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Department of Electrical and Control Engineering
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Abstract

In this thesis, we propose three new techniques to improve the surface
reconstruction and color reconstruction of 3D objects. For the surface reconstruction
of 3D objects, photometric stereo is able to estimate local surface orientations by
using several images of the same sutface which are photographed from the same
viewpoint but under the illuminations=fromi. different directions. According to
previous researches, a successful reflectance model for surface reconstruction of 3D
objects should combine two: major components,’ the diffusion and specular
components. As a result, in this thesis, we categorize the improvement by our
methodology into two stages. In thé first stage;a new neural-network-based adaptive
hybrid-reflectance model is proposed for combining the diffusion and specular
components automatically. The supervised learning algorithm is adopted and the
hybrid ration for each point is updated in the learning iterations. After the learning
process, the neural network can estimate the normal vector for each point on the
surface of 3D objects in an image. The enforcing integrability method is applied to
the reconstruction of 3D objects by using the obtained normal vectors. The
experimental results demonstrate that the proposed network estimates the
point-wisely adaptive combination ratio of the diffusion and specular intensities
such that the different reflection properties of each point on the object surface are
considered to achieve better performance on the surface reconstruction.

In the second stage, we further propose a new nonlinear reflectance model
consisting of diffusion and specular components for modeling the surface
reflectance of 3D objects in an image. Unlike the previous approaches, these two
components are not separated and processed individually in the proposed model. An
unsupervised learning adaptation algorithm is developed to estimate the reflectance

model based on image intensities. In this algorithm, the post-nonlinear independent
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component analysis (ICA) is used to obtain the surface normal on each point of an
image. Then, the 3D surface model is reconstructed based on the estimated surface
normal on each point of image by using the enforcing integrability method. The
results clearly indicate the superiority of the proposed nonlinear reflectance model
over the other linear hybrid reflectance model. The experimental results demonstrate
that the post-nonlinear ICA method can be used in the problems of surface
reconstruction.

For color recovering of 3D objects, a new neural-network-based algorithm for
surrounding illumination estimation of image scenes is proposed. This estimation is
based upon the chromaticity histogram of a color image, which is obtained by the
accumulation of CIE chromaticity values corresponding to all the colors in the
image. A neural network with a BP learning algorithm is used to model the
nonlinearly functional relationship between the central values of the chromaticity
histogram and the coefficients of illuminant functions. The trained BP network can
then be used to estimate the spectral power distribution of the surrounding
illuminant. By substituting this illuminant estimates into the finite-dimensional
linear model of surface reflectance, theicolors. of the image can be recovered with
the standard illuminant (such as D65) for.color constancy. The experimental results
show that the new algorithm outperforms:the existing popular compared algorithms,

both in quantitative error indices and in qualitative visual perception.
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1. Introduction

1.1. Motivation

When we use the camera to capture the images of 3D objects and scenes, we also
loose the depth information of 3D objects and only obtain the 2D image information.
However, the depth information of 3D objects plays an import role in many
applications such as the 3D-object recognition and 3D-object display. Moreover, when
we use the camera to capture images, the colors of objects in an image will change
because of the various camera characteristics and environment illuminations. In order
to show the original information-of 3D-objects, we must recover the true object colors.
Hence, the problems of 3D object reconstruction from 2D images including the 3D
surface reconstruction and the true color reconstruction. In this thesis, we propose

thee new techniques to attack these two problems.

1.2. Surface Recovering Methods

Several candidate approaches exist for the recovery of surface topography,
including binocular stereo, shape from shading, and photometric stereo.
1.2.1. Binocular stereo

Binocular stereo is a means of recovering depth by identifying corresponding
points in two images developed from different viewpoints. Although binocular stereo
has been used successfully in computer vision, it still has several drawbacks that

should be overcome: (1) Additional hardware is necessary; as this method required

1



two cameras. (2) The difficulty in using binocular stereo arises from reliably
determining the corresponding features between two separate images. It is essential
that the position for us to observe remains fixed during the phase in image acquisition
in order to prevent the so called correspondence problem. Implementing the matching
algorithm also results in additional computation. (3) The missing depth information
can be obtained by using stereoscopic imaging techniques. (4) The depth of surface is
preferred to recovering than the surface orientation. All of above conditions introduce
noises and artifacts.

1.2.2. Shape from shading from a single image

The image typically exhibits a smooth variation in brightness from one point to
another, which is known as shading. This perception of shape from gradual changes in
brightness is denoted as shape from shading (SfS). It was one of the first areas of
studies in computer vision and was.proposed by Horn [1] in the early 1970s.The topic
of shape from shading (SFS) is concetned-with determining the shape of an object
solely from the intensity variation in..theimage plane [2]-[10]. Unfortunately,
measurements of brightness at a single point in the image only provide one condition
whereas describing surface orientation requires two variables. The problem is illposed
unless further assumptions are made.

The single-image shape from shading algorithm is still limited even if the exact
lighting condition and surface reflectivity are known. One extreme case is that the 3D
surface information may be totally lost under certain lighting conditions, and so there
is no way to recovery the surface orientation. The problems in extracting shapes from
shading by a single image are as follows. (1) It is assumed that an approach relies on
having a known reflectance function for a surface. (2) One constraint exists in terms

of the mathematical solution for this method. The method relies on the continuity of



I(x, y). This means there are no discontinuities on the surface, which is therefore
unsuitable for 3D texture surface estimation. (3) We really need a starting point to
grow a solution. The equations that we solved are not over-constrained so the method
will be extremely susceptible to noises in the image.
1.2.3. Photometric stereo

Photometric stereo gives us the ability to estimate local surface orientation by
using several images of the same surface taken from the same viewpoint but under the
illumination from different directions. It was first introduced by Woodham [11]. The
light sources are ideally point sources from some distance away in different directions,
so that in each case there is a well-defined direction of light source from which we
can measure the surface orientation. Therefore, the change of the intensities in the
images depends on both local surfage orientation and illumination direction.

Photometric stereo is a way.in which the ill-posed problems in shading from
shading can be resolved. It uses several-images of the same surface under different
illumination directions. The advantages.of photometric stereo are as follows. (1)
Unlike single image by shape from shading algorithms, photometric stereo makes no
assumption of the smoothness of the surface. (2) Furthermore, it requires only
additional lighting and can be easily implemented at a reasonable computational cost.
(3) Each image brings along its own unique reflectance map, therefore we will define
a unique set of possible orientations for each point in each image. (4) Photometric

stereo can recover not only surface normal but also surface albedo.

1.3. Candidate Color Recovering Methods
Without light there is no color. Light sources therefore play a very important part
in colorimetry. If the color is self-luminous, such as in the case of fireworks, for

example, then the light source itself is the color. But, more often, colors are associated



with objects that, instead of being self-emitting, reflect or transmit light emitted by
light sources. Thus, a variation of the illuminant in the scene changes the color of the
surface as it appears in an image. As far as the human eyes are concerned, the color of
the surface is almost different from each other. This phenomenon is called the color
constancy. However, this function of color constancy does not exist for cameras, so
we need to have an automatic color constancy function in order to obtain the correct
color images from cameras.

The goal of color constancy can be defined as the transformation of a source
image while being taken under an unknown illuminant for a target image which is
identical to that which would have been obtained by the same camera in the same
scene under a standard illuminant (such as D65). Thus, there are two stages in the
process of color constancy. The bloek diagram in Fig. 1-1 illustrates this process. The
first stage estimates the spectralspower distribution of the surrounding illuminant of an

input image, E(1), and based on which-wercan correct the image pixel-wisely in the

second stage with standard illuminant D65:

v

. I1luminant E(A) Illumm? nt . )
Input image > .. » correction —— Desired image
Estimation
based on D65

Figure 1-1. Block diagram of the color constancy process.

It is difficult to estimate the surrounding illumination from an image itself,
because we totally have no idea about what color consists of an image. There are
several methods that have been proposed for determining the surrounding illumination
based on some strict assumptions [12]. These candidate approaches exist for the
surrounding illumination estimation, including gray-world methods, color by

correlation, and neural networks methods.



1.3.1. Gray World Methods

The “Gray-World” method is one well-known prior art technique, which
estimates the color of the surrounding illumination as the average of color in the
camera image [14]-[16]. This method is quite unreliable because the average is very
unstable. For example, the color of the image of a large field of grass will be primarily
green, so the average color in the image will be green. Color correction of such an
image based on the gray-world technique produces readily perceptible color errors
throughout the image. Another prior art method of estimating the color of the
surrounding illumination is the brightest surface method [13], [17]-[20]. This method
effectively uses the maximum value found within the image for each of the three RGB
channels of color information as the estimate of the color of the surrounding
illuminant. This method is also unstable because.it depends on the assumption that
there will be a surface that is maximally reflective in-each of the three RGB channels
of color information everywhere in the seene--This assumption is frequently violated.
These methods are improper in general; though they are simple and easy.

1.3.2. Neural Network Methods

Usui [21] described a method of estimating the surrounding illumination by
using a simple neural network as a decorrelator to minimize the correlation among the
RGB information of an image. This simple neural network has three inputs and three
outputs, but by itself does not accomplish satisfactory color constancy. In 1999, Funt
et al. [22] proposed another neural network approach. The image colors are first
mapped into a chromaticity space that is then divided into a plurality of separate
regions. For each region, the binary value “1” is assigned to the region if the region
contains chromaticity values, and the other binary value “0” is assigned to the region

if it does not contain a chromaticity value. The assigned values are then used as inputs



to a pre-trained neural network, in which there are two output nodes representing the
white point chromaticity of the surrounding illuminant. The drawbacks are that the
input part is too complex and the weighting values are not easy to converge within the
back-propagation (BP) algorithm.
1.3.3. Color by Correlation

The color correlation approach for the surrounding illumination estimation is
proposed in [23]-[25]. A correlation matrix memory is built to correlate the data from
any camera image to reference images under a range of illuminants. The vertical
dimension of the matrix memory (the columns) is a rearrangement of the
two-dimensional chromaticity space into a raster list of points. The horizontal
dimension corresponds to a similar raster list that is the chromaticity for all possible
illuminants from the view of the device. When a camera produces a picture image, the
data are converted to chromaticity,and a vector is.created corresponding to the values
existing in the scene. We can theh multiply- this: vector by each column in the
correlation matrix to create a new matrix..EFach column is then summed, and the
resulting values form a vector that represents the likelihood of each reference source
being the surrounding illumination. Despite of this successful method, it suffers from
some important drawbacks: (1) It needs to have enough memory space to save the
correlation matrix, so it would make it difficult to implement. (2) This method uses a
finite quantum of light sources to approximate all possible illuminants, and
approximating errors exist since the majority determines the winner in estimating the
light sources. Although increasing the number of light sources in the correlation
matrix could solve this problem, it also results in the increase of the need of memory
at the same time. (3) The color of the surrounding illuminant has two important

attributes: chromaticity and luminance. The correlation method shows promise as a



means of selecting an appropriately adopted white chromaticity, but it does not
provide information about the white point of the surrounding illuminant. Conversely,
the previously described prior art methods provide a means of selecting the white
point of the surrounding illuminant, but not by the chromaticity. (4) In some situations,
some colors would occupy most range of the image. For examples, the green region
would dominate the whole image if we got images from grass, or the images gotten
from a whole blue sky or the ocean all belong to this kind of images. In these
situations, we call most colors in the image as the dominant color. The dominant color

usually leads to estimation error in the existing approaches.

1.4. Concluding Remarks

In this chapter, several traditional®approaches for the recovery of surface
topography were presented, whére photometric, stereo approach is able to estimate
local surface orientation. Therefore, two approaches-based on photometric stereo for
improving the surface reconstruction were proposed in this thesis. First, a new
neural-network-based adaptive hybrid-reflectance model is proposed to combine the
diffusion and specular components automatically. The supervised learning algorithm
is adopted and the hybrid ration for each point is updated in the learning iterations.
Second, we further proposed a new nonlinear reflectance model that consists of the
diffusion and specular components for modeling the surface reflectance of 3D objects
in an image. Unlike the previous approaches, these two components are not separated
and processed individually in the proposed model. An unsupervised learning
adaptation algorithm is developed to estimate the reflectance model based on image
intensities. In this algorithm, the post-nonlinear independent component analysis (ICA)
is used to obtain the surface normal on each point of an image. Then, the 3D surface

model is reconstructed based on the estimated surface normal on each point of the



image by using the enforcing integrability method.

For color recovering of 3D objects, we proposed a new neural-network-based
algorithm for surrounding illumination estimation of the image scene. This estimation
is based upon the chromaticity histogram of a color image, which is obtained by the
accumulation of CIE chromaticity values corresponding to all colors in the image. The
experimental results show that the new algorithm outperforms those existing popular

algorithms in both the quantitative error index and the qualitative visual perception.



2. Photometric Stereo

The appearance of a surface in an image results from the effects of illumination,
shape, and reflectance. Reflectance models have been developed to characterize the
image radiance with respect to the illumination environment like viewing angles and
material properties. These models provide a local description or reflection mechanism
that can serve as a foundation on the representations of appearance. Photometric
stereo approaches utilize reflection.models for, estimating surface properties from
transformation of image intensities that:arise from illumination changes [11].
Furthermore, photometric stereo methods are simple and elegant for Lambertian

methods.

2.1. Introduction

Determining the shape of objects from an image in a scene is extremely difficult.
The image typically exhibits a smooth variation in brightness from one point to
another, which is known as shading. This perception of shape from gradual changes in
brightness is denoted as shape from shading (SfS). It was one of the first areas of
study in computer vision and was proposed by Horn [1] in the early 1970s.
Unfortunately, measurements of brightness at a single point in the image only provide
one constraint, whereas describing surface orientation requires two variables.

Therefore, it is an ill-posed problem.



Camera

Light 4

Figure 2-1 Illustration of photomettic stereo geometry.

Photometric stereo approach is able to estimate local surface orientation by using
several images of the same surface -taken from ‘the same viewpoint but under
illuminations from different directions. It was first introduced based on the
Lambertian reflectance model by R. J. Woodham [11]. It has received wide attention
and several efforts have been made to improve the performance of recovery [26]-[44].
The main limitation of classical photometric stereo approach is that the light source
positions must be accurately known and this necessitates a fixed, calibrated lighting
rig. Hence, an improved photometric stereo method for estimating the surface normal
and the surface reflectance of objects without a priori knowledge of the light source
direction or the light source intensity is proposed by Hayakawa [43]. The method used
the singular-value decomposition (SVD) method to factorize image data matrix of
three different illuminations into surface reflectance matrix and light source matrix

based on the Lambertian model. However, they still used one of the two added
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constraints (i.e., at least 6 pixels in which relative value of the surface reflection is
constant or known and at least 6 frames in which the relative value of the light-source
intensity is constant or known) for finding the linear transformation between the
surface reflectance matrix and the light source matrix. McGunnigle [30] introduced a
simple photometric stereo scheme which only considered a Lambertian reflectance
model, where the self and cast shadow as well as inter-reflections were ignored. Three

images at tilt angle of 90° increments were captured. He suggested using his method

as a first estimate for an iterative procedure. In fact, this method is a simplified
version of Woodham’s method in which the illumination directions are chosen by
mathematics simplification. Belhumeur etc. [33] showed that a generalized bas-relief
transformation is a transformation of both the surface shape and the surface albedo for
an arbitrary Lambertian surface. The set of images-of an object in fixed post but under
all possible illumination conditions is a conveéx cone-(illumination cone) in the space
of images. When the surface reflectance can be approximated as Lambertian, this
illumination cone can be constructed from a handful of images acquired under
variable lighting. They used as few as seven images of a face seen in a fixed pose, but
illumination by point light sources at varying, unknown position, to estimate its
surface geometry and albedo map up to a generalized bas-relief transformation.
Despite they announced their success under unknown light source directions, the
estimation of surface methods still need to be assisted with some added constraints or
more images.

Another more difficult problem is estimating a surface with an unknown
reflectance map. Cho and Minamitani [27] tried to reduce 3D reconstruction errors
due to specularities. Since the specular reflection produced incorrect surface normal

by elevating the image intensity, they readjusted the pixel with greatest intensity by
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re-scaling with a modified reflectivity. Kay and Caelli [29] used the photometric
stereo method to estimate not only the surface normal but also the roughness
parameters associated with the Torrance-Sparrow (TS) reflectance model. The basis
they used was to apply non-linear regression techniques to the photometric stereo
method. Nayar [31] used a linear combination of Lambertian and an impulse specular
component. He used distributed light sources for photometric stereo of surface whose
reflection is a linear sum of specular and Lambertian components. A proper
reflectance model could help us to reconstruct the surface shape accurately from the
variation of image intensity corresponding to the reflection characteristic of the

surface. In next section we shall discuss the basis reflectance models.

2.2. The Basic Reflectance,Models

There are mainly two kinds | of] light reflection components considered in
computer vision: diffuse reflection and specular reflection. Diffuse reflection is a
uniform reflection of light with: no"directional .dependence for the viewer. The
phenomenon of diffuse reflection is illustrated in Fig. 2-2(a). s is a point light source,
n is the normal vector of the surface on point P, € is the angle between light source
direction and the normal vector of the surface. When s illuminates straightly to the
surface, the diffuse reflection scatters incoming light equally in all directions. Thus
we have identical reflected energy for all viewing directions. The light reaching the
surface is reflected in the reflected direction with the same angle. The phenomenon of
specular reflection is illustrated in Fig. 2-2(b). It means if a point light source s
illuminates to the surface, the reflected light is visible only at the reflected direction r,

where 6, =6, .

It is important that a good reflectance model should be able to describe the

surface shape accurately from the image intensity [31]. Basically, the reflectance
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surface can be categorized to be Lambertian or non-Lambertian. The Lambertian
surfaces are surfaces that only have diffuse reflectance, which implies that the surface
reflects light equally in all direction. On the other hand, the non-Lambertian model
considers the specular component in addition to the diffuse component in the

Lambertian model.

(2) (b)

Figure 2-2 Illustration of diffuse reflection. s is a point light source, n is the normal
vector of surface on poiht P, 6'is the angle between light source and the

normal. The diffus¢ reflection Scattérs incoming light equally in all
directions. (b) Illustration of specular reflection. It obeys Shell’s law,
thatis, 6, =0, .

2.2.1. Lambertian Model
Suppose that the recovering of surface shape, denoted by z(x, y), from shaded

images depends upon the systematic variation of image brightness with surface
orientation, where z is the depth field, and x and y form the 2D grid over the domain D
of the image plane. Then, the Lambertian reflectance model used to represent a

surface illuminated by a single point light source is written as:

R,(n(x, y).a(x, y))= max{L a(x, y)s"n(x, y), O}, Vx,yeD, (2-1)
where R,(-) is diffuse component intensity, a(x,y) is diffuse albedo on position
(x, y) of surface, s is a column vector indicating the direction of point light, and L is
light strength. The surface normal on position (x, y), denoted by n(x, y), can be

represented as
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[-pbry) —qlxy) 1J (2-2)

nee = VP )+ @ (ny)+1

where p(x,y) and ¢(x,y) are the x- and y- partial derivatives of z(x,y),
respectively. In Eq. (2-1), max{-} sets all negative components that correspond to the
surface points lying in attached shadow to zero, where a surface point (x, y) lies in
an attached shadow iff n(x, y)s<0 [11].

The Lambertian model describes a simple non shiny surface where any incident
light is reflected evenly in all directions after modulation by the surface’s reflectivity.
It is a simple but useful reflectance model. It is commonly adopted in the field of
computer vision as a model of the ideal surface. Despite the simplicity and the
popularity of the Lambertian model, it is quite well known that this model is unable to
generalize with strong specular componentss:However, in most cases, the surface does
not often contain the Lambertian surface because thé light source is often located at
finite distance and at an unknown position.-Therefore, as far as practical application in
general is concerned, it is not enough for considering only diffuse component. As a
result, the non-Lambertian surface model is considered.

2.2.2. Non-Lambertian Model

In order to effectively exhibit the reflectance model, both the diffuse component
and specular component should be considered for reconstructing the surfaces of 3D
objects. The kind of hybrid model is called non-Lambertian model. Specular
component occurs when the incident angle of the light source is equal to the reflected
angle and this component is formed by two terms: the specular spike and the lobe.
The specular spike is zero in all directions except for very narrow range around the
directions of specular reflectance. The specular lobe spreads around the direction of

specular reflectance.
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Healy and Binford [45] derived a more refined model by simplifying the
Torrance-Sparrow model [46], in which the Gaussian distribution is used to model the

facet orientation function and the other components are considered as constants.

Defining the halfway-vector as h= (s + V)/ ||s + V|| which represents the normalized

vector sum between the light source direction s and the viewing directionv, the

specular component is represented as:

2

exp(-——), (2-3)

R =
207

1
t 2B

where ¢ is the angle between the surface normal n(x, y) and the halfway-vector

h(x, y) at point (x, y) such that ¢=cos™ (<n(x, )h(x, y)>), and o is the standard

deviation, which can be interpreted as a,measure of the roughness of the surface. The
specular reflectance model in Eq: (2-3).i8 popular, but it has many parameters to be
determined.

The other well-known specular:model~is. Phong’s model [47]. For specular
reflection, the amount of light seen by the vViewer depends on the angle ¢ between

the perfect reflected ray r and the direction of the viewer v.Phong’s model says that

the light perceived by the viewer is proportional to cosd” and it can be represented

as

R (n(x, y), h(x, ) = (< n(x, y), h(x, ) >) = (cos@)’, ¥x,yeD (2-4)
where 7 is a constant. Different values of the constant » represent different kinds of
surfaces which are more or less mirror-like. The mathematical model of Phong’s
model [47] is simpler than that of Healy and Binford [45].

With the specular component described in Eq. (2-4), the non-Lambertian model

proposed in [31] can be represented as following linear combination equation:
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Rypria (x, J’) = AR, (x, J’) + (1 - /1)Rs (x, J’)a Vx,yeD, (2-5)
where R, ., 1s the total intensity of the hybrid surface, and R, and R, are the

diffuse intensity and the specular intensity, respectively, and A 1is the weight of the
diffuse component. However, the existing approach considers only the linear hybrid
combination as described by Eq. (2-5). It is not enough to model a nonlinear hybrid

reflectance model.

2.3. Concluding Remarks

Photometric stereo allows us to estimate local surface orientations by using
several images of the same surface taken from the same viewpoint but under
illuminations from different directions. Unlike single image by the shape from
shading algorithms, photometric stefeo makes no assumption of the smoothness of the
surface. Furthermore, it requires ' only additional lighting and can be -easily
implemented at a reasonable computational cost. In-addition, photometric stereo can
recover not only surface normal but-alse surface albedo.

On the other hand, we introduce the Lambertian reflectance model. The
Lambertian model describes a simple non shiny surface where any incident light is
reflected in all directions after the modulation by the reflectivity of surface. It is a
simple but useful reflectance model. However, in most cases, the surface does not
often contain the Lambertian surface. Next, the non-Lambertian surface model is
considered.

In this thesis, we propose two novel nonlinear reflection models that consist of
the diffusion and specular components for photometric stereo. In the next section, we

shall give more discussions in the novel nonlinear reflection models.
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3. A Neural-Network-Based Adaptive
Hybrid-Reflectance Model for 3D
Surface Reconstruction

In this chapter, a new neural-network-based adaptive hybrid-reflectance model
is proposed for 3D surface reconstruction. The neural network combines the diffuse
component and specular component into a hybrid model automatically. The
characteristic of each point as well as Variant albedo is also considered individually in
the proposed model to avoid the'distortion of surface reconstruction. The inputs of the
neural network are the pixel values of the’2D images-to be reconstructed, and then the
normal vectors of the surface can‘be obtained from the output of the neural network
after supervised learning, where the illuminant direction does not need to be known in
advance. Finally, the enforcing integrability method is applied for the reconstruction
of 3D objects by using the obtained normal vectors. In our experiments, facial images
and images of other general objects are used to test the performance of the proposed
method. The experimental results demonstrate that our neural-network-based adaptive
hybrid-reflectance model can be successfully applied to more general objects and
achieve better performance for 3D surface reconstruction as compared to some

existing approaches.

3.1. Introduction

Recently, multi-layer neural networks have also been employed to deal with the
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photometric stereo problem [48]-[50]. However, these approaches are still under the
restriction of the Lambertian model in which the direction of light source must be
given or reasonably estimated. Obviously, this restriction makes the algorithm
impracticable for many applications in which information of the illumination is not
available. In addition, the reflectance of objects do not always follow the Lambertian
model, therefore, a more general model is required. According to the study in [49], a
successful reflectance model for surface reconstruction of objects should combine two
major components: the diffuse component and the specular component. The
Lambertian model was established to describe the relationship between the surface
normal and the light source direction by generally assuming the surface reflection is
due to diffuse reflection only. It implies that the surface reflects the light equally in all
directions. Thus the specular component is ignored.in the Lambertian model.

In order to model the= specular component, some specular models or
non-Lambertian models have been propesed--Healy and Binford [45] employed the
Torrance-Sparrow model [46], which assumes that a surface is composed of small,
randomly oriented, mirror-like facets, to obtain local shape from specularity. Cho and
Chow [50] proposed a novel hybrid approach using two self-learning neural networks
to generalize the reflectance model by modeling the pure Lambertian surface and the
specular component of the non-Lambertian surface, respectively. The viewing
direction and the light source direction are no longer required for this model and the
performance of shape recovery is more robust than that of former approaches.
However, it still has two drawbacks that should be overcome: (1) The albedo of the
surface is ignored or considered as constant; therefore, the recovered shape will be
distorted. In general cases albedo is variant in different regions of the surface. (2) The

combination ratio between diffuse component and specular component is regarded as
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a constant which is determined by tried and error. Thus, the hybrid combination
method proposed in [50] is not suitable for the surface reconstruction of human faces
or some general objects whose albedo and reflecting characteristic is not the same for
the whole surface.

In this chapter, a novel adaptive hybrid-reflectance model is proposed to
represent more general conditions. This model intelligently combines both diffuse
reflection component and specular reflection component, and the hybrid ratio does not
need to be determined in advance. Both pure diffuse reflection component and pure
specular reflection component are generated by the similar feed-forward neural
network structures. A supervised learning algorithm is used to tune up the pointwise
hybrid ratio automatically based on image intensities and to obtain the normal vectors
of the surface for reconstruction.;The proposed model will estimate the illuminant
direction, viewing direction and..normal vectors “of surfaces of the object for
reconstruction after training. Therefore,-we-eould produce new shaded images under
different illuminant conditions by ‘controlling ‘the above parameters. We can also
reconstruct the 3D surface according to these normal vectors by employing the
existing approaches such as the enforcing integrability method [51], etc. In addition,
the albedo and the reflecting characteristic of each point of the surfaces are considered
individually in our method. According to the experimental results presented in Section
3.4, our shape recovery algorithm is more robust for the recovery of the surfaces with
variant albedo and complex reflecting characteristic.

The rest of this chapter is organized as follows. Section 3.2 describes the
proposed hybrid-reflectance model that includes the diffuse component and the
specular component. The details of the neural-network-based hybrid-reflectance

model and its derivations of learning rules are presented in Section 3.2 and Section
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3.3. Extensive experiments have been performed to evaluate the performance of the
proposed approach, and parts of the results are presented in Section 3.4. Conclusions

are summarized in the last section.

3.2. Neural-Network-Based Adaptive Hybrid-Reflectance
Model

In this section, we propose a novel neural-network-based hybrid-reflectance
model, in which the hybrid ratio of diffuse and specular components is regarded as
adaptive weights of neural network. The supervised learning algorithm is adopted and
the hybrid ratio for each point is updated in the learning iterations. After the learning
process, the neural network can estimate the proper hybrid ratio for each point on the
3D surface of any object in an image. In this manner, we can integrate diffuse
component and specular component intelligently: and efficiently. In addition, the
variant albedo effect is also considered in our hybrid-reflectance model. It has been
claimed that the variant albedo*effect will-influence the performance of 3D surface
reconstruction and cause distortion in conventional methods [52]-[54].

The schematic block diagram of our proposed adaptive hybrid-reflectance model
is shown in Fig. 3-1. The structure diagram consists of the diffuse part and the
specular part. They are used to describe the characteristic of the diffuse component
and specular component of our adaptive hybrid-reflectance model, respectively, by

two neural networks with similar structure. The composite intensity R, ., s
obtained by using the adaptive weights 4,(x,y) and A (x,y) to combine the
diffuse intensity R, and the specular intensity R . The inputs of the system are 2D

image intensity of each point and the outputs are the learned reflectance map. In

solving the photometric stereo problem by our neural-network-based reflectance
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model, the cost function E, is minimized to update the neural parameters. After

training, the normal vectors of the surface can be obtained from the reflectance model
to reconstruct the 3D shape of the object for reconstruction and we can also combine
it with different light source directions and viewing directions to produce new shaded

images.
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Figure 3-1. Block diagram of the proposed adaptively hybrid reflectance model.
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The structure of the proposed symmetric neural network used to simulate the
diffuse reflection model is shown in Fig. 3-2. The input/output pairs of the network
are arranged in a form like a mirror in the center layer and the number of input nodes
is equal to the number of output nodes; therefore, we call it a symmetric neural
network. We separate the light source direction and the normal vector from the input
2D images in the left part of the symmetric neural network and then we combine them
inversely to generate the reflectance map for diffuse reflection in the right part of the

network. In the following, we will discuss the function of each layer in details.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Figure 3-2. Structure of the symmetric neural network for diffuse reflection model.

Assuming an input image.has. m pixels totally, therefore, there are m input

variables in the symmetric neural network. 'Fhe 2D image is rearranged to a mx1
column vector denoted as I=(I,,7,,..,1,) and fed into the symmetric neural

network. Through the symmetric neural network, the reflectance map for diffuse

reflection (Rdl,Rdz,...,Rd”) can be obtained in the output of the symmetric neural

network.

Each node in the symmetric neural network has some finite “fan-in” of
connections represented by weight values from the previous nodes and “fan-out” of
connections to the next nodes. Associated with the fan-in of a node is an integration
function f which serves to combine information, activation, or evidence from other
nodes. The function provides the net input for this node,

net-input = f (inputs to this node; associated link weights). (3-1)
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A second action of each node is to output an activation value as a function of its
net-input,

node-output = a"” (net-input) =a'” (f), (3-2)
where a(”(-) denotes the activation function and the superscript / indicates the layer

number. There are 6 layers in the proposed symmetric neural network and the

functions of the nodes in each layer are described in the following.

Layer 1: This layer collects the intensity values of the input images as the inputs

of the network. Node I, represents the ith pixel of the 2D image and m is the

number of total pixels of the image. That is

f=1, .i=l,..
a® =, i=1,m -3

This notation will also be used in the following equation.
Layer 2: This layer adjusts. the 'infensity 'of the input 2D image with
corresponding albedo value. Each nodein this'layer, which corresponds to one input

variable, divides the input intensity by corresponding albedo and transmits it to the
next layer. That is

Ji

I )
-4, i=1,..m,
ai

(3-4)
P—a®=f, i-1.
The output of this layer is the adjusted intensity value of the original 2D image and
we label the nodes of this layer as I,,1,,..,1, . The a, is the ith albedo value

corresponding to the ith pixel of the 2D image and %{ is the weight between 1,

and I:.

Layer 3: The function of layer 3 is to separate the light source direction from the
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2D image. The light source direction of this layer is un-normalized, and we label them

as s,, 55, and s;. The link weight in layer 3 is denoted as w,, for the connection

between node i of layer 2 and node j of layer 3.

2

Il.wd”, i=1..,m, j=12,3,
- ;
3) _

—J

/=
Tz (3-5)
s;:a.(].) fi» =123
Layer 4: The nodes of this layer represent the unit light source and we normalize
the un-normalized light source direction obtained in layer 3 by Eq. (3-6). These nodes

in layer 4 are labeled as s,,s,,and s,, respectively, and the light source direction is

represented as s = (s,,5,,5,) . The output of s ; can be calculated by:

1 .
ff: 2 12 ;2"]:1’2’3’
I T (3-6)
s )
s; =" = sl = =123

12 2 12
'\’SI + Sz +S3

Layer 5: The function of layer 5 is to combine the light source direction s and
normal vectors of the surface to generate the reflectance map of diffuse reflection. The
link weight which connects node j of layer 4 and node & of layer 5 is denoted as Va,
and it represents the normal vectors of the surface for the diffuse component. That is,
(v a2V, o Va,, )T represents the normal vector of the surface for the diffuse component
on the point k, where k = 1, ..., m. The outputs of the nodes in this layer are denoted

as R 4, and can be calculated as:

3
f :zsv i k=1,...,m,
= (3-7)

p — 05 _ —
R, =a." = f, k=1,..,m.

It is noted that fedk represents the un-normalized reflectance map of diffuse
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reflection; therefore, we will normalize these values in layer 6.
Layer 6: The function of this layer is to transfer the un-normalized reflectance
map of diffuse reflection obtained in layer 5 into the interval [0, 255]. These nodes,

R,,R, ... R, , represent the normalized reflectance map of diffuse reflection, and

the output of these nodes can be calculated by:

Ji :ﬁdk > k=1,...m,
o 25507, —min(R,)) 255(%, -min(R,) (3-8)

RdA =a, —max( ) mln( ) max( ) min(ﬁd), k=1,..,m,

where R, =(A 0 R 4y oo R 0 )T, and the link weights between layer 5 and layer 6 are
unity.

Similar to the diffuse reflection model, we also use a symmetric neural network
as Fig. 3-2 to simulate the specular component ifi-our hybrid-reflectance model. The
major differences between these two networks are-the representation of nodes in layer
3 and layer 4, and the active function of-layer5. The nodes of layer 3 represent the

un-normalized half-way vector, labeledras-h"=(k/, A, 4,)", and the nodes of layer 4

represent the normalized half-way vector labeled as h = (hl, h,, h, )T . According to Eq.
(2-5), layer 5 of the symmetric neural network for specular component combines the
half-way vector h and normal vectors of the surface to generate the reflectance map of
specular reflection. Let the link weight connects node j of layer 4 and node & of layer
5 be denoted as v, and it represents the normal vectors of the surface for the

specular component. Then the outputs of the nodes in layer 5 denoted as Iésk can be

calculated as:

=2, (3-9)



where the active function a!” in this layer is the » degree of the net-input of this

layer. It is noted that fesk represents the un-normalized reflectance map of specular

reflection and it will also be normalize in layer 6.

Through the supervised learning algorithm derived in the following section, we
can get the normal vectors of the surface automatically and then we can use the
enforcing integrability approach [51] to obtain the depth information for
reconstructing the 3D surface of an object by the obtained normal vectors. In our
approach, the reflectance characteristic of the hybrid surfaces can be determined
without a priori information of the relative strengths of the diffuse and specular
components. This is an important improvement of the conventional algorithms. The
hybrid intensity of each point on the surfaces.is considered individually such that we
can reduce the distortion that the conventional imethods met in the recovery process.
In addition, by the symmetric jneural network for diffuse reflection, we can get the
light source direction s in the hidden'nodes of the:symmetric neural network and we
can solve the photometric stereo problem without specifying illuminant positions in
advance. This also relaxes the constraint in the conventional approaches and is more

suitable for practical applications to 3D surface reconstruction.

3.3. Training Algorithm of the Proposed Model
The back-propagation learning method is used for the supervised training of the

proposed model and the goal is to minimize the error function defined as

2

E, = Z(Rhybrid, - Di) > (3-10)
i=1
where m is the number of total pixels of the 2D image, R, Is the ith output of the

neural network, and D, is the ith desired output that is equal to the ith intensity of
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the original 2D image. For each 2D image, starting at the input nodes, a forward pass
is used to compute the activity levels of all the nodes in the network to obtain the

output. Then starting at the output nodes, a backward pass is used to compute 55% ,
w

where @ represents the adjustable parameters in the network. The general parameter

update rule is

ot +1)= o) + Aall) = wle) + n(_ (jwi(t)j G11)

where 7 is the learning rate.
In the following, we will show the details of the learning rules corresponding to

each adjustable parameter.

Output layer: The combination ratio for each point, 4, (r) and 4 (r), are

calculated iteratively by

Ay (t+1)= 2, (()+A, (¢)
= /1dk (t)"' ZU(Dk(t)_Rhybnd,, (t))de (t), k=1 .. m,

A, (t+1)=2, (t)+ A4, (7)

= 2, () + 20D, (6) = Rypp, (1)) R, (3-13)

(t), k=1,..., m,

where D, () is the kth desired output, Ry b, (t) is the kth system output, R, (¢) is
the kth diffuse intensity obtained from the up sub-network, R, (t) is the kth specular

intensity obtained from the low sub-network (as shown in Fig. 3-1), m is the number
of total pixel of an 2D image, and 7 1is the learning rate of the neural network.
For a gray image, the intensity value of a pixel is in the interval of [0, 255]. If we

want to avoid the intensity value of R, ~exceeding the interval [0, 255], we must

force

A +A =1, (3-14)
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where 4, 20and A 20. Therefore, we normalize the combination ratio4, and A4

by
A, (t+1
A, (t+1)= 0 +1) , k=1,.,m,
‘ A, (t+1)+ 4, (t+1)
k : (3-15)
A (t+1)
A, (t+1)= < k=1,..,m.

ldk(t+1)+ﬁ,sk(t+l)’
Sub-networks: The normal vector -calculated from the sub-network

corresponding to the diffuse part is represented as n, = (v iy 2V, 2V, ) for kth point

on the surface; the normal vector calculated from the sub-network corresponding to

the specular part is represented as n =(vslk V. LV, ) for kth point. The normal

> TSk 7 Sy

vectors n, and ng are updated iteratively by the gradient method as:

Ve, (t + 1) =v, (t)+ Avdjk

J

- vdjk (t)+ 277 Sj (t)(Dk (t)_ Rhybridk (t))’ ] = 13 2: 3:
Vg, (t + 1) =V, (t) + Avsﬂ

J

- Vs/k (t)+ 277 4 hj (t)(‘Dk (t)_ Rhybridk (t))a ] = 17 2a 3,

(3-16)

where s, (t) is the jth element of illuminant direction s, h, () is the jth element of

the halfway-vector h, r is the degree of the specular equation shown in Eq. (3-9). The

updated Vi, and Ve, should be normalized as follows:

Va, (t+1) v (t+1)

Vd’k(hLl):m -

,V%0+D=TL———,j=Ll3 (3-17)

n, (t + lx

In order to get the reasonable normal vectors of the surface from our adaptive

hybrid-reflectance model, we compose n, and n as the hybrid normal vector,
n, , of the surface on the kth point by

n (t+1)=4, (), )+, (), (), (3-18)
where ,(t) and A(f) are the combination ratios for the diffuse and specular
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components.
Since the structure of the proposed neural networks is like a mirror in the center
layer and thus the update rule for the weights between layer 2 and layer 3 of the two

sub-networks denoted as W, and W, (see Fig. 3-2) can be calculated by least

square method. Hence, W, and W,_attime ¢+ 1can be obtained by
W, (t+1)=(V, (c+1Y v, (1)) 'V, (1), (3-19)
W, (t+1)=(V,(c+ 1)V, (t+1))] 'V, (1), (3-20)
where V,(¢+1) and V,(t+1) are weights betweens the output layer and the center

layer of the two sub-networks for diffuse and specular components, respectively.

In addition, for fast convergence, the learning rate 7 of the neural network is

adaptive in the updating process. If the current error is smaller than the errors of the
previous two iterations, it indicates.that the current direction of adjustment is correct.
Thus we should maintain the current.direction-and increase the step size to speed up
convergence. On the contrary, if the current error is larger than the errors of the
previous two iterations, we must decrease the step size because the current adjustment

is wrong. Otherwise, learning rate 7 will not change. In this manner, the cost
function E, could reach minimum quickly and avoid oscillation around the local

minimum. The adjustment rule of the learning rate is shown as follows:

If (Err(z-1) > Err(¢) and Err(¢-2)> Err(¢))
nt+D=n)+s,
Else If (Err(#-1) < Err(¢) and Err(#-2) < Err(?))
n(t+1)=n(t)—-<,where & isa given scalar.
Else n(t+1)=n(z).

We also used the prior knowledge as the initial values of the proposed neural

network for specific object classes to improve the results of 3D surface reconstruction
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and reduce the learning time. For example, for the face surface reconstruction
problem, the normal vectors of a sphere’s surface were used as the initial values of the

proposed neural network due to their similar structures.

3.4. Experimental Results and Discussions

In this section, four experiments are performed to demonstrate the proposed
method. In these experiments, both direction of the light and the observer’s viewing
direction are unknown. It is used to test whether our algorithm can reconstruct the
objects well even if we don’t have the information about lighting and viewing
directions in advance. In the first experiment, images of the synthetic objects are used
for testing. The estimated depth map is compared with the true depth map to examine
the performance of reconstruction,qdn 'the.second experiment, several images
corresponding to real surfaces of human faces are used for testing. These images are
downloaded from the Yale Face Database B [55]. They are under different lighting
conditions with variant albedos. In the'third and fourth experiments, images of human
faces and general objects captured in our photographing environment are used to
show the generality of our method.
3.4.1. Experiment on Images of Synthetic Objects

In this experiment, quantitative results of synthetic-object reconstruction are
presented. The results of the proposed method are compared with three existing
methods including the diffuse model [56], the specular model [57], and the hybrid
model [50]. Three synthetic objects, sphere, sombrero, and vase mathematically
generated by Egs. (3-21), (3-22), and (3-23), respectively, are used for testing.

/rz_xz_yz

0, otherwise

, ifx*+y’ <’

) (3-21)

z(x,y)= {

30



2 2
2(x, y) = 15+15 cos(”—\'xl;y) , (3-22)

2(x,y) =y f(3)" = x" . (3-23)

In Eq. (3-21), =45, 0<x, <100, and the center is located at (x, y) = (50, 50).

In Eq. (3-23), f(¥)=0.6—-0.3y(6y +1)*(y —1)*(3y —2). The shaded images of the
sphere are synthesized with variant albedo and different directions as shown in Fig
3-3. The different albedos are, 0.6 for right-bottom of the sphere, 0.8 for left-top of the
sphere, and 1 for the rest part. The locations of light sources in Figs. 3-3(a)-(i) are
S1=(60,135), S2=(60,180), S3=(60, -135), S4=(60, 90), S5=(90, 0), S6=(60, -90),
S7=(60, 45), S8=(60,0), and S9=(60, -45), where the first component is the degree of
tilt angle and the second component is the degree of pan angle. The center of image is
set as the origin of the coordination? The x-y plane is parallel to the image plane. The
z-axis is perpendicular to the image plane. The experimental results are shown in Fig.
3-4 and Table 3-1. In Table 3-1; we take-5 groups of'images with different illuminant
angles from the left, the right, and the front.for*3D reconstruction. Both estimated
surface and synthetic one are normalized within the interval [0, 1]. According to the
first row (sphere object) of Fig. 3-4, the surface with variant albedo is hard to handle
by the conventional methods and our proposed method performs superior
reconstruction result. According to Table 3-1, it is found that the proposed method can
achieve the lowest mean errors compared with the other methods in all illumination

conditions.
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(a) S1=(60, 135)

(d) S4=(60, 90)

(g) S7=(60, 45)

(b) S2=(60, 180)

(¢) S5=(90, 0)

(h) S8=(60, 0)

(c) S3=(60, -135)

(f) S6=(60,-90) (i) S9=(60, -45)

Figure 3-3. The 2D sphere images generated with varying albedo and different
lighting directions (the:degree of "t‘i_l,t_"‘zz:ll_r.lgle, the degree of pan angle).
Ed= 50\
- The :di""nffusd e specular The hybrid Proposed
3D 1 ETTo | A
) Thei:n(;rllglnal reflectance "“-Yeﬂegt'@ﬁce reflectance reflectance
Object £° model ([56]). | model([57]) | model ([50]) model
Sphere | € : ’
with '
constant
albedo

Sombrero

Vase

(a)

(b)

(©)

(d)

(e)

Figure 3-4. Comparisons of synthetic images and the recovered surfaces of sphere,
sombrero and vase. (a) The depth map of the objects. (b) The recovered
result by the diffuse reflectance model [56]. (c) The recovered result by
the specular reflectance model [57]. (d) The recovered result by the
hybrid reflectance model [50]. (e) The recovered result by the proposed

method.
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Table 3-1.

The absolute mean errors between estimated depths and desired depths
of synthetic object’s 3D surfaces. (Both light and viewing directions are
unknown in the experiment.) (Iterations = 10)

Mean absolute The diffuse | The specular | The hybrid | The proposed
depth error and Lights reflectance | reflectance | reflectance | reflectance
CPU time model ([56]) | model ([57]) | model ([50]) model

S1, S4, S7 0.1738 0.5542 0.5270 0.153
S2, S5, S8 0.1699 0.6079 0.6300 0.151
Sphere with S3, S6, S9 0.1730 0.5555 0.5337 0.154
Variant albedo| S1, S5, S9 0.1669 0.5584 0.6031 0.148
S3, S5, S7 0.1669 0.5944 0.6073 0.148
CPU time (Avg.)| 50.102 sec | 309.325 sec | 405.283 sec | 58.885 sec
S1, S4, S7 0.4125 0.4319 0.4034 0.1396
S2, S5, S8 0.4125 0.4446 0.4334 0.1395
Sombrero S3, S6, S9 0.4124 0.4421 0.4086 0.1399
S1, S5, S9 0.5126 0.4320 0.4161 0.1514
S3, S5, S7 0.5124 0.4319 0.4130 0.1516
CPU time (Avg.)| 50.953 sec | 310.667 sec | 410.490 sec | 60.067 sec
S1, S4, S7 1.3145 0.982 0.854 0.1808
S2, S5, S8 1.3077 1.018 0.920 0.1859
Vase S3, S6, S9 1.3103 1.010 0.887 0.1886
S1, S5, S9 1.3055 1.004 0.887 0.1861
S3, S5, S7 1.3207 0.725 0.595 0.1877
CPU time (Avg.)| 52.465sec | 316.055sec | 412.783 sec | 60.798 sec

For the sombrero object,

the results of“the diffuse reflectance model and our

method are very similar to the original shape, and the results of the specular

reflectance model and the hybrid reflectance model are not very well. The shape of

sombrero object is very sharp and their images have many shadows (both cast and

attached shadows). It is very likely to cause distortion by Cho’s methods (the specular

reflectance model [57] and the hybrid reflectance model [50]) because they use single

image to recover the shape. The image may have invalid pixel values because of

saturated pixels in shadows; therefore, the information of single image may be not

enough.

For the vase object, our method reconstructs the synthetic vase very successfully,

but the result of the diffuse reflectance model has obviously distortion. This may be
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caused by the convex of the vase. When the vase is illuminated, the convex of the
vase will be shiny and the Lambertian assumption could not approximate it well.

In addition, the CPU time used by each method for shape reconstructions is also
included in Table 3-1. We implemented each method in Matlab 6.1 software on a
1.2GHz Pentium III-based PC with 256 MB RAM. According to the results, the CPU
time used by the proposed method is close to that used by the Lambertian method [56]
and it is greatly reduced compared with the specular reflectance method [57] and the
hybrid reflectance method [50].

The data set in the University of Notre Dame Biometrics Database [58] is also
used in our experiments for objective comparison. The database consists of 3D face
coordinate data and their corresponding 2D front view. Fig. 2-5 shows 6 individuals
in the database with 160*160 image size. Unlike the synthetic objects, both the
estimated surface and 3D face surface are not normalized within the interval [0, 1].
In order to evaluate the performance 'of eut-approach and other existing methods, we
define a function that use the x- and.y-.partial derivatives of z(x, y) instead of
absolute mean error to compute the error between the estimated depths and desired

depths of 3D face surfaces as:

ii\/(az(x,y%x_aﬁ(x,y%sz +(8Z(x,%}_8§(x’)%y)2
M-N

Erp =222

, (3-24)

where 0z(x,y)/dx and 0Z(x,y)/0x are the x-partial derivatives of z(x,y) and
2(x,y), respectively, dz(x,y)/dy and 0%(x,y)/0y are the y-partial derivatives of
z(x, y) and Zz(x,y), respectively, and M and N are x and y dimensions. Table 3-2

shows the mean errors between the desired depths of 3D face surfaces and the

estimated depths by using different methods. According to the experiment on the
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images of the three synthetic objects and the dataset in the University of Notre Dame

Biometrics Database, our approach can be applied to more general objects and can

achieve better performance than the existing methods.

In order to evaluate the impact of adaptive hybrid ratio on the performance of the

proposed network, the performance of the proposed neural network with constant

hybrid ratio is also provided in the experiments. According to Table 3-2, it is obvious

that the mean errors of the proposed network with constant hybrid ratio are less than

those of other approaches and can be further reduced if the hybrid ratio is adjusted in

the learning process.
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Figure 3-5. Six individuals in the Notrfé Dame Biometrics Database D [58] used to

test our algorithm (these images include both males and females.).

Table 3-2. The mean errors between the estimated depths and desired depths of 3D
face surfaces shown in Fig. 3-5. (Iterations = 20)
The proposed
The diffuse | The specular | The hybrid reflectance | The proposed
Mean error .
(Eq. 3-24) reflectance reflectance reflectance model w1th. reflectance
model ([56]) | model ([57]) | model ([50]) |const of hybrid model
ratio
Fig. 3-5(a) 1.5524 1.5268 1.5259 1.1586 1.0992
Fig. 3-5(b) 1.3517 1.3550 1.3533 1.0358 0.9644
Fig. 3-5(c) 1.9476 1.9542 1.9546 1.5963 1.5348
Fig. 3-5(d) 1.6007 1.6018 1.6039 1.2913 1.2243
Fig. 3-5(e) 1.2396 1.2457 1.2443 0.9576 0.9060
Fig. 3-5(f) 1.9240 1.9155 1.9160 1.5613 1.5224
Average 1.6027 1.5998 1.5997 1.2668 1.2085
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3.4.2. Experiment on Yale Face Database B

In this experiment, face images downloaded from the Yale Face Database B [55]
are used for testing. For each person, we take three images in which their pose is fixed
and they are illuminated by three different light directions. After processing by our
algorithm, we can get the diffuse intensity, the specular intensity, and the hybrid
intensity. Besides, we can also get the surface normal vectors and use them to
reconstruct the surface. Fig. 3-5 shows an example that uses the proposed method to
estimate different reflection components and normal vectors of a human face in the
Yale Face Database B [55]. Fig. 3-6 shows the comparison between three existing
approaches and the proposed method for human face reconstruction. Figs. 3-6(b), (¢),
and (d) are the reconstructed results of the diffuse reflectance model [56], the specular
reflectance model [57], the hybrideflectance model [50], respectively. The result of
our method is shown in Fig. 3-6(¢). The results clearly indicate that the performance
of our proposed algorithm is better:than,that-of these three approaches. From the
comparison between Fig. 3-6(b) and Fig..3=6(¢), the reconstructed shape by our
method is sharper and more apparent, especially on the part of nose. The
reconstructed results of the specular reflectance model by [57] and the hybrid
reflectance model by [50] as shown in Figs. 3-6(c) and (d) have serious distortions.

From the above reconstructed results, the reconstructed performance of the
specular model [57] and the hybrid reflectance model [50] are obviously not good for
human faces. Therefore, we will only compare the diffuse reflectance model [56] and
the proposed method in the following experiments. Fig. 3-7 shows the comparison of
the reconstructed results between the diffuse reflectance model [56] and the proposed
method. According to the experimental results, the reconstructed results of the two

methods are similar. Finally, more reconstructed results of human faces in Yale Face
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Database B by using the proposed method are shown in Fig. 3-8. In order to compare
them easily, the angles of the faces are set to be equal. The reconstructed results
demonstrate that our algorithm performs well on different human faces in Yale Face

Database B.

Diffuse Intensity Specular Intensity Hybrid Intensity

Figure 3-6. Estimated reﬂectlﬂ/ ;;.Q
the Yale Face Dat é}éﬁf ='the !pjoposed method. (a) The diffuse
intensity. (b) The sgt;cu Sity. ( ﬁm he hybrid intensity. These three
images are the estim: abtéﬂ—restﬂ‘fé': ﬁﬁ" the proposed method. (d) The
X-component of the ﬂofmauec t.'(¢) The Y-component of the normal
vector. shilb

(a) (b) (© (d) ()
Figure 3-7. Reconstructed surfaces of the proposed algorithm compared with three
existing approaches. (a) The original 2D facial image. (b) The recovered
result by the diffuse reflectance model [56]. (c) The recovered result by
the specular reflectance model by [57]. (d) The recovered result by the
hybrid reflectance model [50]. (e) The recovered result by the proposed
method.
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(a) (b) (c)

Figure 3-8. Reconstructed results of two different methods. (a) The original 2D
image of the human face. (b) Reconstructed result of the diffuse
reflectance model [56]. (¢) Reconstructed result of the proposed method.

Figure 3-9. More reconstructed results of the human faces in Yale Face Database B
by using the proposed method.

3.4.3. Experiment on Images of Human Faces Captured in OQur

Photographing Environment

In order to test and verify the performance of our proposed algorithm on the
facial images of our laboratory members and other images of general objects, we
design and construct a photographing environment as shown in Fig. 3-10. To make the
strength of different light sources to photographed objects equal, the photographing
environment is constructed as a hemisphere. The radius of the hemisphere is 2 meters

and there are eight computer-controlled electronic flashes (Mikona MV-328) placed
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on the hemisphere and the positions of these eight light sources are s; = (53, 30), s, =
(30, 63), s3= (20, 30), s4= (15, 45), ss= (-20, 30), s¢= (-30, 63), s7=(-53, 60), and sg
= (-53, 30), respectively. The representation of light position is (degree of pan angle,
degree of tilt angle) where the center of the hemisphere is as the origin of the
coordinate. The captured images of a bear pottery that are illuminated by the 8 light
sources are shown in Fig. 3-10. The images of Figs. 3-10(a)-(d) are illuminated by the
light sources at the right-hand side of the object; Figs. 3-10(e)-(h) are illuminated by
the light sources at the left-hand side of the object, and their angles and positions are a

little different.

Figure 3-10. The photographing environment with eight electronic flashes used to
capture images under variations in illumination set up in our lab.

In order to understand the influence of illuminant positions and angles on the
performance of the proposed method, we test our approach on three groups of images:
left-hand-side illuminated images (by sl, s2, s3), right-hand-side illuminated images

(by s6, 87, $8), and front illuminated images (by s3, s4, s5). The illuminant direction is
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determined based on the photographed objects’ viewpoint. Fig. 3-12 shows the
reconstructed results that are calculated from the images corresponding to these three
groups, respectively. The reconstruction in Fig. 3-12(a) is calculated from the images
of Figs. 3-11(a), (b), and (c); the reconstruction in Fig. 3-12(b) is calculated from the
images of Figs. 3-11(f), (g), and (h); and the reconstruction in Fig. 3-12(c) is

calculated from the images of Figs. 3-11(c), (d), and (e).

(e)By ss (DBy'ss — (@Bys (h)By ss

Figure 3-11. (a)~(h) The images"of an"object illuminated by the eight different light
sources, respectively.”. They..can® be separated to three groups:
left-hand-side illuminated images (by sl, s2, s3), right-hand-side
illuminated images (by s6, s7, s8), and front illuminated images (by s3,
s4, s5).

For the reconstructed result in Fig. 3-12(a), the object is illuminated from the
right-hand-side, so its variant intensities are more obvious on the left part of the
object’s surface. Therefore, the left part of the reconstructed object is better than its
right part. Similarly, in Fig. 2-12(b), the object is illuminated from the left-hand-side
and the reconstructed result is better in the right part of the object. Besides, Fig.
2-12(c) is calculated from the images in Figs. 2-11(c), (d), and (e). These images are
illuminated from the front and they are very similar, and the variant intensities in
images are not obvious. Thus the provided information is not enough to reconstruct

the 3D surface well. If the input images are too similar, it is hard to solve the least
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square problem for the unique solution of the irradiance equation. The experimental
results indicate that the information of only one-side-illuminated images is not enough
for 3D reconstruction. Therefore, to perform better recovery, we should take more

different illuminated conditions to obtain more information of the object’s surface.

(a) (b) (c)

Figure 3-12. The reconstructed results of the object that are calculated from images in
Fig. 3-11. (a) From the images illuminated by s, s,, and s3. (b) From the
images illuminated by s¢, $7, and sg. (c) From the images illuminated by
S3, S4, and Ss.

(a) (b) @ (d) (o)
Figure 3-13. The better reconstructed results of the object from the images in Fig.
3-11. (a) From the images illuminated by s, s4, and s;. (b) From the
images illuminated by s, s3, and s7. (c) From the images illuminated by
$2, 85, and s¢. (d) From the images illuminated by s,, s3, and sg. (¢) From
the images illuminated by s, s3, and ss.

Figure 3-13 shows some better reconstructed results of the objects and they are
calculated by different combinations of the left-hand-side illuminated, right-hand-side
illuminated, and front illuminated images. Therefore, in order to perform better
reconstructed results, we should take images with different illuminant angles from the
left, the right, and the front to provide sufficient information of the surface for 3D
reconstruction.

In order to check the performance of the proposed reconstruction method under
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different numbers of light sources, the experimental results by using 1, 2, 3, 4, 7, and
8 images (light sources) are shown in Fig. 3-14. Obviously, the results in Figs. 3-14(a)
and (b) that use 1 and 2 images are not good, and many features of the bear are not
recovered. On the contrary, the results in Figs. 3-14(c)-(f) that use more than 2 images
are better than the results in Figs. 3-14(a) and (b). The key features of the bear are
obvious and the details of the shape are not lost. According to the experimental results
shown in Fig 3-14, it is concluded that we should use three images at least for fine
reconstruction. However, the reconstructed results by using more than three images
are not necessarily better than the reconstructed result by using three images. This
experimental result is consistent with the theoretical basis of the proposed scheme, in
which three sets of variables are to be determined, so two images only make it a
under-determined problem, and miore than three images make it a over-determined
problem. Therefore, we use three 2D images. to reconstruct the surface of a 3D object
in the proposed method and the unnecessary-ealeulation could also be avoided.

As a result, we know the influence of the illuminant angles and positions is very
important. Because our approach is based on the shape from shading method, the
reconstructed information from 2D images will determine the performance of results.
From the experimental results, it is concluded that the illuminant positions and angles
should not be too close.

Fig. 3-15 shows the reconstructed results of human faces of our laboratory
members by the diffuse reflectance model [56] and by our method. For the purpose of
comparison, all angles of the faces are set to be similar. The reconstructed faces by
our method are sharper and the face features are more apparent. For example, the

noses of the reconstructed results by our method are more conspicuous.
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(b) By s1, s8 (c) By 82, 55, s6

f) By s1,52,83,54,85,
(d) By 51,52,83.58 (¢)Bysls2sdsdsssoss ) y6 i
$6,57,8

Figure 3-14. Results of 3D object reconstruction using different numbers of images
(light sources) in Fig. 3-11. (a) The reconstruction uses one 2D image. (b)
The reconstruction uses two 2D images. (¢) The reconstruction uses 3 2D
images. (d) The reconstruction uses 4 2D images. (e) The reconstruction
uses 7 2D images. (f) The reconstruction uses 8 2D images.

Original 2D
images

3D surfaces
reconstructed
by the diffuse

reflectance

mode [56]

3D surfaces
reconstructed
by the
proposed
hybrid model

Figure 3-15. The reconstructed 3D facial surfaces from the 2D pictures of our
laboratory members by the diffuse reflectance model [56] and our

proposed method.
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3.4.4. Experiment on Images of General Objects Captured in Our

Photographing Environment

In that last experiment, images of a pottery bear, a dummy head, a toy figurine, a
basketball, and an octagon iron box captured in our photographing environment are
used for testing. The 2D images and the results of 3D reconstructions by using the
diffuse reflectance model [56] and the proposed method are shown in Fig. 3-12. The
reconstructed results by the proposed method seem well. In Fig. 3-12(d), the imprint
of the English words of the basketball clearly appears on the reconstructed surface. In
Fig. 3-12(e), the details of the box such as the ridge and the edge are also well
reconstructed. However, the reconstructed results by the diffuse reflectance model [56]
are not as well as the results of our method and the diffuse reflectance model even
cannot reconstruct the surfaces of.objects in Fig 3-15(e). It indicates that our method

can reconstruct not only the rough sketch but also the-details of the surface.
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Reconstructed by [56] Reconstructed by our
method

(b)

(d)

(e)

Figure 3-16. The reconstructed 3D surfaces of general objects by the diffuse
reflectance model [56] and the proposed method. The left side of each
raw is the 2D image of the object, the center part is the reconstructed
surface by the diffuse reflectance model [56], and the right side is the
reconstructed surface by the proposed method. (a) A pottery bear. (b) A
dummy head. (c) A toy figurine. (d) A basketball. (¢) An octagon iron
box.
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3.5. Concluding Remarks

In this chapter, a novel 3D image reconstruction method was proposed. This
method considers both the diffuse and specular reflection components of the
reflectance model simultaneously. We used two neural networks with symmetric
structure to estimate these two reflection components separately and combine them
with an adaptive ratio for each point on the object surface. We also tried to reduce the
distortion due to variable albedo variation by adjusting the intensity value for each
pixel by dividing the pixel’s intensity by the corresponding rough-albedo value. Then
these intensities were fed into the neural network to learn the normal vectors of the
surface by the back-propagation learning algorithm. The critical parameters, such as
the light source and the viewing direction and so on, are also obtained from the
learning process of the neural network. The obtained normal vectors of the surface
can then be applied to 3D surfdceireconstruction by enforcing integrability approach.
Extensive experimental results. based on-public. image database and the images
captured in the photographing environment built in our lab have demonstrated that the
proposed technique can reconstruct the 3D surfaces of more general and real-world
objects better as compared to several exiting approaches.

The contributions of this chapter can be summarized as follows. (1) We used the
images caught under three different light sources to solve the photometric stereo
problem without the information of exact light source locations. (2) The proposed
method considers the changes of the albedo on the object surface, so we can obtain
good reconstruction results not only for human faces but also for general objects with
variant albedo. (3) The proposed symmetric neural network structure with adaptive
learning procedure dose not need any special parameter setting and the smoothing

conditions. It is also easier to converge and makes the system stable. (4) The proposed
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network estimates point-wise adaptive combination ratio of the diffuse and specular
intensities such that the different reflecting properties of each point on the object

surface are considered to achieve better performance of surface reconstruction.
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4. A Post-Nonlinear ICA Reflectance
Model for 3D Surface Reconstruction

In this chapter, we propose a new photometric stereo scheme based on a new
reflectance model and the post-nonlinear independent components analysis (ICA)
method. The proposed nonlinear reflectance model consists of diffuse components
and specular components for modeling the surface reflectance of a stereo object in an
image. Unlike the previous approaches; thesé two components are not separated and
processed individually in the ptoposed model. ‘An unsupervised learning adaptation
algorithm is developed to estimate the reflectance model based on image intensities.
In this algorithm, the post-nonlinear ICA method is used to obtain the surface normal
on each point of an image. Then, the 3D surface model is reconstructed based on the
estimated surface normal on each point of image by using the enforcing integrability
method. Two experiments are performed to assess the performance of the proposed
approach. We test our algorithm on synthetically generated images for the
reconstruction of surface of objects and on a number of real images captured from the
Yale Face Database B. These testing images contain variability due to illumination
and varying albedo in each point of surface of human faces. All the experimental
results are compared to those of the existing photometric stereo approaches tested on
the same images. The results clearly indicate the superiority of the proposed nonlinear
reflectance model over the conventional Lambertian model and the other linear hybrid
reflectance model.
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4.1. Introduction

In this chapter, we propose a novel post-nonlinear ICA-based reflection model
that consists of the diffuse components and the specular components. We do not need
to separate the two components from the novel nonlinear reflection model. An
unsupervised learning adaptation algorithm is used to tune up the proportion of hybrid
automatically based on image intensities. The technique of the post-nonlinear
independent components analysis (ICA) model [59]-[61] is used to solve the surface
normal on each point of an image. The goal of post-nonlinear ICA is to nonlinearly
transform the data such that the transformed variables are as statistically independent
from each other as possible. Finally, the 3D surface model is reconstructed from the
surface normal on each point of an image, obtained by the post-nonlinear ICA
technique, using the method of enforcing integrability [51]. The reason is that it is
easy to implement.

The rest of this chapter is ‘organized as-follows. Section 4.2 describes the basic
reflectance models, including the Lambertian'model and non-Lambertian. The details
of the proposed post-nonlinear ICA-based reflectance model and its derivations are
presented in Section 4.3. Extensive experiments have been performed to evaluate the
performance of the proposed approach, and parts of the results are presented in

Section 4.4. Conclusions are summarized in the last section.

4.2. The Proposed Non-linear Reflectance Model
In this chapter, we propose a new nonlinear reflectance model; it can model both
the diffuse components and specular components into a single model. This model is

described by

267 (x,)

eosnl, ) J . @D

Rm,m,(n<x,y>,a<x,y>,y<x,y»=Ly<x,y>exp[—
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where R . () denotes the nonlinear reflectance intensities, a is a 3x1 column

vector and it represents to the light direction and viewing direction, L is light strength,
and y(x,y) is composite albedo on position (x,y) of surface. of(x,y) is the
variance of exponential function. Fig. 4-1 shows the normalized exponential functions
with different sigma values, where angle is from —7/2 to z/2. When o(x,y) is
large, the R, . () models more the diffuse component intensity. When o(x, y)
gets smaller, R .~ () models more the specular component intensity. So, we can
obtain the best approximation by the adjustment of O'(x, y). However, the following
task is to solve the surface normal, n(x, y) for all x and y, of Eq. (4-1) from 2-D
intensities images. Since the n(x, y) vector is a 3x1 column vector, it is a limit that
we need at least three images under difterent light, directions. If the location of light
sources were given, we could $olve the normal vector on surfaces of every location
(x, y). But unfortunately, light sources ¢ould-not be known in the general applications.
Because the problem of solving Eq. (4-1) is a blind separation problem, an
unsupervised learning adaptation algorithm based on images intensities can be used in
solving Eq. (4-1). The technique of the nonlinear independent components analysis
(ICA) model is used to solve the surface normal on each point of image. The
post-nonlinear ICA is a technique that exploits higher-order statistical structure in data.
This method has recently gained attention due to its applications to signal processing
problems including speech enhancement, discrete signal processing and image
processing. The goal of post-nonlinear ICA is to nonlinearly transform the data such
that the transformed variables are as statistically independent from each other as
possible. The detail for how to find n(x, y) of each point in image is showed in the

following post-nonlinear ICA model.
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Figure 4-1. Normalized exponential functions with different sigma values
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4.3. Post-Nonlinear ICA Model
In this section, we introduce the ‘particular nenlinear mixtures, which can be
considered to be a hybrid structure consisting of a linear stage followed by a nonlinear

stage. It is shown in Fig. 4-2. This structure, which was introduced by Taleb and
Jutten [59], provides the observation x()=(x,(¢), x,(¢),...,x,(¢))", which is the
unknown nonlinear mixture of the unknown statistically independent source

(1) = (5,(2), 5,(2), .8, )

x;(f) = fi(Zaijs j(t)} i=1,2..,n (4-2)

=
where  f;() are unknown invertible derivable nonlinear functions, and
a; (i, j=1,2,...,n) denote the scalar elements of a regular mixing matrix A. In the

following, the mixture vector x(7), and by extension the pair (A, f), will be called a

post-nonlinear (PNL) model.
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5,() — () x,(1)
s —() x,5()

Figure 4-2. Post-nonlinear mixing ICA model (n = 3).

Contrary to general nonlinear mixtures, the PNL model has a favorable
separability property. That is, using the separation structure (g, B) shown in Fig. 4-3,
it can be demonstrated, under weak conditions on the mixing matrix A and on the
source distribution, that the output independence can be obtained if and only if

f,®g, are linear for all index:ti from [/ torn. This means that the sources

y(1) = (3,(2), y,(0),...,y,(t))" ,which was estimated-using an independence criterion

on the outputs, are equal to the inknown soutces with the same indeterminacies noted

in linear mixture model.

g el’xl(t

x,(2)

x5(0)

Figure 4-3.  Separation architecture of the post nonlinear ICA model (7 = 3).

A very popular approach to estimating the ICA model is the maximum likelihood
(ML) estimation. Maximum likelihood estimation is a fundamental method of

statistical estimation. One interpretation of ML estimation is that we take those
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parameter values as estimates that give the highest probability for the observations. In
following section, we show how to apply ML estimation technique to post-nonlinear
ICA estimation. The similar derivations of equations (4-3)-(4-13) based on the mutual
information as a cost function is shown in the chapter by Taleb [59], [60].
4.3.1. Independence Criterion and Deriving the Likelihood

The statistical independence of the sources is the main assumption. Then, any
separation architecture is tuned so that the components of its output y become
statistically independent. This is achieved if the joint density factorizes as the product

of the marginal densities

n

p(Y):Hpi(yi ) (4-3)

i=1
According to this result, the density p (x) of the mixture vector x =f(As)

can be formulated as

p.(x)=|det B |
i=1

g'(ﬂi > X XP(Y) = |det B|H
i=1

gO. ) 1rb) @

where B=A"', g() is the inverse function of f(-), the parameters @, are
adjusted to cancel the effect of nonlinear function f(-), and the p,(y;) denote the

densities of the independent components. Equation (4-4) can be expressed as a

function of B=(b1,b2,...,bn)r and x, giving

p.(0) = et B[ [ g'0,.)[ ] »,(b]2(0.). @-5)

i=1

where g(ﬂ, X) = (gl (91’ Xy )a &> (92, Xy )a o &y (en > Xy ))T .
Assume that we have T observations of x, denoted by x(/), x(2), ..., x(?), ..., x(7).
Then the likelihood can be obtained as the product of this density evaluated at the T

points. This is denoted by L(B,0) and we have
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L(B,0) = H det B|lj g0, x, )|H p,(b7g(6,x(:)). (4-6)

In general, it is more practical to use the logarithm of the likelihood, since it is
algebraically simpler. This does not make any difference here since the maximum of
the logarithm is obtained at the same point as the maximum of the likelihood. The

log-likelihood is given by

log L(B,0) = Zlog{ ] 2'(0.,x, ML[ p; (bJT.g(O,x(t)))det B|}

=1 i=1 Jj=1

- i{ilogg'(ﬂi,xil + glog[pj (bfg(ﬁ, x(t)))]+ log|det B|} . 4-7)

t=1 | i=l
To simplify notation and to make it consistent to what can denote the sum over the

sample index ¢ by an expectation operator, thus,we have

, (4-8)

%log L(B,0) = E{ilog|g’(9i, X, l} + E{ilog[pi (bJT.g(B, X(t)))]} + 10g|det B

where the expectation operator here~is an average computed from the observed

samples.

4.3.2. The Derivation of Adaptation Rules with Maximum
Likelihood (ML) Estimation

To perform maximum log-likelihood estimation in practice, we need an
algorithm to perform the numerical maximization of log-likelihood. In this section, we
perform the numerical maximization of log-likelihood by gradient methods. First, the
maximization of the log-likelihood requires the computation of its gradient with

respect to the separation architecture parameters Band 0,,i=1,2,...,n.

The first layer: To estimate the linear stage parameters, we must compute the
gradient of log-likelihood of Eq. (4-8) with respect to the separation architecture

parameters B. Therefore, we have
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where

ologp, (v;) _p},v,)

and y.=b"g(0,x()).
ayj P, (yj J J ( )

hj(yj):

Therefore, this immediately gives the following adaptation rule for ML

estimation:
AB o E{Z h,(b7g(6,x(:)))(0, x(t))T} +(B")" and (4-10)

=

B =B“ +7,(AB), (4-11)
where 77; 1is the learning rate for adapting B. This result has the same expression as
in the linear source separation. This algorithm«is often called the Bell-Sejnowski
algorithm [61]. It is the simplest. algorithm .for maximizing likelihood by gradient
methods. However, due to the inversion-ef-the matrix B in Eq. (4-10) is needed in
every step, it converges very slowly..The convergence can be improved by whitening
the data, and especially by using the natural gradient [63] that is based on the

geometrical structure of the parameter space. Therefore, Eq. (4-12) is used to estimate

the linear stage instead of the Eq. (4-10).
AB o (E{Z h, (y(t))y(t)T} + I}B (4-12)
j=l

where y(1)=b"g(60,x(¢)).
The second layer: The derivation of the log-likelihood with respect to parameters 0,

of the nonlinear function g,(0,,x;) is
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T 00, 00, 00,

ol "0, x, 4 (0., x;
Lalo_gMBﬁ):E{ i:AY xz*}w{zhj(b;g(a, x<t>>)b,,}—ag' 0. )}
(4-13)
From the derivation of the log-likelihood with respect to parameters 0,, we

update the parameters 0, of the g, (9 l.,x(t)) function by the following adaptation

rule:

A0, %E{alog|§;e"’xi)|}+E{ihj(bfg(e,x(t)))bﬁ}%”x")} and  (4-14)

1

l

1

0, =0," 47, (40,) (4-15)

where 7, is the learning rate of adapting 0, .

4.3.3. Estimation of the Source Densities

Denoted by p, (y) the assumed densities of the independent components, and

8logpyj (yj): Ply, (y/)
oy, py/-(yj).

h(v,)= (4-16)

. . . T
Constrain the estimates of independent components y, :b_/g(ﬂ, x(t)) to be

uncorrelated and to have unit variance. Then the ML estimator is locally consistent, if

the assumed densities pyj(y ) fulfill

J

E{yjhj(yj)—h;(yj)}>O, V. (4-17)
The proof can be found in the [64]. Therefore, the limitation shows how to

construct families consisting of only two densities, so that the condition in Eq. (4-17)

is true for one of these densities. For example, consider the following log-densities:

log p*(s)= e, —2logcosh(s) (4-18)
S2
logp (s)=a, —(7—10gcosh(s)j, (4-19)
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where «;,a, are positive parameters that are fixed so as to make these two

functions logarithms of probability densities. Actually, these constants can be ignored

in the following. Then, for super-Gaussian independent components, the pdf defined

by Eq. (4-18) is usually used. This means that the nonlinear function h() is the tanh
function:

h*(y)=—-2tanh(y). (4-20)

For sub-Gaussian independent components, the other pdf defined by Eq. (4-19) is

used. Then the nonlinear function %(-) can be written as:

h™(y)= tanh(y)-y. (4-21)
Finally, the choice between the two nonlinearities in Eq. (4-20) and Eq. (4-21) can be

made by computing the nonpolynomial moment:

k, = signiE|- tanh(y Jy +{ =tann(p, P =12, n, (4-22)

using some estimates of the independent components. Then, the source distribution is

super-Gaussian when &, =1 and - sub-Gaussian when k&, =-1, where the

expectation value in the formulas is forallz, 1= 1, 2, ..., T.

4.4. Solving the Proposed Nonlinear Reflectance Model by
Post-Nonlinear ICA Model

In this section, we shall describe the way of applying the post-nonlinear ICA

model to estimate the normal vector n(x, y) on the object surface corresponding to
each pixel in the image. Since the n(x, y) vector is a 3x1 column vector, it is

required that we need at least three images under different light directions for its
estimation. Hence, to reconstruct the 3D surface of an object through its images, we
have to take three gray-value images under three different illuminants. Assuming an
image contains 7 pixels in total, then we can rearrange all the gray values of the three
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images into a 3 x 7 matrix, with each row representing an image, and each column
the gray values of a single pixel under three different illuminants. Putting this matrix
into Eq. (4-1), and comparing Eq. (4-1) with Eq. (4-2), we can define the nonlinear

function in the post-nonlinear ICA model as:

£(0,(t))=Ly(0)exp _leos”lo,0)) t=1,2,. Tandj=1,23  (4-23)
Y 202(1)

3
whereo(t) = Z a;s;(t)and s(¢)is the n(x,y) vector that we are looking for. From
i=1

Eq. (4-23), we can obtain the inverse nonlinear f(-) function as

2o A .
g, (o0, 1,())=cos| |- 207 (t) In( f(t)) =12, .., T,and j=1,2,3 (4-24)
| y

where I(t) is the input vector, i.e.j the three gray walues of the rth pixel of the three
images with different illuminants, and o(¢) -is the variant of the ¢th pixel in the exp()
function in Eq. (4-23). We shall-feed the input vectors, I(t), =1, 2, ..., T, to the input
of the network shown in Fig. 4-3. ‘Because all these input vectors come from the
images belonging to the same object, the estimated reflectance model should be
exactly the same for each of the three images; i.e., all the g,(-), i=1, 2, 3 are the
same. With such setting, we can obtain the final outputs through the network
computations shown in Fig. 4-3. To ensure the final outputs to be independent
components, we apply the unsupervised adaptation rules derived in Subsection 4.3.2

to tune o(¢) and B matrix. Upon convergence, the final output is the estimated
normal vector n(x, y) on the object surface corresponding to the rth pixel in the

image for t=1, 2, ..., T. The complete algorithm for the above computation is shown

in Fig. 4-4, which consists of 9 steps.
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Algorithm:
1. Set k=1 and arbitrarily assign the initial values of o(¢) and y(?),
t=1,...,T,and B -

. Set sampling index ¢=1.
3. Compute e(¢) from Eq. (4-23),

e,.(t)=cos[\/ 262 (1) In l(/(t))j i=1,2,3.

4. Compute y(¢) as follows:
y(2) =Be(r).

5. Calculate the normal vector of surface n(¢) =

y(?)
[y

and the surface

albedo y(¢)=

6. Update B matrix by
B* — B“"+f73{ Wy’ ]}B(“

where 77, 1is the learning rate of B.

7. Update o(t) value using the following equation:

O.i(t)(k+1) =ai(z)(k) +770{%+40' log ){ihj( )b }}
o,

where 77_ 1is the leatning rate of o .

8. Repeat Step 3~Step 7, until tequal to 7.

9. Set k=k+1 and repeat Step 2~Step 8, until convergence.

Figure 4-4. Unsupervised updating rules for the proposed 3D surface reconstruction
scheme.

The separation architecture of the post-nonlinear ICA model can be considered to
be a hybrid structure consisting of a nonlinear stage followed by a linear stage.
Therefore, after compensating for the post-nonlinearities, the problem is essentially
reduced to a linear mixture of the form [matrix depending on lighting and viewing
directions] * [surface normal vector]. Using the ICA decomposition, we rewrite the
equation in Step 4 in Fig. 4-4 as

y(?) = Be(?), or e(t) = B™'y(1) = y () ATh(r) (4-25)

-1

where AT =[a,,a,,a,]" = is the matrix depending on lighting and viewing
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directions and has unit length, n(¢) is the estimated normal vector corresponding to
the tth pixel, t = 1, 2, ..., T, and y(¢) is albedo of the rth pixel. However, the
decomposition in Eq. (4-25) is not unique. If there is an invertible matrix G, which
satisfies

A" =A’G and n=G™i, (4-26)
where A and n(¢) are, respectively, the true matrix depending on lighting and
viewing directions of images I, and the normal vector of the tth pixel in the standard
XYZ coordinates, then the linear ambiguity is belonging to subset of GBR [33]-[35].
On the one hand, according to Georghiades’s [35] studies, if the surface of an object is
seen under variable light direction, but with fixed viewpoint, then the linear ambiguity
can be reduced to three GBR parameters: :As_far as the surface normal vectors are

concerned, we can only recover

n=G'n,
and
| &3 0
G'=—| 0 g, 0f, (4-27)
&3
-8 —& 1

where g; are the three GBR parameters. On the other hand, the three light sources
corresponding to the three images do not lie in the same plane (non-coplanar), so the

columns of matrix A are linearly independent. In addition, using the ICA

decomposition in Eq. (4-25), we can obtain an independent basis matrix A, so the
ambiguity can further be denoted a diagonal matrix, i.e., g = 0 and g, = 0. So, the
relation between the normals in the standard XYZ coordinates and those in the most
independent coordinates system is only by g3 factor. For the performance evaluation

of 3D image reconstruction, both estimated surface and synthetic one are normalized
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within the interval [0, 1]. Therefore, the influence of g; factor on the estimated 3D
surface can be removed.

Fig. 4-5 shows a simple example of a sphere object. The first row shows a set of
shadow images and the second row shows the other set of shadow images. This
synthetic image was generated using the depth function of a sphere object with
different light directions. So the content of the images is different. Fig. 4-6(a) shows
the true normal vectors of the sphere. The estimated normal vectors in Fig. 4-6(b) and
4-6(c) were generated by using our approach corresponding to the two sets of shadow
images in the first row and second row of Fig. 4-5. According to the estimated normal
vectors in Fig. 4-6(b) and 4-6(c), it is obvious that the waveforms are similar to the
true normal vectors. So, the estimated normal vectors do not depend on the content of
the images. Furthermore, as far ‘a'sj‘tlnlne orde"nr.c‘)f the sources being concerned, the
similarity between human face e;nd spheréiéadopte(i'jn the supervised ICA algorithm
to find the order of sources 1n the propese& scl}eniie. We compute the correlation

between the estimated normal vectors of. surface “Of faces and the normal vectors of a

sphere due to their similar structure, so the order of normal components can be

Figure 4-5. Shadow images of sphere object with different light directions.

identified.
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Figure 4-6. The estimated normal vectors of sphere object by our approach. (a) The
true normal vectors. (b) The estimated normal vectors from the first row
of Figure 4-5. (c) The estimated normal vectors from the second row of
Figure 4-5.
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4.5. 3D Surface Reconstruction from the Surface Normal by
Enforcing Integrability

In this section, we use the enforcing integrability approach to obtain the deeper
information for reconstructing of the surface of an object by its normal vectors. This

approach was proposed in the earliest stage by R. T. Frankot and R. Chellappa in 1988.

Suppose that we represent the surface z(x, y) by a finite set of integrable basis

functions ¢(x, y,®) so that

2(x, y) = Y c(0)g(x, v, 0), (4-28)

0eQ

where ® = (u,v) is a two-dimensional index,Q is a finite set of indexes, and
{#(x, y,®)} is a finite set of integrable basis functions which are not necessarily
mutually orthogonal. We chose the, discrete cosine basis so that {c(®)} is exactly
the full set of discrete cosine transform | (DCT) coefficients of z(x, y). Since the
partial derivatives of the basis functions;—¢. (x, y,(o) and ¢, (x,y,0), are integrable,
the partial derivatives of z(x, y) are,  guaranteed to be integrable as well; that is,
zxy(x, y)= zyx(x, y). Note that the partial derivatives of z(x,y) can also be

expressed in terms of this expansion, giving

z. (5, y)= D o). (x, y, 0) (4-29)

0eQ)

z,(x,¥)= Y c0)4,(x v, 0), (4-30)

0eQ)
where ¢, (x,7,0)=04()/ox and ¢, (x,y,0)=0¢()/0y.
Suppose we now have the possibly nonintegrable estimate n(x, y) from which

we can easily deduce from Eq. (2-2) the possibly nonintegrable partial derivatives

2 (x,y) and z, (x,v). These partial derivatives can also be expressed as a series,
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giving

2,(x,y)=>¢/(0)¢,(x,y,0) (4-31)

2,(x,7)=2.6(0)¢,(x.y,0). (4-32)

A method has been proposed for finding the expansion coefficients c(co) given

a possibly nonintegrable estimate of surface slopes Z_(x,y) and 2 ’ (x,y):

p. (@) @)+ p, (@), (©)

p.(0)+p, ()

o(o)=

,for 0=(u,v)eQ, (4-33)

where p ”

X, Y, dxdy and py J.”(é X, Y, X dxdy . Finally, we

can reconstruct the object’s surface by performing the inverse 2-D DCT on the

coefficients c(o).

4.6. Experimental Results and Discussions

In this section, two experiments are performed to assess the performance of the
proposed approach. In the first experiment, we test the algorithm on synthetically
generated images for the reconstruction of surface of objects. The light direction and
viewing direction are unknown. In the second experiment, we test the algorithm on a
number of real images captured from the Yale Face Database B showing the
variability due to illumination and there is varying albedo in each point of surface of
human faces. All the experimental results are compared to those of the Georghiades’s

approach in [34] and the Hayakawa’s approach in [43] tested on the same images.

4.6.1. Quantitative Experimental Results by Reconstructing a

Synthetic Sphere Object

Quantitative experimental results have been obtained by reconstructing a

synthetic sphere object. The true depth map of the synthetic sphere object is generated
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mathematically as

2,itxt+yt <t

2 2
ro—=x"-—y

, (4-34)
0, otherwise

z(x,)= {

where =48, 0<x, y <100, and the center is located at (x, y)=(51, 51). The

sphere object is showed in Fig. 4-7. This synthetic image was generated using the
depth function in Eq. (4-34) and the surface gradients were computed using the
discrete approximation. Fig. 4-8 shows the synthetic images generated according to
the non-Lambertian model with varying albedo and different directions. The different
albedos are, 0.6 for right-bottom of the sphere, 0.8 for left-top of the sphere, and 1 for
the rest part. The locations of light sources in Figs. 4-9(a)-(i) are S1=(30, 140),
S2=(30, 90), S3=(30, 40), S4=(30, 180), S5=(0, 0), S6=(30, 0), S7=(30, -140), S8=(30,
-90), and S9=(30, -40), where the:first component.is the degree of tilt angle and the
second component is the degree of pan angle. The center of image is set as the origin
of the coordination. The x-y plane is parallel to the image plane. The z-axis is
perpendicular to the image plane. The‘experimental results are shown in Table 4-1 and
the proposed method is compared with two photometric stereo algorithms,
Hayakawa’s method and Georghiades’s method. In Table 4-1, we take 5 groups of
images with different illuminant angles from the left, the right, and the front for 3D
reconstruction. Both estimated surface and synthetic one are normalized within the
interval [0, 1]. According to Table 4-1, it is found that the proposed method can
achieve the lowest mean errors compared with the other methods in all illumination
conditions. In addition, we implemented each method in Matlab 6.1 software on a
1.2GHz Pentium III-based PC with 256 MB RAM. According to the results, the CPU
time used by the proposed method is close to that used by the Georghiades’s method

([34]) and it is greatly reduced compared with the Hayakawa’s method ([43]).
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Figure 4-7. Synthetic sphere surface object.
——~
(a) S1=(30, 140) (b) S2=(30, 90) (c) S3=(30, 40)
(d) S4=(30, 180) ‘-" -. (d) SS_(O,,LO) ; () S6=(30, 0)
(g) S7=(30, -140) (h) S8=(30, -90) (1) S9=(30, -40)
Figure 4-8. The 2D sphere images generated with varying albedo and different
lighting directions (the degree of tilt angle, the degree of pan angle).
Table 4-1  The absolute mean errors between estimated depths and desired depth of
synthetic object’s 3D surfaces. (Both light and viewing directions are
unknown in the experiment.)
Mean absolute Liohts Georghiades’s | Hayakawa’s Our proposed
depth error & method ([34]) | method ([43]) method
S1, S2, S3 0.048875 0.07688 0.02025
S7, S8, S9 0.050316 0.07924 0.02687
Sohere with S1, S5, S3 0.033133 0.07279 0.02055
Vafiant albedo S1, S8, S6 0.033529 0.07869 0.01837
S1, S5, 87 0.031729 0.07621 0.01829
. 27.38 sec 25.9 sec
CPU time(Avg.) (Iterations = 10) 36.85 sec (Iterations = 10)




4.6.2. Experimental Results on Real Images with Varying Albedo

In the second experiment, we test the algorithm on a number of real images from
the Yale Face Database B [55] showing the variability due to illumination and there is
varying albedo in each point of surface of human faces. This subset contains 444
viewing conditions (1 pose x 37 illumination conditions, where these illumination
conditions contain Subset] (12°) and Subset2 (25°) in the Yale Face Database B.) for
10 individuals. Fig. 4-9 shows the 10 individuals from the Yale Face Database B used

to test our algorithm, where each image size is 100 x100 in pixels.

& T = .‘"H >
-
Lo o
- I

[ ThE

Figure 4-9. 10 individuals from the Yale Face Database B used to test our algorithm.

First, we take the images of the same person that was photographed under three
different light sources from these testing images arbitrarily shown in Fig. 4-10. We
feed the normalized images into our algorithm. After updating the parameters by
several iterations, we can get the normal vector of the surfaces of human faces
corresponding to each pixel in an image in the output nodes. The results are shown in
the second row in Fig. 4-10, which are the first component, the second component,
and the third component of the surface normal vector in order. Fig. 4-11 presents the
results of 3D human face reconstruction. Fig. 4-11(a) shows the surface albedo of

human face in Fig. 4-10. Fig. 4-11(b) shows the result with our proposed algorithm.
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By using the Georghiades’s approach [34] and the Hayakawa’s approach [43], the
reconstructed results are demonstrated in Fig. 4-11(c) and 4-11(d), respectively. The
results clearly indicate that the performance of our proposed nonlinear reflectance
model is better than that of the Georghiades’s approach and the Hayakawa’s approach.
Comparing to the results obtained by the Georghiades’s approach, the reconstructed
surfaces with the consideration of specular components in our algorithm, are
obviously better in high-gradient parts such as the nose. Besides, the Hayakawa’s
approach did need added constraints, it could reconstruct the 3D model of human face
similar as our approach, but when the constraints is unavailable, then it could not
reconstruct the 3D model of human face. Finally, the reconstructed results for the

testing patterns are shown in Fig. 4-12 and Fig. 4-13.

(d)
Figure 4-10. Three training images with differ light source positions from Yale Face
Database B in frontal. (b) Surface normal corresponding to the three
source images.
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Figure 4-11. The surface albedo of human face in Fig. 4-10. The results of 3D model
reconstruction by (b) our proposed algorithm, (c) Georghiades’s
approach in [34], and (d) Hayakawa’s approach in [43].

69



(a) (b) (c) (d)
Figure 4-12.The results of 3D model reconstruction by (b) our proposed algorithm, (c)
Georghiades’s approach in [34], and (d) Hayakawa’s approach in [43].
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(b) () (d)
Figure 4-13.The results of 3D model reconstruction by (b) our proposed algorithm, (c)
Georghiades’s approach in [34], and (d) Hayakawa’s approach in [43].
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4.7. Concluding Remarks

It has been claimed that methods based on reconstructing 3D face model for face
recognition are quite successful. When we are estimating the surface shape, the
success of the reflectance model for surface reconstruction of objects depends on two
major components: the diffuse component and the specular component. Therefore, in
this chapter, we proposed a new nonlinear reflection model consisting of the diffuse
components and the specular components. The past researches only considered the
linear combination of the diffuse components and the specular components. We do not
need to separate the two components in the proposed novel nonlinear reflection model.
In addition to this major contribution, several contributions of the proposed algorithm
are listed below:

(a). In the past, we have to know the locations of light sources first for solving the
photometric stereo problems. But this‘is not practical in the real situations. In
this chapter, we used the.imagées under-three different light source locations to
solve this problem. In our method; we can still obtain a very good result even
if the locations of light sources are not given.

(b). Using the unsupervised non-linear ICA network for solving photometric
stereo problems does not need any desired output value and the smoothing
conditions. It is easier to converge and make the system stable.

The performance comparisons of our proposed nonlinear reflectance model to
the Georghiades’s approach in [34] and the Hayakawa’s approach in [43] were made.
In the first experiment, we test the algorithm on synthetically generated images for the
reconstruction of surface of objects. The results clearly indicate that the performances
of our proposed nonlinear reflectance model are better than that of the Georghiades’s

approach in [34] and the Hayakawa’s approach in [43]. In the second experiment, we
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test the algorithm on a number of real images from the Yale Face Database B
containing the variability due to illumination and varying albedo in each point of
surface of human faces. All the experimental results showed that the performance of

the proposed nonlinear reflectance model is better than those of the two proposed

existing photometric stereo methods.
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5. An Illumination Estimation Scheme
for Color Reconstruction

In this chapter a new algorithm for surrounding illumination estimation of image
scene for color constancy was proposed. This estimation is based upon the
chromaticity histogram of a color image, which is obtained by the accumulation of
CIE chromaticity values corresponding to all colors in the image. Unlike the existing
approaches, the proposed scheme estimates the white-point values of the surrounding
illuminant by detecting the central value of-all celor’s distribution in the chromaticity
histogram. The white point estimation of ‘@ color ithage based on the chromaticity
histogram has the advantages of high efficiency, good robustness, and no strict
assumptions. After the illumination estimation, a neural network with
back-propagation (BP) learning algorithm is used to model the nonlinear functional
relationship between the central value of chromaticity histogram and coefficients of
illuminant functions. The trained BP network can then be used to estimate the spectral
power distribution of surrounding illuminant. Substituting this illuminant estimate
into the finite-dimensional linear model of surface reflectance, the colors of the image
can be corrected and recovered with the standard illuminant (D65) for color constancy.
For performance evaluation, two sets of color-recovery experiments are performed in
this chapter based on synthetic images and nature images captured from a still digital
camera, respectively. All the results are compared to those of two existing popular
algorithms (Max-RGB and Gray-World algorithms) on the same sets of images. The
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experimental results show that the new algorithm outperforms these two popular
compared algorithms, both in quantitative error index and in qualitative visual

perception.

5.1. Introduction

In this chapter, we propose a new illumination estimation scheme based on
chromaticity histogram and neural network. At first, the central values of the
chromaticity histogram characterize the distribution of image colors with an unknown
surrounding illuminant is detected. When the color of the surrounding light source of
the sampling image approaches to red, the image colors in the chromaticity histogram
would be obviously distributed in the region of lower color temperatures. Conversely,
the image color in the chromaticity, histogram will be obviously distributed in the
region of higher color temperatures, when the color of the surrounding light source of
the sampling image approaches to blue. That is-why we use the chromaticity
histogram to detect the central values ‘of the main distribution of image colors. Next,
the BP neural network is applied to approximate the nonlinear functional relationship
between the central values of chromaticity histogram and coefficients of basis
function of illuminant sources. Finally, the spectral power distribution of the

surrounding illuminant, £(A1), estimated by the BP network is substituted into the

finite-dimensional linear model of surface reflectance to complete the color correction
with the standard illuminant (as D65).

The rest of this chapter is organized as follows. Section 5.2 describes the
finite-dimensional linear model of surface reflectance for correcting the image color
pixel-wisely based on the estimation of scene illumination. The details of the
proposed illumination estimation algorithm are presented in Section 5.3. The
chromaticity histogram is used to extract the distribution of image colors and the
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spectral power distribution of the surrounding illuminant is estimated using a BP
network. In Section 5.4, two sets of experiments are performed to evaluate the
proposed approach, and the results are compared to those of two popular existing

color constancy schemes. Conclusions are summarized in the last section.

5.2. Finite-Dimensional Linear Model of Surface
Reflectance

As shown in Fig. 1-1, the complete procedure of the color constancy process
involves two steps. The first step estimates the spectral power distribution of the
surrounding illumination of an image, and based on which the second step corrects the
image color pixel-wisely to the colors under desired illuminant such as the standard
illuminant D65. In this section, we shall introduce the method of the second step, i.e.,
color correction of an image fromi'a known.(estimated) illuminant to another desired
(standard) illuminant. Most algorithms [65]<[74] have solved this problem based on
finite-dimensional linear models.of surface reflectance or called illuminant functions.
The model condenses all spectral information into a few numbers by supposing that
illumination and reflectance can each be approximated by weighted sums of basis
functions. In this chapter, we also exploit this scheme to perform the color correction
in the second stage of color constancy.

The linear models (see Eq. (5-1) below) were developed to explain the
relationship of the illuminant and the object surface reflections, and they also played a
significant role in the study of color recovery. Given a spectral power distribution of
the illuminant E(A) and the spectral reflectance function of a surface R(A), we
have the definition of the color signal as:

C(A)=E(A)R(A). (5-1)

The researches of Maloney and Wandell [65], Buchsbaum [66], Sallstrom [67], and
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Brill [68] assume a linear model for the illuminant and the reflectance, and it can be

written as a sum of weighted basis functions:

E(A) = iel.Ei (1) and (5-2)
R(A) = ir_,R_,(z), (5-3)

where E;(4) and R;(1) are the sets of basis functions, e, and r; are coefficients

of the basis functions that uniquely determine the illuminant and reflectance, and m

and n are the numbers of basis functions corresponding to E,(4) and R (4),

respectively. This is called the finite-dimensional linear model. Substituting Egs. (5-2)

and (5-3) into Eq. (5-1), we have

C(A) = {Z e,-Ew}{i 'R, (z)}

i=k Jj=1

n

= i errE(A)R(A) . (5-4)

=l j=1
Assume that there are p distinct classes of receptors in a visual system. The response

of the class-k receptor is

g, = [ CA)S (D)dA, (5-5)

where S,(A4) is the corresponding spectral sensitivity function. Transforming the

above equations into the discrete case, we have

q, = Z C(4,)S8:(4,)

=

1l
~.

=>>era,, k1,2,..,p, (5-6)

77



where A, is sample wavelengths and
ay =D E(A)R,(2,)S.(2,).
Lo

There are several restrictions in the finite-dimensional linear model. It assumes
that the object surfaces are nonfluorescent and geometric properties of surfaces are
embedded in surface spectral reflectance. Another necessary constraint is imposed to
the dimensionality of surface reflections: » must be more than and equal to the
number of classes of receptors; otherwise the solution is underdetermined [13].

If the finite-dimensional linear model is used, the spectral power distribution of
the illuminant has to be estimated so that colors can be recovered. Rewriting Eq. (5-6)

as

0 =2 E(2,)D 1 R(2,)S, (4,)
7y j=1
= rsz(ﬂ"n )Rj (/1}1 )Sk (/In) . (5-7)
JEL j’n
Assume that there are three classes of receptors X, Y, and Z. Use three basis functions
to describe surface reflectance, and rewrite Eq. (5-7) by using matrix form, we have

X M, M, M;|n
Y| =M, M, M,|r| or
A My My, My |n
q=Mr, (5-8)

where M, =Y E(1,)R.(4,)S,(4,), j.k=1,2,3.
ﬂn

Assume that the column vector of tristimulus values of a surface with the original

illuminant is q,, and the transformation matrix is M,,. From Eq. (5-8), we obtain
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-1
r=M,q,. (5-9)
Therefore, the tristimulus values with the C/E Standard Illuminant D65 can be

calculated by substituting Eq. (5-9) into Eq. (5-8), and then we have

_ -1
Upes = MpesMyq;, . (5-10)
The above derivation indicates that if we can estimate the spectral power

distribution, E(A4,), of the surrounding illuminant for a given color image, we can

obtain the corresponding color image of the same scene under the standard illuminant

D65 according to Eq. (5-10). The estimation of E(A,) from a color image directly is

a hard task. As mentioned in the last section, the existing estimation approaches
usually rely on impractical assumptions. For example, the two popular schemes,
Max-RGB [13], [18]-[20] and Gray-World [14]-[17] methods, assume the white-point
value of the illuminant to be the maximum value of the RGB channels or the average
of all colors in an image, respectively-—Fhese assumptions do not usually hold
practically, and thus make these estimation-schemes susceptible to dominant color in
an image. Another existing estimation scheme is based on the color distribution of the
image on the chromaticity map. Although this scheme avoids the unrealistic
assumptions, it takes into account the chromaticity only and ignores the luminance. Its
assumption that all the colors on the chromaticity map have the same luminance
usually results in obvious estimation errors. In the following section, we shall propose
a new illumination estimation scheme based on chromaticity histogram. This scheme
is reliable and efficient since it considers both factors of chromaticity and luminance,

and eludes the affect of dominant colors in an image.
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5.3. A Neural-Network-based Illumination Estimation
Scheme

As we knew from Chapter 1, an object might appear differently in color when it
was illuminated with different light sources. For example, when a white object is
illuminated with the light source of a lower color temperature, the reflection becomes
reddish. On the other hand, the light source of the high temperature causes bluish in
color to the same white object. It will be very obvious by observing the phenomena of
color unbalance of one image in the chromaticity histogram. Therefore, we propose to
estimate the spectral power distribution of the surrounding illuminant by detecting the
central value of the distribution of image colors in the chromaticity histogram.

Figure 5-1 is the block diagram of the proposed estimation algorithm. It consists
of seven steps, which are divided“into two!parts. The first part constructs the
chromaticity histogram of the- input image, determines the center point of the
chromaticity histogram to represent the‘major.color-distribution of the image on the
chromaticity map, and also eludes‘the.affect of dominant color. The second part uses a
pre-trained neural network with back-propagation (BP) learning algorithm for
illumination estimation. The BP network is trained to model the nonlinear functional
relationship between the center value of the chromaticity histogram and the spectral
power distribution of the surrounding illuminant. In the rest of this section, we shall

explain the details of each step in the block diagram of Figure 5-1.
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chromaticity histogram

Determination of spectral
power distribution of
surrounding illuminant

Figure 5-1. Diagram of the proposed illumination estimation scheme.
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5.3.1. Center value estimation of the chromaticity histogram

(a) Color space transformation and chromaticity histogram computation

In our approach, we first convert and map the values of three color channels of
an image to CIE’s XYZ color space and then get the (x, y) values of chromaticity
through normalization according to the following equation:

Y

=—) 5-11
X+Y+Z7 ( )

x=——— and y
X+Y+Z

where the values of x and y are in the range [0, 1]. A chromaticity histogram of a color
image is a function of x and y, denoted by f{x, y). It is built by the accumulation of
every pair of (x, y) values of chromaticity corresponding to all colors in the image. A
plot of this function for all chromaticity provides a global description of the
appearance of a color image. For example, Fig.-5-2 shows the chromaticity histograms
of two images of the same scene with two"different surrounding illuminants. The
chromaticity histogram in Fig.5-2(a) corfesponds to'the illuminant with a low color
temperature, and that in Fig. 5-2(b).corresponds to the illuminant with a high color
temperature. Thus the chromaticity histogram can reflect the information of white
points of the surroundings faithfully. We shall next detect the central values of all
color distributions of chromaticity histogram. The central values can represent how all

the colors in an image are distributed in the chromaticity histogram.

(a) Low color temperature (b) High color temperature
Figure 5-2. Chromaticity histograms of two images of the same scene under two
different illuminants with two different color temperatures.
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(b) Projecting the chromaticity histogram into x-axis and y-axis

In order to detect the main color distribution region on the chromaticity
histogram more efficiently and fast, we project the chromaticity histogram to x-axis
and y-axis, respectively, to get two projection function curves. Its sample results are
shown in Figs. 5-3(a) and (b), and can be expressed in the following mathematical

forms:

max f(x,)) max f(x,y)

Isy<D, __ I=x<D,
d gpl‘{)jiy(y) -

=—— an _ (5-12)
max(f(x,y)) max(f(x,y))

gpmj X ('x)

where g, (x)andg,, ,(») arethe projection distribution functions in x-axis and

y-axis of the chromaticity histogram whose values are between 0 and 1 through
normalization by the maxima of projection functions, D, and D, are the dimensions of
the chromaticity histogram in x=axis and.y-axis; respectively, and f{x, y) is the
chromaticity histogram. By the "projection” opetation, we can also decrease the
calculation cost of chromaticity. histogram from 2D to 1D spaces. This leads to a
faster and more efficient detection scheme of the main color distribution of an image.
(c) Eliminating the dominant colors from projected signals and detecting the center of
the projection distributions

For most cases, the assumption that there could be enough colors (full-color) in
the image is reasonable. But in some situations, some colors would occupy most range
of the image, which are called dominant colors. For examples, green and blue will be
the dominant colors for the images gotten from a large grass field and from a whole
blue sky or ocean, respectively. Obviously, if an image possesses a dominant color, we
can easily locate the corresponding position of the dominant color in the chromaticity
histogram, which appears to be an impulse. The same phenomena can be observed in

the projection curves of chromaticity histogram. As Figs. 5-3(a) and (b) show, there

83



exists a dominant color at x=190 and =100, where these two figures are relative to
the projection of chromaticity histogram in x-axis and in y-axis, respectively.

The dominant color will bias the estimation of major colors in the image and
causes obvious estimation error of surrounding illumination. Hence, we have to
remove the effect of dominant colors from the projection curves of chromaticity
histogram on x-axis and y-axis before we find the central values of color distribution.
As shown in Figs. 5-3(a) and (b), the projection distributions of the dominant colors
onto x-axis and y-axis both belong to the variations of high frequency. So we can pass

the g, .(x) and g, ,(y) functions in Eq. (5-12) through an ideal low pass

filter to remove the effect of dominant colors. The low-pass filtered projection
distributions of chromaticity histogram can more authentically represent the
distribution of all colors of the imiage ingthe chromaticity histogram for central point
location. The low-pass filtering process is‘demonstrated in Figs. 5-3(c)~(f). Figs.
5-3(c) and (d) are the results off DCT (discrete cosine transform) of Figs. 5-3(a) and
(b), respectively. After we apply the'ideal low-pass filtering on the curves in Figs.
5-3(c) and (d), and then take the inverse DCT (IDCT), we obtain the filtered
projection curves of chromaticity histogram as shown in Figs. 5-3(e) and (f).
Comparing Figs. 5-3(a), 5-3(b) and 5-3(e), 5-3(f), we observe that the effect of
dominant colors have been removed effectively, and the central values can be
estimated more correctly on the filtered curves.

The center (C,, C,) of the distribution of chromaticity histogram of the
surrounding illuminant can be computed by the following formulas on the filtered

projection distributions:
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C, = arg max [gpmjj (x)* h(x)J and

1=x<D,
C, =arg maxlg,,, ,(»)*h(y)]; (5-13)

where * is the convolution operator and /4(-) 1is the inverse DCT function of an ideal

low pass filter H(u) with cut-off frequency u, as described below:

1, |u| <u,
H(u) = . (5-14)
0, otherwise

L «4— Dominant Colar
0ar 1 08
Dorminant Color
06 - 1 06
0.4r 1 0.4
0z2r 0z
0 \ \ 0 A ! \
0 100 200 300 400 0 100 200 300 400
(a) ()
2 T T T 2 : T :
1 1 1 1
0 i 0 ‘U(WM\MAMMN\/W\/WAW
R ] 1 ]
.2 il 1 1 _2 1 L 1
0 100 200 300 400 0 100 200 300 400
()
03 -
0z
01
0
0.1 : L 1 0.1 1 I .
0 100 200 300 400 0 100 200 300 400
(8) Ul

Figure 5-3. (a) and (b) are the projections of chromaticity histogram onto x-axis and
y-axis, respectively, where the impulses correspond to the dominant
colors in the image; (c¢) and (d) are the results of DCT of (a) and (b),
respectively; (e) and (f) are the results of IDCT of ideal low-passed
filtered (c) and (d), respectively, with cut-off frequency being 30.
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5.3.2. Determination of spectral power distribution of illuminant

From the previous discussions, any light source E(A) can be expressed as the
discrete form £(4;) in a whole visible spectrum, where j=1, 2, ..., P, and P is the

number of samples in the spectrum. Since P is usually a big number, it is impossible
that the spectral power distribution of illuminant can be fully reconstructed directly
based on the detected center values of chromaticity histogram. From the
finite-dimensional linear model described in Section 5.2, we know the spectral power
distribution in the discrete time can be represented as the summation of weighted

basis functions:
E(A)=YeE(4,), j=1,2,...,P, (5-15)
i=1

where E(4;) is the set of basis functions, g is the coefficient of the basis

functions that uniquely determine'the illuminant, and m is the number of the sets of

basis functions corresponding to E;(4;). - When the sets of basis functions E,(4;)

are already known, it only remains to decide the coefficients of the basis functions in
the estimation of the spectral power distribution of the illuminant. In that way we can
obtain a complete distribution of light sources from the detection of the center values
of chromaticity histogram.

The basis functions in Eq. (5-15) can be computed by the principal component
analysis (PCA) technique. Assume that we have N known sets of light sources of

spectral power distributions. We can then arrange it as a P x N matrix:

EV(4) EP(4) - EM(A)

c | EVG) EP(R) e V) |

. (5-16)
EV(,) E®@(A,) o EV(Z,)

Each column represents an independent light source, and it includes a vector of P
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sampling values. All information in the matrix E can be denoted as the covariance

matrix S defined by
1 & ‘ ‘
S= D (EY -pE -, (5-17)
J=1

where p is a mean vector of all illuminants in E, and N is the number of light
sources included in the set. From the theory of PCA, the sets of basis functions £,(4,)

can be obtained by the calculations of eigenvectors of the covariance matrix S.

In this chapter, we mainly take the standard D light source in different color
temperatures according to the administration of CIE for acquiring the information
required in the calculations of the basis functions. We take one light source every
200°K in the range of 4000°K~6000°K, every 400°K in the range of 6400°K~8000°K,
every 500°K in the range of 8500°K=10000°K; every 1000°K in the range of
11000°K~15000°K, and 17000°K, 20000°K ‘and 25000°K (as shown in the first
column of Table 5-2). Hence we have.28 light sources totally. We can then use the
method mentioned above to calculate the ‘corresponding covariance matrix and its
eigenvectors. The two eigenvectors corresponding to the two largest eigenvalues and
the mean vector of all illuminants are taken to form the sets of basis functions shown
in Table 5-1. Next, we convert all the standard D light sources in the matrix E to the
corresponding coefficients of the basis functions through linear transformation, and
the results are given in Table 5-2. The first column represents the light sources of
different color temperatures. The second to fifth columns list the chromaticity values

(x,,yp) and (u,,v,) relative to different color temperatures. The sixth and

seventh columns in Table 5-2 list the corresponding coefficients of the basis functions
in different color temperatures.

With the data available in Table 5-2, we can use them to train a neural network
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with back-propagation (BP) learning algorithm for the coefficient estimation of basis
functions of the illuminants with various color temperatures. The BP network
structure is a fully-connected 2-10-2 network with ten hidden nodes. The BP network
describes the nonlinear relationship between the center values of chromaticity
histogram of an image and the coefficients of basis functions of the illuminant. The
two input variables of the BP network is the center (Cy, C,) of chromaticity histogram
of the surrounding illuminant detected in Eq. (5-13). The two output variables of the
BP network are the coefficients e; and e, of the two basis functions in Eq. (5-15).
Hence, once we obtain the center values of the chromaticity histogram as described in
Section 5.3.1, we can feed them into the pre-trained BP network and obtain the two
coefficients of basis functions as the network outputs. Substituting these coefficients

of basis functions of the illuminantinto the following equation,

Em (1) =eE @ )+eE,(A)+u(dy), j=1,2,..., P, (5-18)
we can obtain the estimated spectralpower-distribution of the surrounding illuminant
E, (4,). Finally, the colors of the color-biased images can be corrected according to
the illumination estimation Ei,, (4,) by using Egs. (5-8) and (5-10) given in Section

5.2.
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Table 5-1.

The sets of basis functions of the standard D illuminant.

Wave-length Mean First Second
(nm)
380 63.40 38.50 3.00
390 65.80 35.00 1.20
400 94.80 43.40 -1.10
410 104.80 46.30 -0.50
420 105.90 43 .90 -0.70
430 96.80 37.10 -1.20
440 113.90 36.70 -2.60
450 125.60 35.90 -2.90
460 125.50 32.60 -2.80
470 121.30 27.90 -2.60
480 121.30 24.30 -2.60
490 113.50 20.10 -1.80
500 113.10 16.20 -1.50
510 110.80 13.20 -1.30
520 106.50 8.60 -1.20
530 108.80 6.10 -1.00
540 105.30 4.20 -0.50
550 104.40 1.90 -0.30
560 100.00 0.00 0.00
570 96.00 -1260 0.20
580 95710 -3:50 0.50
590 89.10 -3.50 2.10
600 90.50 -5.80 3.20
610 90.30 -7.20 4.10
620 88.40 -8.60 4.70
630 84.00 -9.50 5.10
640 85.10 -10.90 6.70
650 81.90 -10.70 7.30
660 82.60 -12.00 8.60
670 84.90 -14.00 9.80
680 81.30 -13.60 10.20
690 71.90 -12.00 8.30
700 74.30 -13.30 9.60
710 76.40 -12.90 8.50
720 63.30 -10.60 7.00
730 71.70 -11.60 7.60
740 77.00 -12.20 8.00
750 65.20 -10.20 6.70
760 47.70 -7.80 5.20
770 68.60 -11.20 7.40
780 65.00 -10.40 6.80
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Table 5-2.  Chromaticity co-ordinates x,, y,,chromaticity co-ordinates u;, v},
and coefficients e, , e, of basis functions for the illuminants with
different color temperatures.

Color temp. (°K) Xp Vb uy, Vo € €
4000 0.3823 | 0.3838 | 0.2236 | 0.5049 | -1.5046 | 2.8265
4200 0.3737 | 0.3786 | 0.2200 | 0.5014 | -1.4223 | 2.1271
4400 0.3658 | 0.3734 | 0.2168 | 0.4979 | -1.3329 | 1.5505
4600 0.3585 | 0.3684 | 0.2139 | 0.4946 | -1.2384 | 1.0759
4800 0.3519 | 0.3634 | 0.2114 | 0.4913 | -1.1403 | 0.6860
5000 0.3457 | 0.3587 | 0.2091 | 0.4882 | -1.0401 | 0.3667
5200 0.3401 | 0.3541 | 0.2071 | 0.4851 | -0.9387 | 0.1061
5400 0.3349 | 0.3497 | 0.2053 | 0.4822 | -0.8371 | -0.1055
5600 0.3302 | 0.3455 | 0.2036 | 0.4795 | -0.7358 | -0.2759
5800 0.3258 | 0.3416 | 0.2021 | 0.4768 | -0.6354 | -0.4119
6000 0.3217 | 0.3378 | 0.2007 | 0.4743 | -0.5363 | -0.5190
6400 0.3144 | 0.3308:11:0:1983 | 0.4695 | -0.3434 | -0.6639
6800 0.3082 | 0.3245_| 0.1963. | 0.4652 | -0.1586 | -0.7391
7200 0.3027 |=0.3189 4:0.1946 | 0.4613 | 0.0175 | -0.7646
7600 0.2980  0:3138 }-0.1932 |- 0.4578 | 0.1844 | -0.7548
8000 0.2938 |20.3092 +-0-1919. | 0.4545 | 0.3419 | -0.7198
8500 0.2892 | 0.3041 | 0.1906" | 0.4508 | 0.5262 | -0.6518
9000 0.2853 | 0.2996 | 0.1894 | 0.4475 | 0.6971 | -0.5665
9500 0.2818 | 0.2956 | 0.1884 | 0.4446 | 0.8556 | -0.4706
10000 0.2788 | 0.2920 | 0.1876 | 0.4419 | 1.0027 | -0.3689
11000 0.2737 | 0.2858 | 0.1861 | 0.4373 | 1.2663 | -0.1599
12000 0.2697 | 0.2808 | 0.1850 | 0.4335 | 1.4946 | 0.0450
13000 0.2664 | 0.2767 | 0.1841 | 0.4303 | 1.6934 | 0.2390
14000 0.2637 | 0.2732 | 0.1834 | 0.4275 | 1.8675 | 0.4194
15000 0.2614 | 0.2702 | 0.1828 | 0.4252 | 2.0209 | 0.5857
17000 0.2578 | 0.2655 | 0.1818 | 0.4214 | 2.2778 | 0.8780
20000 0.2539 | 0.2603 | 0.1809 | 0.4172 | 2.5714 | 1.2308
25000 0.2499 | 0.2548 | 0.1798 | 0.4126 | 2.9069 | 1.6551
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5.4. Experiments and Results

In this section, two experiments are performed to assess the performance of the
proposed approach. In the first experiment, we test the algorithm on synthetically
generated images for the estimation of surrounding illumination of images of the same
scene. In the second experiment, we test the algorithm on a number of real images
captured from a still digital camera and show the color recovery results under the
desired illuminant by using the finite-dimensional linear model of surface reflectance.
All the experimental results are compared to those of the Max-RGB and Gray-World
algorithms tested on the same images. These two algorithms are chosen for
comparisons because they are easy to implement and are widely used to perform the
function of auto-white-balance in digital cameras currently.
5.4.1. TIllumination estimation of Synthetic images

In this experiment, we used a simple feedforwatd neural network with two input
and two output nodes to approximate thernonlinear mapping between the center of
chromaticity histogram and the coefficients of basis functions of illuminants. The
weights of this neural network were adjusted by using back-propagation (BP) learning
rule. To train the neural network, we need a set of images under different illuminants
whose spectral power distributions are known in advance. However, such spectral
information is not easy to measure in natural surrounding environments. To solve this
problem, we use synthetic images with known illumination distributions in this
experiment to produce the required training samples for the BP network. We also
produce a set of testing images using the same procedure for testing the performance
of the trained network.

To synthesize the images of a scene under different illuminants, we need to have

the spectral reflectance R(A) of different colors. In this experiment, we use the
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colors defined in the color chart, AgfalT8.7/2 [75], to form the colors in our synthetic
images. Although AgfalT8.7/2 consists of only 288 colors, they are enough for

representing the colors of normal pictures. With the spectral reflectance R(A) of all

288 colors and the spectral power distribution of the standard D illuminants for
different color temperatures, we can then apply the linear combination of CIE’s color
matching functions to synthesize the images of a scene under different illuminants. As
listed in Table 5-2 and explained in Section 5.3.2, we select 28 standard D illuminants
with 28 different color temperatures falling in the range of 4000°K~25000°K as the
light sources for image synthesis. On the other hand, to make the synthetic images
having the scenes close to the real captured ones, we randomly chose 50 colors from
the AgfalT8.7/2 color chart to form the colors in the images for the training and
testing of BP network. We then apply the algorithm proposed in Section 5.3.1 to find
the center values of chromaticity histogram, (Cx, C,),-on the synthetic images. The (C,,
C,) values of the synthetic images. for eachi"6f the 28 color temperatures are collected
and used as the inputs of the training network, and the coefficients of the basis
functions of illuminants, (e;, e,), corresponding to each of the 28 color temperatures
are used as the desired outputs of the network. The learning constant in the BP
learning rule is set as 0.8, and the convergence criteria in the form of output RMS
error defined below is set as 0.005.

To evaluate the learning accuracy of the BP network, we define the network

output error, Er, as the RMS error on the u-v chromaticity space:

Er=J(uly —iip)* + (v —,)° (5-19)
where (u,,v,) and (u,,v,) are the chromaticity co-ordinates of the real

(synthetic) and estimated illuminants, respectively. Since the u-v color space is a

uniform distributed color space, we use it as the basis for error calculation in order to
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keep the same error scale. On the other hand, because the two output values of the BP
network represent the coefficients of the two basis functions of illumination, we have
to convert them into the values of x-y chromaticity for computing the RMS errors in
Eq. (5-19). This conversion can be achieved by the following equation from the
formula of standard D illuminants:

s —0.7467¢, +0.8496e, +40.8192 an
P 15.3775¢, +0.2149¢, +132.6327

. 0.7655¢, +0.3036e, +42.5475
Yp = ) (5-20)
15.3775¢, +0.2149, +132.6327

where e; and e, are parameters whose values are related to the chromaticity
co-ordinates (X,,),) . The values of (X,,7,), e, and e, correlate color
temperatures in the range 4000°K .to- 25000°K.. We can then use the CIE’s formula
to transform (X,,y,) into (i,,V,), which can be used directly to calculate the
RMS errors in Eq. (5-19).

Table 5-3 lists the estimation:RMS errors' of the proposed algorithm under
different color temperatures in the second column. The estimation RMS errors of the
Max-RGB and Gray-World algorithms on the same synthetic images are also listed in
the third and fourth columns of Table 5-3 for comparison. Table 5-3 clearly shows the
superiority of the proposed approach over the compared ones; the proposed algorithm
always produces much smaller RMS errors than the other two. Although the
Max-RGB and Gray-World algorithm produces smaller RMS errors in a few synthetic
images, the RMS errors produced by the proposed algorithm on these images are also
quite small. These exceptional cases are possible and reasonable, since we choose
different combinations of colors randomly from the AgfalT8.7/2 color chart to form

the synthetic images, and the compared algorithms might have better performance on
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the chosen colors. Overall, the proposed algorithm has better and stable estimation

accuracy than the compared counterparts.

Table 5-3. The average RMS errors of illumination estimation of the proposed and
compared algorithms on training synthetic images for an ideal camera
(number of colors is 50).

Color temp. Error (RMS)
(°K) Apgr‘;ch Gray-World | Max-RGB
4000 0.0002 0.0069 0.0035
4200 0.0024 0.0044 0.0138
4400 0.0011 0.0099 0.0068
4600 0.0014 0.0057 0.0032
4800 0.0020 0.0052 0.0046
5000 0.0023 0.0072 0.0016
5200 0.0025 0.0071 0.0015
5400 0.0012 0.0036 0.0014
5600 0.0010 0.0062 0.0048
5800 0.0020 0.0065 0.0033
6000 0.0030 0.0070 0.0050
6400 0.0023 0.0083 0.0032
6800 0.0022 0.0061 0.0062
7200 0.0013 0.0059 0.0067
7600 0.0010 0.0053 0.0021
8000 0.0025 0.0064 0.0066
8500 0.0048 0.0083 0.0033
9000 0.0011 0.0058 0.0037
9500 0.0030 0.0065 0.0034
10000 0.0014 0.0054 0.0036
11000 0.0026 0.0050 0.0153
12000 0.0025 0.0043 0.0058
13000 0.0018 0.0076 0.0020
14000 0.0024 0.0062 0.0131
15000 0.0032 0.0066 0.0020
17000 0.0019 0.0057 0.0049
20000 0.0022 0.0065 0.0035
25000 0.0036 0.0058 0.0017
Avg. Error 0.0021 0.0063 0.0049
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We use the same synthesis procedure as mentioned in the above to produce
another set of synthetic images for testing of the trained BP network. These testing
sets of images are synthesized according to the illuminants different from those used
in producing the training set of synthetic images. A total of 40 colors are randomly
chosen from the 288 colors in the AgfalT8.7/2 color chart to form a testing image.
The proposed and compared approaches are then used to estimate the illumination of
each testing image. The estimation RMS errors are listed in Table 5-4, where each
value in the table is the average RMS error over 20 synthetic images of a specific
illuminant. The results still indicate the superiority of the proposed scheme over the
other two compared algorithms even in the cases of unlearned surrounding
illuminants.

Finally, we want to find out:how the number of colors in an image affects the
estimation accuracy of the surrounding illumination.- Under a specific illuminant, we
randomly choose different numbers'of-eolorsyfrom the AgfalT8.7/2 color chart to
form the synthetic images, starting’ from.the number of five and increasing by five
colors each time until 35 colors in total. Hence, we have seven synthetic images for a
specific illuminant, with the numbers of colors in the seven images being 5, 10, 15, ...,
50, respectively, all chosen randomly from the AgfalT8.7/2 color chart. For a specific
illuminant and a specific number of colors, a total of 25 images are synthesized. Again,
we use the proposed and compared algorithms to estimate the illumination of these
synthetic images. The estimation RMS errors are shown in Fig. 5-4, where each value
in the figure is the average RMS error over 175 (25x7) synthetic images of a specific
illuminant. The results indicate that the estimation error of each algorithm increases as
the number of colors in an image decreases. This is reasonable since higher number of

colors can provide more information of spectral power distribution of the surrounding
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illuminant. However, in any case, the proposed algorithm still possesses the best

performance.

Table 5-4. The average RMS errors of illumination estimation of the proposed and
compared algorithms on testing synthetic images for an ideal camera
(number of colors is 40).

Color temp. Error (RMS)

o Our
K . -
(°K) pproach Gray-WorldMax-RGB

4300 0.0025 0.0072 | 0.0053

5300 0.0022 0.0065 | 0.0043

5800 0.0040 0.0086 | 0.0103

6600 0.0039 0.0067 | 0.0038

7400 0.0053 0.0061 | 0.0109
8200 0.0025 0.0070 | 0.0048
10500 0.0029 0.0067 | 0.0035
Avg. Error 0.0033 0.0070 | 0.0061
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Figure 5-4. The average RMS errors of illumination estimation of the proposed and
compared algorithms on testing synthetic images with respect to
different number of colors in an image.
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5.4.2. Tllumination estimation of real images for color recovery

In the second experiment, we test the performance of the new algorithm on real
images under natural illumination. These images are captured from Olympus DC460
still digital camera under different color temperatures. For proper control of different
color temperatures, these images are captured inside a Color-Viewing (CV) box
(made by GAIN Associates Inc., No. D1729). In the CV box, there are four different

light sources, D ~ F ~ A and UV, producing four different color temperatures

(D=6500°K, F=4200°K, A=2850°K). When capturing the images inside the CV box,
we have to turn off the auto-white-balancing function in the digital camera such that
the proposed approach can be fully exploited. To apply the proposed illumination
estimation scheme to the captured images, we have to find the matrix that transforms
the camera R, G, and B signals into C/E.1931 XY, and Z values at first. The 3x3
matrix is constructed so that the final CIE’s X¥Z mean square errors between the
reflection print and the camera image are minimized under the constraint that the
neutral colors will be kept neutral “after the' color transformation. Let us take the
Olympus DC-460 still camera as an example. Its chromaticity transformation between
the phosphor primaries and the C/E’s XYZ primaries are listed in Table 5-5. Using the

relations developed for camera calibration [76], [77], we have

X, x, x| [06237 02640 0.2033
V=|y v, v |=|03313 0.6044 0.0892 ], (5-21)
z, z, z;| [0.0450 0.1316 0.7075

noor n 1.0 0.0 0.0
U=|g, g g|=/00 10 0.0/, (5-22)
b, b, b, 0.0 0.0 1.0

a, r, ] [1.0 0.0 00]'T1/3] [1/3
a,|=U7" g, |=|00 1.0 00| |1/3|=|1/3] (5-23)
a, b,| 100 00 1.0] |1/3] [1/3
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B X, 0.6237 0.2640 0.20337]'[0.3501 0.2904
B, =V y,[=]03313 0.6044 0.0892| |0.3693 |=|0.4073| (5-24)

yia z, 0.0450 0.1316 0.7075| |0.2806 0.3024
and
B/ 0 0.
D=| 0 BJa, 0 | (5-25)
0 0 B,

The transformation matrix 4 =cVDU ™" is determined up to a constant factor c. The
convention is to choose the constant ¢ so that y is equal to 1 when 7, g, and b are set to
1. By doing so, we obtain the transformation matrix 4 as

0.5807 0.2705 0.1651
A=|03084 0.6192 0.0724|. (5-26)
0.0419 0.1348, 0.5744

Therefore, we have

r r
y|=Ag| ror g f=4 1y |. (5-27)
z b b z

Table 5-5. Camera primaries (1, g, and b are normalized by the maximum stimulus).
Stimulus r g b x y z
Red phosphor 1.0 0.0 0.0 [0.6237 |0.3313 |0.0450
Green phosphor | 0.0 1.0 0.0 [0.2640 |0.6044 |0.1316
Blue phosphor 0.0 0.0 1.0 ]0.2033 |0.0892 |0.7075
White 1/3 1/3 1/3 [0.3501 |0.3693 |0.2806

Table 5-6. The average RMS errors of AgfalT8.7/2 photographic print for the
image rerendered based on different illuminant estimation algorithms.

Average RMS Our Scheme | Gray-World | Max-RGB
Error
Error (RMS) 5.53 8.39 10.38
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Next, we can obtain the raw data of CIE’s XYZ of images by using the above
transformation matrix 4. The chromaticity histogram is computed at the same time.
Finally, we use our approach to estimate the surrounding illumination. By substituting
the estimation result into Eq. (5-10), we can obtain the color-corrected images for the
desired surrounding illuminant. Figs. 5-5~5-7 show the exemplar images in this
experiment. For each scene, we show four images: (a) the raw image captured by the
camera with different illuminants, (b) the rendered image using the illuminant
estimated by the proposed new algorithm, (¢) the rendered image using the illuminant
estimated by the Gray-World algorithm, and (d) the rendered image using the
illuminant estimated by the Max-RGB algorithm. Besides, in Fig. 5-5, we add a raw
image captured by the camera with D65 illuminants. Fig. 5-5(a) shows the
AgfalT8.7/2 color chart captured.iander the F illumination, and Figs. 5-5(b)~(d) are
the three images rendered for=illuminant D65 by the proposed, Gray-World, and
Max-RGB algorithms, respectively. It.1S-obvious that the rendered image based on the
surrounding illuminant estimation ‘of the.proposed algorithm is very close to the
image captured under the D65 illumination directly. In contrast, the performance of
the Gray-World and Max-RGB algorithms is worse. The quantitative performance
measurement is listed in Table 5-6. Table 5-6 shows the average RMS errors of colors
in all the charts between the images captured under the D65 illumination and those
rendered by different illumination estimation schemes. Fig. 5-6 shows the results on
the image of the Macbeth ColorChecker captured under the D50 and D75 illuminants,
respectively. Fig. 5-7 is the photo scene of the campus of our university. There is a
dominant color caused by the grassplot on the photo. The results show that the
proposed algorithm is less sensitive to the dominant color than the other two

compared algorithms.
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(a) (b)

© & ama @

Figure 5-5. (a) Raw camera image captured under the F illumination. (b)-(d)
Color-corrected images for the D65 illumination by the proposed
algorithm, the Gray-World algorithm, and the Max-RGB algorithm,
respectively. (e) Raw camera image captured under the D65
illumination.
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(a) (b) (c) (d)

Figure 5-6. (a) Raw camera image captured under D50 (first row) and D75 (second
row) illuminations. (b)-(d) Color-corrected images for the D65
illumination by the proposed algorithm, the Gray-World algorithm, and
the Max-RGB algorithm, respectively.

(a) (b) (c) (d)
Figure 5-7. (a) Raw camera image captured under daylight and evening
illuminations with a dominant color of grassplot. (b)-(d) Color-corrected
images for the D65.illumination by the proposed algorithm, the
Gray-World algorithm, and the Max-RGB algorithm, respectively.
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5.5. Concluding Remarks

In this chapter, a new approach to surrounding illumination estimation of an
image was proposed. The proposed algorithm estimated the illuminant based on
chromaticity histogram of the image. And a neural network with back-propagation
(BP) learning algorithm was used to estimate the spectral power distribution of the
illuminant according to the center values of the chromaticity histogram. The proposed
algorithm also eliminated the interference of dominant color to illumination
estimation through low-pass filtering of the chromaticity histogram. The illumination
estimation based on the chromaticity histogram can avoid unrealistic assumptions on
the color images and provide high efficient and robust estimation. On the other hand,
the use of the BP network provides good interpolation over a small number of
different illuminants and gives highly estimatiom. accuracy. Two experiments were
performed to evaluate the petformance of' the  ptoposed algorithm. In the first
experiment, the proposed algorithm wasusedto estimate the illumination of synthetic
images, and the estimation RMS etrotrs were calculated. In the second experiments,
the proposed algorithm was used to estimate the spectral power distributions of the
illuminants, and then the colors of the image were corrected based on the
finite-dimensional linear model of surface reflectance. Two popular existing
illumination estimation algorithms, the Gray-World and Max-RGB algorithms, were
also applied to the same images in these two experiments. Performance comparisons
have demonstrated the superiority of the proposed algorithm both in estimation

accuracy and robustness for color constancy.

102



6. Conclusion and Perspectives

In this thesis, we proposed two new reflectance models for 3D surface
reconstruction. First, a novel 3D image reconstruction model was proposed. This
method considers the components of both diffusion and specular reflection in the
reflectance model. We used two neural networks with symmetric structure to estimate
these two reflection models separately and combined them with an adaptive ratio for
each point on the object surface. The;proposed network estimates the point-wise
adaptive combination ratio of the diffusion and specular intensities such that the
different reflecting properties of each point on the object surface can help to achieve
better performance of surface reconstruction. The proposed symmetric neural network
structure with adaptive learning procedure does not need any special parameter setting
and the smoothing conditions. It is also easier to achieve the convergence condition
and to make the system stable. The critical parameters, such as the light source and
the viewing direction and so on, are also obtained from the learning process of the
neural network. The obtained normal vectors of the surface can then be applied to 3D
surface reconstruction by enforcing integrability approach.

Secondly, we further proposed another new nonlinear reflection model consisting
of the diffusion and specular components. We do not need to separate the two
components in the proposed nonlinear reflection model. Using the unsupervised
non-linear ICA network for solving photometric stereo problems does not need any

desired outputs and the smoothing conditions. It is easier to achieve the convergence
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condition and make the system stable.

For 3D surface reconstruction, several conclusions are listed below. (a) When we
estimate the surface shape, the success of the reflectance model depends on two major
components, including the diffusion and specular components. (b) In our methods, we
do not know the locations of light sources for solving the photometric stereo problems.
(c) The proposed symmetric neural network structure and the unsupervised
post-nonlinear ICA network do not need any special parameter setting and the
smoothing conditions.

On the other hand, we proposed a new approach in the surrounding illumination
estimation of an image for color reconstruction. The proposed algorithm estimated the
illuminant based on chromaticity histogram of the image. And a neural network
back-propagation (BP) learning algorithm is used to estimate the spectral power
distribution of the illuminant -according to..the .center values of the chromaticity
histogram. The proposed algorithm also-eliminated the interference of the dominant
colors and illumination estimation'‘through-low-pass filtering of the chromaticity
histogram. The illumination estimation based on the chromaticity histogram can avoid
unrealistic assumptions on the color images and provide the highly efficient and
robust estimation. Compared with the methods based on neural networks which we
proposed before, the size of their architectures is huge. Those methods need many
connecting parameters and are not easy to implement on hardware. The size of our
architecture is much smaller; hence our methods can estimate the relative parameters
of outside sources effectively and rapidly. Thus, we could reconstruct the color of 3D
objects by using these parameters. The comparisons in performance have
demonstrated the superiority of the proposed algorithm both in estimation accuracy

and robustness for color constancy.
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