## 目錄

| 目錄                   | i  |
|----------------------|----|
| 圖目錄                  | ii |
| 第一章 序論               | 1  |
| 1-1、研究背景             | 1  |
| 1-2、研究動機             | 4  |
| 第二章 實驗原理             | 8  |
| 2-1、共軛高分子之特性         | 8  |
| 2-2、有機二極體元件特性        | 10 |
| 2-3、高分子聚合物載子傳導機制     | 12 |
| 2-4、金屬基極電晶體元件特性      | 15 |
| 第三章 實驗架構             | 18 |
| 3-1、製程方法             | 18 |
| 3-2、元件量測             | 26 |
| 第四章 實驗結果分析           | 29 |
| 4-1、有機二極體電性量測分析      | 29 |
| 4-2、金屬鋁(基極)的特性分析     | 32 |
| 4-3、垂直式有機電晶體特性量測結果分析 | 35 |
| 第五章 結論與展望            | 48 |
| <b>參考文獻</b>          |    |

## 圖目錄

| 圖 1-1-1 聚乙炔(PA)化學結構圖                               | 1       |
|----------------------------------------------------|---------|
| 圖 1-1-2 飛利浦可撓曲積體電路之影像圖                             | 3       |
| 圖 1-2-1 場效電晶體結構圖                                   | 4       |
| 圖 1-2-2 矽基板之 P3HT 有機薄膜電晶體                          | 5       |
| 圖 1-2-3 (a)飽和模式(b)空乏模式在不同閘極電壓下電晶體的電壓與              | 軍電流關係圖5 |
| 圖 1-2-4 垂直通道高分子場效電晶體製作流程圖                          | 6       |
| 圖 1-2-5 黃光微影製作垂直有機薄膜電晶體流程圖                         | 6       |
| 圖 1-2-6 有機射極之金屬基極電晶體能帶圖                            | 7       |
| 圖 1-2-7 共基極操作在不同射極電流下之集極基極偏壓與集極電流                  | 充關係圖7   |
| 圖 2-1-1 PPV(左)與 MEH-PPV(右)高分子材料結構式                 | 9       |
| 圖 2-1-2 regioregular poly(3-hexylthiophene) (P3HT) |         |
| 圖 2-1-3 P3HT 側鏈不同的排列方式                             | 9       |
| 圖 2-2-1 歐姆接觸(P型半導體)                                |         |
| 圖 2-2-2 蕭基接觸(P 型半導體)                               | 11      |
| 圖 2-2-3 順向與逆向偏壓下的蕭基接觸                              | 11      |
| 圖 2-2-4 蕭基接觸與歐姆接觸之電壓與電流關係圖                         | 12      |
| 圖 2-3-1 (a)順向偏壓(b)逆向偏壓下有機二極體之能帶圖                   | 13      |
| 圖 2-4-1 Si/CoSi/Si 異質結構圖                           | 15      |
| 圖 2-4-2 在熱平衡下以及一般操作下之能帶圖                           | 16      |
| 圖 2-4-3 電晶體共基極輸出特性曲線圖                              | 17      |
| 圖 3-1-1 實驗主要步驟流程圖                                  | 18      |
| 圖 3-1-2 ITO 薄膜蝕刻圖案                                 | 19      |
| 圖 3-1-3 ITO 薄膜清潔流程圖                                | 20      |
| 圖 3-1-4 電晶體之集極完成圖                                  | 21      |

| 圖 | 3-1-5  | 電晶體之基極完成圖21            |
|---|--------|------------------------|
| 啚 | 3-1-6  | 氟化鋰射極能障完成圖22           |
| 啚 | 3-1-7  | 電晶體之射極有機材料完成圖22        |
| 啚 | 3-1-8  | 電晶體完成圖23               |
| 啚 | 3-1-9  | 垂直式有機電晶體剖面圖23          |
| 啚 | 3-1-10 | )製程步驟流程圖24             |
| 圖 | 3-1-11 | 電晶體之集極與基極完成圖25         |
| 啚 | 3-1-12 | 2 垂直式電晶體完成圖(已封裝)25     |
| 啚 | 3-2-1  | 射極與基極兩端順向偏壓電路圖26       |
| 啚 | 3-2-2  | 射極與基極兩端逆向偏壓電路圖26       |
|   |        | 基極與集極兩端順向偏壓電路圖27       |
| 圖 | 3-2-4  | 基極與集極兩端逆向偏壓電路圖27       |
|   |        | 共射極電路架設圖28             |
| 啚 | 3-2-6  | 共基極電路架設圖               |
| 啚 | 4-1-1  | 射極與基極順向偏壓 I-V 特性關係圖29  |
| 啚 | 4-1-2  | 射極與基極逆向偏壓 I-V 特性關係圖30  |
| 啚 | 4-1-3  | 射極與基極蕭基二極體電壓與電流對數關係圖30 |
| 啚 | 4-1-4  | 基極與集極順向偏壓 I-V 特性關係圖31  |
| 圖 | 4-1-5  | 基極與集極逆向偏壓 I-V 特性關係圖32  |
| 啚 | 4-1-6  | 基極與集極二極體電壓與電流對數關係圖32   |
| 啚 | 4-1-7  | 射極與集極端電壓與電流關係圖33       |
| 啚 | 4-2-1  | 空氣中超薄鋁的電阻變化與時間關係圖34    |
| 圖 | 4-2-2  | 超薄鋁在 P3HT 上 AFM 影像圖35  |
|   |        | 共射極操作電晶體輸入特性量測曲線圖36    |
| 圕 | 4-3-2  | 共射極操作電晶體輸出特性量測曲線圖37    |
| 昌 | 4-3-3  | 共基極操作電品體輸出特性量測曲線圖38    |

| 圖 4-3-4 共基極操作下電晶體Ic-I <sub>E</sub> 關係圖              | 39 |
|-----------------------------------------------------|----|
| 圖 4-3-5 共射極操作下電晶體I <sub>E</sub> -I <sub>B</sub> 關係圖 | 40 |
| 圖 4-3-6 不同射極材料之電晶體能帶圖                               | 41 |
| 圖 4-3-7 射極材料爲 P3HT 之電晶體特性圖                          | 41 |
| 圖 4-3-8 射極材料爲 PVK 之電晶體特性圖                           | 42 |
| 圖 4-3-9 使用 PMMA 射極能障之電晶體共射極輸出特性圖                    | 43 |
| 圖 4-3-10 無射極能障之電晶體共射極輸出特性圖                          | 44 |
| 圖 4-3-11 使用 LiF 射極能障之電晶體共射極輸出特性圖                    | 44 |
| 圖 4-3-12 電晶體共射極量測輸出特性(5 月 7 日量測結果)                  | 45 |
| 圖 4-3-13 20 天後電晶體共射極量測輸出特性(5 月 27 日量測結果)            | 46 |
| 圖 4-3-14 雷昆體特性量測長佳結果                                | 46 |

