuminants, (e1, e2), corresponding to each of the 28 color temperatures 

are used as the desired outputs of the network. The learning constant in the BP 

learning rule is set as 0.8, and the convergence criteria in the form of output RMS 

error defined below is set as 0.005. 

To evaluate the learning accuracy of the BP network, we define the network 

output error, Er, as the RMS error on the u-v chromaticity space: 

22 )ˆ()ˆ( DDDD vvuuEr −′+−′= ,                   (5-19) 

where ) ,( DD vu ′′  and )ˆ ,ˆ( DD vu  are the chromaticity co-ordinates of the real 

(synthetic) and estimated illuminants, respectively. Since the u-v color space is a 

uniform distributed color space, we use it as the basis for error calculation in order to 
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keep the same error scale. On the other hand, because the two output values of the BP 

network represent the coefficients of the two basis functions of illumination, we have 

to convert them into the values of x-y chromaticity for computing the RMS errors in 

Eq. (5-19). This conversion can be achieved by the following equation from the 

formula of standard D illuminants:  

6327.1322149.03775.15
8192.408496.07467.0ˆ
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ee
eexD  and                   
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++
++

=
ee
eeyD ,                (5-20) 

where e1 and e2 are parameters whose values are related to the chromaticity 

co-ordinates )ˆ ,ˆ( DD yx . The values of )ˆ ,ˆ( DD yx , e1, and e2 correlate color 

temperatures in the range K°4000  to K°25000 . We can then use the CIE’s formula 

to transform )ˆ ,ˆ( DD yx  into )ˆ ,ˆ( DD vu , which can be used directly to calculate the 

RMS errors in Eq. (5-19). 

Table 5-3 lists the estimation RMS errors of the proposed algorithm under 

different color temperatures in the second column. The estimation RMS errors of the 

Max-RGB and Gray-World algorithms on the same synthetic images are also listed in 

the third and fourth columns of Table 5-3 for comparison. Table 5-3 clearly shows the 

superiority of the proposed approach over the compared ones; the proposed algorithm 

always produces much smaller RMS errors than the other two. Although the 

Max-RGB and Gray-World algorithm produces smaller RMS errors in a few synthetic 

images, the RMS errors produced by the proposed algorithm on these images are also 

quite small. These exceptional cases are possible and reasonable, since we choose 

different combinations of colors randomly from the AgfaIT8.7/2 color chart to form 

the synthetic images, and the compared algorithms might have better performance on 
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the chosen colors. Overall, the proposed algorithm has better and stable estimation 

accuracy than the compared counterparts. 

 

Table 5-3. The average RMS errors of illumination estimation of the proposed and 
compared algorithms on training synthetic images for an ideal camera 
(number of colors is 50). 

Error (RMS) Color temp. 
(°K) Our 

Approach Gray-World Max-RGB

4000 0.0002 0.0069 0.0035 
4200 0.0024 0.0044 0.0138 
4400 0.0011 0.0099 0.0068 
4600 0.0014 0.0057 0.0032 
4800 0.0020 0.0052 0.0046 
5000 0.0023 0.0072 0.0016 
5200 0.0025 0.0071 0.0015 
5400 0.0012 0.0036 0.0014 
5600 0.0010 0.0062 0.0048 
5800 0.0020 0.0065 0.0033 
6000 0.0030 0.0070 0.0050 
6400 0.0023 0.0083 0.0032 
6800 0.0022 0.0061 0.0062 
7200 0.0013 0.0059 0.0067 
7600 0.0010 0.0053 0.0021 
8000 0.0025 0.0064 0.0066 
8500 0.0048 0.0083 0.0033 
9000 0.0011 0.0058 0.0037 
9500 0.0030 0.0065 0.0034 

10000 0.0014 0.0054 0.0036 
11000 0.0026 0.0050 0.0153 
12000 0.0025 0.0043 0.0058 
13000 0.0018 0.0076 0.0020 
14000 0.0024 0.0062 0.0131 
15000 0.0032 0.0066 0.0020 
17000 0.0019 0.0057 0.0049 
20000 0.0022 0.0065 0.0035 
25000 0.0036 0.0058 0.0017 

Avg. Error 0.0021 0.0063 0.0049 
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We use the same synthesis procedure as mentioned in the above to produce 

another set of synthetic images for testing of the trained BP network. These testing 

sets of images are synthesized according to the illuminants different from those used 

in producing the training set of synthetic images. A total of 40 colors are randomly 

chosen from the 288 colors in the AgfaIT8.7/2 color chart to form a testing image. 

The proposed and compared approaches are then used to estimate the illumination of 

each testing image. The estimation RMS errors are listed in Table 5-4, where each 

value in the table is the average RMS error over 20 synthetic images of a specific 

illuminant. The results still indicate the superiority of the proposed scheme over the 

other two compared algorithms even in the cases of unlearned surrounding 

illuminants. 

Finally, we want to find out how the number of colors in an image affects the 

estimation accuracy of the surrounding illumination. Under a specific illuminant, we 

randomly choose different numbers of colors from the AgfaIT8.7/2 color chart to 

form the synthetic images, starting from the number of five and increasing by five 

colors each time until 35 colors in total. Hence, we have seven synthetic images for a 

specific illuminant, with the numbers of colors in the seven images being 5, 10, 15, …, 

50, respectively, all chosen randomly from the AgfaIT8.7/2 color chart. For a specific 

illuminant and a specific number of colors, a total of 25 images are synthesized. Again, 

we use the proposed and compared algorithms to estimate the illumination of these 

synthetic images. The estimation RMS errors are shown in Fig. 5-4, where each value 

in the figure is the average RMS error over 175 (25x7) synthetic images of a specific 

illuminant. The results indicate that the estimation error of each algorithm increases as 

the number of colors in an image decreases. This is reasonable since higher number of 

colors can provide more information of spectral power distribution of the surrounding 
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illuminant. However, in any case, the proposed algorithm still possesses the best 

performance. 

 

Table 5-4. The average RMS errors of illumination estimation of the proposed and 
compared algorithms on testing synthetic images for an ideal camera 
(number of colors is 40). 

 
Error (RMS) Color temp. 

(°K) Our 
Approach Gray-WorldMax-RGB

4300 0.0025 0.0072 0.0053 
5300 0.0022 0.0065 0.0043 
5800 0.0040 0.0086 0.0103 
6600 0.0039 0.0067 0.0038 
7400 0.0053 0.0061 0.0109 
8200 0.0025 0.0070 0.0048 

10500 0.0029 0.0067 0.0035 
Avg. Error 0.0033 0.0070 0.0061 

 

 

 
Figure 5-4. The average RMS errors of illumination estimation of the proposed and 

compared algorithms on testing synthetic images with respect to 
different number of colors in an image. 
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5.4.2. Illumination estimation of real images for color recovery 
In the second experiment, we test the performance of the new algorithm on real 

images under natural illumination. These images are captured from Olympus DC460 

still digital camera under different color temperatures. For proper control of different 

color temperatures, these images are captured inside a Color-Viewing (CV) box 

(made by GAIN Associates Inc., No. D1729). In the CV box, there are four different 

light sources, D 、 F 、 A and UV, producing four different color temperatures 

(D=6500°K, F=4200°K, A=2850°K). When capturing the images inside the CV box, 

we have to turn off the auto-white-balancing function in the digital camera such that 

the proposed approach can be fully exploited. To apply the proposed illumination 

estimation scheme to the captured images, we have to find the matrix that transforms 

the camera R, G, and B signals into CIE 1931 X, Y, and Z values at first. The 33×  

matrix is constructed so that the final CIE’s XYZ mean square errors between the 

reflection print and the camera image are minimized under the constraint that the 

neutral colors will be kept neutral after the color transformation. Let us take the 

Olympus DC-460 still camera as an example. Its chromaticity transformation between 

the phosphor primaries and the CIE’s XYZ primaries are listed in Table 5-5. Using the 

relations developed for camera calibration [76], [77], we have 
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The transformation matrix 1−= cVDUA  is determined up to a constant factor c. The 

convention is to choose the constant c so that y is equal to 1 when r, g, and b are set to 

1. By doing so, we obtain the transformation matrix A as 
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Table 5-5. Camera primaries (r, g, and b are normalized by the maximum stimulus). 
Stimulus r g b x y z 

Red phosphor 1.0 0.0 0.0 0.6237 0.3313 0.0450 
Green phosphor 0.0 1.0 0.0 0.2640 0.6044 0.1316 
Blue phosphor 0.0 0.0 1.0 0.2033 0.0892 0.7075 

White 1/3 1/3 1/3 0.3501 0.3693 0.2806 
 
 
 
Table 5-6. The average RMS errors of AgfaIT8.7/2 photographic print for the 

image rerendered based on different illuminant estimation algorithms. 
Average RMS 

Error Our Scheme Gray-World Max-RGB 

Error (RMS) 5.53 8.39 10.38 
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Next, we can obtain the raw data of CIE’s XYZ of images by using the above 

transformation matrix A. The chromaticity histogram is computed at the same time. 

Finally, we use our approach to estimate the surrounding illumination. By substituting 

the estimation result into Eq. (5-10), we can obtain the color-corrected images for the 

desired surrounding illuminant. Figs. 5-5~5-7 show the exemplar images in this 

experiment. For each scene, we show four images: (a) the raw image captured by the 

camera with different illuminants, (b) the rendered image using the illuminant 

estimated by the proposed new algorithm, (c) the rendered image using the illuminant 

estimated by the Gray-World algorithm, and (d) the rendered image using the 

illuminant estimated by the Max-RGB algorithm. Besides, in Fig. 5-5, we add a raw 

image captured by the camera with D65 illuminants. Fig. 5-5(a) shows the 

AgfaIT8.7/2 color chart captured under the F illumination, and Figs. 5-5(b)~(d) are 

the three images rendered for illuminant D65 by the proposed, Gray-World, and 

Max-RGB algorithms, respectively. It is obvious that the rendered image based on the 

surrounding illuminant estimation of the proposed algorithm is very close to the 

image captured under the D65 illumination directly. In contrast, the performance of 

the Gray-World and Max-RGB algorithms is worse. The quantitative performance 

measurement is listed in Table 5-6. Table 5-6 shows the average RMS errors of colors 

in all the charts between the images captured under the D65 illumination and those 

rendered by different illumination estimation schemes. Fig. 5-6 shows the results on 

the image of the Macbeth ColorChecker captured under the D50 and D75 illuminants, 

respectively. Fig. 5-7 is the photo scene of the campus of our university. There is a 

dominant color caused by the grassplot on the photo. The results show that the 

proposed algorithm is less sensitive to the dominant color than the other two 

compared algorithms. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5-5. (a) Raw camera image captured under the F illumination. (b)-(d) 
Color-corrected images for the D65 illumination by the proposed 
algorithm, the Gray-World algorithm, and the Max-RGB algorithm, 
respectively. (e) Raw camera image captured under the D65 
illumination. 
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(a) (b) (c) (d) 

Figure 5-6. (a) Raw camera image captured under D50 (first row) and D75 (second 
row) illuminations. (b)-(d) Color-corrected images for the D65 
illumination by the proposed algorithm, the Gray-World algorithm, and 
the Max-RGB algorithm, respectively. 

 

 

 
(a) (b) (c) (d) 

Figure 5-7. (a) Raw camera image captured under daylight and evening 
illuminations with a dominant color of grassplot. (b)-(d) Color-corrected 
images for the D65.illumination by the proposed algorithm, the 
Gray-World algorithm, and the Max-RGB algorithm, respectively. 
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5.5. Concluding Remarks 

In this chapter, a new approach to surrounding illumination estimation of an 

image was proposed. The proposed algorithm estimated the illuminant based on 

chromaticity histogram of the image. And a neural network with back-propagation 

(BP) learning algorithm was used to estimate the spectral power distribution of the 

illuminant according to the center values of the chromaticity histogram. The proposed 

algorithm also eliminated the interference of dominant color to illumination 

estimation through low-pass filtering of the chromaticity histogram. The illumination 

estimation based on the chromaticity histogram can avoid unrealistic assumptions on 

the color images and provide high efficient and robust estimation. On the other hand, 

the use of the BP network provides good interpolation over a small number of 

different illuminants and gives highly estimation accuracy. Two experiments were 

performed to evaluate the performance of the proposed algorithm. In the first 

experiment, the proposed algorithm was used to estimate the illumination of synthetic 

images, and the estimation RMS errors were calculated. In the second experiments, 

the proposed algorithm was used to estimate the spectral power distributions of the 

illuminants, and then the colors of the image were corrected based on the 

finite-dimensional linear model of surface reflectance. Two popular existing 

illumination estimation algorithms, the Gray-World and Max-RGB algorithms, were 

also applied to the same images in these two experiments. Performance comparisons 

have demonstrated the superiority of the proposed algorithm both in estimation 

accuracy and robustness for color constancy. 
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6. Conclusion and Perspectives 
 

 

 

 

In this thesis, we proposed two new reflectance models for 3D surface 

reconstruction. First, a novel 3D image reconstruction model was proposed. This 

method considers the components of both diffusion and specular reflection in the 

reflectance model. We used two neural networks with symmetric structure to estimate 

these two reflection models separately and combined them with an adaptive ratio for 

each point on the object surface. The proposed network estimates the point-wise 

adaptive combination ratio of the diffusion and specular intensities such that the 

different reflecting properties of each point on the object surface can help to achieve 

better performance of surface reconstruction. The proposed symmetric neural network 

structure with adaptive learning procedure does not need any special parameter setting 

and the smoothing conditions. It is also easier to achieve the convergence condition 

and to make the system stable. The critical parameters, such as the light source and 

the viewing direction and so on, are also obtained from the learning process of the 

neural network. The obtained normal vectors of the surface can then be applied to 3D 

surface reconstruction by enforcing integrability approach. 

Secondly, we further proposed another new nonlinear reflection model consisting 

of the diffusion and specular components. We do not need to separate the two 

components in the proposed nonlinear reflection model. Using the unsupervised 

non-linear ICA network for solving photometric stereo problems does not need any 

desired outputs and the smoothing conditions. It is easier to achieve the convergence 
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condition and make the system stable. 

For 3D surface reconstruction, several conclusions are listed below. (a) When we 

estimate the surface shape, the success of the reflectance model depends on two major 

components, including the diffusion and specular components. (b) In our methods, we 

do not know the locations of light sources for solving the photometric stereo problems. 

(c) The proposed symmetric neural network structure and the unsupervised 

post-nonlinear ICA network do not need any special parameter setting and the 

smoothing conditions. 

On the other hand, we proposed a new approach in the surrounding illumination 

estimation of an image for color reconstruction. The proposed algorithm estimated the 

illuminant based on chromaticity histogram of the image. And a neural network 

back-propagation (BP) learning algorithm is used to estimate the spectral power 

distribution of the illuminant according to the center values of the chromaticity 

histogram. The proposed algorithm also eliminated the interference of the dominant 

colors and illumination estimation through low-pass filtering of the chromaticity 

histogram. The illumination estimation based on the chromaticity histogram can avoid 

unrealistic assumptions on the color images and provide the highly efficient and 

robust estimation. Compared with the methods based on neural networks which we 

proposed before, the size of their architectures is huge. Those methods need many 

connecting parameters and are not easy to implement on hardware. The size of our 

architecture is much smaller; hence our methods can estimate the relative parameters 

of outside sources effectively and rapidly. Thus, we could reconstruct the color of 3D 

objects by using these parameters. The comparisons in performance have 

demonstrated the superiority of the proposed algorithm both in estimation accuracy 

and robustness for color constancy. 
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