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模糊細胞神經網路整合系統 

 

摘要 

 
無論從應用或生物觀點，使用一組平行的細胞神經網路(cellular neural 

networks, CNN)以完成高階資訊處理與推論能力已被廣泛的接受。如此的整合型

細胞神經網路可以解決比較複雜的問題。本論文提出一種以遞迴式模糊神經網路

（recurrent fuzzy neural network）的架構以自動建構CNN整合系統。這個稱為

RFCNN/RFCCNN (recurrent fuzzy CNN/ recurrent fuzzy coupled CNN)的整合系統

可以同時自動的學習CNN的網路結構與參數。其網路結構學習包括模糊規則

（fuzzy rules）與CNN數目的建立；其參數學習包括模糊歸屬函數與CNN模板

（template）參數的學習。在RFCNN/RFCCNN中，每個模糊規則對應一個CNN。

一個新的線上適應獨立元件分析混合模型（on-line adaptive ICA (independent 

component analysis) mixture-model technique）技術被提出以做為RFCNN的結構學

習；另外，次序微分（ordered-derivative）可做為RFCNN/RFCCNN的參數學習。

本論文所提出RFCNN/RFCCNN對於既存CNN整合系統同時地建立模糊規則與

學習CNN模板參數的兩難提供一個解決方案。本論文最後並以工業上瑕疵檢測

的問題做為說明RFCNN/RFCCNN系統的能力，實驗結果顯示所提出的方法是有

效且有潛力的。 
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A Fuzzy Cellular Neural Network Integrated System 
 

Student: Chun-Lung Chang     Advisor: Chin-Teng Lin 

Department of Electrical and Control Engineering 

National Chiao-Tung University 

 

Abstract 

It is widely accepted that using a set of cellular neural networks (CNNs) in 

parallel can achieve higher-level information processing and reasoning functions 

either from application or biologics points of views. Such an integrated CNN system 

can solve more complex intelligent problems. In this thesis we propose two novel 

frameworks for automatically constructing a multiple-CNN integrated neural system 

in the form of a recurrent fuzzy neural network. The systems, called recurrent fuzzy 

CNN (RFCNN) and recurrent fuzzy coupled CNN (RFCCNN), can automatically 

learn its proper network structure and parameters simultaneously. The structure 

learning includes the fuzzy division of the problem domain and the creation of fuzzy 

rules and CNNs. The parameter learning includes the tuning of fuzzy membership 

functions and CNN templates. In the RFCNN/RFCCNN, each learned fuzzy rule 

corresponds to a CNN. Hence, each CNN takes care of a fuzzily separated problem 

region, and the functions of all CNNs are integrated through the fuzzy inference 

mechanism. A new on-line adaptive ICA (independent component analysis) 

mixture-model technique is proposed for the structure learning of RFCNN/RFCCNN, 

and the ordered-derivative calculus is applied to derive the recurrent learning rules of 

CNN templates in the parameter-learning phase. The proposed RFCNN/RFCCNN 

provides a solution to the current dilemma on the decision of templates and/or fuzzy 

rules in the existing integrated (fuzzy) CNN systems. The capability of the proposed 

RFCNN and RFCCNN are demonstrated and compared on the real-world defect 

inspection problems. Experimental results show that the proposed scheme is effective 

and promising. 
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1. Introduction 

1.1. Motivation 

The two-dimensional inputs and outputs of the Cellular Neural Networks (CNN) 

[1], [2], make it very suitable for image processing. A single CNN can solve a basic 

task such as thresholding and filtering, etc. However, either from application or 

biologics points of views, several CNNs in parallel or in series can solve more 

complex intelligent problems, such as edge detection with impulse noise, the 

detection of fuzzy boundary, and features extraction, etc. To solve more complex 

problems, several CNNs can be integrated to solve specific problem. In this thesis, we 

propose a novel framework to integrate a set of CNNs in parallel in order to solve 

more complex intelligent problems. 

1.2. Cellular Neural Network 

The CNN first introduced as one that is able to implement alternative to fully 

connected neural networks, has evolved into a paradigm for these types of arrays. The 

block diagram of the CNN is shown in Fig. 1.1, and its dynamics is described by the 

following differential equations:  

ji
Nlk

ljkilk
Nlk

ljkilkjiji ztubtyatxtx
dt
d

rr

,
,

,,
,

,,,, )()()()( ∑∑
∈

++
∈

++ +++−=        (1.1) 

}|}||,max{||),({),( rjliklkCjiN r ≤−−=              (1.2) 

with output nonlinearity 

|)1)(||1)((|
2
1)( ,,, −−+= txtxty jijiji ,                      (1.3) 



 

2 

A

B ∫ -1 1

1

-1

Feedback template

Control template

Bias
z

-1

Local
input

u

Output
y

.
x x

 

Figure 1.1 Block diagram of a CNN. 

where jix ,  is the internal state of a cell, jiy ,  is the output, jiu ,  is external input and 

jiz ,  is a local value called bias, (i, j) is a grid point associated with a cell on the 2-D 

grid, and (k, l) is a grid point in the neighborhood within a radius r of the cell (i, j). 

That is, C(k, l) is a cell in the neighborhood within a radius r of the cell C(i, j) and 

),( jiN r  is a set including all C(k, l) associated with a cell C(i, j). The A and B are 

two generic parametric functions called feedback template and control template, 

respectively. A CNN has a space invariant local interconnection structure associated 

with 19 free parameters (neighborhood within a radius r = 1), which exclusively 

determines the dynamic behavior of the CNN. 

The CNN possesses some important characteristics such as efficient real-time 

processing capability and feasible VLSI implementation. Some applications requiring 

high-speed processing include real-time object recognition and tracking, high-speed 

visual inspection of manufacturing processes, etc. 

1.3. CNN Integrated System 

Besides some basic image processing tasks, the CNN has been used to mimic the  
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Figure 1.2 The framework of the multi-channel adaptive CNN algorithm. 

local function of biological neural circuits, especially the human visual pathway 

system [3]. According to a current biological study [4], mammalian visual systems 

process the world through a set of separate parallel channels. As shown in Fig. 1.2, 

each sub-channel can be regarded as a unique CNN. The output of these sub-channels 

is then combined to form the new channel responses. One key point is to define the 

global channel interaction and result in a unique binary image flow. As a result, it is 

widely accepted that using a set of CNNs in parallel can achieve higher-level 

information processing and reasoning functions either from biologics or application 

points of views. Such an integrated CNN system can solve more complex intelligent 

problems. 

For designing an integrated CNN system, in addition to the determination of a 

set of templates, another kernel problem is the way of integration. To solve this 

problem, the fuzzy inference system (FIS) is gaining attention. The FIS is a popular 
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computing framework based on the concept of fuzzy set theory, fuzzy if-then rules, 

and fuzzy reasoning. With crisp inputs and outputs, fuzzy inference system 

implements a nonlinear mapping from its input space to output space by a number of 

if-then rules. It is very useful in image processing when it is difficult to specify, in a 

crisp mathematical form, the operation that is needed to yield a satisfying result from 

a complex image. For example, the boundary detection of different regions strongly 

depends on a subjective decision, especially in medical image. It cannot be clearly 

defined what is an edge-like and what is a noise-like pattern. In many cases both 

statements might be true; therefore a fuzzy-type linguistic description of all patterns is 

better than a crisp set approach. Therefore, FIS can play an important role to integrate 

a set of CNNs into a system. 

1.3.1. Existing Fuzzy-based CNN Models and CNN Integrated 

Systems 

To make a CNN or a set of CNNs have the ability of reasoning functions, several 

fuzzy-based CNN models were proposed [5]-[9], which are fuzzy cellular neural 

network (FCNN) proposed by Yang et al [5], [6], fuzzy reasoning implemented on 

CNN proposed by Balsi et al [7], [8]. To make a set of CNNs in parallel achieve 

higher-level information processing, several integrated CNN systems are proposed 

[9]-[11], which are cellular neuro-fuzzy networks (CNFNs) proposed by Colodro [9], 

and fuzzy-type CNN proposed by Rekeczky [10], [11] and Szatmári et al. [4]. In the 

following, we will survey these related papers. 
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1.3.1.1. Existing Fuzzy-based CNN Models 

Yang et al. [5], [6] first proposed a FCNN model in 1996. Such architecture had 

the same structure as a CNN with nonlinear connections, but the connection functions 

were stated in terms of fuzzy logic operators, so that the model departed from the 

trend towards standardization and simplification of connection functions to be 

realized in future CNN universal machine (CNN-UM) chips. The authors gave an 

example for edge detection. The characteristics of Yang’s FCNN are to integrate fuzzy 

logic into the structure of traditional CNN and maintains local connection among cells, 

but its drawback is that it is too complex to implement in the short term. 

Balsi et al. [7], [8] proposed a fuzzy reasoning method implemented on 

CNN-UM in 1999. Such architecture has the same structure as a conventional CNN. 

The authors showed that standard fuzzy logic could be straightforwardly implemented 

in the CNN-UM framework without any architectural modifications. The authors 

showed several examples for edge detection and noise removal. One of them 

concerned the edge detection in the presence of impulse noise. Experimental result 

showed the edge could be detected even impulse noise existed with appropriate fuzzy 

rules. The characteristic of Balsi’s FCNN is to map a standard Sugeno-style 

fuzzy-rule-based image processing algorithm into a standard CNN-UM analogic 

(analog and logic) algorithm. However, the fuzzy rules must be obtained by domain 

experts. 

Yang et al. [5], [6] and Balsi et al. [7], [8] were devoted to make a CNN or a set 

of CNNs have the ability of fuzzy reasoning. However, the other authors [4], [9]-[11] 

were devoted to make a set of CNNs in parallel achieve higher-level information 

processing, which is the main research subject in this thesis. The related papers are 

described in the following subsection. 
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1.3.1.2. Existing CNN Integrated Systems 

In 1996, Colodro et al. [9] proposed a new class of cellular networks called 

cellular neuro-fuzzy networks (CNFNs), which the linear combination and piece-wise 

linear function of a CNN were replaced by an arithmetic fuzzy-logic unit. To 

demonstrate the capabilities of the proposed CNFN, the authors gave an application 

example for edge detection. The example used eight fuzzy rules and its CNFN 

templates were well-known Sobel masks to detect edge. The characteristic of 

Colodro’s CNFN is to provide a new architecture based on CNN and FIS to solve 

problem. Its drawbacks are the templates cannot be learned and the fuzzy rules must 

be obtained by domain experts. Though Colodro et al. showed a simple example for 

edge detection, they presented an approach to integrate different CNN template sets to 

solve problem. 

Rekeczky et al. [10], [11] developed a common CNN framework for various 

adaptive non-linear filters [10]. Their experimental results indicated that impulsive 

noise elimination will be more robust if both the pixel intensity and the edge-like 

local property is taken into consideration and exploited in a fuzzy-type decision. 

Rekeczky et al. [11] also proposed a CNN-based spatio-temporal approach to find the 

endocardial (inner) boundary of the left ventricle from a sequence of 

echocardiographic images. The kernel of the left ventricle was located and the 

boundary was found using a fuzzy-adaptive technique. Boundary dislocation, area and 

smoothness constraints were transformed into the transient length of the CNN while 

the a priori knowledge about the heart morphology was built into the spatial template 

parameters. The authors showed the architecture of the processing steps of a 

fuzzy-type CNN analogic algorithm. As observed by Rekeczky et al. [11], it was not 

necessary to use a specialized CNN model [5], [6] in order to exploit fuzzy logic 
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concepts. The reasons were as follows. First, elementary fuzzy-type computations, 

such as the min and max operator, are already defined in CNN-based gray-scale 

morphology and require only simple non-linear templates with sigmoid-type 

nonlinear interactions. Second, higher level fuzzy strategies can also be synthesized 

using ‘conventional’ linear and non-linear CNN templates. The characteristic of 

Rekeczky’s fuzzy-type CNN analogic algorithm is to use FIS to integrate different 

CNNs to detect fuzzy boundary of a given object. Similarly, its drawbacks are the 

corresponding templates cannot be learned and must be assigned in advance, and the 

fuzzy rules must be obtained by domain experts. 

In 2003, Szatmári et al. [4] proposed an image flow processing mechanism for 

visual exploration systems. The goal of this multi-channel topographic approach was 

to produce decision maps for salient feature localization and identification. According 

to a current biological study, mammalian visual systems process the world through a 

set of separate parallel channels. Each sub-channel can be regarded as a unique CNN. 

The output of these sub-channels is then combined to form the new channel responses. 

In the core of the algorithm crisp or fuzzy logic strategies define the global channel 

interaction and result in a unique binary image flow. Experimental results were shown 

for terrain exploration environment based on multiple feature extraction. The 

characteristic of Szatmári’s method is to use FIS to integrate different CNNs to extract 

features of a given object. Similarly, its drawbacks are the corresponding templates 

cannot be learned and the fuzzy rules must be obtained by domain experts. 

1.3.2. The Proposed CNN Integrated System 

Two common characteristics are observed in the representative works of 

integrated CNN systems such as Colodro et al. [9] and Roska et al. [4], [11]. First, 
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they all used many CNNs in parallel to solve a complex problem such as edge 

detection with impulse noise, the detection of fuzzy boundary, and features extraction, 

etc. Second, they all used FIS to make a final decision. For building a FIS, we have to 

specify the fuzzy sets, fuzzy operators and the knowledge base. However, the existing 

methods [4], [9], [11] all need to manually take the fuzzy rules by domain experts, 

which is difficult, even for domain experts, to examine all the input–output data from 

a complex system to find a number of proper fuzzy rules. In addition, they all need to 

assign the corresponding templates of CNNs in advance (i.e., templates cannot be 

learned with fuzzy rules simultaneously). Although according to Nossek’s survey [12], 

the template coefficients of a CNN can be found by design [12], [13] or by learning 

[12], [14], these techniques cannot be applied to the design or learning of an 

integrated CNN system directly. 

To cope with these drawbacks, we introduce a novel framework for 

automatically constructing a multiple-CNN integrated neural system in the form of a 

recurrent fuzzy neural network (FNN) called recurrent fuzzy CNN (RFCNN). Figure 

1.3 shows the structure of the RFCNN and its functional correspondence with a 

typical fuzzy inference system (FIS) [15]-[17], where the fuzzifier is to transform 

crisp measured data into suitable linguistic values, which are then matched with the 

fuzzy rules in the rule base by performing fuzzy approximate reasoning to achieve 

desired linguistic outputs, which are then transformed back to final crisp outputs 

through the defuzzifier. The RFCNN shown in Fig. 1.3 can automatically learn its 

proper network structure and parameters simultaneously. The structure learning 

includes the fuzzy division of the problem domain and the creation of fuzzy rules and 

CNNs. The parameter learning includes the tuning of fuzzy membership functions and 

CNN templates. In the RFCNN, each learned fuzzy rule corresponds to a CNN. Hence, 

each CNN takes care of a fuzzily separated problem region, and the functions of all  
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Figure 1.3 The schematic diagram of the RFCNN and FIS. 

 

CNNs are integrated through the fuzzy inference mechanism. 

The RFCNN is constructed in the form of a recurrent FNN. Two important 

learning tasks of a FNN are the structure identification and the parameters 

identification [15]-[19]. The structure identification is the partition of the input-output 

space [20]-[23], which influences the number of generated fuzzy rules, each 

corresponding to a CNN. Efficient partition of input-output data will result in faster 

convergence and better performance for FNN. In the parameter learning of the 
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RFCNN, the ordered-derivative calculus is applied to derive the recurrent learning 

rules due to the recurrent structure of the RFCNN inherited from CNNs. The derived 

rules can learn the CNN templates and other parameters in the RFCNN efficiently. 

The proposed RFCNN provides a solution to the current dilemma on the decision of 

templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. It has 

been applied to solve the real-world defect inspection. This is an application for the 

defect inspection of color filter, which contains multiple types of defects (faults) with 

different features on a single image. Experimental results, shown in Sections 4 of 

Chapter 2 and Chapter 3, successfully demonstrate that the introduced scheme is very 

effective and promising. 

1.4. Concluding Remarks 

In this chapter, several fuzzy-based CNN integrated system are presented. Since 

those methods suffered from two problems, i.e., they all need to assign the 

corresponding templates of CNNs in advance (i.e., templates cannot be learned) and 

they all need to take the fuzzy rules manually by domain experts. To cope with these 

drawbacks, we proposed a novel framework for automatically constructing a 

multiple-CNN integrated neural system in the form of a recurrent fuzzy neural 

network (FNN). This system, called recurrent fuzzy CNN (RFCNN) [13], can 

automatically learn its proper network structure and parameters simultaneously. Each 

CNN takes care of a fuzzily separated problem region, and the functions of all CNNs 

are integrated through the fuzzy inference mechanism. For learning algorithm, the 

details of structure-learning algorithm based on adaptive ICA (independent 

component analysis) mixture-model technique are described in Section 3.1 of Chapter 

2; the details of parameter-learning algorithm are described in Sections 3.2 of Chapter 
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2 and Chapter 3, respectively. For experimental results and discussions, they are 

described in Sections 4 of Chapter 2 and Chapter 3, respectively. Finally, conclusions 

and perspectives are described in the last chapter. 
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2. A Recurrent Fuzzy Cellular Neural Network 

System with Automatic Structure and Template 

Learning 

In this chapter, we propose a novel framework for automatically constructing a 

multiple-CNN integrated neural system in the form of a recurrent fuzzy neural 

network. This system, called recurrent fuzzy CNN (RFCNN), can automatically learn 

its proper network structure and parameters simultaneously. The structure learning 

includes the fuzzy division of the problem domain and the creation of fuzzy rules and 

CNNs. The parameter learning includes the tuning of fuzzy membership functions and 

CNN templates. In the RFCNN, each learned fuzzy rule corresponds to a CNN. Hence, 

each CNN takes care of a fuzzily separated problem region, and the functions of all 

CNNs are integrated through the fuzzy inference mechanism. The new on-line 

adaptive ICA (independent component analysis) mixture-model technique, proposed 

in Section 3.1 of this chapter, is used for the structure learning of RFCNN, and the 

ordered-derivative calculus is applied to derive the recurrent learning rules of CNN 

templates in the parameter-learning phase. The proposed RFCNN provides a solution 

to the current dilemma on the decision of templates and/or fuzzy rules in the existing 

integrated (fuzzy) CNN systems. The capability of the proposed RFCNN is 

demonstrated on the real-world defect inspection problems. Experimental results 

show that the proposed scheme is effective and promising. 
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2.1. Introduction 

The CNN has been used to mimic the local function of biological neural circuits, 

especially the human visual pathway system [3]. According to a current biological 

study [4], mammalian visual systems process the world through a set of separate 

parallel channels. Each sub-channel can be regarded as a unique CNN. The output of 

these sub-channels is then combined to form the new channel responses. As a result, it 

is widely accepted that using a set of CNNs in parallel can achieve higher-level 

information processing and reasoning functions either from biologics or application 

points of views. Such an integrated CNN system can solve more complex intelligent 

problems. 

For designing an integrated CNN system, in addition to the determination of a 

set of templates, another kernel problem is the way of integration. To solve this 

problem, the fuzzy inference system (FIS) can play an important role to integrate a set 

of CNNs into a system. As mentioned in Section 3 of Chapter 1, to make a set of 

CNNs in parallel achieve higher-level information processing, several integrated CNN 

systems are proposed [4]-[7]. They have two common characteristics. First, they all 

used many CNNs in parallel to solve a complex problem. Second, they all used FIS to 

make a decision. The common drawbacks of these approaches are that they all need to 

assign the corresponding templates of CNNs in advance (i.e., templates cannot be 

learned) and they all need to take the fuzzy rules manually by domain experts. 

Although according to Nossek’s survey [8], the template coefficients of a CNN can be 

found by design [8], [9] or by learning [8], [10], these techniques cannot be applied to 

the design or learning of an integrated CNN system directly. 

To cope with these drawbacks, we proposed a novel framework for automatically 

constructing a multiple-CNN integrated neural system in the form of a recurrent fuzzy 
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neural network (FNN) [11], [12]. This system, called recurrent fuzzy CNN (RFCNN) 

[13], can automatically learn its proper network structure and parameters 

simultaneously. The structure learning includes the fuzzy division of the problem 

domain and the creation of fuzzy rules and CNNs. The parameter learning includes 

the tuning of fuzzy membership functions and CNN templates. In the RFCNN, each 

learned fuzzy rule corresponds to a CNN. Hence, each CNN takes care of a fuzzily 

separated problem region, and the functions of all CNNs are integrated through the 

fuzzy inference mechanism. 

As mentioned in Section 3 of Chapter 1, the RFCNN is constructed in the form 

of a recurrent FNN, which includes two important learning tasks: the structure 

identification and the parameters identification [15]-[19]. In this chapter, the new 

on-line adaptive ICA (independent component analysis) mixture-model technique, 

described in Section 3.1, is used for the structure learning of the RFCNN. Basically, 

ICA finds directions in the input space which lead to independent components instead 

of just uncorrelated ones, as PCA (principle component analysis) does [24], [25], so it 

reduces not only the number of rules (i.e., CNN) but also the number of membership 

functions under a pre-specified accuracy requirement dynamically. In the parameter 

learning of the RFCNN, the ordered-derivative calculus is applied to derive the 

recurrent learning rules due to the recurrent structure of the RFCNN inherited from 

CNNs [1], [2]. The derived rules can learn the CNN templates and other parameters in 

the RFCNN efficiently. The proposed RFCNN provides a solution to the current 

dilemma on the decision of templates and/or fuzzy rules in the existing integrated 

(fuzzy) CNN systems. It has been applied to solve the real-world defect inspection 

problems, which contain multiple types of defects (faults) with different features on a 

single image. Experimental results successfully demonstrate that the proposed scheme 

is very effective and promising. 
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This chapter is organized as follows. Section 2 describes the structure and 

functions of the proposed RFCNN. Section 3 describes the on-line structure and 

parameters learning algorithm for the RFCNN. Section 4 gives experimental results 

and discussions. Finally, conclusions are summarized in the last section. 

2.2. Structure of the RFCNN 

In this section, the structure of the proposed RFCNN shown in Fig. 2.1 is 

introduced. For clarity, we consider a CNN, with time constant = 1, time step = 1, and 

neighborhood within a radius = 1, which is characterized by the following templates: 
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where iA , iB , and iz  is feedback template, control template, and bias of the ith 

CNN, respectively. By defining a CNN as above, the six-layered RFCNN network 

will realize a fuzzy model of the following form: 

Rule i :  IF 1x  is iM1  and … jx  is i
jM … and 9x  is iM 9  

THEN )1( +tyi  is ))()()((' tztuBtyAf ii
i

i ++           (2.2) 

or 

Rule i :  IF 1x  is iM1  and … jx  is i
jM … and 9x  is iM 9  

THEN )1( +tyi  is ))( )(...)()()(( 91,120,111,10,0
' tztxbtxbtxbtyaf iiii

i
i +++++ −−−− ,        

 (2.3) 

where the current input vector is T
t ,  ...,  xxu ][ 91== x , )(tyA i

i  is )(0,0 tya i
i , 

)(tuBi  is )(...)()( 91,120,111,1 txbtxbtxbub iiii +++= −−−−∑ , 'f is a sigmoid function, 

i
jM  is a fuzzy set, and ia 0,0 , lk

ib , , and iz  are consequent parameters representing  
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Figure 2.1 Structure of the proposed RFCNN. 

feedback template, control template, and bias of the ith CNN, respectively. The 

number of input dimension of the RFCNN will be ( )212 +r  if the neighborhood of a 

CNN cell is within a radius = r. As shown in (2.3), we focus on uncoupled CNN cells 

in this chapter. With this six-layered network structure of the RFCNN, we shall define 

the function of each node and use the proposed on-line ICA mixture model described 

in the next section to construct the structure of the RFCNN. 

The RFCNN consists of nodes, each of which has some finite “fan-in” of 

connections represented by weight values from other nodes and “fan-out” of 

connections to other nodes. Associated with the fan-in of a node is an integration 
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function f , which serves to combine information, activation, or evidence from other 

nodes. This function provides the net input for this node 

] ..., , , ; ..., , ,[ )()(
2

)(
1

)()(
2

)(
1

k
p

kkk
p

kk wwwuuufinputnode =− ,     (2.4) 

where )()(
2

)(
1   ...,  ,  , k

p
kk uuu  are inputs to this node and )()(

2
)(

1   ...,  ,  , k
p

kk www  are the 

associated link weights. The superscript )(k  in (2.4) indicates the layer number. This 

notation will also be used in the following equations. A second action of each node is 

to output an activation value as a function of its net-input 

)()( )()()()( fainputnodeaooutputnode kkk
i

k =−==− ,          (2.5) 

where )(⋅a  denotes the activation function. We shall next describe the functions of 

the nodes in each of the six layers of the RFCNN, which include five feedforward 

layers and one feedback layer. 

Layer 1: No computation is done in this layer. Each node in this layer, which 

corresponds to one input variable, only transmits input values to the next layer directly. 

That is 

)1(
iuf = , 

and 

ffaoi == )()1()1( .                        (2.6) 

From the above equation, the link weight in layer one ][ )1(
iw  is unity. 

Layer 2: Each node in this layer corresponds to one linguistic value (small, large, 

etc.) of one of the input variables in Layer 1. In other words, the membership value 

which specifies the degree to which an input value belongs a fuzzy set is calculated in 

Layer 2. There are many choices for the types of membership functions for use, such 

as triangular, trapezoidal, or Gaussian ones. In this chapter, the membership functions 

are determined by the on-line ICA mixture model, which are either super-Gaussian 
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function or sub-Gaussian function. It is noted that the output x  from Layer 1 is 

projected into the independent axes obtained by the on-line ICA mixture model (as 

shown in Fig. 2.2) such that  

xBs ii = ,                           (2.7) 

where iB  is the basis matrix determined by the on-line ICA mixture model, 

Ji   ...,  ,2  ,1= , and J  is the number of clusters. That is, if the input data are 

classified into J  clusters, the number of rules will be J . 

With the choice of non-Gaussian membership function, the operation performed 

in this layer is  

ii su =)2( , 

),(][ )2()2(
ijij upuf =  

where 

),exp(    )( ijij uup −∝                  for super-Gaussian 

),
2

))log(cosh(exp(    )(
2
ij

ijij

u
uup −−∝     for sub-Gaussian 
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Figure 2.2 Transformation by the on-line ICA mixture model for the proposed 
RFCNN. (a) The regions covered by the original axes. (b) The covered regions by the 
independent axes obtained by the on-line ICA mixture model transformation. 
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and 

,)()2()2( ffaoi ==                           (2.8) 

where iju  is the transformed value of the thj  term of the thi input variable ix . 

The transformation can be regarded as a change of input coordinates, where the 

parameters of each membership function are kept unchanged, i.e., the center and the 

width of each membership function on the new coordinate axes are the same as the 

old ones. 

Layer 3: A node in this layer represents one fuzzy logic rule and performs 

precondition matching of a rule. Here, we use the following AND operation for each 

Layer-3 node 

∏=
i

ii uuf )3()3( ][ , 

and 

ffaoi == )()3()3( .                         (2.9) 

The link weight in the Layer 3 ][ )3(
iw  is unity. The output f  of a Layer-3 node 

represents the firing strength of the corresponding fuzzy rule. 

Layer 4: This layer is called the consequent layer. Different nodes in Layer 3 

may be connected to the same node in Layer 4, meaning that the same consequent 

fuzzy set is specified for different rules. One of the inputs to each node is the output 

delivered from Layer 3 (firing strength) and the other inputs are CNN related inputs 

)6(a , which are the output of feedback term node. The feedback term node will be 

described in the feedback layer part in this section. Combining the two kinds of inputs 

in Layer 4, we obtain the whole function performed by this layer as  

)4()4( ][ ii uuf = , 

and 
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ftztuBtyAsigmoidfafao ii
i

i
i ⋅++=⋅== ))()()(()( )6()4()4( ,       (2.10) 

where iA , iB , iz  is feedback template, control template, bias of the ith CNN, 

respectively, as defined in (2.1), and ()sigmoid  is a sigmoid function, as defined in 

(2.13).  

Layer 5: Each node in this layer corresponds to one output variable. The node 

integrates all the actions recommended by Layer 4 and acts as a defuzzifier with  

∑=
i

ii uuf )5()5( ][ , 

and 

ffaoyout === )()5()5( .               

 (2.11) 

Feedback Layer: As shown as Fig. 2.1, this self-feedback layer characterizes the 

consequents of the RFCNN as a CNN template. Two types of nodes are used in this 

layer, the square node named as context node and the circle node named as feedback 

term node, where each context node is associated with a feedback term node. The 

number of context nodes (and thus the number of feedback term nodes) is the same as 

that of output term nodes in layer 4. The inputs to a context node are from its 

corresponding output term nodes ( )(tyi ), the input variables from Layer 1 

( T
t ,  ...,  xxttu ][)()( 91== x ), and template bias ( )(tzi ). The output of its associated 

feedback term node is fed to the original node in layer 4. The context node functions 

as the state (the summation of input part) of the ith CNN 

)()()()1( tztuBtyAtx ii
i

ii ++=+ .                   (2.12) 

As to the feedback term node, the membership function 1)1/(2)( 2 −+= − ueuf  

is used to approximate piece-wise linear function used in CNN. With this choice, the 

feedback term node evaluates the output by 
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1
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)6()6( −
+

==
− ixi

e
ao  .                        (2.13) 

This output is connected to its corresponding node in layer 4, which 

characterizes the consequents of the RFCNN as a CNN template. 

2.3. Learning Algorithm for the RFCNN 

Two types of learning, structure and parameter learning, are used concurrently 

for the RFCNN. The structure learning includes both the precondition and consequent 

structure identification of a fuzzy if-then rule. In the RFCNN, the structure learning 

includes the fuzzy division of the problem domain (precondition structure 

identification), and the creation of fuzzy rules and CNNs (consequent structure 

identification). The precondition structure identification corresponds to the 

input-space partitioning and can be formulated as a combinational optimization 

problem with the following two objectives: to reduce the number of rules generated 

and to reduce the number of fuzzy sets on the universe of discourse of each input 

variable. As to the consequent structure identification, the main task is to decide when 

to generate a new consequent term (or a new CNN) for the output variable. In our 

system, we propose an on-line ICA mixture model to realize the precondition and 

consequent structure identification part of the RFCNN. 

For the parameter learning, the parameters of each CNN template in the 

consequent parts are adjusted by the ordered derivative algorithm to minimize a given 

cost function. The parameters in the precondition part are adjusted by the on-line ICA 

mixture model algorithm. The RFCNN can be used for normal operation at any time 

during the learning process without repeated training on the input-output patterns 

when on-line operation is required. There are no rules (i.e., no nodes in the network 

except the input-output nodes) in this network initially. They are created dynamically  
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(1)Input/output space partitioning

(2)Construction of fuzzy rules and CNNs

(3)Parameter learning

Structure learning

 

Figure 2.3 Flowchart of the learning algorithm for the proposed FNN. 

as learning proceeds upon receiving on-line incoming training data by performing the 

following learning processes simultaneously (see Fig. 2.3). 

As shown in Fig. 2.3, learning processes (1) and (2) belong to the structure 

learning phase and (3) belongs to the parameter learning phase. The details of these 

learning processes are described in the rest of this section. 

2.3.1. Structure Learning Algorithm of RFCNN 

2.3.1.1 Input/Output Space Partitioning  

Efficient partition of input-output data will result in faster convergence and 

better performance for the RFCNN. The most direct way is to partition the input space 

into grid types and each grid represents a fuzzy if-then rule (see Fig. 2.4(a)). This is 

called grid-based partitioning. The major problem of such kind of partition is that the 

number of fuzzy rules (and thus the number of CNNs) increases exponentially if the 

number of input variables or that of partition increases. A flexible partition method, 
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the clustering-based approach which clusters the input training vectors in the input 

space, will reduce the rule and CNN numbers [20]-[23]. In fact, by observing the 

projected membership functions in Fig. 2.4(c), although the number of membership 

functions in Fig. 2.4(d) is more than that in Fig. 2.4(b), there are only 5 rules in Fig. 

2.4(d); however, there are 9 rules in Fig. 2.4(b). By observing the projected 

membership functions in Fig. 2.4(c), we find that some membership functions 

projected from different clusters have high similarity degrees. These highly similar 

membership functions can be checked and merged by similarity measure [23]. In the 

rest of this subsection, we will introduce some clustering methods such as C-means, 

ISODATA, and a new on-line ICA mixture model to provide a proper partition of the 

input-output space for the RFCNN [25]. These clustering algorithms will be briefly 

described in the following subsections. 
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Figure 2.4 Fuzzy partitions of two-dimensional input space. (a) Grid-based 
partitioning. (b) If-then rules based on grid-based partitioning (c) Clustering-based 
partitioning. (d) If-then rules based on clustering-based partitioning. 

2.3.1.1.1 C-means Clustering 

In the C-means clustering algorithm, the sum of the squared distances from all of 

the points in the cluster to the cluster center is used as the criterion for grouping input 

data samples. The algorithm can be described as follows: 

Step 1. Choose C initial cluster centers. For the first iteration, the starting values 

for cluster centers are chosen randomly. 
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Step 2. Assign unknown samples to corresponding clusters. For each sample, the 

Euclidean distance from each cluster center is calculated, and the sample is assigned 

to the cluster with the minimum distance. 

Step 3. Compute new cluster centers, which are calculated by the mean value of 

the points in the same cluster. 

Step 4. Check for the condition of convergence, which is that no cluster center 

has changed its value during Step 3. 

The C-means algorithm is a simple and efficient scheme to find proper 

input/output partitioning for the RFCNN, and then determine the proper fuzzy rules 

(i.e., CNNs). However, it assumes that the number of clusters is known in advance, 

which is exactly what we have to know from the clustering algorithm to obtain the 

number of fuzzy rules (i.e., CNNs) in the RFCNN in some real-world applications. As 

a result, the C-means algorithm cannot be used to on-line determine the structure of 

the RFCNN if there is such a need. 

2.3.1.1.2 ISODATA 

In the ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering 

algorithm [26], like the C-means algorithm, cluster centers are updated iteratively. 

The ISODATA algorithm is a good method to determine the structure of the RFCNN 

though it is more complex, because some heuristic procedures are incorporated into it. 

Three additional procedures that the algorithm performs are as follows: (1) if a cluster 

contains a small number of samples, that cluster is discarded; (2) if a cluster contains 

a large number of samples and the standard deviation is large, then the cluster is split 

into two; and (3) if the distance between two cluster centers is small, then the clusters 

are merged into one. Essentially, what is done in the ISODATA algorithm is that very 

small clusters are discarded, very large clusters are split, and very close clusters are 



 

26 

merged. Again, like the C-means algorithm, the proper cluster number should be 

known in advance before applying the ISODATA algorithm. This also hinders the use 

of this clustering algorithm on the on-line structuring learning of RFCNN in some 

real-world problems. 

2.3.1.1.3 On-line ICA Mixture Model for Dynamic Clustering 

1) ICA Mixture Model 

Several methods for input space partition have been proposed to cluster the input 

training vectors in the input space, such as Kohonen learning rule, hyperbox method, 

product-space partitioning, fuzzy c-mean method, EM algorithm, etc. [26]-[29]. Those 

methods are usually based on Gaussian membership functions. In general, the 

observed data can be categorized into several mutually exclusive classes [30]. When 

the data in each class are modeled as multivariate Gaussian, it is called a Gaussian 

mixture model (GMM) which is widely used throughout the fields of machine 

learning and statistics. One major drawback of GMMs is that if the dimension d of the 

problem space increases, the size of each covariance matrix, d2, becomes prohibitively 

large. This problem has been solved by Tipping and Bishop [31] who replaced each 

Gaussian with a probabilistic principal component analysis (PCA) model. This 

allowed the dimensionality of each covariance to be effectively reduced while 

maintaining the richness of the model class. Independent component analysis (ICA) 

[24] is a technique that exploits higher-order statistical structure of the data, which has 

recently gained attention due to its successful applications to signal processing 

problems including speech enhancement, discrete signal processing and image 

processing, etc. The goal of ICA is to linearly transform the data such that the 

transformed variables are as statistically independent from each other as possible. 
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Basically, it finds direction in the input space which lead to independent components 

instead of just uncorrelated ones as PCA does, so it can be used to reduce not only the 

number of rules but also the number of membership functions under a pre-specified 

accuracy requirement dynamically. 

Another drawback of GMMs is that it is based on Gaussian function. In some 

situation, it could not be separated from each other. It is generalized by assuming the 

data in each class are generated by a linear combination of independent non-Gaussian 

source [33]. This model is called the ICA mixture model. This allows modeling of 

classes with non-Gaussian structure such as platykurtic or leptokurtic probability 

density functions, and the model uses the gradient ascent method to maximize the 

log-likelihood function. In previous applications, this approach showed improved 

performance in data classification problems [34] and learning efficient codes for 

representing different types of images [25]. The advantage of this model is that the 

input data with increasing numbers of classes can provide greater flexibility in 

modeling structure and in finding more features compared with Gaussian mixture 

models or standard ICA algorithms. Although the ICA mixture model has many 

advantages, its cluster number should be given beforehand and the learning scheme is 

only suitable for off-line instead of on-line operation. Therefore, in the following 

section, we shall propose an on-line ICA mixture model to provide better dynamic 

partitioning of the input-output space for the proposed RFCNN. 

2) On-line ICA Mixture Model for Dynamic Clustering 

The proposed on-line ICA mixture model is derived from the conventional ICA 

mixture model. To enable the on-line operation, we will define a criterion to 

determine whether the number of clusters should be increased or not for any incoming 

training pattern. For each incoming pattern to the RFCNN, the resulting firing 
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strength of a fuzzy rule can be interpreted as the degree that the incoming pattern 

belongs to the corresponding cluster. This likelihood can be represented as 

)(ln)( jtt
j CpF xx = , (2.14) 

where tx  denotes the incoming pattern at time t , and )(ln jt Cp x  is the log 

likelihood value indicating the degree that the input data, tx , belongs to the jth 

cluster for ],1[ Jj∈ . 

Now, we assume that the number of clusters at time t  is )(tJ . Then, the total 

probability at time t  is 

( ) ( ) ( )
( )

∑
=

=
tJ

j
jtjtt CpCpp

1

xx . (2.15) 

Therefore, the posterior probability is: 

( ) ( ) ( )
( )t
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x

x
x 1−= , (2.16) 

where ( )jt Cp 1−  is the prior probability at preceding time, which can be obtained by 

former calculation result of the jth cluster. Hence, the probability ( )jt Cp  at this 

moment can be calculated by the following formula: 
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Then the posterior probability ( )
tjCp x  in (2.16) can be obtained. 

Based on the above derivation, we can obtain the following criterion for the 

generation of a new fuzzy rule (i.e., a new CNN). Let tx  be the newly incoming 

pattern at time t . Defining 

    ),(max)(
)(1

max
t

j

tJjt
J FF xx

≤≤
=  (2.18) 

If FF t
J <)(max x , then a new rule is generated, where F  is a pre-specified 
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threshold value that decays during the learning process. Once a new rule is generated, 

the next step is to assign initial values of the corresponding membership functions. If 

FF t
J ≥)(max x , a new incoming data is added to an existed cluster and we have to 

update the parameters of each cluster such as mean ( jM ), covariance matrix ( jCov ), 

and the criterion of data distribution ( pjk  , ) that determines if the distribution of data 

is super-Gaussian or sub-Gaussian with the previous calculation results. They are 

defined as follows: 
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In the above, the function )( , tk pj  is defined as the function of criterion which 

allows for automatic switching between super-Gaussian and sub-Gaussian models and 

(2.21) can be further derived as 
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Finally, the independent axes )(tjB , representing the axis of the jth cluster, can 

be obtained by the following formulations: 
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and 
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In (2.24), the function ( )g x  is called component-wise nonlinearity function. If 

the distribution of data is appearing the super-Gaussian distribution, then it will be 

defined as ( ) 2 tanh( )g x x= − . Otherwise, if the distribution of data is appearing the 

sub-Gaussian distribution, then it will be defined as ( ) tanh( )g x x x= − . 

Since the algorithm of on-line ICA mixture model can automatically determine 

the number of clusters according to new incoming data, it solves the problem of 

conventional ICA mixture model that the number of clusters has to be given 

beforehand. 

2.3.1.2. Structure Learning Algorithm of RFCNN with On-line ICA 

Mixture Model 

The way the input space is partitioned determines the number of rules extracted 

from training data as well as the number of fuzzy sets on the universal of discourse of 

each input variable. We will define a criterion to determine whether a new cluster (i.e., 

a new fuzzy rule or a new CNN) should be added or not. Let tx  of cluster j  be the 

newly incoming pattern at time t . Defining 

     ),(max)(
)(1

max
t

j

tJjt
J FF xx

≤≤
=  (2.26) 

where )( t
jF x = )(ln jt Cp x  is the log likelihood value indicating the degree that 

input data, tx , belongs to the jth cluster, and the superscript maxJ  is a maximum log 

likelihood value among all log likelihood values. If FF t
J ≥)(max x , the number of 

cluster is not increased, where F  is a pre-specified threshold value that decays 

during the learning process. In this case, the new incoming pattern is added to an 

existed cluster and the parameters of this cluster will be updated properly. Oppositely, 
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if FF t
J <)(max x , the number of cluster will be increased. The threshold value F  is 

determined by experiments. 

The whole algorithm for the generation of new fuzzy rules as well as fuzzy sets 

in each input variable is shown in Fig. 2.5 step by step. In PART 2 of Fig. 2.5, the 

threshold inF  determines how many rules will be generated, where inF  should be 

negative since it is taken in natural log. For a lower value of inF , more rules will be 

generated. Similarly, outF  determines how many output clusters will be generated 

and a lower value of outF  will result in more output clusters. For the output space 

partitioning, the same approach in (2.14) is used. The generation of a new output 

cluster corresponds to the generation of a new CNN. Suppose a new input cluster is 

formed after the presentation of the current input-output training pair )  ,( dx ; then the 

consequent part is constructed by the algorithms shown in Fig. 2.6. 

The above algorithm is based on the fact that different precondition of different 

rules may be mapped to the same consequent term, i.e., CNN. Since only the center of 

each output membership function is used for defuzzification, the consequent part of 

each rule may simply be regarded as a singleton. Compared to the general fuzzy 

rule-based models with singleton output where each rule has its own individual 

singleton value, fewer parameters are needed in the consequent part of the RFCNN, 

especially for the case with a large number of rules. 
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Figure 2.5 Algorithm of input space partitioning. 
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Figure 2.6 Algorithm of output space partitioning. 

2.3.2. Parameter Learning Algorithm of RFCNN by Ordered 

Derivative Calculus 

After the network structure is adjusted according to the current training pattern, 

the network then enters the parameter identification phase to adjust the parameters of 

the network optimally based on the same training pattern. Notice that the following 

parameter learning is performed on the whole network after structure learning; no 

matter whether the nodes (links) are newly added or are existent originally. Since the 
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RFCNN is a dynamic system with feedback connections, the backpropagation 

learning algorithm cannot be applied to it directly. Also, due to the on-line learning 

property of the RFCNN, the off-line learning algorithms for the recurrent neural 

networks, like backpropagation through time and time-dependent recurrent 

backpropagation [17], cannot be applied here. Instead, the ordered derivative [34], 

which is a partial derivative whose constant and varying terms are defined using an 

ordered set of equations, is used to derive our learning algorithm. The ordered set of 

equations, described in Section 2 in each layer, is summarized in (2.28)-(2.33). Our 

goal is to minimize the error function 

22 )1(
2
1)]1()1([

2
1)1( +=+−+=+ ttytytE d

outout ε ,             (2.27) 

where )1( +tyd
out is the desired output, )1( +tyout  is the current output, and )1( +tε  

is ))1()1(( +−+ tyty d
outout . For each training data set, starting at the input nodes, a 

forward pass is used to compute the activity levels of all the nodes in the network to 

obtain the current output )1( +tyout . In the followings, dependency on time will be 

omitted unless emphasis on temporal relationships is required. 

Summarizing the node functions defined in Section 2, the function performed by 

the network is 
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and (2.1) is redefined as the following equation for clarity: 
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With the above formula and the error function defined in (2.27), we can derive 

the update rules for the free parameters in the RFCNN as follows. 

Update rule of ia  (the parameter of feedback template of the ith CNN) is 
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Hence, the parameter ia  is updated by 
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Similarly, the parameter i
jb  (the parameters of control template of the ith CNN) 

is updated by 

)]()1)(1()[1()()1( )6()6( txoohttbtb jii
ii

j
i
j −++−=+ ηε            (2.41) 

and the parameter iz  (the bias of the ith CNN) is updated by 

)]1)(1()[1()()1( )6()6(
ii

iii oohttztz −++−=+ ηε .            (2.42) 

As shown in (2.37) to (2.39), the update rules are in recursive form. The value 

ay ∂∂+ /  is equal to zero initially. For the rest free parameters in the RFCNN, they 

are obtained during the structure-learning phase by the on-line ICA mixture model 

algorithm proposed in the last section. Notice that according to the real time recurrent 

learning (RTRL) scheme [35], we can also obtain the same parameter learning rules 

for the RFCNN. Of course, other existing on-line learning algorithms [36], [37] for 

tuning the weights of recurrent neural networks can be possibly adopted for tuning the 

RFCNN, too. 

2.4. Experimental Results and Discussions 

The capability of the proposed RFCNN is demonstrated on the real-world defect 

inspection problems. Automatic defect inspection systems are becoming more and 

more important in industrial production lines. Especially in electronics industry, an 

attempt is often made to achieve almost 100% quality control of all components and 

final goods. Here we are interested in the defect inspection of color filter, which is one 

of components in TFT-LCD module and gives each pixel of LCD its own color. The 

difficulties in the defect inspection of color filter are its complex texture and need for 

high-speed processing. For the reason of high-speed processing, the CNN is a good 

way to achieve defect inspection. Besides, different kinds of defects in color filter 
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need different CNN templates and some complex defects cannot be detected by a 

single CNN. Therefore, the proposed RFCNN is a good alternative to detect defect of 

color filter images. To train the RFCNN, as shown in Fig. 2.7, we use a 3x3 window 

to get the system inputs and set the whole image as the inputs of the RFCNN. The 3x3 

window covers the central pixel and its 8 connected neighbors. The training image 

and corresponding desired output are shown in Figs. 2.8(a) and 2.8(b). We set the 

threshold 50−== outin FF  and learning rate as 001.0=η  for the clustering 

algorithm. As mentioned in Section 3, there are no rules (and no CNNs) in the 

RFCNN initially. They are created dynamically as learning proceeds upon receiving 

on-line incoming training data by performing the learning processes shown in Fig. 2.3. 

When the learning processes are done, three clusters (three fuzzy rules and CNN 

templates) were obtained. For the example of color filter, it takes about 1 minute to 

learn the structure (interconnection set) and 2 minutes to learn the parameters with 

Pentium IV 2.0G PC. However, the training can be done off-line, so it is not a 

problem for the on-line processing of CNN, which causes just little time. 

RFCNN

outy

1x

9x

2x
3x
4x
5x
6x
7x
8x

1x

9x

2x 3x
4x 5x 6x
7x 8x

The whole image
 

Figure 2.7 The training schematic diagram of the RFCNN. 



 

39 

  

(a)      (b) 

Figure 2.8 Training images. (a) Input image. (b) Desired output. 

 

Figure 2.9 The outputs of Layer 3, 4, and Feedback Layer for the training image. 
(a)~(c) The outputs of the three Layer-4 nodes, respectively. (d)~(f) The outputs of the 
three CNNs in the Feedback Layer, respectively. (g)~(i) The outputs of the three 
Layer-3 nodes, respectively (firing strength of each rule). 
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Figure 2.9 shows the outputs of Layer 3, 4, and Feedback Layer for the training 

image. Figures 2.9(a) to 2.9(c) show the outputs of the three Layer-4 nodes, 

respectively, i.e., the outputs of the three CNNs in the Feedback Layer multiplied by 

the outputs of the three Layer-3 nodes (i.e., firing strength of each rule), respectively. 

Figures 2.9(d) to 2.9(f) show the outputs of the three CNNs in the Feedback Layer, 

respectively. Figures 2.9(g) to 2.9(i) show the outputs of the three Layer-3 nodes, 

respectively (firing strength of each rule). The sum of the outputs of the three Layer-4 

nodes (i.e., Figs. 2.9(a) to 2.9(c)) forms the RFCNN final output. From Figs. 2.9(a) to 

2.9(c), we can see that CNN 1 takes care of the defect texture on the right side of the 

training image, and CNNs 2 and 3 mainly take care of the defect textures on the left 

side of the training image. The template of each learned CNN is given as follows: 
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Based on the learned structure and parameters of the RFCNN, we test several 

images and three of those images as shown in Fig. 2.10. Figs. 2.10(a), 2.10(c), and 

2.10(e) are the testing images and Figs. 2.10(b), 2.10(d), and 2.10(f) are the 

corresponding results of defect inspection. From Figs. 2.10(a) to 2.10(f), we can see 

that the learned structure and CNN templates of the RFCNN are well suited to detect 

the defects of color filer images. It has also been tested that detection results are still 

good if the images are shifted, that is because that the RFCNN only considers the 

central pixel and its 8 connected neighbors and they are still regular patterns after  
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Figure 2.10 Experimental (Testing) results of the learned RFCNN. (a), (c), and (e) are 

input testing images. (b), (d), and (f) are corresponding detection results. 

 

images are shifted. Therefore if the images are shifted, we need not re-teach the 

network. 

The conventional methods using CNN for defect inspection [38]-[41] are using 

one or a set of CNN templates, which can be obtained by experiential engineers or 

learned by examples, to detect defect. To compare the RFCNN with conventional 

methods, we performed some experiments using a single CNN whose template is 

learned by genetic algorithm (GA). We find that the training image, shown in Fig. 

2.8(a), cannot be learned well by using only a single CNN. However, if we have the 

training images and corresponding desired outputs as shown in Figs. 2.11(a) to 2.11 

(d), the CNN template can be learned well by GA (A GA-based template learning for 
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defect inspection is described in Appendix A.1). This fact implies that different kinds 

of defects in color filter need different CNN templates. That is, we can first identify 

the categories of defects and make each CNN template of defect category learned by 

GA. However, this will cause related questions as follows. First, how many defect 

categories, which determine how many CNN templates, should be classified? Second, 

how can we be sure which defects belong to the same category? In other words, what 

is the corresponding desired output for the uncategorized defects of color filter? 

Therefore it is difficult to manually use the divide-and-conquer principle to learn the 

templates of CNNs by GA. For the dilemma mentioned above, the proposed RFCNN 

provides a good alternative to solve this kind of problem. 

To make the RFCNN converge more quickly during learning, GA can be used to 

learn some CNN templates to initialize the consequent part of the RFCNN. Though 

this experiment focuses on defect inspection of color filter, the proposed RFCNN can 

be also applied to those images with regular pattern, such as texture webs. 

 

Figure 2.11 Training images by GA. (a) and (c) are input images. (b) and (d) are 

corresponding desired outputs. 
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The main idea of the proposed RFCNN is an integrated system of FIS and CNNs, 

which can construct fuzzy rules and CNN templates automatically. The example for 

the defect inspection of color filter has been demonstrated to verify the capability of 

the RFCNN. In addition to the defect inspection of color filter, we believe such an 

integrated CNN system, the RFCNN, has potential to solve more complex intelligent 

problems such as biological phenomena or other applications. Since CNN bears the 

characteristic of high-speed processing based on analog circuit realization, it will be 

very useful to realize the RFCNN by analog circuits. As studied in [7, 11], the 

elementary fuzzy-logic computations, such as the min, max, and fuzzification 

operator in a fixed neighborhood, have already been designed in CNN. Therefore, it is 

very promising and feasible to implement the RFCNN in the future work. An 

implementation scheme to realize the RFCNN includes the two following steps. First, 

use the RFCNN to learn the fuzzy rules and CNN templates. Second, construct a FIS 

based on the learned fuzzy rules and CNN templates. 

For taking into account the non-idealities or mismatch due to the manufacturing, 

there are some ways can be done as follows:  

1. We may add constraints with upper bound and lower bound to the learned 

parameter in learning algorithm. 

2. The interval parameter learning is also available in [42] such that a tolerant 

range of parameters (weights) deviation can be achieved. 

3. Since the proposed RFCNN can learn the structure and parameters 

automatically, we can increase the number of CNN and other nodes 

automatically to achieve the required accuracy if the target accuracy has not 

been satisfied. 
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2.5. Concluding Remarks 

In this chapter we propose a novel framework, called RFCNN, for automatically 

constructing a multiple-CNN integrated neural system. This CNN-based fuzzy neural 

network can automatically learn its proper network structure and parameters 

simultaneously. The structure learning includes the creation of fuzzy rules and CNNs 

with a new on-line adaptive ICA mixture-model technique. The parameter learning 

includes the tuning of fuzzy membership functions and CNN templates based on the 

ordered derivative calculus. The proposed RFCNN provides a solution to the current 

dilemma on the decision of templates and/or fuzzy rules in the existing integrated 

(fuzzy) CNN systems. In order to verify the capability of the RFCNN, a real-world 

defect inspection problem has been demonstrated. The experimental results show that 

the proposed scheme is effective and promising. An extended framework to the 

RFCNN including the coupled CNNs is described in next chapter. 



 

45 

3. A Recurrent Fuzzy Coupled Cellular Neural 

Network System with Automatic Structure and 

Template Learning 

In this chapter, we extend our previously proposed multi-CNN integrated system, 

called recurrent fuzzy CNN (RFCNN) which considers uncoupled CNNs only, to 

automatically learn the proper network structure and parameters simultaneously of 

coupled CNNs, which is called RFCCNN (recurrent fuzzy coupled CNN). The 

proposed RFCCNN provides a solution to the current dilemma on the decision of 

templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. For 

comparison, the capability of the proposed RFCCNN is demonstrated on the same 

defect inspection problems. Simulation results show that the proposed RFCCNN 

outperforms the RFCNN. 

3.1. Introduction 

Since the RFCNN, described in Chapter 2, only considers the learning of 

uncoupled CNN templates, its ability to solve more complex high-level machine 

vision problems is quite limited. In this chapter we extend the RFCNN to 

automatically learn the proper network structure and parameters simultaneously of 

coupled CNNs. Due to the inclusion of coupled CNNs, the RFCCNN has shown more 

powerful abilities in detecting the fine detailed defects of color filters, compared to 

the previous RFCNN, in the simulations. 

Since a new architecture of the RFCCNN, extended from the previous RFCNN, 
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is proposed, the derivation of equations and learning algorithm, simulation results and 

discussions are novel. In short, there are two main differences. First, we propose a 

more complete architecture than the previous RFCNN. Second, simulation results 

show that the proposed RFCCNN outperforms the RFCNN. 

The chapter is organized as follows. Section 2 describes the structure and 

functions of the proposed RFCCNN. Section 3 briefly describes the on-line structure 

and parameters learning algorithm for the RFCCNN. Section 4 gives simulation 

results and discussions. Finally, conclusions are summarized in the last section. 

3.2. Structure of the RFCCNN 

In this section, the structure of the proposed RFCCNN shown in Fig. 3.1 is 

introduced. For clarity, we consider a CNN, with time constant = 1, time step = 1, and 

neighborhood within a radius = 1, which is characterized by the following templates: 
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where iA , iB , and iz  is feedback template, control template, and bias of the ith 

CNN, respectively. By defining a CNN as above, the six-layered RFCCNN network 

will realize a fuzzy model of the following form: 

Rule i :  IF 1x  is iM1  and … jx  is i
jM … and 9x  is iM 9  
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where the current input vector is T
t ,  ...,  xxu ][ 91== x , )(tyA i

i  

is )(...)()( 9,1,12,0,11,1,1 tyatyatya i
i

i
i

i
i +++ −−− , )(tuBi  

is )(...)()( 91,120,111,1 txbtxbtxb iii +++ −−− , 'f is a bipolar sigmoid function, i
jM  is a 

fuzzy set, and i
lka , , lk

ib , , and iz  are consequent parameters representing feedback 

template, control template, and bias of the ith CNN, respectively. The RFCCNN is a 

six-layered network structure with one feedback layer and can automatically learn its 

proper network structure (the creation of fuzzy rules and CNNs) and parameters (the 

tuning of fuzzy membership functions and CNN templates) simultaneously. In this 

chapter, as defined in (3.1) to (3.3), we extend the RFCNN to RFCCNN including the 

structure and parameter learning of coupled CNN cells. The six-layered network 

structure of the RFCCNN is mostly the same as that of the RFCNN, except for the 

feedback layer. In the feedback layer of the RFCCNN, the feedbacks are from coupled 

CNNs, i.e., )(tyA i
i  is )(...)()( 9,1,12,0,11,1,1 tyatyatya i

i
i

i
i

i +++ −−− , but in the feedback 

layer of the original RFCNN, the feedbacks are from uncoupled CNNs only, i.e., 

)(tyA i
i  is )(0,0 tya i

i . The details of the function of each node of the RFCNN are 

described in Section 2 of Chapter 2. 

3.3. Learning Algorithms for the RFCCNN 

Similarly, two types of learning, structure and parameter learning, are used 

concurrently for the RFCCNN. The structure-learning algorithm of the RFCCNN is 

the same as those of the RFCNN. For the details of structure-learning algorithm of 

RFCCNN based on on-line ICA mixture model are described in Section 3.1 of 

Chapter 2. For parameter-learning algorithm of RFCCNN, they are described in the  
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Figure 3.1 Structure of the proposed RFCCNN. 

rest of this section. 

After the network structure is adjusted according to the current training pattern, 

the network then enters the parameter identification phase to adjust the parameters of 

the network optimally based on the same training pattern. Notice that the following 

parameter learning is performed on the whole network after structure learning; no 

matter whether the nodes (links) are newly added or are existent originally. Since the 

RFCCNN is a dynamic system with feedback connections, the backpropagation 

learning algorithm cannot be applied to it directly. Also, due to the on-line learning 

property of the RFCCNN, the off-line learning algorithms for the recurrent neural 

networks, like backpropagation through time and time-dependent recurrent 

backpropagation [12], cannot be applied here. Instead, the ordered derivative [14], 
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which is a partial derivative whose constant and varying terms are defined using an 

ordered set of equations, is used to derive our learning algorithm. The ordered set of 

equations, described in Section 2 in each layer, is summarized in (3.5)-(3.10). Our 

goal is to minimize the error function 

22 )1(
2
1)]1()1([

2
1)1( +=+−+=+ ttytytE d

outout ε , (3.4) 

where )1( +tyd
out is the desired output, )1( +tyout  is the current output, and )1( +tε  

is ))1()1(( +−+ tyty d
outout . For each training data set, starting at the input nodes, a 

forward pass is used to compute the activity levels of all the nodes in the network to 

obtain the current output )1( +tyout . In the followings, dependency on time will be 

omitted unless emphasis on temporal relationships is required. 

Summarizing the node functions defined in Section 2, the function performed by 

the network is 

∑=+
i

iout uty )5()1(                               (3.5) 

i
i hoou ⋅== )6()4()5( ,                             (3.6) 

where 

∏==
i

ii
i uufh )3()3( ][                             (3.7) 

1
1

2
2

)6( −
+

=
− ixe

o                                 (3.8) 

)()()()1( i
j

i
j tztuBtyAtx i

i
i ++=+ ,                    (3.9) 

and (3.1) is redefined as the following equation for clarity: 

],,;,,;,,[  ],,,;,,;,,[ 987654321
i
j987654321

i
j

iiiiiiiiiiiiiiiiii bbbbbbbbbBaaaaaaaaaA == .       (3.10) 

With the above formula and the error function defined in (3.4), we can derive the 

update rules for the free parameters in the RFCCNN as follows. 
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Update rule of i
ja  (the parameter of feedback template of the ith CNN) is 
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Hence, the parameter ia  is updated by 

]})()()[1)(1(){1()()1( )6()6(
i
j

ii
jiii

ii
j

i
j a
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∂
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Similarly, the parameter i
jb  (the parameters of control template of the ith CNN) 

is updated by 

)]()1)(1()[1()()1( )6()6( txoohttbtb jii
ii

j
i
j −++−=+ ηε            (3.18) 

and the parameter iz  (the bias of the ith CNN) is updated by 
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)]1)(1()[1()()1( )6()6(
ii

iii oohttztz −++−=+ ηε .            (3.19) 

As shown in (3.14) to (3.16), the update rules are in recursive form. The value 

i
jay ∂∂+ /  is equal to zero initially. For the rest free parameters in the RFCCNN, they 

are obtained during the structure-learning phase by the on-line ICA mixture model 

algorithm proposed in Section 3.1 of Chapter 2. 

3.4. Experimental Results and Discussions 

For comparison to the RFCNN described in Chapter 2, the capability of the 

proposed RFCCNN is demonstrated on the same defect inspection problems for color 

filter. As mentioned earlier, the difficulties in the defect inspection of color filter are 

its complex texture and demand for high-speed processing. For the reasons of 

high-speed processing, and that different kinds of defects in color filter need different 

CNN templates and some complex defects cannot be detected by a single CNN, the 

proposed RFCCNN is a good alternative to detect defect of color filter images. The 

way to train the RFCCNN is the same as the RFCNN. The training image and 

corresponding desired output are shown in Figs. 2.8(a) and 2.8(b). As mentioned in 

Section 3, there are no rules (and no CNNs) in the RFCCNN initially. They are 

created dynamically as learning proceeds upon receiving on-line incoming training 

data by performing the learning processes. When the learning processes are done, six 

clusters (six fuzzy rules and CNN templates) were obtained. For the example of color 

filter, it takes about 90 seconds to learn the structure (interconnection set) and the 

parameters with Pentium IV 2.0G PC. However, the training can be done off-line, so 

it is not a problem for the on-line processing of CNN. For simulation in this chapter, it 

causes about 9 seconds. After the proposed RFCCNN is implemented by analog 

circuit in the future, we believe that the processing times will be much faster than 
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those of simulation. 

Figure 3.2 shows the output of RFCCNN and the outputs of Layer 3, 4, and 

Feedback Layer for the training image. Figures 3.2(a) shows the output of the 

RFCCNN. Figures 3.2(b) to 3.2(g) show the outputs of the six Layer-4 nodes, 

respectively, i.e., the outputs of the six CNNs in the Feedback Layer multiplied by the 

outputs of the six Layer-3 nodes (i.e., firing strength of each rule), respectively. 

Figures 3.2(h) to 3.2(m) show the outputs of the six CNNs in the Feedback Layer, 

respectively. Figures 3.2(o) to 3.2(t) show the outputs of the six Layer-3 nodes, 

respectively (firing strength of each rule). The sum of the outputs of the six Layer-4 

nodes (i.e., Figs. 3.2(b) to 3.2(g)) forms the RFCCNN final output (Fig. 3.2(a)). From 

Figs. 3.2(b) to 3.2(g), we can see that CNNs 4 and 5 take care of the defect texture on 

the right side of the training image, CNNs 1 and 6 mainly take care of the defect 

textures on the left side of the training image, and the other CNNs balance the output 

of the RFCCNN. The template of each learned CNN is given in (3.20). 

Based on the learned structure and parameters of the RFCCNN, we test several 

images and some of those images as shown in Fig. 3.3. Figs. 3.3(a), 3.3(d), and 3.3(g) 

are input testing images. Figs. 3.3(b), 3.3(e), and 3.3(h) are corresponding detection 

results of the RFCCNN. Figs. 3.3(c), 3.3(f), and 3.3(i) are corresponding detection 

results of the uncoupled RFCNN. From Figs. 3.3(b), 3.3(e), and 3.3(h), we can see 

that the learned structure and CNN templates of the RFCCNN are well suited to detect 

the defects of color filer images. It has also been confirmed that detection results are 

still good if the images are shifted or rotated. One of simulation results is shown in 

Fig. 3.4. 
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Figure 3.2 The outputs of Layer 3, 4, and Feedback Layer for the training image. (a) 
The output of the RFCCNN. (b)~(g) The outputs of the six Layer-4 nodes, 
respectively. (h)~(m) The outputs of the six CNNs in the Feedback Layer, respectively. 
(n)~(s) The outputs of the six Layer-3 nodes, respectively (firing strength of each 
rule). 

 

(b)     (c)     (d)    (e)    (f)   (g) 

(h)     (i)     (j)    (k)    (l)    (m) 

(n)     (o)     (p)    (q)    (r)   (s) 

 (a)
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From Fig. 3.3, we can see some differences between RFCCNN (coupled RFCNN) 

and uncoupled RFCNN for defect inspection of color filter. First, as shown in Figs. 

3.3(g) to 3.3(i), the results of the coupled RFCNN is better than those of uncoupled 

RFCNN for detecting the large defects on the top-left of test image shown in Fig. 

3.3(g). Second, as shown in all test images and corresponding detection results, the 

results of the coupled RFCNN are better than those of uncoupled RFCNN for 

detecting the black defects. The results of the coupled RFCNN are better for detecting 

the large defects in that the coupled RFCNN, like coupled CNN, has fully outputs 

feedback and will take care of further neighboring pixels. Some quantity comparisons 

are shown in Table 3.1. Here detection rate is defined as the ratio of detected defect 

pixel number to real defect pixel number. As we can see from Table 3.1, the detection 

rates of the RFCCNN are better than those of the RFCNN, no matter for the all 

defects, large defects, or black defects. More testing images and corresponding 
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detection results of the RFCCNN are shown in Fig. 3.5 to 3.8. 

 

 

 

Figure 3.3 Simulation (Testing) results of the learned RFCCNN and RFCNN. (a), (d), 
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of 
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN. 

Table 3.1 Comparison of detection rate. 

 
Detection rate of the 

RFCCNN 

Detection rate of the 

RFCNN 

All defects 56% 43% 

Large defects 76% 52% 

Black defects 72% 51% 
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Figure 3.4 Simulation results of shifted and rotated images. (a), (c), and (e) are input 
testing images of original, shifted, and rotated ones, respectively. (b), (d), and (e) are 
corresponding detection results of RFCCNN. 

 

Figure 3.5 Other testing results of the learned RFCCNN and RFCNN, part 1. (a), (d), 
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of 
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN. 



 

57 

 

Figure 3.6 Other testing results of the learned RFCCNN and RFCNN, part 2. (a), (d), 
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of 
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN. 

 

Figure 3.7 Other testing results of the learned RFCCNN and RFCNN, part 3. (a), (d), 
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of 
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN. 
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Figure 3.8 Other testing results of the learned RFCCNN and RFCNN, part 4. (a), (d), 
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of 
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN. 

The main idea of the proposed RFCCNN is an integrated system of FIS and 

CNNs, which can construct fuzzy rules and CNN templates automatically. There are 

two general approaches to realizing the RFCNN model by real-time hardware. First, it 

can be “coded” and run in the CNN universal machine (CNNUM). The CNN-UM can 

handle analog and digital signals with built-in converters and memories by 

instructions. It is generally considered as a general-purpose image-processing 

computer. In fact, a fuzzy-rule-based image-processing algorithm [7] has been 

successfully implemented on the CNN-UM. Another approach is to design 

application-specific RFCNN circuits for particular applications with prelearned fuzzy 

rules and CNN templates. To achieve this, the circuit design technique of multilayer 

CNN [43, 44] called MLCNN can be applied to implement the multilayer structure of 

the proposed RFCNN model in Figure 3. A CNN-based Gaussian function circuit as 

designed in [45] can realize the Gaussian membership function required in Layer 2. 
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The fuzzy logic operations in Layers 3 and 4 can be realized by analog CNN circuits 

as studied in [7, 11]. Therefore, it is very promising and feasible to implement the 

RFCCNN using high-speed analogic circuits. 

3.5. Concluding Remarks 

In this chapter, we extended our previous work, called RFCNN, from 

considering uncoupled CNNs to coupled CNNs, called RFCCNN, for automatically 

constructing a multiple-CNN integrated neural system. This CNN-based fuzzy neural 

network can automatically learn its proper network structure and parameters 

simultaneously. In order to verify the capability of the RFCCNN, a defect inspection 

problem has been demonstrated and compared to the RFCNN. The simulation results 

show that the performance of the proposed RFCCNN is better than that of RFCNN. In 

addition, a scheme for hardware realization of the RFCCNN has been proposed. We 

believe such an integrated CNN system, the RFCCNN, has potential to solve more 

complex intelligent problems. 
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4. Conclusions and Perspectives 

In this thesis we propose two novel frameworks, called RFCNN and RFCCNN, 

for automatically constructing a multiple-CNN integrated neural system to solve more 

complex intelligent problems. This CNN-based fuzzy neural network can 

automatically learn its proper network structure and parameters simultaneously. That 

is, the fuzzy rules and the corresponding templates of CNNs can be learned and 

obtained automatically, instead of assigning the corresponding templates of CNNs in 

advance and manually getting the fuzzy rules by domain experts. In the 

RFCNN/RFCCNN, each learned fuzzy rule corresponds to a CNN. Hence, each CNN 

takes care of a fuzzily separated problem region, and the functions of all CNNs are 

integrated through the fuzzy inference mechanism. A new on-line adaptive ICA 

mixture-model technique is proposed for structure learning of the RFCNN/RFCCNN, 

which can be applied to not only the proposed CNN integrated systems (i.e., the 

RFCNN and the RFCCNN), but also generic neural fuzzy network, such as 

ICA-mixture-model-based self-constructing FNN [46]. The proposed 

RFCNN/RFCCNN provides a solution to the current dilemma on the decision of 

templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. In order 

to verify the capability of the RFCNN and the RFCCNN, a real-world defect 

inspection problem has been demonstrated and compared. The experimental results 

show that the proposed schemes are effective and promising. Besides the defect 

inspection of color filter, the proposed RFCNN/RFCCNN can be also applied to those 

images with regular pattern, such as texture webs. 

In addition, a scheme for hardware realization of the RFCCNN has been 
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proposed. We believe such an integrated CNN system, the RFCCNN, has potential to 

solve more complex intelligent problems and those that one single CNN cannot solve. 

The future works include finding more real-world applications, extending the 

framework, and designs specific-application analogic CNN circuits. 
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Appendix 

A.1 GA-based Template Learning for Defect 

Inspection 

In this appendix, we propose a CNN-based defect inspection algorithm to detect 

defect images with regular pattern such as color filter, where the templates of CNN 

are obtained by means of GA. The CNN is a good alternative to achieve the high 

speed processing of defect inspection and genetic algorithm is applied to learn 

templates of CNN, which can perform defect inspection for color filter and web 

material images. Experimental results show that the proposed algorithm is a 

promising method to detect the defects of color filter images. 

A1.1 Introduction 

In [38]-[41], a CNN (cellular neural network) based defect inspection algorithm 

was proposed to detect defect images. However, their test images belonged to uniform 

webs such as metal laminates [38], [39] and cotton [41]. In this appendix, we propose 

a CNN-based defect inspection algorithm to detect defect images with regular pattern 

such as color filter and texture webs images, where the templates of CNN are 

obtained by means of GA (genetic algorithm). The main advantages of using CNN are 

capable of operating at a very high speed. Many industrial inspections such as visual 

quality control of color filter and web materials mentioned above, require real-time 



 

63 

processing. Therefore analog CNN chips are well suited to this kind of visual 

inspection applications. 

Several prototype CNN architectures have been implemented to show the 

capability of very high speed compared with traditional digital image processor. 

However, even in the simplest case, there is no methodology that allows us to get the 

template associated to a given image-processing task. Nossek [12] made an overview 

of CNN template design and learning. The template coefficients of a CNN can be 

found by design [12], [13] or by learning [12], [38], [39]. “By design” or “designing 

fixed points” bears the following drawbacks: it is only suitable to binary images and it 

is not guaranteed that all its initial states will converge to the prescribed global stable 

points. “By learning” or “global learning” [12], [13], [38], [39], which has to learn by 

a set of input images (training patterns) and the corresponding desired output images, 

is a robust tool to obtain template coefficients of a CNN. In this appendix, we choose 

GA to determine CNN template coefficients for defect inspection, since GA is a 

global learning tool and it is very suitable to gray level images. The GA-based 

template learning for defect inspection will be described in the following section. 

A1.2 The Proposed GA-based Template Learning 

In the section, we shall introduce a CNN-based defect inspection scheme with 

the feature of automatic template generation learned from input/output training 

examples using GA (genetic algorithm). The number of parameters in a complete 

CNN template set (neighborhood within a radius =1) is 19, which is shown in (A.1); 

where 9 parameters for each matrix (A and B 3x3 matrices) and one for the bias 

current I. In the case that the image processing task has a symmetric behavior (e.g., 

averaging, border detection, etc.), the chromosome length can be reduced to 7 
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representative parameters (3 parameters for each matrix and another one for the bias 

current).  
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The speed of convergence in the GA depends on the selected options. Population 

size determines the number of chromosomes in population. If there are too many 

chromosomes, GA converges slowly. On the other hand, if there are too few 

chromosomes, only a small part of search space is explored. Crossover selects genes 

from parent chromosomes and creates a new offspring. In this algorithm, a 

one-crossover point is used. Mutation follows crossover. It is to prevent falling all 

solutions in population into a local optimum by changing randomly the new offspring. 

This algorithm searches the template to minimize a performance index 

proportional to the difference between pixels from the current settled output image 

and the desired one. This performance index is as (A.2): 

|)(|)(
1

pyypf
k

i
i

d
i∑

=

−= β  (A.2) 

where p is the template, k is the number of the CNN cells, d
iy is the value of ith pixel 

of desired output, )( pyi is the value of corresponding pixel of settled output,  β  = 

5 if the output image is completely white or black, and β  = 1 otherwise. The overall 

flow of automatic template generation using GA is shown in Fig. A.1. 

A1.3 Experimental Results 

In this section, the genetic algorithm has been used to learn some templates, 

which can perform defect inspection for color filter images. Our template format is 

shown in (A.3), which resulted in good performance in our experimental results. 
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Fig. A.1 The overall flow of automatic template generation using GA. 
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We utilize 5 bits for encoding each template parameter, then the utilized length of 

the chromosome for encoding the template parameters is 5 (parameters) x 5 

(bits/parameters) = 25 bits. The CNN simulator parameters used in GA are as follows: 

population size = 60, crossover probability = 80%, mutation rate = 5%, the time step 
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of the simulation = 0.2, the number of iteration = 25, (which correspond 

approximately to 5τwhen R = 1 and C = 1). To improve GA performance, we use the 

elitist strategy that copies the best member of each generation into the succeeding 

generation.  

Figure A.2 shows the trained images. Fig. A.2(a) shows the input image and Fig. 

A.2(b) shows the desired image. The templates, learned by using GA according to 

(A.2), are shown in (A.4). Fig. A.3 shows the test images with templates learned by 

GA. Figs. A.3(a), A.3(c), and A.3(e) are the input images and Figs. A.3(b), A.3(d), and 

A.3(f) are the corresponding results of defect inspection with the templates in (A.4). 

From Figs. A.3(a) to A.3(f), we can see that the learned templates are well suited to 

detect the defect of color filer images. 

  

(a)              (b) 

Fig. A.2 Trained images. (a) Input image. (b) Desired output. 
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As mentioned earlier, we focus on defect images with regular defect patterns, 

which belong to texture webs and cannot be detected by simple algorithms such as 

thresholding. Fig. A.4 shows the compared results. Fig. A.4(a) shows the defect 

detection result by GA, where the original image is from Fig. A.3(e). Figure A.4(b) 

shows defect detection result by thresholding. Obviously, simple algorithms such as 

thresholding do not work for this kind of defect images. 
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To test the robustness of templates obtained by the genetic algorithm, we change 

template values by 10 % variation randomly. The modified templates are shown in 

(A.5) and (A.6). The input image is shown in Fig. A.3(e) and the corresponding test 

results are shown in Fig. A.5(a) and A.5(b). Figure A.5(a) shows good result due to 

parameter variation. However, Fig. A.5(b) shows poor result because some false 

defects are detected. 

  

(a)             (b) 

  

(c)              (d) 

  

(e)              (f) 

Fig. A.3 Test images using templates learned by GA. 

  

(a)              (b) 

Fig. A.4 Test results obtained by (a) GA. (b) thresholding. 
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(a)    (b) 

Fig. A.5 Test results using templates from (A.5) and (A.6). 

A1.4 Conclusion 

This chapter proposes a CNN-based defect inspection algorithm to detect defect 

images with regular pattern such as color filter or web materials images. Genetic 

algorithm is used to learn templates of CNN, which can perform defect inspection for 

color filter images. Experimental results show that the proposed algorithm is a 

promising method to detect the defects of color filter images. 
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