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D O U B L E - B A L L  B A R  (DBB)  M E A S U R E M E N T  A N D  D I A G N O S I S  

J.-M. LAI,~ J.-S. LIAO~f and W.-H. CHIENGI":~ 

(Received 25 September 1995) 

Almtraet--The purpose of this paper is to study nonlinear geometric errors in multi-axis machine tools. A 
general mathematical model for guideway systems that can be applied to high-precision machine tools such as 
CNC lathes is introduced. Using this model, most nonlinear error sources in the gnideway systems can be 
diagnosed by measuring the contouring error using a double-ball bar (DBB). Diagnostic software has been 
developed to identify system parameters based on the least-squares estimation method. Inputting two or three 
contouring errors pattern data into this software enables parameters to be identified quickly, based on the 
nonlinear model. © 1997 Published by Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The relative positioning accuracy of a multi-axis machine tool can be affected not only 
by the leadscrew pitch or straightness, but also by the orientation phenomena such as Abbe 
errors [ 1] or by general geometric characteristics. Besides the geometric characteristics, the 
dynamic characteristics which vary according to feed rate can affect the quality of con- 
touring accuracy during the two- or three-dimensional contouring machining. Mismatches 
between serve-loop parameters [2, 3], such as current-loop gain, velocity-loop gain and 
position-loop gain, can also directly affect the contouring accuracy. 

Theoretical methods for analyzing and diagnosing motion errors from the pattern of 
contouring errors found using the DBB test equipment, as shown in Fig. 1, have been 
discussed in several research reports. Knapp [4] studied the relationship between the con- 
touring error patterns, plotted in polar coordinates, and the machine's motion error. How- 
ever, his method for diagnosing motion error is too rough and the magnitude of the motion 
error cannot be calculated. Kunzmann et  al. [5] considered the characteristic of a two- 
dimensional matrix including the squareness and longitudinal parameters to formulate a 
motion-error description. This formulation only interprets the geometry of the longitudinal 
and squareness errors. Kakino et  al. [6] described various motion errors using error vectors. 
However, the formulation they developed cannot systematically describe the various con- 
touring errors, and their characteristic patterns of motion errors have not been fully applied 
to the purpose of various motion errors. 

Recently, Jeng et  al. [7] established mathematical models using linear modelling and 
second-order models. Their method was found to be capable of resolving many error 
parameters such as center-offset errors, roll-yaw-pitch errors and serve-gain mismatches. 
However, this error model cannot match the high precision requirements of general guide- 
way systems, such as the straightness requirements for a lathe machine. 

2. COORDINATE SYSTEMS 

This paper is focussed on the geometric errors in multi-axis machine tools. We establish 
a general mathematical model, called the high-order guideway coordinate system, to satisfy 
high-precision requirements. We also derive diagnostic procedures for motion-error 
sources based on two or three pattern data obtained from a circle-contouring test. Accord- 
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Fig. 1. Configuration of the DBB test experiment. 

ing to this diagnostic method, nonlinear guideway errors in high-precision NC machines 
such as lathes can be accurately diagnosed. 

In this paper, we assume guideways (X, Y, Z) are deflected corresponding to arbitrary 
roll-yaw-pitch motion errors. Using the Taylor expansion, we derive nth-order equations 
to match the true roll-yaw-pitch errors. For lathes and grinding machines that require 
accurate straightness parameters, the general model can be used to precisely isolate sources 
of motion errors. In formulating the motion errors in NC tools, it was assumed that the 
X guideway was always mounted on top of the Y guideway, Fig. 2(a) shows a typical 
machining center, and Fig. 2(b) shows roll-yaw-pitch angles. In the following description, 
the superscripts (') and (") are used for guideway coordinates and control coordinates, 
respectively. According to the nonlinearity modelling shown in Fig. 3, the contouring error 
AL may be obtained through a sequence of coordinate transformations. 

3. X-GUIDEWAY ERROR 

3.1. x- and y-yaw error (guideway bending on the x-y plane) 

According to Fig. 4, the x-yaw error may be formulated as follows: 

Yx-yaw = ~ a~  "~, 
k = O  

(U 

where the x-yaw angle is a function of the x coordinate: 
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Fig. 2. (a) Typical machining center--X-guideway is mounted on the top of the Y-guideway and roll, yaw and 
pitch directions. (b) The roll, pitch and yaw angles of the guideways. 
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Fig. 3. X-, Y- and Z-guideway relative to absolute coordinates for n-order nonlinearity modeling. 

Y 

/ 
/ 

/ 

11 

y ---- ~ a k  xk 
/ x-yaw k=0 

/ 

X 

X-guideway 

Fig. 4. X-guideway relative to absolute coordinates for x-yaw error, 

0~ = t a n -  ~ d x  = t a n -  ] ak.k.x k-  1~  ak.k.x k-  ~ f o r  s m a l l  aks.  

k = O  k = O  

A c c o r d i n g  to Fig .  5, the y - y a w  er ro r  m a y  be  fo rmu la t ed  as fo l lows :  
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Fig. 5. X-guideway relative to absolute coordinates for y-yaw error. 
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X y - y a w  = ~bky k, 
k = O  

where the y-yaw angle is a function of  the y coordinate: 

dx n 
Or = - t a n - '  - -  = - t a n  - l  ~ bk.k.y k-' .  

dY k=O 

The X-guideway is yawed and yields a squareness error of  

Y y - y a w  = Oy'(X-- ~ bkyk). 
k = O  

From Equations (1)-(2)  we obtain the error sum: 

Yx-, y--yaw = ~ a~ ok+ Oy'(X-- ~ b~'). 
k = O  k = O  

Let  

xx_,  r - r a w  =f(Ox), 

we then obtain 

n 

Yx-- v--yaw = a*'fk( ox) q" Oy'(f( Ox)-- ~ b~Yk) ,  

k = O  k = O  

where ak and b k are error parameters, f(~gx) denotes the x-axis world coordinate. 

3.2. x-Pitch error (X guideway bending around the z-axis) and y-roll error (Y 
guideway twist) 

According to Fig. 6, the x-pitch error may be formulated as follows: 

n 

Zx--pitch = ~ d k  x k ,  

k = O  

Z 
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(2) 

(3) 

(4) 
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Fig. 6. X-guideway relative to absolute coordinates for x-pitch error. 
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where the x-pitch angle is a function of the x coordinate: 

tl n 

~bx = tan-' ~ -k.dk.x k - l = -  Z k'dk "xk-I for small dks. 
k=O k=O 

According to Fig. 7, the y-roll error may be formulated as follows: 

n - -  1 

Oy = tan-I X Ckyk 

k=O 

and 

Let 

n - I  

Zy--roll = - -X tan~y = -x" ~ cky k. 
k=O 

From Equations (4) and (5), we obtain the error sum: 

n--I ~ 

Zx--pitch. y-yaw = i X "  Z Ckyk "]" dkxk" 

k=O k=o  

Xx-pitch, y-roll = g(dpx), 

(5) 

i 
! 
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Fig. 7. X-guideway relative to absolute coordinates for y-roll error. 
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we then obtain 

n 

Zx--pitch, y--roll = --g(4~x)'l~y "~" Z d k ' g k ( ~ x ) '  
k = o  

where ck and dk are error parameters, and g(~b,) denotes the x-axis world coordinate. 

4. Y-GUIDEWAY ERROR 

4.1. y-Yaw error (Y-guideway bending on the x-y  plane) 

According to Fig. 8, the y-yaw error may be formulated as follows: 

x =  ~ b g y  k, 
k=O 

where the y-yaw angle is a function of the y coordinate: 

d x  
n 

Oy = - t a n - '  dy tan- '  ~]  bk.k.y k-' 
k=0  

Let 

Yy - yaw ---- h(0y) ,  

we then obtain 

Xy-yaw = L bk'hk(Oy)' 
k=O 

where bk is an error parameter and h(Oy) denotes the y-axis world coordinate. 

4.2. y-Pitch error (Y-guideway bending around the z-axis) 

According to Fig. 9, the y-pitch error may be formulated as follows: 

z =  ~ e ~ ' ,  
k=O 

where the y-pitch angle is a function of the y coordinate: 

Y 

\ 
X y - y a w  

n 

= Y~bk yk  
k=O 

. Y-guideway 

=- X 

Fig. 8. Y-guideway relative to absolute coordinates for y-yaw error. 
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n k 
Z y-pitch ~ Z e k Y 

k=O 

. . .  Y-guideway 

Fig. 9. Y-guideway relative to absolute coordinates for y-pitch error. 

(~y = tan-  1 dyy = tan-  1 e,.k.yk- 1. 
k = 0  

Let 

Yy-pitch = l(ffv), 

w e  then obtain 

n 

Zy--pitch = Z e,'ff(~y), 
k = O  

where  b, is an error parameter and l(Oy) denotes  the y-axis  world coordinate.  

5. Z-GUIDEWAY ERROR 

5.1. z-Yaw error (Z-guideway bending about x-axis) 
According to Fig. 10, the z -yaw error may be formulated as fol lows:  

n 

X ~- Z l)kZk' 
k = O  

where the z - y a w  angle is a funct ion o f  the z coordinate: 

(7) 

Z 
\ n 

X z_yaw ~-- ~'~Vk zk  
k=O 

. Z-guideway 

.~ X 

Fig. 10. Z-guideway relative to absolute coordinates for z-yaw error. 
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n 

dx ~ Vk.k.zk_,. Oz = tan-1 _~ = tan-t 
k=O 

Let 

Z z - y a w  : m(Oz), 

we then obtain 

695 

Xz_yaw = ~ vk'mg( Oz). 
k = O  

(8) 

5.2. z-Pitch error (Z-guideway bending about y-axis) 

According to Fig. 11, the z-pitch error may be formulated as follows: 

y =  ~SkZ k, 
k=O 

where the z-pitch angle is a function of the z coordinate: 

dPz = - tan-  1 dy = - tan-  1 ~ Sk.k.zk_l. 
dz k=O 

Let 

Zz--pitc h -~" P( O:), 

we then obtain 

Yz-pitch : ~ Sk'pk(t~z), (9) 
k = O  

where Vk and Sk are error parameters, and m(19z) and P(~z) denote the z-axis world coordi- 
nates. 

HTH 37-5-E 

Z n 

"N Y z-pitch ~ ~'~Sk zk 
k=O 

. Z-guideway 

Y 

Fig. 11. Z-guideway relative to absolute coordinates for z-pitch error. 
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6. X-GUIDEWAY COORDINATE 

According to the X-guideway deformations in Equations (3)-(5), any point in the CNC 
work zone (x', y', Z' )gu ideway-coord ina tes  c a n  be transformed into world coordinates (x, y, Z)world- 
. . . .  dinates by the following transformation [8]: 

I 
X 

1 

w o r l d -  coordinates 

I 
- 1 - - ( 0  x "t- Oy) ( ~)x -st- ~Jy) 0 

0 1 0 Yx , y--yaw 

0 0 1 Zx--pi tch,y--rol l  

-0 0 0 1 

X 

p 

t_l 

x = x'-y"(Ox + Oy) .4- z t , (~)x  -1- I~ly) 

y' + arff( Ox + 0,,.0~0~)- b~yk). 

z'-g(6x)'4J~ + ~ arg~(4)~) 
k = l  

g u i d e w a y -  coordinates ( 1 O) 

7. Y-GUIDEWAY COORDINATE 

According to the Y-guideway deformations in Equations (6) and (7), any point in the 
CNC work zone (x', y', Z')guideway . . . .  dinates can be transformed into world coordinates (x, 
Y, Z)world . . . .  dinates by the following transformation: 

° °  Xy_yaw 

0v 1 -~by 0 
wor ld -coo rd ina t e s  ----" 

0 1 Z y - p i t c h  

1 0 0 1 

t guideway --coordinates 

l l  

(11) 

" n 

x = x" + ~ bk'hk(O ) Y 
k = O  

y = y" + xt'Oy--Z"~)y. 

Z = Z' + ~ e~.P(~by) 
k = O  

8. Z-GUIDEWAY COORDINATE 

According to the Z-guideway deformations in Equations (8) and (9), any point in the 
CNC work zone (x', y', Zt)guideway_coordinates c a n  be transformed into world coordinates (x, 
Y, Z)world . . . .  dinates by the following transformation: 

I 
X 

1 

wor ld -coord ina t e s  ----" 

1 0 0 Xz - yaw 

0 1 0 Yz-pitch 

- O z 6 z l  0 

0 0 0 1 

[x,] y' 
Zp guideway --coordinates 

k l J  

(12) 
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i1 

x = x" + ~ vk'mk(Oz) 
k = 0  

Y' n 
y = + ~ sk'Pk(dPz). 

k=O 

Z = Z'-x"Oz + y"dpz 

9. X, Y, Z-GUIDEWAY DEFORMATION 

In Equations (10)-(12), roll-yaw-pitch errors are small (several microns), and so the 
roll-yaw-pitch error coupling terms can be ignored. The superposition principle is applied 
to yield the transformation between the guideway coordinate system and the world coordi- 
nate system as follows: 

x = x" + bk'hk(Oy) + ~ vk'mk(Oz)--y "(0~ + 0y) + Z"(~bx + ~y) 
k = 0  k = 0  

t~ ~ n 

Y = Y' + ~ agfk(Ox) + Oy(j~Ox)-- b~Y k) dr Z skpk(~)z ) dr xt'Oy--Zt'~)y. 
k = O  k = O  k = 0  

z = z -g(4~)'qJy + dk'gk(4~) + ek'l (dpy)-x "Oz + Y"4)z 
k= 1 k = O  

(13) 

In the transformation between control coordinates and guideway coordinates, it is 
important to note that the origin, denoted by Ox, Or, Oz, and the dimension scale, denoted 
by Sx, Sy, Sz, may not be identical to one another. The relationship between the control 
coordinates and the guideway coordinates may be expressed as follows: 

I~i = sx(Ox + x") 
X Sy(Oy + y"). 

Sz(O~ + Z") 

Substituting the above equation into Equation (13), the geometrical relationship between 
the control coordinates and world coordinates may be obtained as follows: 

n 

S~( Ox + x") + Z bk'hk( Oy) + rk'mk( Oz) 
k = O  k=O 

n 

Sy(Oy d¢. y") + ~agfk(Ox) + Oy(f(Ox)- Z b k y  k) dr ~Skpk ( l~z )  
k = 0  k = 0  k = O  

n n 

k= 1 k=O 

-Sy (Oy  dr y"l'(Ox--Oy) + Sz(Oz + Z")'(¢hx + [~y)] 

Sx(O x dr .~t)°Oy-az(Oz dr zPt).~y 

- S x ( O  x dr xtt).Oz dr Sy(Oy dr y"l.~b z 

(14) 

10. DOUBLE-BALL BAR COORDINATE SYSTEM 

In practice, the vertical projection point of the fixed socket position of the DBB, ro, on 
the xy-plane denoted by r"o may not coincide with the center of circular motion. The 
projection point r"o and moving socket r"l in control coordinates may be written as 
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~H 0 I 
Xtt "1- ex] 

y"o 0 ey 

and 

IX " o + roCOS~] 

r"l = ]y"o + rosin~], 

L ez J 

where ex, ey and e~ are the offset distance associated with the x-, y- and z-axis, ro is the 
radius of circular motion and ~ is the angle of circular motion, as shown in Fig. 12. 
Substituting the above relation into Equation (19), the variation vector r~-ro may be 
expressed as follows: 

__! ro 

I I  

~-~ ro 

/ ,  

ex  

S1 

r 0 

SO 

Fig. 12. The schematic diagram for offset-center error. 

.~ X 
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Sx(roCOS~-ex) 

r , -ro  = Sy(rosin¢-ey) + akfk(o~,) - a~fk(O~o ) + Oy,(f(O~t)-- bky~O 

[. Sz(Oz + ez-h)-g((~x,).@y , + g(~xo)'d/yo 
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k = O  k = O  k = 0  k = 0  

-- Oyo(f( Oxo)-- ~ bkY~o) ) "1" Z skpk( ~)Zl ) -  ~ skpk(t~bzo ) 
k = 0  k = 0  k = O  

dk.gk( ~b~,)- ~ dk'gk(~bxo) + ~ ek'Ik((~)yl ) -  ~ ek'lk(~by o) 
k =  l k =  I k = O  k = O  

-Sy(Ov + Yo" + rosin~).(Ox~ + Oy,) + Sy(Oy + Yo" + ey)'(O~o + Oyo) ] 

J Sx(Ox + Xo" + roCOS~).Oy,-Sx(O~ + Xo" + ex)'Oy o 

-Sx(Ox + Xo" + roCOS~)'Oz, + Sx(O~ + Xo" + e~)'Ozo 

"Sz(Oz + e~).(dp~, + ~by,)-Sz(O z + h)'(dPxo + ~Jyo ) 1 

-Sz(Oz + Yo' + ez)'~Oy, + Sz(Oz + h)'~y o J, 

Sy(Oy + Yo' + rosin~).4)z,-(Oy + Yo' + ey).4% 

(15) 

where the magnitudes of vectors Xo, Yo and Zo in world coordinates are very close to the 
magnitudes of vectors x'0 and Y'o, Z'o in guideway coordinates, and the magnitudes of 
vectors x~, y~ and z~ in world coordinates are also very close to the magnitudes of x'~, y'l 
and z'~ in guideway coordinates. 

! 1. ANALYSIS OF MOTION ERRORS FOR A THIRD-ORDER LATHE GUIDEWAY SYSTEM 

Because of the high precision straightness requirements of lathes, third-order or higher 
recognition functions are necessary. Later, we will demonstrate a good consistency 
between the input simulation data and third-order motion errors. 

The motion errors for third-order guideway systems can be obtained from Equation (15) 
and the following equation: 

AL = II r~-ro II -Zo.  (16) 

(1) Center-offset error. From Equation (16), we can derive the center offset error ex 
in the x-direction as follows: 

AL = i ~  + h 2 + e2-2exroCOS~ - ~ o  + h 2 ~ -  ex .r0cos~. (17) 

Similarly, the contouring error AL due to center-offset error ez in the z-direction may 
be derived as follows: 

e Z 
A L = -  ~ .Losing. (18) 

(2) Positioning scale error. Applying Equation (16) to analyze the positioning scale 
error Sx in the x-direction, the contouring error hal may be formulated as 
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AL = ~/h 2 + ~(sin2ff + ~cos2~) - ~00 + h 2-~ 4(Sx-  1) 
~ 0 +  h 2 

- -  "COS2~ ". ( 1 9 )  

Similarly, the contouring error AL due to the position scale error Sz in the z-direction 
is derived as follows: 

~(Sz- 1 ) 
AL= ~ .sin2~. (20) 

(3) Straightness error. To simplify analysis, the straightness error can be divided into 
three types of motion errors. 
(3.1) Yaw motion error-guideway bending on the xz-plane. From Equation (16), the 
contouring error AL resulting from the Z-guideway bending may be expressed as fol- 
lows: 

A L ~ - ~  + h2-2~o(b2rosin~ + 2b3~sin20cos~'sin~ " - ~oo + h 2 - 1 

(r3ob2.sin2~cos~ + 2rgob3.sin3~cos~). 

(21) 

Similarly, the contouring error AL resulting from the X-guideway bending may be 
expressed as follows: 

1 
AL~ ~ (r3oa2.cos2~sin~ + 2r4oa3.cos3ffsinO. (22) 

(3.2) Pitch 
contouring 
as follows: 

motion error-guideway bending about the y-axis. From Equation (16), the 
error AL for the Z-guideway bending about the y-axis may be expressed 

A L . ~  + h 2 + 2e,hrosin~ + 2e2h~sin2~ + 2e3h~sin3~ - ~ o  + h 2--- (23) 

1 
- -  (elhrosin~ + e2h~sin2~ + e3hr3ob3sin3~). 

Similarly, the contouring error AL resulting from the X-guideway bending about the 
y-axis may be expressed as follows: 

1 
AL-~ ~ .(dlhrocos~ + d2h~cos2~ " + d3h~cos3~). 

V8+h  
(24) 

(3.3) Roll Motion Error-Guideway Twist. From Equation (16), the contouring error 
resulting from the Y-guideway twist may be expressed as follows: 

AL~x/r2oo + h 2 + 2cohrocos~ + 2clh~cos~sin~ + 2c2h~cos~sin2ff - ~oo+ h 2---- 

1 
(cohrocos~ + clh~cos~sin~ + c2h~cos~sin2~). (25) 

~ / ~ + h  "~ 

12. LEAST-SQUARE ESTIMATION FOR LINEAR FORM AND MOTION ERROR DIAGNOSIS FOR 
THIRD-ORDER SYSTEMS 

We are considering the fitting function y, which is a linear combination of several known 
functions fks that have the following form: 



Modeling and analysis of nonlinear guideway for double-ball bar (DBB) 701 

y(~) =f(~; k,,kz ..... kin) 

= ktfl(~,h) + k2f2(~,h) + ... + kmfm(~,h), (26) 

where the dependent variable y is linear with respect to the constants k~, k2, k3 ..... kin, 
is the set of fitting data, and h denotes the height of the moving socket from the measure- 
ment table. 

Letting Dj~(~) denote the ith datum of the jth pattern data set, we can derive the follow- 
ing equations: 

~rkr '~ j~i ( fk ) i ' ( f r ) i  ~- ~j~i ( fk) i 'Dj i ,  k = 1 , 2 , 3  . . . . .  m.  (27) 

The solutions for Equation (27) are the optimum coefficients for least-squares function 
fitting. Then the diagnosis based on the result of the DBB circular test can be transformed 
into a parameter identification problem based on the least-squares method. 

For third-order cases, the characteristic functions that describe the various motion errors 
may be found in Table 1 and are summarized as follows: 

r° {klCOS~ + k2sin~-k3ro cos2~-k4ros in2~  Y = - ~  

+ ks~ cosE~sin~ + k6~cos3~sin~ + kT~osin2~ cos~ 

+ ksr3osin3~ cos~ + k9hsin~ + klohrosinZ~ + kl ih~sin3~ 

+ kl2h cos~ + klahrocos2~ + kl4hr2oCOS3~ 

+ klshrocos~ sin~ + kl6h~cos~sin2~ + kl7hrosin~ + klshrocos~ + kl9ro 

+ kEorgo cosSff + k21~ sinS~ + k22rgo cosEsin4~ + k23rgocos4~}. 

(28) 

The different errors correspond to the coefficients of the fitting function in the follow- 
ing ways: 

1 
ex = kl, ez = k2, Sx = k3 + 1, Sz = k4 + 1, a2 = ks, a3 = ~ k6, bE = k7, 

Table 1. The characteristic functions of different motion errors 

Error Characteristic Harmonic order Dependency h 
function 

Center-offset ALoU~t ~ - A ex cos~ 1 No 
M-~ff~t ~ - a  e, sin~ 1 No 

Position scale ALs~ A ro (S~-1) cos2~ 0, 2 No 
ALs~ a ro (St-1) sin2~ 0, 2 No 

Yaw motion AL,x.y,w -A~o a2 cos2~ sin~ 1, 3 No 
- 2 A ~  a3 cos3~ sin~ r 0, 2, 4 No 

ALz.yaw - A ~  b2 cos~" sin2~ 1, 3 No 
-2A~o b3 cos~" sin3s r 0, 2, 4 No 

Pitch motion ALx_pitch hhd2 cos~ 1 Yes 
+Ahrod2 cos2~ r 0, 2 Yes 
+Ahro2d3 cos3~ r 1, 3 Yes 

ALz_itch Ahej sin~ 1 Yes 
+hhroe2 sin2~ 0, 2 Yes 
+Ah~ e3 sin3~ 1, 3 Yes 

Roll motion ALro. Ahroco cos~ 1 Yes 
+Ahro cl cos~ sin~ 2 Yes 
+Ah~ c2 cos~ sin2~ 1, 3 Yes 

Note: h=ro/L~,. 
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1 
b3 = ~ ks, el = -k9, e2 = -klo, e3 = --kll, dl + Co = -k12 

d2 =-k13, d3 =-k14, cl =-k15, c2 =-k16, to = ~ o +  h 2. 

In order to diagnose various motion errors, two input error patterns with different heights 
between the sockets and different motion directions will provide sufficient information for 
the linearity model. However, this amount of information is not sufficient to determine 
nonlinearity due to the undesirable numerical truncation. 

The nonlinearity model, which employs second- or third-order terms, tends to be more 
sensitive to numerical truncation than the linearity model. The existing numerical trunc- 
ation error can practically destroy correct classifications among closed-loop gain mis- 
matches [7]. Hence, to ensure numerical stability, a redundant set of input error patterns 
is necessary for nonlinearity model parametric identification. The extra input error pattern 
can be the same circular test experiment as the second one, but with a different tracing 
direction, for example counter-clockwise. 

13. EXAMPLE AND DIAGNOSIS 

From a purely mathematical point of view, both the height of the spindle and the radius 
of the circular motion should not qualitatively affect the diagnosis. However, in the practi- 
cal experimental set-up the resolution of the sampling data will be reduced when either 
the radius of the circular motion decreases, or the height of the free socket increases. 
Because the input patterns produce different amounts of sampling data, the weighting 
between the sampling data in the least-squares method is necessary, which may affect the 
optimum diagnosis result. Hence, to avoid weighting problems, it is suggested that the 
height of the spindle be around 20 mm and the radius of circular motion be around 
100 mm. In lathes, the fixed socket height should also be as small as possible. 

14. SIMULATION AND EXPERIMENT 

Simulations of contouring errors are specified in Table 2 and the diagnosis may be 
obtained from the second column of Table 3 (two patterns). A three-pattern example is 
shown in Table 4 and the diagnosis may be obtained from the second column of Table 
5. The corresponding values of motion errors were calculated based on the least-squares 
method. Comparing Tables 3 and 5, we observe that the error estimations from different 
models are both reasonably close to the given error quantities. The roll motion, yaw motion 
and pitch motion parameter errors show better results in Table 5. The main factor is that 
the coupling terms can be resolved more effectively by combining the different error 
patterns, and the amount of pattern data must minimally cope with the numbers of coup- 
ling terms. 

The experimental data, as shown in Fig. 13 (two patterns) and Fig. 14 (three patterns), 
were obtained from the experiments and detailed in Fig. 15. Diagnosis was based on 
experimental data, Tables 6 and 7 show the error estimation. Fig. 16 (two-pattern) and 
Fig. 17 (three-pattern) show the differences between the experimental pattern data and the 
recognition data. Comparing the experimental data with the error-estimation data in Figs 
16 and 17, we find that the recognition results from the three-pattern data diagnosis are 
better measured as variance than the recognition results from the two-pattern data diag- 
nosis. 

Table 2. Setting in software simulation for the input error pattern generation. 

Input error pattern Height (ram) Radius (ram) Tracing direction 

Number 2 31.225 95.00 CW 
Number 3 0.000 100.00 CCW 
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Table 3. Diagnosis from the simulation data based on the nonlinear (third-order) models, respectively 

Error causes Given Nonlinear model 

e~ (p,m) - 2 . 0  - 1.95678 
e: (p,m) - 3 . 0  -3.06134 
Backlash x (/xm) 1.0 0.9979 
Backlash y (p,m) 2.0 1.9983 
Sx 0.99999 0.99999 
Sy l.O0001 1.O0001 
Misalignment angle x 0.0380 0.0332 
Misalignment angle y 0.0350 0.0302 
Mismatch phase angle 0 0.0002 
at (squareness error) 3.0xlO -4 (rad) 3.36x10 -~ (tad) 
a2 2.2500x10 -7 2.2348x10-7 
a3 -5 .00  ×10-9 -8.38×10-9 
b2 2.5000x10 -7 2.5108x10 -7 
b3 5.00x10 -9 8 .38X10-9 
co+d~ 2.0x10 -4 2.6x10 -4 
cl 2.500x10 -6 3.339x10 -6 
c2 -5.000x10 -s -3.975x10 -s  
d2 6.0000xlO -7 7.0514x10 -7 
d3 - l . tx lO -8 - 3 x 1 0 - t l  
et 1.0xl0 -6 1.6x10 -6 
e2 1.50(}0(O10 -6 1.38841x10 -6 
e 3 - 1.500X10 -s  - 1.389x10 s 

Table 4. Data setting in software simulation for the input error pattern generation 

Input error pattern Height (mm) Radius (mm) Tracing direction 

Number 1 31.225 95.00 CCW 
Number 2 31.225 95.00 CW 
Number 3 0.00 100.00 CCW 

Table 5. Diagnosis from the simulation data based on the nonlinear (third-order) models, respectively 

Error causes Given Nonlinear model 

ex (/xm) - 2 . 0  -2.01348 
e~ (/zm) - 3 . 0  -2.99455 
Backlash x (/xm) 1.0 1.01230 
Backlash y (p,m) 2.0 1.95340 
S~ 0.99999 0.99999 
Sy 1.00001 1.00001 
Misalignment angle x 0.0380 0.0391 
Misalignment angle y 0.0350 0.0358 
Mismatch phase angle 0 0.0007 
al (squareness error) 3.00xlO -4 (rad) 3.18x10 -4 (rad) 
a2 2.2500x10 -7 2.2346x10 -7 
a 3 -- 5.00xl0 -9 --5.25×10 -9 
b2 2.5000×10 -7 2.5108X10 -7 
b3 5.00×10 -9 5.25X10 -9 
co+d~ 2.0000X 10-4 1.9566X 10-4 
c~ 2.50000x10 -6 2.46851x10 -6 
cz -5.000X10 -s  -4.637X10 -8 
dE 6.0000X10 -7 6.5281×10 -7 
d3 -1 .10xlO -a -6 .97x10 -9 
el 1.000x10 -4 1.056x10 -4 
e2 1.50000X10 -6 1.44459X10 -6 
e3 -- 1.50(O10 -8 -- 1.445X10 -8 
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Fig. 13. The experimental pattern data--two patterns. 
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Fig. 14. The experimental pattern data--three patterns. 

15. CONCLUSION 

We have introduced a general, mathematical model for machine tool guideway systems. 
This model is applicable to real guideway systems in machine tools and can be used to 
analyze high-precision machine tools. We can easily convert the general model to a simpli- 
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Fig. 15. The experimental equipment. 

Table 6. Data setting in software simulation for the experiment pattern generation 

Experiment error patterns Height (mm) Radius (mm) Tracing direction 

Number I 43.589 90.00 CW 
Number 2 31.225 95.00 CCW 

Table 7. Diagnosis from the experiment data based on the nonlinear (third-order) models, respectively 

Error causes Recognition results 

e~ (tzm) 14.6321 (no. 1) 7.73738 (no. 2) 
e~ (/xm) 15.0370 (no. 1) -40.4931 (no. 2) 
Backlash x (/xm) 3.7557 
Backlash y (p~m) 3.2319 
S~ 1.0003 
S~ 0.999185 
Misalignment angle x 0.0098 
Misalignment angle y 0.0296 
Mismatch phase angle 0.0002 
a~ (squareness error) -2.52033×10 -2 (rad) 
a2 - 1.76620x10 6 
a3 5.94×10 -9 
b2 2.25654× 10 -6 
b 3 7.09×10 -9 
cc~+d~ 4.4883831×10 -4 
c~ 2.936200×10 -5 
c 2 -8.6910x10 7 
d, 2.751047×10 -5 
d~ -8.7818×10 7 
e~ 78715373x10 -4 
e 2 1.1005×10 -7 
e3 -- 1.1589::<10 -7 
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Fig. 16. Differences between the experimental data and the error estimation--two patterns. 
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fled form, such as a first-order (linear), second- or third-order form for guideway systems, 
whichever is more suitable for a particular use. 

From the above diagnosis and analysis, it can be observed that the higher-order model 
is more complex than the lower-order model in the diagnostic process. On the other hand, 
the higher-order model is more appropriate for diagnosing higher-precision machines. 
Therefore, a suitable order model to satisfy the trade-off between precision and complexity 
to achieve optimal diagnosis is also critical. 
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