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Abstract

The solar neutrino puzzle consists in observing a lower than expected solar
electron neutrino flux by all solar neutrino detectors on earth. We study a
particle physics solution to solve this puzzle. This solution assumes that the
solar electron neutrinos oscillate into muon neutrinos during their journey
to earth and thus remain unobserved. After briefly reviewing the essential
standard solar model, the neutrino flavor oscillation probability in vacuum
and in matter (the MSW effect including its Landau-Zener correction) is ex-
amined in some detail. Using these probability expressions, the solar electron
neutrino event rates for various detectors are calculated and are compared
with various observations including the day-night effect for solar neutrinos.
A good agreement between them is found.

Key words: Standard Solar Model, Solar neutrino puzzle, Neutrino oscilla-
tions



Contents

1 Introduction 3
1.1 Standard Solar Model . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Properties of the Sun . . . . . . . . . . . . . . . . . . . 4
1.1.2 Solar Neutrino Flux Spectrum . . . . . . . . . . . . . . 6

2 Neutrino Oscillation In Vacuum 9
2.1 Schrödinger Equation For Neutrino

Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Survival Probability In Vacuum . . . . . . . . . . . . . . 10
2.3 Vacuum Oscillation For Solar Neutrinos . . . . . . . . . . . . 12

3 Neutrino Oscillation In Matter 15
3.1 Schrödinger Equation For Neutrino

Propagation in Matter . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The MSW Effect . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Landau-Zener Probability . . . . . . . . . . . . . . . . . . . . 23
3.4 Day-Night Effect . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Predicted Event Rates for Solar Neutrino Experiments 32
4.1 Ga Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Super-Kamiokande Experiment . . . . . . . . . . . . . . . . . 34

4.2.1 Calculation of Recoil Electron Energy Spectrum . . . . 36

5 Results and Discussion 42

A How to Solve the Weber Equation 44
A.1 The Weber Equation . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Relevance of Weber Equation for PLZ . . . . . . . . . . . . . . 45

1



B Derivation of the P2e in Day-Night effect 47

2



Chapter 1

Introduction

The observed solar electron neutrino flux is different from what the theory
predicts, this problem is commonly referred to as the Solar Neutrino Puzzle.
In this thesis, we discuss the neutrino oscillations to solve the solar neutrino
puzzle.

In 1930, Wolfgang Pauli postulated to the existence of a light neutral
fermion, which he then called the neutrone to describe the continuous spectra
of β-decay process. In modern terminology, the fundamental beta-decay
process is: neutron goes to proton plus electron plus anti-neutrino

n → p + e− + ν̄. (1.1)

After the advent of standard model of particle physics, the above process
became

n → p + e− + ν̄e. (1.2)

The interaction between the neutrino and matter is extreme weakly, so the
direct neutrino detection was difficult. In 1956, Cowan and Reines set up a
large tank of water and watched for the inverse beta-decay reaction

ν̄e + p → n + e+, (1.3)

thus discovering ν̄e. In 1962, Lederman, Schwartz, Steinberger and their
collaborators found the second type of neutrino, νµ [1, 2].

This thesis is organized as follows: In chapter 1, we provide basic stan-
dard solar model knowledge. In chapter 2, we present the neutrino oscillation
description with the vacuum condition and the survival probabilities are ob-
tain from them by integration of the evolution equation. In chapter 3, we
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consider more realistic condition. We rewrite the evolution equation for neu-
trino propagation and the survival probability in matter. In chapter 4, we
calculate the ratio of solar electron neutrino event rates predicted in the neu-
trino oscillation scenario to the standard solar model event rate for the Ga
and the Super-Kamiokande (SKK) experiments. Finally, in chapter 5, it is
the summary and conclusion for this thesis.

1.1 Standard Solar Model

To investigate the puzzle of solar neutrinos, we must mention solar model
first. Neutrinos are produced by core of sun, then pass through the whole
mantle to arrive at surface. In such a process the solar influence on neutrinos
could not be neglected. Thus, solar model is very important for studying the
solar neutrino problem[3].

In 1939, a Standard Solar Model by Bethe detailed the formulation of the
nuclear reaction cycles. A recent prediction is given by J. Bahcall and his
collaboration. The “Standard Solar Model” is result of best physics input
parameters that are available at the time the model is constructed. The
set of numbers that correspond to the Standard Solar Model vary with time
hopefully always getting closer to the true Standard Solar Model.

Here, we should emphasize that it would be impossible to summarize
them in this thesis. We concentrate specifically on Bahcall-Pinsonneault
2004 (BP04) version of the standard solar model and call it SSM. We list the
essential relevant parameters such as the electron number density profile and
the neutrino energy spectrum in this model in next two subsection.

1.1.1 Properties of the Sun

The sun is a very useful astronomical laboratory. Because it is so close
to earth, so that we can obtain information from the light which is being
emitting from sun. From this information, we can determine precise values
for solar mass, radius, geometric shape, photon spectrum, total luminosity,
surface chemical composition and age.

From the photon spectrum, we can know the composition of sun. Because
every element has it’s own unique eigen spectrum. The experimental results
tell us that it is mostly composition is hydrogen, second is helium. The solar
energy is provided by nuclear reaction which we discuss in next subsection.
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Table 1.1 summarizes some of these properties. The principal assumptions

Parameter Value
Luminosity 3.86 × 1033erg/s

Baryon number ∼ 1057

Radius(R�) 6.96 × 1010 cm
Surface Temperature 5.78 × 103 K
Core Temperature 1.56 × 107 K

Age ≈ 4.55 × 107 yr
Core density 148 g/cm3

Depth of convective zone 0.26R�

Table 1.1: Some important solar quantities[3].

that go into the calculation of these parameters are the following:

• Hydrostatic equilibrium of sun.

• Energy transport by photons.

• Energy generation by nuclear fusion.

• Relative abundance of different elements that is determined solely by
nuclear reaction.

Additionally, we should refer to electron number density of sun. Because
the electron number density distribution plays an important role in the dy-
namics of neutrino propagation inside the sun, as it’s value depend on solar
radius. The electron number density is calculated in standard solar model,
the logarithm of the electron density divided by Avogadro’s number can be
approximated by the expression[3]

log(ne/NA) = 2.32 − 4.17x − 0.000125/[x2 + (0.5)2], (1.4)

where x = R/R� < 0.25 and NA = 6.02 × 1023 is the Avogadro’s number.
The unit of ne is cm−3. For the range between 0.25 ≤ x ≤ 0.75, the equation
for electron number density is

ne/NA = 245e−10.54x. (1.5)

In this thesis, we take the location of core at 0.1R� where R� � 6.96×108 m.
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1.1.2 Solar Neutrino Flux Spectrum

In subsection (1.1.1), we have tabulated several parameters for sun. An-
other most important for our study is the solar neutrinos source and their
propagation behavior inside the sun.

Sun is a huge fusion reactor. Hydrogen transforms into helium accompa-
nying energy and neutrinos. In which the neutrino luminosity is 2.3% of the
total photon luminosity.

Figure 1.1: The solar pp cycle. The percentage means the fraction of contri-
bution. We label the type of process at right side near the box.

There are two main cycles that occur in the sun, they are the pp cycle
and the CNO cycle. In Fig. (1.1), the νe sources of pp cycle are shown.
These are pp, pep, 7Be, 8B and hep. The two most important contribution
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of νe fluxes are the pp flux with an average neutrino energy of 0.267 MeV
and the 7Be line with energy 0.863 MeV. The net reaction for pp cycle in
the sun is given by

4p + 2e− → 4He + 2νe + 26.73 MeV. (1.6)

In Fig. 1.1, the main branches to produce 4He go via 3He+3 He and 3He+4

He. The first one, has a probability 85% and the second one is 15%. Note
that 8B neutrinos have higher energy but they are much rarer. The CNO
cycle is a small contribution for electron neutrino sources, it is about 1.6%
of energy. CNO cycle dominates over the pp chain only if the temperature
exceeds 1.8 × 107 K. For the sun, this condition is not met[4, 5]. In this
thesis, we don’t consider the CNO cycle contribution.

Experiment νe-detection method Eth/MeV Main source
GALLEX νe+

71Ga → e− + 71Ge 0.233 pp,7Be,8B
SKK νe + e− → νe + e− 4.74 8B

νe + e− → νe + e− 5.24
SNO νe + d → e− + p + p 6.4 8B

νµ,e + d → νµ,e + p + n 6.25

Table 1.2: Some important experiments description that are used in this
thesis. Eth is the threshold energy in MeV.

The pp cycle can be fractionized in three type, and we call them be pp−I
(85%), pp − II (15%) and pp − III (1.95×10−4). According to Fig. 1.2,
the pp process maximum energy is 0.42 MeV, pep is 1.44 MeV, hep is 18.77
MeV, 7Be is 0.861 and 8B is 14.06 MeV. Table 1.2 summarizes the main solar
electron neutrino sources including the brief description of experiments, we
consider in this thesis.
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Figure 1.2: Energy spectra of neutrino fluxes from the pp chain, as predicted
by the BP04 standard solar model. For continuous sources, the differential
flux is in cm−2s−1 MeV−1. For lines, the flux is in cm−2s−1. The percentage
errors are the calculated 1σ uncertainties in predicted fluxes. The arrows at
the top of the figure indicate the energy threshold for the various neutrino
experiments.
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Chapter 2

Neutrino Oscillation In Vacuum

2.1 Schrödinger Equation For Neutrino

Propagation

Neutrinos may have either a Dirac or a Majorana mass, but for propagation
of ultra-relativistic neutrinos the full spin structure is not probed. The weak
interactions couple only to the left-handed component of the neutrino state.
For neutrino with p � m, we shall deal the neutrino as ultra-relativistic
neutrino for which the spin-structure is not revealed anyway[6].

The equation of motion in mass eigenstate basis is given by

(p2 + m2)|ν〉 = E2|ν〉. (2.1)

Eq. (2.1) has two solution corresponding to waves traveling in opposite
direction. However, the reflected solution shall not be relevant. Thus we
throw away the reflected solution to get

E =
√

p2 + m2. (2.2)

In the first-order approximation for p � m, we obtain

E � p +
m2

2p
. (2.3)

Using the substitution −i ∂
∂x

→ p, i ∂
∂t

→ E and p � E ,we obtain

i
∂

∂t
|ν〉 = (E +

m2

2E
)|ν〉 = H|ν〉. (2.4)
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This equation describes the propagation of an ultra-relativistic neutrino.
There H is diagonal in this basis and is given by

H =

(
E1 0
0 E2

)
� E +

⎛
⎝ m2

1

2E
0

0
m2

2

2E

⎞
⎠ . (2.5)

The plan-wave solution of Eq. (2.4) in usual notation is

ν(x, t) = e−i
∫

Hdtν(x, 0). (2.6)

Next, we examine the survival probability using this information.

2.2 The Survival Probability In Vacuum

If the mass eigenstates are not the same as the weak-interaction eigenstates,
then the neutrino mixing will occur. This behavior is so-called neutrinos
oscillation. In other words, the neutrinos oscillation means that the neutrino
flavour change from one flavour to the other flavour. We aim to discuss the
survival probability below.

Consider the relation of linear combination between weak-interaction
eigenstates and mass eigenstates for two flavours as

(
νe

νµ

)
= U

(
ν1

ν2

)
. (2.7)

Where νe and νµ are weak-interaction eigenstates, and ν1 and ν2 are mass
eigenstates. U a 2×2 unitary matrix and is given by

U ≡
(

Cθ Sθ

−Sθ Cθ

)
, (2.8)

here Cθ denote by cos θ and Sθ denote by sin θ. The θ we call it be vacuum
mixing angle and we can choose 0 ≤ θ ≤ π

4
.

The solution (2.6) for the neutrino wave function can be rewritten for two
neutrino species as

(
ν1(t)
ν2(t)

)
=

(
e−iE1t 0

0 e−iE2t

) (
ν1(0)
ν2(0)

)
. (2.9)
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If we produce an electron neutrino, the probability of detecting this neutrino
as an electron after a time t, can be written as

P (νe → νe) = |〈νe(t) | νe(0)〉|2 ,

=
∣∣∣∣( 1 0 )

(
Cθ Sθ

−Sθ Cθ

) (
e−iE1t 0

0 e−iE2t

) (
Cθ −Sθ

Sθ Cθ

) (
1
0

)∣∣∣∣2 . (2.10)

From matrix form (2.10) we get the concise formula of survival probability
as follows

P (νe → νe) = 1 − 1

2
sin2 2θ[1 − cos(E2 − E1)t], (2.11)

where E2 − E1 approach to (m2
2 − m2

1)/2E, using Eq. (2.5). Hereafter, we
shall use the symbol δm2 instead of (m2

2 − m2
1) and λ instead of 4πE/δm2

and call it the oscillation length λ, which can show below in numerical form.
It is given by

λ = 2.48 m ×
(

E

MeV

) (
eV2

δm2

)
. (2.12)

Using these notations Eq. (2.11) becomes

P (νe → νe) = 1 − sin2 2θ sin2
(

π

λ
x

)
, (2.13)

here x is propagation distance. If propagation distance equal to oscillation
length or mixing angle equal to zero, then we can find oscillation almost
disappear. Oppositely, when θ = π

4
and x ∼ λ

2
the oscillation is maximum.

For example, if neutrinos energy about 103 MeV and δm2 = 10−5eV2 then λ
equal to 2.48 × 108 m. In other words, λ is about radius of earth.

In the next section we shall figure out the behavior of λ, δm2 and survival
probability in light of data of Super-Kamiokande detector.

If the production or detection positions extend over a distance much larger
than the wavelength, the phase information shall be averaged out. If the
phase information is lost, then the probability is just the classical probability.
The phase acquired during neutrino propagation is averaged out; so we can
sum incoherently over the propagation eigenstates, the mass eigenstates:

P (νe → νe) =
∑

i=1,2

P (νe → νi)P (νi → νe), (2.14)
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=
∣∣∣∣( 1 0 )

(
C2

θ S2
θ

S2
θ C2

θ

) (
1 0
0 1

) (
C2

θ S2
θ

S2
θ C2

θ

) (
1
0

)∣∣∣∣ . (2.15)

After average out of phase, then

P (νe → νe) = 1 − 1

2
sin2 2θ. (2.16)

2.3 Vacuum Oscillation For Solar Neutrinos

In Section 2.1 and 2.2, we discussed the vacuum oscillations qualitatively.
Here, we have interest in applying the result to solve the solar neutrino
problem in quantitative terms.

Neutrino was produced inside the sun, then it propagated from sun to
earth. Finally, the neutrino was detected by detector. This process of propa-
gation has a long distance between sun surface and earth surface in vacuum.
In this section, we shall try to know how to explain the range of δm2 and
sin2 2θ to explain the Super-Kamiokande observation of 8B flux in compari-
son with standard solar model 8B flux.

In standard model BP04[5], the 8B flux is

ΦSM = 5.79(1 ± 0.23) × 106 cm−2s−1. (2.17)

And the flux detected by Super-Kamiokande[7] and SNO[8] respectively are

ΦSKK
D = (2.32 ± 0.03) × 106 cm−2s−1,

ΦSNO
D = (1.76 ±0.06

0.05 ±0.09) × 106 cm−2s−1. (2.18)

If we follow standard model prediction and don’t consider the Oscillation
effect we get the ΦSM . The ΦSKK

D tokes into account the elastic (νee → νee)
scattering. The ΦSNO

D takes into account the change current scattering also
in νe + d → e− + p + p (see Table 1.2 also). But, in fact the experiment
reminds us that indeed this is not the case. If we add the vacuum oscillation
so that the ratio of flux is equal to oscillation probability using Eq. (2.13),
we can then use the ratio to fix the probability.

Φexp
D = P (νe → νe)Φ

SM . (2.19)

In Fig. 2.1, below the curve is non-allowed region, as the neutrino energy
is smaller than threshold energy. So, in this situation, we get the following
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range of δm2 and sin2 2θ for SKK is

2.23 × 10−11 ≤ δm2/eV2 ≤ 3.85 × 10−11,

0.6 ≤ sin2 2θ ≤ 1. (2.20)

We also obtain the result for SNO as follows

3.34 × 10−11 ≤ δm2/eV2 ≤ 5.24 × 10−11,

0.70 ≤ sin2 2θ ≤ 1. (2.21)
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Figure 2.1: The figure consider vacuum oscillations only. We fix the value of
probability as 0.40 for SKK and 0.30 for SNO, see Eq. (2.19). The distance
between earth and sun is about 1.5× 1013 cm. The threshold energy of SKK
is 4.74 MeV and SNO is 6.4 MeV.
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Chapter 3

Neutrino Oscillation In Matter

To analyze the propagation of solar neutrinos, we can separate three compo-
nents of process. First one is neutrino produced inside the core of sun then
pass through the mantle arriving at the surface. Second is from sun surface
to earth surface, which is what we discuss in preceding chapter. Last com-
ponent is passage through that whole earth. In which, first part and third
part must consider the effect of neutrinos interaction with matter. Solving
the wave equation analytically is difficult so that we need an approximation
method. Mikheyev, Smirnov and Wolfenstein (MSW) developed an approx-
imation method to avoid solving wave function directly. In this chapter,
we shall pay our attention to use MSW method for solving solar neutrinos
problem.

3.1 Schrödinger Equation For Neutrino

Propagation in Matter

When neutrinos propagate through matter νe and νµ feel different potentials,
because νe scatters off electron via both neutral and charge currents, whereas
νµ scatters only via the neutral current (see Fig. 3.1). There are two types of
weak interactions, the charge current interaction, which is mediated by the
exchange of W± gauge bosons, and the neutral current interaction, which is
mediated by the exchange of Z gauge bosons.

The neutral current contribution is the same for all flavours of neutrinos,
whereas the charge current contribution affect νe only. The contribution of
charge current for neutrino propagation is contained in the parameter A,
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Figure 3.1: Feynman diagrams for charge current and neutral current ex-
change.

given by

A ≡ 2
√

2GF NeE = 2
√

2GF
Ye

mn

ρE, (3.1)

where GF is Fermi-constant, ρ the density, Ye the number of electrons per
nucleon, and mn the nucleon mass. A is potential for charge current in the
so-called nature units. The neutrino propagation Eq. (2.4) with c = 1, t → x
in weak-interaction eigenstate basis and neglecting non-important constant
term, can be rewritten as

i
∂

∂x

(
νe

νµ

)
=

1

2E

[
U

(
m2

1 0
0 m2

2

)
U † +

(
A 0
0 0

)] (
νe

νµ

)
. (3.2)

Let us to write down the eigenvalue of the Hamiltonian as

λ± = {(m2
1 + m2

2 + A) ±
√

[(A − δm2C2θ)2 + (δm2S2θ)2]}/4E. (3.3)

To mimic the situation of the vacuum for convenience, we should have new
parameter for mixing-matrix and mass-matrix in medium. The mass-matrix
is

M =

(
M2

1 0
0 M2

2

)
,

M2
2,1 = {(m2

1 + m2
2 + A) ±

√
[(A − δm2C2θ)2 + (δm2S2θ)2]}/2. (3.4)

M can be diagonalized by mixing-matrix, it’s similar to Eq. (2.7) and (2.8),
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Figure 3.2: Plot of sin2 2θm as function of A for two different value of θ. The
θm is the effective neutrino mixing angle in matter. The large mixing angle
corresponds to 32.5o.

and is given by

(
νe

νµ

)
= Um

(
νm

1

νm
2

)
=

(
Cθm Sθm

−Sθm Cθm

) (
νm

1

νm
2

)
. (3.5)

The mass eigenstates in the medium are |νm
1 〉 and |νm

2 〉. Here θm is the
neutrino mixing angle in matter. From Eq. (3.5), we can see that the diag-
onalizing angle[1] is given by

cos 2θm =
−A + δm2C2θ√

[(A − δm2C2θ)2 + (δm2S2θ)2]
,
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Figure 3.3: The result of combining Eq. (1.5), (3.1) and (3.7). We take the
energy of neutrino as 4.74 MeV. When log(δm2/eV2) is less then -8.18, there
is no resonance inside Sun.

sin 2θm =
δm2S2θ√

[(A − δm2C2θ)2 + (δm2S2θ)2]
. (3.6)

We find the mixing angle is modified substantially by the coherent scattering
of a medium, as show in Fig. 3.2.

In Fig. 3.2, we are interested in the following three main limits for A, A →
0, A → ∞ and A = δm2C2θ. When A → 0, that means neutrinos propagate
in vacuum, so that the mixing matrix is just the vacuum expression. When
A → ∞, we obtain, θm → π

2
. When A = δm2C2θ, we can see a peak value

in sin2 2θm which is so-called resonance. So, the resonance condition is given
by

A = δm2C2θ. (3.7)
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In resonance, as sin2 2θm is maximum and thus, it can enhance neutrino
oscillations maximally. In Eq. (3.7), we find the resonance occurs essentially
irrespective of whether or not the mixing angle is small. The resonance would
not occur if θ is greater as then π

4
. In that case the resonance would occur

for anti-neutrinos. Since for anti-neutrinos the resonance condition must be
changed by the substitution A to −A. Eq. (3.1) shows that A is function of
electron number density. The density of sun is give by Eq. (1.5).

Applying the Eq. (1.5) into resonance condition, then we can find the
range where is resonance (Fig. 3.3). The figure tells us when δm2/eV2 small
then 10−8.18 there is no resonance region inside the sun. According to this
result, we can check the range of vacuum oscillation for Eq. (2.20). The
vacuum oscillation range is between 3.85 × 10−11 eV2 and 2.61 × 10−11 eV2

which is outside the prediction of Fig. 3.3.
If we assume δm2/eV2 is set inside the range and we can use the same

condition as Fig. (3.2). Here, we just consider one particle is produced in
core and carry 5 MeV energy to propagate. When it travels from core to
surface, the sin2 2θm is changed with the radius and the resonance position
is about 0.26R� under this condition.

3.2 The MSW Effect

In section 3.1, we discussed the Schrödinger Equation in matter and where
the resonance region is. Let us now examine the experimentally observable
quantity P (νe → νe), which is the probability for a produced νe to remain a
νe after propagation.

Eq. (2.9) is time-evolution for mass-eigenstate propagating in vacuum.
For neutrinos propagating in matter, the Eq. (2.9) needs to be modified.
Indeed, we may write the neutrinos propagation Eq. (3.2) in the form

i
∂

∂x

[
Um

(
ν1

ν2

)]
=

1

2E

[
Um

(
M2

1 0
0 M2

2

)
Um†

]
Um

(
ν1

ν2

)
. (3.8)

Here, neutrinos are propagating in matter, the density change is in x, so that
Um depends on x. Then, we may rewrite Eq. (3.8) as

i
∂

∂x

(
ν1

ν2

)
=

⎛
⎝ M2

1

2E
−i ∂

∂x
θm

i ∂
∂x

θm
M2

2

2E

⎞
⎠ (

ν1

ν2

)
. (3.9)
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Figure 3.4: This figure describes the resonance position inside the sun. The
peak value is about x = 0.26R� and the mixing angle we take θ = 32.5o.

We can always take out a common diagonal phase factor so that Eq. (3.9)
become

i
∂

∂x

(
ν

′
1

ν
′
2

)
=

⎛
⎝ −M2

2−M2
1

4E
−i ∂

∂x
θm

i ∂
∂x

θm
M2

2−M2
1

4E

⎞
⎠ (

ν
′
1

ν
′
2

)
. (3.10)

The diagonal phase factor is

(
ν1

ν2

)
=

(
e−a 0
0 e−a

) (
ν

′
1

ν
′
2

)
, (3.11)

where the a is phase factor given by

a = i
M2

2 + M2
1

4E
x.
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For the case of solar neutrinos, the oscillation distance is large enough. There-
fore, the phase factor was dropped during the derivation of the wave equa-
tion. But, how to solve Eq. (3.10)? It’s difficult to get the exact solution.

Mikheyev, Smirnov and Wolfenstein assume the condition
M2

2−M2
1

4E
� i∂θm

∂x
,

then we can solve equation under this condition. This effect is so-call MSW
effect, and the condition we call it be adiabatic condition. The MSW effect
describes how matter can enhance the flavor oscillation of neutrinos[9, 10].
Using Eqs. (3.4) and (3.6) we have

Figure 3.5: Schematic diagram for the effective neutrino mass squared of two
flavors of neutrinos as function of A. Here we take m2

2 = 25m2
1, sin2 2θ =

1 × 10−2. More details are given in the text.

(M2
2 − M2

1 ) =
√

[(A − δm2C2θ)2 + (δm2S2θ)2], (3.12)

∂θm

∂x
=

1

2

δm2S2θ

(A − δm2C2θ)2 + (δm2S2θ)2

∂A

∂x
. (3.13)
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Substituting Eq. (3.12) and Eq. (3.13) back in adiabatic condition, we obtain

1

2E

[(A − δm2C2θ)
2 + (δm2S2θ)

2]3/2

Aδm2S2θ

� 1

ne

dne

dx
. (3.14)

This inequality is very useful for next section, here we just keep this form.
According to inequality (3.14), the density changes slowly enough so that the
propagation is adiabatic. Then we should pay our attention in Eq. (3.12).
Because M2

2 and M2
1 are eigenvalues of neutrinos flavor eigenstate. Now,

they vary with A as can be seen form Fig. 3.5. The flavor eigenstate |νe〉 is
created at larger A in solar interior where it is approximately the same as the
heavier mass eigenstate |ν2〉. As the electron density decreases slowly, the
flavor remains close to the mass eigenstate |ν2〉. The probabilities of νe to
either ν1 or ν2 are given by sin2 θm and cos2 θm, respectively. Let us assume
that, after production, a νe propagates adiabatically until reaching a location
for which electron density equal to zero and the mixing angle is the vacuum
angle. The probability of ν1 or ν2 to be a νe is then given by sin2 θ and cos2 θ,
respectively.

Now, we consider the evolution equation again in the following form

(
ν1(x)
ν2(x)

)
=

⎛
⎝ e−

δM2

4E
x 0

0 e
δM2

4E
x

⎞
⎠ (

ν1(0)
ν2(0)

)
, (3.15)

here, we define the δM2 as M2
2 − M2

1 . Compared to Eq. (2.11), change is
to replace δm2 with δM2. Using it, we can get the survival probability for
constant density. At far distance, we can average out the phase term

P (νe → νe) = 1 − 1

2
sin2 2θm. (3.16)

This is the generalization of Eq. (2.11) with the replacement θ → θm.
For adiabatic condition, as the same result with Eq. (2.14), the survival

probability for neutrinos propagation between vacuum and matter in the
adiabatic approximation is

P (νe → νe) =
∑

i=1,2

Pm(νe → νi)P (νi → νe),

=
∣∣∣∣( 1 0 )

(
C2

θm
S2

θm

S2
θm

C2
θm

) (
1 0
0 1

) (
C2

θ S2
θ

S2
θ C2

θ

) (
1
0

)∣∣∣∣ . (3.17)
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Evaluating the matrix, we can get the probability as 1
2
(1 + cos 2θ cos 2θm).

In general, if an electron neutrino propagate adiabatically from one region
with mixing-angle θ1, to another region with mixing-angle θ2, then

P (νe → νe) =
1

2
(1 + cos 2θ1 cos 2θ2). (3.18)

3.3 Landau-Zener Probability

The MSW effect is valid only when the matter density changes slowly, so
that the adiabatic approximation is valid. When MSW approximation breaks
down, we must go back and solve the wave equation directly. We can see Eq.
(3.13), dθm

dx
has a sharply peaked maximum, and Eq. (3.12), M2

2 −M2
1 has a

minimum in resonance. Therefore, we should check the validity of adiabatic
condition.

Eq. (3.14) can be rewritten as

δm2S2
2θ

2EC2θ

�
∣∣∣∣∣ 1

ne

dne

dx

∣∣∣∣∣
res

. (3.19)

The subscript res indicates that this quantity should be evaluated at the
resonance. Here, we move the term

∣∣∣ 1
ne

dne

dx

∣∣∣
res

to left hand side and denotes

all this by the γ called the adiabatic parameter, so that Eq. (3.19) become

γ � 1. (3.20)

The γ is very important for discussion of Landau-Zener effect.
In preceding section, we have discussed the case of adiabatic condition,

namely γ � 1. Now, if γ ≈ 1, there shall be considerable corrections to the
probabilities obtained using the adiabatic approximation.

Referring again to Fig.(3.5), the electron neutrinos produced in core
passes through resonance region and then arrival to vacuum region. We
can correct the Eq. (3.17) accordingly

P (νe → νe) =
∑

i,j=1,2

Pm(νe → νi)Pres(νi → νj)P (νj → νe), (3.21)

=
∣∣∣∣( 1 0 )

(
C2

θm
S2

θm

S2
θm

C2
θm

) (
1 − PLZ PLZ

PLZ 1 − PLZ

) (
C2

θ S2
θ

S2
θ C2

θ

) (
1
0

)∣∣∣∣ . (3.22)
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We expand the above matrix after averaging, and get

P (νe → νe) =
1

2
+ (

1

2
− PLZ) cos 2θ cos 2θm, (3.23)

where the PLZ is crossing resonance probability, and the definition is

PLZ ≡ |〈ν2(x+)|ν1(x−)〉|2 . (3.24)

Here, x± refer to two faraway points on either side of the resonance position.
Such a level-crossing solution was first worked out by Landau and Zener

in 1932[11] . So, we also call it Landau-Zener probability. To briefly sketch
its derivation, we start with a mixed system of two neutrinos in flavor basis
νe and νµ, the Hamilitonian is given by Eq. (3.2)

HΨ =

(
ε1 ε12

ε12 ε2

)
Ψ, (3.25)

here we ignore the constant term and take ε1=
√

2GFne(t) −
(

δm2

4E

)
cos 2θ,

ε2=
δm2

4E
cos 2θ and ε12=

δm2

4E
sin 2θ. Let Ψ be such linear combination of an

orthonormal basis (C1,C2), we can rewrite Ψ as

Ψ =

⎛
⎝ C1(t)e

−i
∫

ε1dt

C2(t)e
−i

∫
ε2dt

⎞
⎠ . (3.26)

We set resonance position at t = 0, the initial condition for |C1(−∞)|2 = 1
and |C2(−∞)|2 = 0. We can see in Fig. 3.5, C1 has the characteristics which
|νe〉 has at A � Ares, while C2 has the characteristics which |νµ〉 has at
A � Ares. Then, the problem is to find the probability that Ψ jump from
the upper to the lower branch in the resonance region. We emphasize here,
these subscriptions 1,2 are opposite with Fig. 3.5. We just need to find
|C1(+∞)|2 ≡ PLZ (that is Landau-Zener probability).

The Schrödinger equation is written

(
ε1 ε12

ε12 ε2

) ⎛
⎝ C1(t)e

−i
∫

ε1dt

C2(t)e
−i

∫
ε2dt

⎞
⎠ = i

d

dt

⎛
⎝ C1(t)e

−i
∫

ε1dt

C2(t)e
−i

∫
ε2dt

⎞
⎠ . (3.27)

We now eliminate C1(t) to get a relation for C2(t) only

d2C2(t)

dt2
− i (ε2 − ε1)

dC2(t)

dt
+ ε2

12C2(t) = 0. (3.28)
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Let us recall the resonance condition,

√
2GFnres

e =

(
δm2

2E

)
cos 2θ. (3.29)

Using resonance condition, we note that ε2 − ε1 =
√

2GFne(t)−
(

δm2

2E

)
cos 2θ.

Here, we assume ne(t) be linear function

ne(t) = nres
e +

dnres
e

dt
(t − xres). (3.30)

We introduce a new parameter α, α =
√

2GF
dnres

e

dt
, and ε2 − ε1 = αt then we

rewrite Eq. (3.28) by letting C2(t) = e
−i
2

∫
ε2−ε1dtU(t). We then obtain

d2U(z)

dz2
+

(
n − z2

4
+

1

2

)
U(z) = 0. (3.31)

Eq. (3.31) is called it Weber Equation, with z =
√

αe−i π
4 t and n = i

ε212
α

. The
details of how to solve Eq. (3.31) are given in appendix A. Here we use the
results obtained there.

The solution of Eq. (3.31) is U(z) = A+D−n−1(−iz), where A+ is nor-

malization factor and the value is equal to
√

νe−
πν
4 with ν = −in =

ε212
α

.
Here we take z = Rei π

4 , and R is the real number as function of time. After
substitute these parameters, we obtain

C2(t) = e
−i
2

∫
(ε2−ε1)dtA+D−n−1(−iz), (3.32)

Where

D−n−1(iRei 3π
4 ) ∼

√
2π

Γ(n + 1)
e−in π

4 e−i R2

4 Rn + ei
3(n+1)π

4 e−i R2

4 R−n−1. (3.33)

When t → ∞ then R → ∞ then we obtain

|C2(∞)|2 = 2 sinh(πν)e−πν = 1 − e−2πν . (3.34)

As ν = −in =
ε212
α

and for t = x as previously, ν can simplify as

ν =
ε2
12

α
=

1

4

δm2 sin2 2θ

2E cos 2θ
∣∣∣d ln ne

dx

∣∣∣
res

=
γ

4
. (3.35)
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Figure 3.6: The survival probability P (νe → νe) as function as x for small
and large mixing MSW solutions using Eq. (3.23). The ρ = 100g cm−3 is
adopted.

Finally, |C1(∞)|2 = PLZ=e−
1
2
πγ, in which the γ is dimensionless and is exactly

the adiabatic parameter. Thus when γ � 1, PLZ=0, and we go back to the
adiabatic approximation. The PLZ=e−

1
2
πγ applies only when the variation in

density is linear in x. But in case of sun, the density is exponential form, see
Eq. (1.5). The Landau-Zener probability should be generalized as

PLZ =
exp[−πγF/2] − exp[−πγF/(2S2

θ )]

1 − exp[−πγF/(2S2
θ )]

. (3.36)

Here, the function F is calculated by Landau’s method[12]. When A ∝ r
then the F = 1, and A ∝ exp(−r) then the F = 1 − tan2 θ. If we apply
Eq. (3.23) and (3.36) into the solar neutrino problem we get Fig. 3.6. The
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γF ∼ O(102) for Sun. In Fig. 3.6, the resonance is at x=1. When x � 1,
and thus γF � 1, the survival probability approaches the vacuum oscillation.
For x � 1, the γF � 1, PLZ → 0 and then we recover the adiabatic limit.
Therefore, the Landau-Zener probability just apply between them.

3.4 Day-Night Effect

Neutrino propagation in matter must consider the matter effect. This par-
ticularly applies to solar electron neutrinos when they pass through earth
before reaching the detector in night. The experiments SNO and SKK have
found that the flux is different between day and night. The effect of difference
between day and night, is called the Day-Night effect or earth effect.

If we consider the matter effect in earth, the Eq. (3.21) should be modified
as

P (νe → νe) =
∑

i,j=1,2

Pm(νe → νi)Pres(νi → νj)P⊕(νj → νe), (3.37)

=

∣∣∣∣∣( 1 0 )

(
C2

θ�
m

S2
θ�

m

S2
θ�

m
C2

θ�
m

) (
1 − PLZ PLZ

PLZ 1 − PLZ

) (
1 − P2e P2e

P2e 1 − P2e

) (
1
0

)∣∣∣∣∣ .
(3.38)

Here, we donate the symbol ⊕ to be earth and � to be sun. And we always
detect at far away source, then we expand the above matrix after averaging
over phase as

P (νe → νe) =
1

2
+ [

1

2
− (PLZ + 〈P2e〉 − 2PLZ〈P2e〉)] cos 2θ�m. (3.39)

The PLZ is given by Eq. (3.36). The cos 2θ�m is mixing angle in matter for
sun, and is given by Eq. (3.6). And the P2e we shall deriver in appendix B
(P1e = 1 − P2e), here we just use the result

〈P2e〉 = S2
θ +

1

2
sin2 2θ

A⊕δm2

A2⊕ − 2A⊕δm2C2θ + (δm2)2
, (3.40)

the sin2 2θ⊕m is mixing angle in matter for earth.
Fig. 3.7 shows the different path lengths traversed by solar electron neu-

trinos when they pass through the earth in day and night. In this thesis,
we just consider the zenith angle equal to zero. We discuss the day and
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Figure 3.7: This is an illustrative geometry of the solar neutrino propagation
during day and night in the earth. R⊕ ∼ 6.37 × 103 km denotes the earth
radius.

night probability, and apply Eq. (3.23) for day and (3.39) for night to ob-
tain Fig. 3.8. At the neutrinos energy between 104 eV∼ 106 eV, the night
probability is almost the same as for the day, because the contribution of
the earth effect is small for this region. For energy greater than 106 eV, the
earth effect emerges. The Day-Night effect provide a chance to check the
LMA MSW solution. There are two solution to satisfy Eq. (3.23), one is
Large-Mixing-Angle solution and the other is Small-Mixing-Angle. In night,
the LMA solution enhance the P (νe → νe) at high energy. Thus, we can
say that we can ignore the SMA solution, because it is not supported by
experiments.

In Fig. 3.9, we also show the different density of earth. We see the
SMA solution in night was not change with density. For LMA solution, the
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probabilities were enhanced by earth-effect. After comparing three kinds of
density, we shall get the results that when ρ=5.52 g/cm3, the enhancement
is larger than density in mantle and core.
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Figure 3.8: The P (νe → νe) as a function of neutrino energy. Here, a) is SMA
solution and b) is LMA solution. The earth effect enhances the probability
at high energy in night for a), but nothing change at high energy in night for
b). The average density of earth is about 5.52 g/cm3 and the mixing angle
in vacuum we take sin2 2θ = 8.8× 10−3 for a) and sin2 2θ = 0.60 for b). The
mass square is equal to 1.52 × 10−5 eV2. We use Eq. (3.23) for day and
(3.39) for night.
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Figure 3.9: We change the density of earth. The density about 4.5 g/cm3 in
the Earth’s mantle (1a, 1b) and about 11 g/cm3 in the core (2a, 2b).
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Chapter 4

Predicted Event Rates for Solar
Neutrino Experiments

In preceding chapter, we have provided enough basics of neutrinos oscillation
theory. Now, we shall use these oscillation results to calculate the event
rates, and then we should compare with experiment data. The main method
to detect solar neutrinos is using the neutrino interaction with the target. If
we know the interaction cross-section, then we can obtain the flux. But the
interaction is weak-interaction, so the cross-section is small. That mean the
amount of target must be large.

There are two main types of experiments for detection of solar neutrinos[13].
One type is based on neutrino-electron scattering such as Kamiokande, Super-
Kamiokande and SNO, the other one is geochemical and radiochemical ex-
periments such as SAGE, GALLEX and Homestake. In this chapter, we
shall predict solar electon neutrino event rate for Super-Kamiokande (the
neutrino-electron scattering experiment) and Ga experiments (the geochem-
ical and radiochemical experiment).

4.1 Ga Experiments

Two radiochemical solar neutrino experiments using 71Ga are under way, one
by a primarily Western European collaboration (GALLEX) and the second
is the Russian-American Gallium solar neutrino experiment (SAGE). The
GALLEX operated between 1991 and 1997. It used 30 tons of gallium in an
aqueous solution and is located in hall A of Gran Sasso Laboratory in Italy.
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The SAGE used about 60 tons of gallium metal as a detector target and is in
a high mountain in the Baksan Valley in the northern Caucasus Mountains
of the Southern Russia.

The neutrino absorption reaction in the gallium experiments is:

νe +71 Ga −→ e− +71 Ge. (4.1)

The threshold for absorption of neutrinos by 71Ga is 0.233 MeV, which is
below the maximum energy of the pp reaction (see Fig. 1.2). The predicted
capture rate for a 71Ga detector in solar standard model without neutrino
oscillation is

NSSM =
∑

i

∫ Emax

Eth

Φi(E)σi(E)dE, (4.2)

where the sum extends over the relevant neutrino flux, (i=pp, pep, 7Be, 8B,
hep) and Eth = 0.233 MeV. The cross-section σ(E) and the flux Φ(E) are
taken from the web site of J. N. Bahcall[4]. We list our result as below:

Source Φ(1010 cm−2s−1) σ(10−44 cm2) Ga (SNU)
pp 5.94(1 ± 0.01) 0.117 ± 0.003 66.422
pep 1.401 ± 0.02) × 10−2 2.04+0.35

−0.14 2.224
hep 7.88(1 ± 0.16) × 10−7 714+228

−114 0.02
7Be 4.86(1 ± 0.12) × 10−1 0.717+0.05

−0.021 31.824
8B 5.82(1 ± 0.23) × 10−4 240+77

−36 14.097
Total 114.587

Table 4.1: the Φ is total flux, and the σ is neutrino capture cross sections
averaged over the energy spectra[14]. The event rate of Ga we calculated by
numerical method.

In order to show the event rates, we introduce a unit SNU (Solar Neutrinos
Unit). 1 SNU=10−36 times interaction per one target per second. Here we
should emphasize the above result is according to the solar standard model.
The Ga based experimental result is 74.7±5.13 SNU and is therefore different
from SSM result.

We consider “neutrino oscillations” to resolve this discrepancy . We use
the survival probability given by Eq. (3.23), and we take sin2 2θ = 0.6,
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δm2 = 3 × 10−5 eV2 and consider detection in day. Then Eq. (4.2) becomes

Nosc =
∑

i

∫ Emax

Eth

Φi(E)σi(E)P (E)dE. (4.3)

Substituting various quantity we can obtain the value of Nosc as 61.37 SNU.
Hence, neutrinos flavor oscillations can explain the experiment.

The ratio of event rate of gallium experiment by theory calculation is

Rth =
Nosc

NSSM

= 0.54. (4.4)

On the other hand, the experimental result divided by solar standard model
is

Rexp =
Nexp

NSSM

= 0.58 ± 0.06. (4.5)

The error ∆R = Rexp −Rth is about 0.04 (which is just 6.8%). Thus, we are
able to explain the experimental results using neutrino oscillation.

4.2 Super-Kamiokande Experiment

It is a νe − e scattering experiment. SKK is Super-Kamiokande in Japan
(and SNO is Sudbury Neutrino Observatory in Canada). These are different
from neutrino absorption experiments. Here we discuss Super-Kamiokande
in some detail as a representative example, where the solar neutrinos are
detected using the Cherenkov light emitted by the recoiling electron from
neutrino electron elastic scattering. They have the advantages of detecting
neutrinos with some information on their time, direction, and energy all
simultaneously.
The reaction of neutral current in Fig. 3.1 is

ν + e− −→ ν
′
+ e−. (4.6)

Super-Kamiokande analyzes data above a threshold of 5 MeV of the total
energy of the recoil energy[15]. For this threshold energy, we just consider
process 8B and hep. However, according to SSM, the 8B neutrino flux is
larger than hep neutrino flux. So, the contribution of hep flux for Super-
Kamiokande could be ignored.
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The recoil electrons in Eq. (4.6) are primarily scattered in the forward
direction in which the neutrinos are arriving. If solar neutrinos produce scat-
tering events in a detector, reconstruction of electron tracks must determine
a vector that points back to the sun.

The predicted capture rate for Super-Kamiokande by standard solar model
is [16]

NSSM =
∫ Eemax

Eemin

dEe

∫ ∞

me

dE
′
ef(E

′
e, Ee)

∫ EM

Em

dEΦ(E)
dσ(νee)

dT ′ . (4.7)

In first integral, the Φ(E) is the standard solar model 8B neutrino flux with

neutrino energy E, and the dσ(νe)

dT
′ is the differential cross section of ν-e scat-

tering

dσ(νe)

dT ′ =
σ0

me

⎡
⎣g2

L + g2
R

(
1 − T

′

E

)2

− gLgR
meT

′

E2

⎤
⎦ , (4.8)

σ0 = 88 × 10−46 cm2,

gL = ±1

2
+ sin2 θW ,

gR = sin2 θW .

The upper sign applies to νe-e scattering, the low sign to νν,τ -e scattering
and sin2 θW = 0.229. The EM and Em are given as

EM = 15 MeV (for 8B),

Em =
T

′
+

√
T ′2 + 2meT

′

2
. (4.9)

In second integral, the quantity f(E
′
e, Ee) is the energy resolution function

of the detector in terms of the physical (E
′
e) and the measured (Ee), which

is given by

f(E
′
e, Ee) =

1

∆T
′
√

2π
exp

(
−(T − T

′
)2

2∆2
T

′

)
, (4.10)

where ∆T
′ is energy resolution at the electron kinetic energy T

′
, and the

relation for T and Ee is Ee = T + me (me = 0.511 MeV). The energy
resolution function of SKK, we use

∆T
′ = 1.6 MeV

√
T′/(10 MeV). (4.11)
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The lower limit of the first integral is the detector threshold energy, Eemin =
Ethreshold

SKK = 5 MeV and the upper limit is Eemax = 20 MeV.
Similar to Ga experiment, we should also introduce the oscillation result

here. Then, the Eq. (4.7) become

Nosc =
∫ Eemax

Eemin

dEe

∫ ∞

me

dE
′
ef(E

′
e, Ee)

∫ EM

Em

dEΦ(E)
dσνsolar

dT ′ , (4.12)

where
dσνsolar

dT
′ is given by

dσνsolar

dT ′ = P (E)
dσ(νee)

dT ′ + [1 − P (E)]
dσ(νµ,τe)

dT ′ , (4.13)

here the P (E) is electron-neutrinos survival probability at the detector. We
can also calculate the ratio of the event rate similar to Eq. (4.4) and Eq.
(4.5).

The ratio of oscillation and standard solar model is

Nosc

NSSM

= 0.448, (4.14)

with the condition δm2 = 3×10−5 eV2 and sin2 2θ = 0.60. The experimental
result divide by solar standard model for Super-Kamiokande is

Nexp

NSSM

= 0.459 ± 0.005. (4.15)

Using Eq. (4.14) and Eq. (4.15), the error ∆N is 2%. thus, neutrino flavor
oscillations of the type νe → νµ can explain the discrepancy for SKK also.

4.2.1 Calculation of Recoil Electron Energy Spectrum

In this thesis, we also calculate the ratio, R(Ei), of the number of observed
events, N obs

i in a given energy bin Ei, to the number, NSSM
i , expected from

the solar standard model, where

R(Ei) =
N obs

i

NSSM
i

. (4.16)

Then, we can rewrite Eq. (4.12) as

N osc
i =

∫ Ei+me

Ei

dEe

∫ ∞

me

dE
′
ef(E

′
e, Ee)

∫ EM

Em

dEΦ(E)
dσνsolar

dT ′ , (4.17)
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here, every parameter was defined as before, and for the NSSM
i we just set

P (E) = 1, and the Ei is any energy in spectrum. We apply these result to
produce the figures that follow.

In Fig. 4.1, we show the δm2 and sin2 2θ both for SKK and SNO. The
comparison between theoretical prediction and experimental data are quite
different. The vacuum oscillation alone thus tend to fail to explain the data.
In Fig. 4.2 a) and Fig. 4.2 b), we compare with LMA solution and SMA
solution in day time. The figure indicates that, the LMA is much better then
SMA. And Fig. 4.3 show as the night effect for LMA and SMA. The SMA
fail to explain the night effect also. We show the day and night event rate
for LMA respectively in the Fig. 4.4. The figure show that LMA can explain
both the day and night effect.
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Figure 4.1: The best fit electron recoil energy spectrum for vacuum oscillation
and its comparison with SKK and SNO experiments. We use Eq. (2.13), here
the SKK data is for 1258 days and is taken from Ref.[17]. The sin2 2θ and
δm2 in Fig. 4.1 a), are taken from Eq. (2.20). For Fig. 4.1 b), we use Eq.
(2.21).
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Figure 4.2: The comparison between the MSW solutions and the data a) for
MSW (SMA), b) for MSW (LMA) in day time. Eq. (3.23) is used here. The
data is for 1258 days for SuperKamiokande experiment [17]. Note that the
MSW (LMA) explain the data batter than MSW (SMA).
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Figure 4.3: This is LMA and SMA comparison for night. The survival prob-
ability for night is given by Eq. (3.39). The experimental data is for 1258
days of SuperKamiokande observations [17].
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Figure 4.4: The Day-Night Spectrum Test. Here, we used LMA solution,
and Eq. (3.23) for survival probability in day and Eq. (3.39) in night. At
high energy, the earth effect enhance events in night, (see Fig. 3.8 also). The
experimental data is take from Ref.[17].
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Chapter 5

Results and Discussion

The solar electron neutrino flux is less than the predicted one in the standard
solar model. Our Eq. (4.4) and Eq. (4.5) indeed confirm this. In this thesis,
assuming that the solar neutrinos undergo νe → νµ transitions, we have
treated the solution of solar neutrino problem step by step.

First, we make the assumption that the background condition in which
neutrinos are propagating is vacuum. The relevant oscillation probability
expression is discussed in chapter 2. This result tell us that the oscillation
length is very important for explaining the observed solar νe deficit. For solar
neutrinos, the oscillation length is comparable to the distance between the
sun and the earth, if δm2 � 10−11 eV2. Fixing the oscillation length, we
can estimate the range of neutrino mixing parameters to explain the various
experimental results. In this thesis, we have applied this procedure for the
latest SKK as well as the SNO results. Eq. (2.20) gives the range of the two
neutrino mixing parameters for the SKK experiment, whereas Eq. (2.21)
gives the same for the SNO experiment.

Next, we turn to more realistic situation. We consider the effects of neu-
trino interactions for a system of mixed neutrinos during their propagation in
chapter 3. This leads us to corrections in the vacuum result. This includes
the analytic description of the process that involve the neutrino propaga-
tion inside the sun. The Mikheyev Smirnov Wolfenstein (MSW) effect is
introduced including its Landau-Zener correction. For a resonance occur-
ring inside the sun, the Landau-Zener effect shall enhance the solar electron
neutrino survival probability obtained under the MSW approximation. Two
types of solutions within the MSW effect are found to explain the experimen-
tal results. These are called the Large Mixing Angle (LMA) solution and the
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Small Mixing Angle (SMA) solution.
The next step to the solve neutrino problem in this thesis is to study the

Day-Night effect. The analytic description of this effect is given in chapter 3.
The experiments have found that the solar νe flux is different in day w.r.t to
that in night for neutrino energy greater than 1 MeV. We consider the solar
neutrino survival probability at mid night and compare it with the one in mid
day (Fig. 3.8). We find that the survival probability at the night with LMA
solution is compatible with the experimental observations. It thus excludes
the SMA solution.

We also calculate the solar electron neutrino event rates for the two main
type of experiments. To do this, parameterizations for the solar neutrino flux,
and the neutrino nucleon/electron cross section were found first. These are
then convolved with the solar electron neutrino survival probability obtained
in previous chapters. Our results are given by Eq. (4.4) and Eq. (4.14) in
chapter 4. These are then compared with the observations also. As a last
observable, the recoil electron energy spectrum for SKK experiment is also
calculated in chapter 4. We depict results for our calculation of the recoil
electron energy spectrum in Fig. 4.1 to Fig. 4.4 along with experimental
observations.

In summary, the νe → νµ neutrino flavor oscillation channel with neutrino
mixing parameters (sin2 2θ, δm2)= (0.81, 5×10−5 eV2) is found to be the
most favorable to explain all the solar neutrino diagnostic measurements.
These include the average flux in Ga, SNO and SKK experiments, the recoil
electron energy spectrum and the day night effect in SKK.
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Appendix A

How to Solve the Weber
Equation

A.1 The Weber Equation

When we study Landau-Zener Probability we encounter some difficulty, es-

pecially for Weber Eq. d2U(z)
dz2 + (n − z2

4
+ 1

2
)U(z) = 0 given by Eq. (3.31).

Below we provide some details of its solution. Then we apply Weber
Function to solve for Landau-Zener Formula.

Consider differential equation of the form

d2ω

dx2
= f(x)ω, (A.1)

in which x is a real or complex variable, and f(x) a prescribed function. All
homogeneous linear differential equation of the second order can be put in
this form by appropriate change of dependent or independent variable.

But above equation we do not know how to solve exactly. Then we use a
tricky way to solve to it. That is, make Eq. (A.1) of the form [18]

d2�

dξ2
= (1 + φ)�. (A.2)

If φ is enough small then we can neglect it. Then the solution of Eq. (A.2)
can approach to � = Aeξ + Be−ξ. Here we can let

� = {ξ′(x)} 1
2 ω. (A.3)
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Then � satisfies
d2�

dξ2
= {ẋ2f(x) + ẋ

1
2
d2ẋ− 1

2

dξ2
}�, (A.4)

where dots signify differentiations with respect to ξ.
We can compare with Eq. (A.2) and Eq. (A.4). We compromise by

choosing ξ(x) so that the term ẋ2f(x) is a constant, which we take to be
unity. Thus

ξ(x) =
∫ x

0+
f

1
2 (x′)dx′. (A.5)

Until now, we get the solution of Eq. (A.4) as

� ∼= Ae
∫ x

0+
f

1
2 (x′)dx′

+ Be−
∫ x

0+
f

1
2 (x′)dx′

.

In terms of ω, we obtain

ω = {ξ′(x)}−1
2 � ∼= Af

−1
4 e

∫ x

0+
f

1
2 (x′)dx′

+ Bf
−1
4 e−

∫ x

0+
f

1
2 (x′)dx′

. (A.6)

Eq. (A.6) we call Liouville-Green Function.

A.2 Relevance of Weber Equation for PLZ

The Eq. (A.1) can be write in the form

d2ω

dx2
= (

1

4
x2 + a)ω, (A.7)

as we take f = 1
4
x2 + a, then using Eq. (A.5)

ξ(x) =
∫ x

0+
(
1

4
x′2 + a)

1
2 dx′. (A.8)

For large x, 0+ is plus time and approach to zero. Thus

ξ =
1

4
x2 + a ln x + constant + O(x−2). (A.9)

Hence the principal solution U(a, x) is specified by the condition

U(a, x) ∼ x−a−( 1
2
)e−

x2

4 , (A.10)
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when x → +∞. We also denote U(a, x) by D−a− 1
2
(x).

Now Eq. (3.31) is

d2U(z)

dz2
+

(
n − z2

4
+

1

2

)
U(z) = 0. (A.11)

Where z =
√

αe−i π
4 t and n = i

ε212
α

. We apply Eq. (A.10) here. We get

U+(z) ∼ z−n−1e
z2

4 and U−(z) ∼ zne
−z2

4 but we want to know probability
when time is positive infinite. Because probability must be converge so the
solution U+(z) must be dropped. As a result, we get back Eq. (3.32).
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Appendix B

Derivation of the P2e in
Day-Night effect

Here we discuss the problem of finding P2e. The A⊕ donate the shift potential
became of interaction with matter in earth, and we assume the density of
earth is constant. Therefore, the neutrino propagation in earth is

i
d

dx

(
ν1

ν2

)
=

1

2E

[(
m2

1 0
0 m2

2

)
+ U †

(
A⊕ 0
0 0

)
U

] (
ν1

ν2

)
. (B.1)

The U matrix is define as Eq. (2.8), then we can obtain the Hamiltonian in
the mass-eigenstate

Hm =
1

2E

(
m2

1 + A⊕C2
θ A⊕SθCθ

A⊕SθCθ m2
2 + A⊕S2

θ

)
. (B.2)

Here, we neglects non-important term. Adding a phase factor still unaffect
the probability P2e. So, we can rewrite the Hamiltonian as

Hm =
1

2E

(
m2

1 + A⊕C2
θ − 1

2
Tr(Hm) A⊕SθCθ

A⊕SθCθ m2
2 + A⊕S2

θ − 1
2
Tr(Hm)

)
. (B.3)

Or in terms of Pauli-matrices

Hm =
1

4E

(
−δm2 + A⊕C2θ A⊕S2θ

A⊕S2θ δm2 − A⊕C2θ

)
,

=
1

4E

[
A⊕S2θ · σ1 + (−δm2 + A⊕C2θ)σ3

]
,

= (a · σ). (B.4)
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The Pauli-matrices and a vector are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (B.5)

a =
1

4E

⎛
⎜⎝ A⊕S2θ

0
−δm2 + A⊕C2θ

⎞
⎟⎠ .

The time evolution operator is given by

T (t) = exp(−iHt). (B.6)

Now, we have two properties[19] of Pauli-matrices to obtain time-evolution
function

(a · σ)2 = a2,

T (t) = exp(−ia · σt) = 1 cos(at) − i
a · σ

a
sin(at). (B.7)

Thus, we may easily calculate the amplitude A2e=〈νe|ν2(L)〉 by using the the
explicit form of the Pauli-matrices. Combining the result of Eq. (2.8) and
Eq. (B.7) we obtain

A2e = 〈ν2| sin θ T (L)|ν2〉. (B.8)

L is the length of neutrino propagation. From which we can get the proba-
bility

P2e = |A2e|2 ,

= S2
θ + sin2 2θ

A⊕δm2

A2⊕ − 2A⊕δm2C2θ + (δm2)2
sin2(aL), (B.9)

(B.10)

with

a =
1

4E

√
(A − δm2C2θ)2 + δm2S2

2θ. (B.11)

The average probability using above equation is

〈P2e〉 = S2
θ +

1

2
sin2 2θ

A⊕δm2

A2⊕ − 2A⊕δm2C2θ + (δm2)2
. (B.12)

It is the same as Eq. (3.40).
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