B oL@ e

o P A e B S K b

A Fuzzy Cellular Neural Network Integrated System

By o4i% E R

—

fRE o g



Wk e i SRR S G

A Fuzzy Cellular Neural Network Integrated

System
Morpo4 kBB’ Student : Chun-Lung Chang
Rk kR B4 Advisor : Dr. Chin-Teng Lin

A Dissertation
Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical and Control Engineering
January 2006
Hsinchu, Taiwan, Republic of China

il



H
j.
Eﬂ‘
,15-3
i
S
o

EHKJET M A PR % - 2T 7w 5 % B (cellular neural
networks, CNN) 2 % & B FF T RSE & a g i 4 ¢ AR i X o doft hfE £ )
DR A T LT MR U SRR AT A v SR - B YR SN Ok A e

(recurrent fuzzy neural network ) f1%E L B CNNE & G e B BAL S
RFCNN/RFCCNN (recurrent fuzzy CNN/ recurrent fuzzy coupled CNN)e& & & 4t
TR E O Y ONNehp g i Solic - B R R BT Y ¢ P RA

(fuzzy rules) 22CNN#cp suz > ; H 285 ¥ ¢ 3= %s.%’iﬁr; & B2 CNN O

(template ) %85 % o A RFCNN/RECCNN¥. » = B i 2L P 41 & — B CNN -
- B AT F b 2 e $50R & #-A) (on-line adaptive ICA (independent
component analysis) mixture-model technique ) $ =4 & 1) 4 it 3 RFCNNehig 4 5
W5 ¥ =t B ek (ordered-derivative ) ¥ i RFCNN/RFCCNN e 488 ¥ o
* ¥ 2 7% DV RFCNN/RFCCNN#t % 5 CNNE & % Sl pre i = ficks 2P &2
F Y ONN#AE S¥cend §pdk ib— BEA 2 % o A% 2 B8 17 01 ¥ Bkl
e 3 (% 3P RFECNN/RFCONN i sterae 4 0 F Sk % Bor rde 11 en™ 2 85

B T



A Fuzzy Cellular Neural Network Integrated System
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Abstract

It is widely accepted that using a set of cellular neural networks (CNNs) in
parallel can achieve higher-level information processing and reasoning functions
either from application or biologics points of views. Such an integrated CNN system
can solve more complex intelligent problems. In_this thesis we propose two novel
frameworks for automatically constructing a multiple-CNN integrated neural system
in the form of a recurrent fuzzy neural network. The systems, called recurrent fuzzy
CNN (RFCNN) and recurrent fuzzy coupled CNN (RFCCNN), can automatically
learn its proper network structure and parameters simultaneously. The structure
learning includes the fuzzy division of the problem domain and the creation of fuzzy
rules and CNNs. The parameter learning includes the tuning of fuzzy membership
functions and CNN templates. In the RFCNN/RFCCNN, each learned fuzzy rule
corresponds to a CNN. Hence, each CNN takes care of a fuzzily separated problem
region, and the functions of all CNNs are integrated through the fuzzy inference
mechanism. A new on-line adaptive ICA (independent component analysis)
mixture-model technique is proposed for the structure learning of RFCNN/RFCCNN,
and the ordered-derivative calculus is applied to derive the recurrent learning rules of
CNN templates in the parameter-learning phase. The proposed RFCNN/RFCCNN
provides a solution to the current dilemma on the decision of templates and/or fuzzy
rules in the existing integrated (fuzzy) CNN systems. The capability of the proposed
RFCNN and RFCCNN are demonstrated and compared on the real-world defect
inspection problems. Experimental results show that the proposed scheme is effective

and promising.
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1. Introduction

1.1. Motivation

The two-dimensional inputs and outputs of the Cellular Neural Networks (CNN)
[1], [2], make it very suitable for image processing. A single CNN can solve a basic
task such as thresholding and filtering, etc. However, either from application or
biologics points of views, several CNNs in parallel or in series can solve more
complex intelligent problems, such as edge detection with impulse noise, the
detection of fuzzy boundary, and features extraction, etc. To solve more complex
problems, several CNNs can be integrated to solve specific problem. In this thesis, we
propose a novel framework toZintegrate-a set of CNNs in parallel in order to solve

more complex intelligent problenis.

1.2. Cellular Neural Network

The CNN first introduced as one that is able to implement alternative to fully
connected neural networks, has evolved into a paradigm for these types of arrays. The
block diagram of the CNN is shown in Fig. 1.1, and its dynamics is described by the

following differential equations:

d
— X (1) = =X, ; (1) + Zak,lyi+k,_/+l 1)+ Zbk,lui+k,j+l (t) +z,; (1.1)
dt k,eN, k,eN,
N, (i, ) ={C(k,]) [max{|k—i|,| = j[} < r} (1.2)
with output nonlinearity

y,.,j<r>=%<| x (O +1]=[x,,(0-1]). (13)
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Figure 1.1 Block diagram of a CNN.

where x, ; is the internal state of a cell, y, ; isthe output, u,; is external input and

z. . 1s a local value called bias, (i, j) is a grid point associated with a cell on the 2-D

L)

grid, and (%, /) is a grid point in.the, neighborhood within a radius 7 of the cell (i, ).
That is, C(k, /) is a cell in the neighborhood within a radius » of the cell C(i, j) and
N, (i,j) is a set including all C(k, /) associated with a cell C(i, j). The 4 and B are
two generic parametric functions called feedback template and control template,
respectively. A CNN has a space invariant local interconnection structure associated
with 19 free parameters (neighborhood within a radius » = 1), which exclusively
determines the dynamic behavior of the CNN.

The CNN possesses some important characteristics such as efficient real-time
processing capability and feasible VLSI implementation. Some applications requiring
high-speed processing include real-time object recognition and tracking, high-speed

visual inspection of manufacturing processes, etc.

1.3. CNN Integrated System

Besides some basic image processing tasks, the CNN has been used to mimic the

2
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Figure 1.2 The frameworl%lldf the n{ﬁlfi—gﬁannéll adaptive CNN algorithm.

local function of biological n.‘e,_'l:iral“(i:i.iféﬁi‘_ts‘?espgciéilly the human visual pathway
system [3]. According to a curre:n"tm‘ bi.(‘)logical study [4], mammalian visual systems
process the world through a set of separate parallel channels. As shown in Fig. 1.2,
each sub-channel can be regarded as a unique CNN. The output of these sub-channels
is then combined to form the new channel responses. One key point is to define the
global channel interaction and result in a unique binary image flow. As a result, it is
widely accepted that using a set of CNNs in parallel can achieve higher-level
information processing and reasoning functions either from biologics or application
points of views. Such an integrated CNN system can solve more complex intelligent
problems.

For designing an integrated CNN system, in addition to the determination of a

set of templates, another kernel problem is the way of integration. To solve this

problem, the fuzzy inference system (FIS) is gaining attention. The FIS is a popular

3



computing framework based on the concept of fuzzy set theory, fuzzy if-then rules,
and fuzzy reasoning. With crisp inputs and outputs, fuzzy inference system
implements a nonlinear mapping from its input space to output space by a number of
if-then rules. It is very useful in image processing when it is difficult to specify, in a
crisp mathematical form, the operation that is needed to yield a satisfying result from
a complex image. For example, the boundary detection of different regions strongly
depends on a subjective decision, especially in medical image. It cannot be clearly
defined what is an edge-like and what is a noise-like pattern. In many cases both
statements might be true; therefore a fuzzy-type linguistic description of all patterns is
better than a crisp set approach. Therefore, FIS can play an important role to integrate

a set of CNNSs into a system.

1.3.1. Existing Fuzzy-based CNN Models and CNN Integrated

Systems

To make a CNN or a set of CNNs‘have the ability of reasoning functions, several
fuzzy-based CNN models were proposed [5]-[9], which are fuzzy cellular neural
network (FCNN) proposed by Yang et al [5], [6], fuzzy reasoning implemented on
CNN proposed by Balsi et al [7], [8]. To make a set of CNNs in parallel achieve
higher-level information processing, several integrated CNN systems are proposed
[9]-[11], which are cellular neuro-fuzzy networks (CNFNs) proposed by Colodro [9],
and fuzzy-type CNN proposed by Rekeczky [10], [11] and Szatmari et al. [4]. In the

following, we will survey these related papers.



1.3.1.1. Existing Fuzzy-based CNN Models

Yang et al. [5], [6] first proposed a FCNN model in 1996. Such architecture had
the same structure as a CNN with nonlinear connections, but the connection functions
were stated in terms of fuzzy logic operators, so that the model departed from the
trend towards standardization and simplification of connection functions to be
realized in future CNN universal machine (CNN-UM) chips. The authors gave an
example for edge detection. The characteristics of Yang’s FCNN are to integrate fuzzy
logic into the structure of traditional CNN and maintains local connection among cells,
but its drawback is that it is too complex to implement in the short term.

Balsi et al. [7], [8] proposed a fuzzy reasoning method implemented on
CNN-UM in 1999. Such architecture has the same structure as a conventional CNN.
The authors showed that standardfuzzy logic.€ould be straightforwardly implemented
in the CNN-UM framework without any-architectural modifications. The authors
showed several examples for “edge  detection and noise removal. One of them
concerned the edge detection in the presence of impulse noise. Experimental result
showed the edge could be detected even impulse noise existed with appropriate fuzzy
rules. The characteristic of Balsi’s FCNN is to map a standard Sugeno-style
fuzzy-rule-based image processing algorithm into a standard CNN-UM analogic
(analog and logic) algorithm. However, the fuzzy rules must be obtained by domain
experts.

Yang et al. [5], [6] and Balsi et al. [7], [8] were devoted to make a CNN or a set
of CNNs have the ability of fuzzy reasoning. However, the other authors [4], [9]-[11]
were devoted to make a set of CNNs in parallel achieve higher-level information
processing, which is the main research subject in this thesis. The related papers are

described in the following subsection.



1.3.1.2. Existing CNN Integrated Systems

In 1996, Colodro et al. [9] proposed a new class of cellular networks called
cellular neuro-fuzzy networks (CNFNs), which the linear combination and piece-wise
linear function of a CNN were replaced by an arithmetic fuzzy-logic unit. To
demonstrate the capabilities of the proposed CNFN, the authors gave an application
example for edge detection. The example used eight fuzzy rules and its CNFN
templates were well-known Sobel masks to detect edge. The characteristic of
Colodro’s CNFN is to provide a new architecture based on CNN and FIS to solve
problem. Its drawbacks are the templates cannot be learned and the fuzzy rules must
be obtained by domain experts. Though Colodro et al. showed a simple example for
edge detection, they presented an approach to integrate different CNN template sets to
solve problem.

Rekeczky et al. [10], [11] developed a common CNN framework for various
adaptive non-linear filters [10].“Their.experimental results indicated that impulsive
noise elimination will be more robust ifiboth the pixel intensity and the edge-like
local property is taken into consideration and exploited in a fuzzy-type decision.
Rekeczky et al. [11] also proposed a CNN-based spatio-temporal approach to find the
endocardial (inner) boundary of the left ventricle from a sequence of
echocardiographic images. The kernel of the left ventricle was located and the
boundary was found using a fuzzy-adaptive technique. Boundary dislocation, area and
smoothness constraints were transformed into the transient length of the CNN while
the a priori knowledge about the heart morphology was built into the spatial template
parameters. The authors showed the architecture of the processing steps of a
fuzzy-type CNN analogic algorithm. As observed by Rekeczky et al. [11], it was not

necessary to use a specialized CNN model [5], [6] in order to exploit fuzzy logic



concepts. The reasons were as follows. First, elementary fuzzy-type computations,
such as the min and max operator, are already defined in CNN-based gray-scale
morphology and require only simple non-linear templates with sigmoid-type
nonlinear interactions. Second, higher level fuzzy strategies can also be synthesized
using ‘conventional’ linear and non-linear CNN templates. The characteristic of
Rekeczky’s fuzzy-type CNN analogic algorithm is to use FIS to integrate different
CNNs to detect fuzzy boundary of a given object. Similarly, its drawbacks are the
corresponding templates cannot be learned and must be assigned in advance, and the
fuzzy rules must be obtained by domain experts.

In 2003, Szatmari et al. [4] proposed an image flow processing mechanism for
visual exploration systems. The goal of this multi-channel topographic approach was
to produce decision maps for salient feature localization and identification. According
to a current biological study, mammalian visual systems process the world through a
set of separate parallel channels: Each-sub-channel can be regarded as a unique CNN.
The output of these sub-channels is then combined to form the new channel responses.
In the core of the algorithm crisp or fuzzy logic strategies define the global channel
interaction and result in a unique binary image flow. Experimental results were shown
for terrain exploration environment based on multiple feature extraction. The
characteristic of Szatmari’s method is to use FIS to integrate different CNNs to extract
features of a given object. Similarly, its drawbacks are the corresponding templates

cannot be learned and the fuzzy rules must be obtained by domain experts.

1.3.2. The Proposed CNN Integrated System

Two common characteristics are observed in the representative works of

integrated CNN systems such as Colodro et al. [9] and Roska et al. [4], [11]. First,



they all used many CNNs in parallel to solve a complex problem such as edge
detection with impulse noise, the detection of fuzzy boundary, and features extraction,
etc. Second, they all used FIS to make a final decision. For building a FIS, we have to
specify the fuzzy sets, fuzzy operators and the knowledge base. However, the existing
methods [4], [9], [11] all need to manually take the fuzzy rules by domain experts,
which is difficult, even for domain experts, to examine all the input—output data from
a complex system to find a number of proper fuzzy rules. In addition, they all need to
assign the corresponding templates of CNNs in advance (i.e., templates cannot be
learned with fuzzy rules simultaneously). Although according to Nossek’s survey [12],
the template coefficients of a CNN can be found by design [12], [13] or by learning
[12], [14], these techniques cannot be applied to the design or learning of an
integrated CNN system directly.

To cope with these drawbacks, we: introduce a novel framework for
automatically constructing a multiple-CNN-integrated neural system in the form of a
recurrent fuzzy neural network (FNN):-called réecurrent fuzzy CNN (RFCNN). Figure
1.3 shows the structure of the RFCNN and its functional correspondence with a
typical fuzzy inference system (FIS) [15]-[17], where the fuzzifier is to transform
crisp measured data into suitable linguistic values, which are then matched with the
fuzzy rules in the rule base by performing fuzzy approximate reasoning to achieve
desired linguistic outputs, which are then transformed back to final crisp outputs
through the defuzzifier. The RFCNN shown in Fig. 1.3 can automatically learn its
proper network structure and parameters simultaneously. The structure learning
includes the fuzzy division of the problem domain and the creation of fuzzy rules and
CNNs. The parameter learning includes the tuning of fuzzy membership functions and
CNN templates. In the RFCNN, each learned fuzzy rule corresponds to a CNN. Hence,

each CNN takes care of a fuzzily separated problem region, and the functions of all
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Figure 1.3 The schematic diagram of the RFCNN and FIS.

CNNss are integrated through the fuzzy inference mechanism.

The RFCNN is constructed in the form of a recurrent FNN. Two important
learning tasks of a FNN are the structure identification and the parameters
identification [15]-[19]. The structure identification is the partition of the input-output
space [20]-[23], which influences the number of generated fuzzy rules, each
corresponding to a CNN. Efficient partition of input-output data will result in faster

convergence and better performance for FNN. In the parameter learning of the
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RFCNN, the ordered-derivative calculus is applied to derive the recurrent learning
rules due to the recurrent structure of the RFCNN inherited from CNNs. The derived
rules can learn the CNN templates and other parameters in the RFCNN efficiently.
The proposed RFCNN provides a solution to the current dilemma on the decision of
templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. It has
been applied to solve the real-world defect inspection. This is an application for the
defect inspection of color filter, which contains multiple types of defects (faults) with
different features on a single image. Experimental results, shown in Sections 4 of
Chapter 2 and Chapter 3, successfully demonstrate that the introduced scheme is very

effective and promising.

1.4. Concluding Remarks

In this chapter, several fuzzy-based CNN integrated system are presented. Since
those methods suffered from “two- problems, iie., they all need to assign the
corresponding templates of CNNs in ‘advance (i.e., templates cannot be learned) and
they all need to take the fuzzy rules manually by domain experts. To cope with these
drawbacks, we proposed a novel framework for automatically constructing a
multiple-CNN integrated neural system in the form of a recurrent fuzzy neural
network (FNN). This system, called recurrent fuzzy CNN (RFCNN) [13], can
automatically learn its proper network structure and parameters simultaneously. Each
CNN takes care of a fuzzily separated problem region, and the functions of all CNNs
are integrated through the fuzzy inference mechanism. For learning algorithm, the
details of structure-learning algorithm based on adaptive ICA (independent
component analysis) mixture-model technique are described in Section 3.1 of Chapter

2; the details of parameter-learning algorithm are described in Sections 3.2 of Chapter

10



2 and Chapter 3, respectively. For experimental results and discussions, they are
described in Sections 4 of Chapter 2 and Chapter 3, respectively. Finally, conclusions

and perspectives are described in the last chapter.
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2. A Recurrent Fuzzy Cellular Neural Network
System with Automatic Structure and Template

Learning

In this chapter, we propose a novel framework for automatically constructing a
multiple-CNN integrated neural system in the form of a recurrent fuzzy neural
network. This system, called recurrent fuzzy CNN (RFCNN), can automatically learn
its proper network structure and parameters simultaneously. The structure learning
includes the fuzzy division of the problem domain.and the creation of fuzzy rules and
CNNs. The parameter learning includes the tuning, of-fuzzy membership functions and
CNN templates. In the RFCNN -each:leained-fuzzy rule corresponds to a CNN. Hence,
each CNN takes care of a fuzzily separated problem region, and the functions of all
CNNs are integrated through the fuzzy inference mechanism. The new on-line
adaptive ICA (independent component analysis) mixture-model technique, proposed
in Section 3.1 of this chapter, is used for the structure learning of RFCNN, and the
ordered-derivative calculus is applied to derive the recurrent learning rules of CNN
templates in the parameter-learning phase. The proposed RFCNN provides a solution
to the current dilemma on the decision of templates and/or fuzzy rules in the existing
integrated (fuzzy) CNN systems. The capability of the proposed RFCNN is
demonstrated on the real-world defect inspection problems. Experimental results

show that the proposed scheme is effective and promising.
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2.1. Introduction

The CNN has been used to mimic the local function of biological neural circuits,
especially the human visual pathway system [3]. According to a current biological
study [4], mammalian visual systems process the world through a set of separate
parallel channels. Each sub-channel can be regarded as a unique CNN. The output of
these sub-channels is then combined to form the new channel responses. As a result, it
is widely accepted that using a set of CNNs in parallel can achieve higher-level
information processing and reasoning functions either from biologics or application
points of views. Such an integrated CNN system can solve more complex intelligent
problems.

For designing an integrated CNN system;+in addition to the determination of a
set of templates, another kern¢l problem i1s"the way of integration. To solve this
problem, the fuzzy inference system (FIS) ¢an play afi important role to integrate a set
of CNNs into a system. As mentioned in Section3 of Chapter 1, to make a set of
CNNss in parallel achieve higher-level information processing, several integrated CNN
systems are proposed [4]-[7]. They have two common characteristics. First, they all
used many CNNs in parallel to solve a complex problem. Second, they all used FIS to
make a decision. The common drawbacks of these approaches are that they all need to
assign the corresponding templates of CNNs in advance (i.e., templates cannot be
learned) and they all need to take the fuzzy rules manually by domain experts.
Although according to Nossek’s survey [8], the template coefficients of a CNN can be
found by design [8], [9] or by learning [8], [10], these techniques cannot be applied to
the design or learning of an integrated CNN system directly.

To cope with these drawbacks, we proposed a novel framework for automatically
constructing a multiple-CNN integrated neural system in the form of a recurrent fuzzy
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neural network (FNN) [11], [12]. This system, called recurrent fuzzy CNN (RFCNN)
[13], can automatically learn its proper network structure and parameters
simultaneously. The structure learning includes the fuzzy division of the problem
domain and the creation of fuzzy rules and CNNs. The parameter learning includes
the tuning of fuzzy membership functions and CNN templates. In the RFCNN, each
learned fuzzy rule corresponds to a CNN. Hence, each CNN takes care of a fuzzily
separated problem region, and the functions of all CNNs are integrated through the
fuzzy inference mechanism.

As mentioned in Section 3 of Chapter 1, the RFCNN is constructed in the form
of a recurrent FNN, which includes two important learning tasks: the structure
identification and the parameters identification [15]-[19]. In this chapter, the new
on-line adaptive ICA (independent component analysis) mixture-model technique,
described in Section 3.1, is used for the structure.learning of the RFCNN. Basically,
ICA finds directions in the input spa¢e‘which-lead to'independent components instead
of just uncorrelated ones, as PCA (ptineiple component analysis) does [24], [25], so it
reduces not only the number of rules (i.e., CNN) but also the number of membership
functions under a pre-specified accuracy requirement dynamically. In the parameter
learning of the RFCNN, the ordered-derivative calculus is applied to derive the
recurrent learning rules due to the recurrent structure of the RFCNN inherited from
CNNs [1], [2]. The derived rules can learn the CNN templates and other parameters in
the RFCNN efficiently. The proposed RFCNN provides a solution to the current
dilemma on the decision of templates and/or fuzzy rules in the existing integrated
(fuzzy) CNN systems. It has been applied to solve the real-world defect inspection
problems, which contain multiple types of defects (faults) with different features on a
single image. Experimental results successfully demonstrate that the proposed scheme

is very effective and promising.
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This chapter is organized as follows. Section 2 describes the structure and
functions of the proposed RFCNN. Section 3 describes the on-line structure and
parameters learning algorithm for the RFCNN. Section 4 gives experimental results

and discussions. Finally, conclusions are summarized in the last section.

2.2. Structure of the RFCNN

In this section, the structure of the proposed RFCNN shown in Fig. 2.1 is
introduced. For clarity, we consider a CNN, with time constant = 1, time step = 1, and

neighborhood within a radius = 1, which is characterized by the following templates:

O 0 O by by b
A =0 aoo 0|, B =|boa boo boil| I'=2, 2.1
0O 0 O b'i 1 hhin b

where A', B', and z' is feedback template, control template, and bias of the ith
CNN, respectively. By defining a CNN-as-above, the six-layered RFCNN network

will realize a fuzzy model of the following form:

Rule i: IF x, is M| and...x,

;s M. and x, is M,
THEN y,(t+1) is [ (A'y.(£)+ B'u(t) + 2 (1)) 2.2)

or

Rule i: IF x, is M{ and...x, is M|...and x, is M,

THEN y,(t+1) is [ (aho,(6) +b'amix, () + b'a0xy (1) + o+ B'raxy (1) + 2 (1))
(2.3)

where the current input vector is u=X, =[x, .., X,]

, Ay s agey, (1),
Blu(t) is D bu=b"11x,(t)+ b r0x,(0) + ...+ b'Lixy (), f'is a sigmoid function,

M’ isafuzzyset,and a’,, b'ss,and z' are consequent parameters representin
J 0,0
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Figure 2.1 Structure of the proposed RFCNN.

feedback template, control template, and bias of the ith CNN, respectively. The
number of input dimension of the RFCNN will be (27 +1)’ if the neighborhood of a

CNN cell is within a radius = r. As shown in (2.3), we focus on uncoupled CNN cells
in this chapter. With this six-layered network structure of the RFCNN, we shall define
the function of each node and use the proposed on-line ICA mixture model described
in the next section to construct the structure of the RFCNN.

The RFCNN consists of nodes, each of which has some finite “fan-in” of
connections represented by weight values from other nodes and “fan-out” of
connections to other nodes. Associated with the fan-in of a node is an integration
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function f°, which serves to combine information, activation, or evidence from other

nodes. This function provides the net input for this node

. k k k). . (k k k
node — input = f[uf ),ug )y u; ),wf ),w§ ) s w; 1, (2.4)

(k) (k) (k)

where u", uy”’, ..., u, (k) ) (k)

are inputs to this node and w™’, w,", ..., w are the

associated link weights. The superscript (k) in (2.4) indicates the layer number. This
notation will also be used in the following equations. A second action of each node is

to output an activation value as a function of its net-input
node — output"™ = 0" = a™ (node — input) = a'"® (f), (2.5)
where a(-) denotes the activation function. We shall next describe the functions of
the nodes in each of the six layers of the RFCNN, which include five feedforward
layers and one feedback layer.
Layer 1: No computation -8 done in this layer: Each node in this layer, which

corresponds to one input variable, onlytransmits input values to the next layer directly.

That is
f=u
and

o) =a(N=r. (2.6)

From the above equation, the link weight in layer one [w"] is unity.

Layer 2: Each node in this layer corresponds to one linguistic value (small, large,
etc.) of one of the input variables in Layer 1. In other words, the membership value
which specifies the degree to which an input value belongs a fuzzy set is calculated in
Layer 2. There are many choices for the types of membership functions for use, such
as triangular, trapezoidal, or Gaussian ones. In this chapter, the membership functions

are determined by the on-line ICA mixture model, which are either super-Gaussian
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function or sub-Gaussian function. It is noted that the output x from Layer 1 is

projected into the independent axes obtained by the on-line ICA mixture model (as

shown in Fig. 2.2) such that
(2.7)

s, =B.x,

where B, is the basis matrix determined by the on-line ICA mixture model,

i=1,2,..,J,and J is the number of clusters. That is, if the input data are

classified into J clusters, the number of rules will be J .

With the choice of non-Gaussian membership function, the operation performed

in this layer is

1

flu?1=p(u?),

where
for super-Gaussian

)9

pluy) o exp(-Ju,
2

p(u;) o exp(—log(cosh(u;)) — %), for sub-Gaussian
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Figure 2.2 Transformation by the on-line ICA mixture model for the proposed
RFCNN. (a) The regions covered by the original axes. (b) The covered regions by the

independent axes obtained by the on-line ICA mixture model transformation.
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and
0 =a?(f)= 1, (2.8)
where u; is the transformed value of the jth term of the ithinput variable x;.

The transformation can be regarded as a change of input coordinates, where the
parameters of each membership function are kept unchanged, i.e., the center and the
width of each membership function on the new coordinate axes are the same as the
old ones.

Layer 3: A node in this layer represents one fuzzy logic rule and performs
precondition matching of a rule. Here, we use the following AND operation for each

Layer-3 node

Slu =TT
and

of =a =y (2.9)
The link weight in the Layer 3 [w”] is "unity. The output f of a Layer-3 node

represents the firing strength of the corresponding fuzzy rule.

Layer 4: This layer is called the consequent layer. Different nodes in Layer 3
may be connected to the same node in Layer 4, meaning that the same consequent
fuzzy set is specified for different rules. One of the inputs to each node is the output
delivered from Layer 3 (firing strength) and the other inputs are CNN related inputs

a'

which are the output of feedback term node. The feedback term node will be
described in the feedback layer part in this section. Combining the two kinds of inputs

in Layer 4, we obtain the whole function performed by this layer as
S =u®

and
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0 =aW(f)=a'? f =sigmoid(A'y,(t)+ B'u(t)+z'(t))- f, (2.10)
where A4', B', z' is feedback template, control template, bias of the ith CNN,
respectively, as defined in (2.1), and sigmoid() is a sigmoid function, as defined in
(2.13).

Layer 5: Each node in this layer corresponds to one output variable. The node

integrates all the actions recommended by Layer 4 and acts as a defuzzifier with
Su®1=Yu®
and

Yo =0 =a¥ ()= 1

(2.11)
Feedback Layer: As shown as Fig. 2.1, this,self-feedback layer characterizes the

consequents of the RFCNN as & CNN-template. Two types of nodes are used in this
layer, the square node named as confext-node and the circle node named as feedback
term node, where each context node. 1s associated with a feedback term node. The
number of context nodes (and thus the number of feedback term nodes) is the same as

that of output term nodes in layer 4. The inputs to a context node are from its

corresponding output term nodes ( y,(¢) ), the input variables from Layer 1
(u(t)=x,(t) =[x, ... x,]"), and template bias (z'(¢)). The output of its associated

feedback term node is fed to the original node in layer 4. The context node functions
as the state (the summation of input part) of the ith CNN

X' (t+)=A'y,()+B'u(t)+z'(1). (2.12)

As to the feedback term node, the membership function f(u)=2/(1+e>*)~1

is used to approximate piece-wise linear function used in CNN. With this choice, the

feedback term node evaluates the output by
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0 =a® = 1 . (2.13)

This output is connected to its corresponding node in layer 4, which

characterizes the consequents of the RFCNN as a CNN template.

2.3. Learning Algorithm for the RFCNN

Two types of learning, structure and parameter learning, are used concurrently
for the RFCNN. The structure learning includes both the precondition and consequent
structure identification of a fuzzy if-then rule. In the RFCNN, the structure learning
includes the fuzzy division of the problem domain (precondition structure
identification), and the creation of fuzzy rules and CNNs (consequent structure
identification). The precondition,sStructure’sidentification corresponds to the
input-space partitioning and can be formulated as a combinational optimization
problem with the following two objectives: to reduce the number of rules generated
and to reduce the number of fuZzy sets on the universe of discourse of each input
variable. As to the consequent structure identification, the main task is to decide when
to generate a new consequent term (or a new CNN) for the output variable. In our
system, we propose an on-line ICA mixture model to realize the precondition and
consequent structure identification part of the RFCNN.

For the parameter learning, the parameters of each CNN template in the
consequent parts are adjusted by the ordered derivative algorithm to minimize a given
cost function. The parameters in the precondition part are adjusted by the on-line ICA
mixture model algorithm. The RFCNN can be used for normal operation at any time
during the learning process without repeated training on the input-output patterns
when on-line operation is required. There are no rules (i.e., no nodes in the network
except the input-output nodes) in this network initially. They are created dynamically

21



Structure learning Y

(1)Input/output space partitioning

v

(2)Construction of fuzzy rules and CNNs

y

(3)Parameter learning

Figure 2.3 Flowchart of the learning algorithm for the proposed FNN.

as learning proceeds upon receiving on-line incoming training data by performing the
following learning processes simultangously (see Fig. 2.3).

As shown in Fig. 2.3, learning processes: (1) and (2) belong to the structure
learning phase and (3) belongs:to the parameter learhing phase. The details of these

learning processes are described in the rest of this'section.

2.3.1. Structure Learning Algorithm of RFCNN

2.3.1.1 Input/Output Space Partitioning

Efficient partition of input-output data will result in faster convergence and
better performance for the RFCNN. The most direct way is to partition the input space
into grid types and each grid represents a fuzzy if-then rule (see Fig. 2.4(a)). This is
called grid-based partitioning. The major problem of such kind of partition is that the
number of fuzzy rules (and thus the number of CNNs) increases exponentially if the

number of input variables or that of partition increases. A flexible partition method,
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the clustering-based approach which clusters the input training vectors in the input
space, will reduce the rule and CNN numbers [20]-[23]. In fact, by observing the
projected membership functions in Fig. 2.4(c), although the number of membership
functions in Fig. 2.4(d) is more than that in Fig. 2.4(b), there are only 5 rules in Fig.
2.4(d); however, there are 9 rules in Fig. 2.4(b). By observing the projected
membership functions in Fig. 2.4(c), we find that some membership functions
projected from different clusters have high similarity degrees. These highly similar
membership functions can be checked and merged by similarity measure [23]. In the
rest of this subsection, we will introduce some clustering methods such as C-means,
ISODATA, and a new on-line ICA mixture model to provide a proper partition of the
input-output space for the RFCNN [25]. These clustering algorithms will be briefly

described in the following subsections.
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(a) (b)

Figure 2.4 Fuzzy partitions of two-dimensional input space. (a) Grid-based
partitioning. (b) If-then rules based on grid-based partitioning (c) Clustering-based

partitioning. (d) If-then rules based on clustering-based partitioning.

2.3.1.1.1 C-means Clustering

In the C-means clustering algorithm, the sum of the squared distances from all of
the points in the cluster to the cluster center is used as the criterion for grouping input
data samples. The algorithm can be described as follows:

Step 1. Choose C initial cluster centers. For the first iteration, the starting values

for cluster centers are chosen randomly.
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Step 2. Assign unknown samples to corresponding clusters. For each sample, the
Euclidean distance from each cluster center is calculated, and the sample is assigned
to the cluster with the minimum distance.

Step 3. Compute new cluster centers, which are calculated by the mean value of
the points in the same cluster.

Step 4. Check for the condition of convergence, which is that no cluster center
has changed its value during Step 3.

The C-means algorithm is a simple and efficient scheme to find proper
input/output partitioning for the RFCNN, and then determine the proper fuzzy rules
(i.e., CNNs). However, it assumes that the number of clusters is known in advance,
which is exactly what we have to know from the clustering algorithm to obtain the
number of fuzzy rules (i.e., CNNs)in the RFCNN:in some real-world applications. As
a result, the C-means algorithm: cannot be used to on-/ine determine the structure of

the RFCNN if there is such a need.

2.3.1.1.2 ISODATA

In the ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering
algorithm [26], like the C-means algorithm, cluster centers are updated iteratively.
The ISODATA algorithm is a good method to determine the structure of the RFCNN
though it is more complex, because some heuristic procedures are incorporated into it.
Three additional procedures that the algorithm performs are as follows: (1) if a cluster
contains a small number of samples, that cluster is discarded; (2) if a cluster contains
a large number of samples and the standard deviation is large, then the cluster is split
into two; and (3) if the distance between two cluster centers is small, then the clusters
are merged into one. Essentially, what is done in the ISODATA algorithm is that very

small clusters are discarded, very large clusters are split, and very close clusters are
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merged. Again, like the C-means algorithm, the proper cluster number should be
known in advance before applying the ISODATA algorithm. This also hinders the use
of this clustering algorithm on the on-line structuring learning of RFCNN in some

real-world problems.

2.3.1.1.3 On-line ICA Mixture Model for Dynamic Clustering

1) ICA Mixture Model

Several methods for input space partition have been proposed to cluster the input
training vectors in the input space, such as Kohonen learning rule, hyperbox method,
product-space partitioning, fuzzy c-mean method, EM algorithm, etc. [26]-[29]. Those
methods are usually based on Gaussian membership functions. In general, the
observed data can be categorized into several mutually exclusive classes [30]. When
the data in each class are modeled as multivariate Gaussian, it is called a Gaussian
mixture model (GMM) which 1is widely used’ throughout the fields of machine
learning and statistics. One major drawback of GMMs is that if the dimension d of the
problem space increases, the size of each covariance matrix, d°, becomes prohibitively
large. This problem has been solved by Tipping and Bishop [31] who replaced each
Gaussian with a probabilistic principal component analysis (PCA) model. This
allowed the dimensionality of each covariance to be effectively reduced while
maintaining the richness of the model class. Independent component analysis (ICA)
[24] 1s a technique that exploits higher-order statistical structure of the data, which has
recently gained attention due to its successful applications to signal processing
problems including speech enhancement, discrete signal processing and image
processing, etc. The goal of ICA is to linearly transform the data such that the

transformed variables are as statistically independent from each other as possible.
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Basically, it finds direction in the input space which lead to independent components
instead of just uncorrelated ones as PCA does, so it can be used to reduce not only the
number of rules but also the number of membership functions under a pre-specified
accuracy requirement dynamically.

Another drawback of GMMs is that it is based on Gaussian function. In some
situation, it could not be separated from each other. It is generalized by assuming the
data in each class are generated by a linear combination of independent non-Gaussian
source [33]. This model is called the ICA mixture model. This allows modeling of
classes with non-Gaussian structure such as platykurtic or leptokurtic probability
density functions, and the model uses the gradient ascent method to maximize the
log-likelihood function. In previous applications, this approach showed improved
performance in data classification: problems [34] and learning efficient codes for
representing different types of 4mages [25]. The advantage of this model is that the
input data with increasing numbers 0f-classes can provide greater flexibility in
modeling structure and in finding ‘more features compared with Gaussian mixture
models or standard ICA algorithms. Although the ICA mixture model has many
advantages, its cluster number should be given beforehand and the learning scheme is
only suitable for off-line instead of on-line operation. Therefore, in the following
section, we shall propose an on-line ICA mixture model to provide better dynamic

partitioning of the input-output space for the proposed RFCNN.

2) On-line ICA Mixture Model for Dynamic Clustering

The proposed on-line ICA mixture model is derived from the conventional ICA
mixture model. To enable the on-line operation, we will define a criterion to
determine whether the number of clusters should be increased or not for any incoming

training pattern. For each incoming pattern to the RFCNN, the resulting firing
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strength of a fuzzy rule can be interpreted as the degree that the incoming pattern

belongs to the corresponding cluster. This likelihood can be represented as

F'(x,)=Inp(x,

C)), (2.14)

where x, denotes the incoming pattern at time 7, and Inp(x,|C;) is the log
likelihood value indicating the degree that the input data, x,, belongs to the jth
cluster for je[l,J].

Now, we assume that the number of clusters at time ¢ is J(r). Then, the total

probability at time ¢ is

J
p(X;)=§p(xt c,)nlc,). (2.15)
j=1
Therefore, the posterior probability is:
_ p(xt Cj )pt—l (Cj)
p(CjIXt)— 188 ¢ - (2.16)

where p, (C j) is the prior probability-atpreceding time, which can be obtained by

former calculation result of the jth cluster. Hence, the probability p, (C j) at this

moment can be calculated by the following formula:

P, (Cj)z %Zt:p(cjb‘i): ;{ip(c_,ixi )+ p(Cj|Xt)}
=l =l . (2.17)
== 5 (€)+ pCx,)

Then the posterior probability p(C j|xt) in (2.16) can be obtained.

Based on the above derivation, we can obtain the following criterion for the
generation of a new fuzzy rule (i.e., a new CNN). Let x, be the newly incoming
pattern at time ¢. Defining

F'»=(x,)= max F’(x,), (2.18)

1</<J (1)

If F/=(x,)<F , then a new rule is generated, where F is a pre-specified
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threshold value that decays during the learning process. Once a new rule is generated,

the next step is to assign initial values of the corresponding membership functions. If

F’»(x,)>F, a new incoming data is added to an existed cluster and we have to
update the parameters of each cluster such as mean (M), covariance matrix (Cov ),

and the criterion of data distribution (&, ,) that determines if the distribution of data

is super-Gaussian or sub-Gaussian with the previous calculation results. They are

defined as follows:

t—1

t
Zp(Cj|xl.)xi p(Cj|xi)xl. +p(Cj|Xt)Xz
M (1)= L _ = 2.19)

ZP(C«/|xi) ZP(CJ|X1‘)

= &l M oM () (2.20)

ZP(C.1|X1')
71_)[ p[ 1(C )COV t_ ) ( _1)Pz—1(cj)

C
M, (=M, (= 1) + p(C) e, Jex! |- M (M (o)
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Sl Jssn o, 0) ol e o, 0 |
gp(cjlxi)

k;, (t)=sign

2.21)
ZP(Cj |Xi )yj,p (i) - tanh” (yj,p (i))

i=1
;P(C Jx,)

In the above, the function k; ,(7) is defined as the function of criterion which

allows for automatic switching between super-Gaussian and sub-Gaussian models and

(2.21) can be further derived as

Lne) 70

k, ,(t)=sign , (2.22)
;P(Cjb‘i) ;p(cj|xi)
where
T,(c)= i p(Cj|xi)sech2(yj,p(i))
=T, (t —1)+ p(Cj|xt)sech2(yj’p(t)l
TZ(t)ziZ_I:p(Cj|Xixyj,p(i)) (2.23)

= Tz (t - 1)+ p(Cj|Xt)yj,p(t)5
T,(c)= Zt:p(cjb‘i )yj,p(l') ' tanhz(yj,p(i))

T, (t - 1)+ p(Cj|xt )yj’p(z‘)‘[anh2 (yj’p(t))

Finally, the independent axes B () , representing the axis of the jth cluster, can

be obtained by the following formulations:

o 0
o, PO PO G PO B (D, M (D) (224)

= p(C [x)- A1k, (1) g(y,(6) -y (O] Bt =1)}.

and
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B, (1) :Bj(t—l)+£lnp(x,). (2.25)

J

In (2.24), the function g(x) is called component-wise nonlinearity function. If
the distribution of data is appearing the super-Gaussian distribution, then it will be
defined as g(x)=—2tanh(x). Otherwise, if the distribution of data is appearing the
sub-Gaussian distribution, then it will be defined as g(x) = tanh(x)—x.

Since the algorithm of on-line ICA mixture model can automatically determine
the number of clusters according to new incoming data, it solves the problem of
conventional ICA mixture model that the number of clusters has to be given

beforehand.

2.3.1.2. Structure Learning Algorithm of RFCNN with On-line ICA
Mixture Model

The way the input space iS partitioned-determines the number of rules extracted
from training data as well as the'number offuzzy sets on the universal of discourse of
each input variable. We will define a criterion to determine whether a new cluster (i.e.,
a new fuzzy rule or a new CNN) should be added or not. Let x, of cluster j be the

newly incoming pattern at time ¢. Defining

F/=(x,)= max F’(x,), (2.26)

1<j<J (1)

where F’/(x,)=In p(x,

C;) is the log likelihood value indicating the degree that

input data, x,, belongs to the jth cluster, and the superscript J_, 1s a maximum log

X

likelihood value among all log likelihood values. If F”= (x,)>F, the number of

cluster is not increased, where F 1is a pre-specified threshold value that decays
during the learning process. In this case, the new incoming pattern is added to an

existed cluster and the parameters of this cluster will be updated properly. Oppositely,
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if F’m(x,)<F ,the number of cluster will be increased. The threshold value F is

determined by experiments.
The whole algorithm for the generation of new fuzzy rules as well as fuzzy sets

in each input variable is shown in Fig. 2.5 step by step. In PART 2 of Fig. 2.5, the

threshold F,, determines how many rules will be generated, where F, should be
negative since it is taken in natural log. For a lower value of F, , more rules will be

generated. Similarly, F,, determines how many output clusters will be generated

and a lower value of F

out

will result in more output clusters. For the output space
partitioning, the same approach in (2.14) is used. The generation of a new output
cluster corresponds to the generation of a new CNN. Suppose a new input cluster is
formed after the presentation of the current input-output training pair (x, d); then the
consequent part is constructed by'the algorithms shown in Fig. 2.6.

The above algorithm is based on the fact that different precondition of different
rules may be mapped to the same consequent-term, i.c., CNN. Since only the center of
each output membership function is used for‘defuzzification, the consequent part of
each rule may simply be regarded as a singleton. Compared to the general fuzzy
rule-based models with singleton output where each rule has its own individual
singleton value, fewer parameters are needed in the consequent part of the RFCNN,

especially for the case with a large number of rules.
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v

Generate a new rule with center
M, = x,, and set the parameters
Cov, =[0], p,(C,)=1,B, =1,

and kl,p’ where p=1,2,...,n,

End

Figure 2.5 Algorithm of input space partitioning.
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v

Generate a new rule with center

M, =d,, and set the parameters
PARTL 1 Cov, 10, p(C) - LB, ~
and kl,p, where p=1,2,...,n.

End

Figure 2.6 Algorithm of output space partitioning.

2.3.2. Parameter Learning Algorithm of RFCNN by Ordered

Derivative Calculus

After the network structure is adjusted according to the current training pattern,
the network then enters the parameter identification phase to adjust the parameters of
the network optimally based on the same training pattern. Notice that the following
parameter learning is performed on the whole network after structure learning; no

matter whether the nodes (links) are newly added or are existent originally. Since the
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RFCNN is a dynamic system with feedback connections, the backpropagation
learning algorithm cannot be applied to it directly. Also, due to the on-line learning
property of the RFCNN, the off-line learning algorithms for the recurrent neural
networks, like backpropagation through time and time-dependent recurrent
backpropagation [17], cannot be applied here. Instead, the ordered derivative [34],
which is a partial derivative whose constant and varying terms are defined using an
ordered set of equations, is used to derive our learning algorithm. The ordered set of
equations, described in Section 2 in each layer, is summarized in (2.28)-(2.33). Our

goal is to minimize the error function

E(41) = [ (1) =y (0D = (017, (2.27)
where y? (¢+1)is the desired output,s24i(#+1) is the current output, and &(¢ +1)

is (y,,(t+1)—y¢ (t+1)). For-¢ach training data Set, starting at the input nodes, a

forward pass is used to compute thetactivity-levels of all the nodes in the network to
obtain the current output y , (¢#+1).1In the followings, dependency on time will be
omitted unless emphasis on temporal relationships is required.

Summarizing the node functions defined in Section 2, the function performed by

the network is

Vour T+ = u (2.28)
u> =0® =0 p', (2.29)
where
W= flu®1=]Tu? (2.30)
0® =2 1 (2.31)
l+e™
x'(t+1)= A"y, (1) + B'u(t)+z' (1), (2.32)
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and (2.1) is redefined as the following equation for clarity:
A" =10,0,0;0,a',0;0,0,0], B; =[b],b},b; b, bL, b ;b by, by . (2.33)
With the above formula and the error function defined in (2.27), we can derive

the update rules for the free parameters in the RFCNN as follows.

Update rule of a' (the parameter of feedback template of the ith CNN) is
O E(t+1)

a'(t+)=ad'(t)-n . (2.34)
oa'
O"E(t+1) OE (t+1)+z OE (t+1) 0"y, (t+1)
oa' oa' Oy, (E+]) oa'
: (2.35)
_OE (t+1) 07y, (t+1)
oy, (t+1) oa’
where
OE WD, (236)
oy, (t+1)
and
+ ST .4
0 yaut((+1) :zéyam ((t;l) 0 O _ 8yum((t4;L o o (2.37)
oa' . 0o, oa' do, oa'
where
Vo t+D) 0 0
ato'(4) " 0@ Zklok (t+D)=1, (2.38)
and
.
0= O o ALy, 1)+ Bu(o)+ = ()
oa'  oa’ ! !
5 . (2.39)
= B (14 0)(1~0(®)y, (1) +a’ 20
oa
Hence, the parameter a' is updated by
i iy i 6)N(1 _ (6) ; 0y, (1)
a'(t+)=a"(@)—net+D){h'(1+0,")Y1-0,")y,(t)+a"' —=]}. (2.40)

oa’
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Similarly, the parameter b; (the parameters of control template of the ith CNN)

is updated by
bi(t+1)=bi (1) —ne(t+D[h' (1+0{")1-0{")x (1] (2.41)
and the parameter z, (the bias of the ith CNN) is updated by
Z(t+)=2')—net+D[A' (1+0)(1-0!)]. (2.42)

As shown in (2.37) to (2.39), the update rules are in recursive form. The value
0" y/da is equal to zero initially. For the rest free parameters in the RFCNN, they
are obtained during the structure-learning phase by the on-line ICA mixture model
algorithm proposed in the last section. Notice that according to the real time recurrent
learning (RTRL) scheme [35], we can also obtain the same parameter learning rules
for the RFCNN. Of course, other.existing on-line learning algorithms [36], [37] for
tuning the weights of recurrent neural networks can be possibly adopted for tuning the

RFCNN, too.

2.4. Experimental Results and Discussions

The capability of the proposed RFCNN is demonstrated on the real-world defect
inspection problems. Automatic defect inspection systems are becoming more and
more important in industrial production lines. Especially in electronics industry, an
attempt is often made to achieve almost 100% quality control of all components and
final goods. Here we are interested in the defect inspection of color filter, which is one
of components in TFT-LCD module and gives each pixel of LCD its own color. The
difficulties in the defect inspection of color filter are its complex texture and need for
high-speed processing. For the reason of high-speed processing, the CNN is a good

way to achieve defect inspection. Besides, different kinds of defects in color filter
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need different CNN templates and some complex defects cannot be detected by a
single CNN. Therefore, the proposed RFCNN is a good alternative to detect defect of
color filter images. To train the RFCNN, as shown in Fig. 2.7, we use a 3x3 window
to get the system inputs and set the whole image as the inputs of the RFCNN. The 3x3
window covers the central pixel and its 8 connected neighbors. The training image

and corresponding desired output are shown in Figs. 2.8(a) and 2.8(b). We set the

threshold F, =F  =-50 and learning rate as 7 =0.001 for the clustering

in out

algorithm. As mentioned in Section 3, there are no rules (and no CNNs) in the
RFCNN initially. They are created dynamically as learning proceeds upon receiving
on-line incoming training data by performing the learning processes shown in Fig. 2.3.
When the learning processes are done, three clusters (three fuzzy rules and CNN
templates) were obtained. For theé example of colot filter, it takes about 1 minute to
learn the structure (interconnection set) and 2 minutes to learn the parameters with
Pentium IV 2.0G PC. However, the training can-be done off-line, so it is not a

problem for the on-line processing of CNN, which causes just little time.

X

RFCNN

YYYYVYYVYYYY

The whole image

Figure 2.7 The training schematic diagram of the RFCNN.
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Figure 2.8 Training images. (a) Input image. (b) Desired output.

CNN * alfa 1 CNN * alfa 2 CNN ™ alfa 3

(a) (b) (c)
CNN 1 CNN 2 CNN 3

Figure 2.9 The outputs of Layer 3, 4, and Feedback Layer for the training image.
(a)~(c) The outputs of the three Layer-4 nodes, respectively. (d)~(f) The outputs of the
three CNNs in the Feedback Layer, respectively. (g)~(i) The outputs of the three

Layer-3 nodes, respectively (firing strength of each rule).



Figure 2.9 shows the outputs of Layer 3, 4, and Feedback Layer for the training
image. Figures 2.9(a) to 2.9(c) show the outputs of the three Layer-4 nodes,
respectively, i.e., the outputs of the three CNNs in the Feedback Layer multiplied by
the outputs of the three Layer-3 nodes (i.e., firing strength of each rule), respectively.
Figures 2.9(d) to 2.9(f) show the outputs of the three CNNs in the Feedback Layer,
respectively. Figures 2.9(g) to 2.9(i) show the outputs of the three Layer-3 nodes,
respectively (firing strength of each rule). The sum of the outputs of the three Layer-4
nodes (i.e., Figs. 2.9(a) to 2.9(c)) forms the RFCNN final output. From Figs. 2.9(a) to
2.9(c), we can see that CNN 1 takes care of the defect texture on the right side of the
training image, and CNNs 2 and 3 mainly take care of the defect textures on the left

side of the training image. The template of each learned CNN is given as follows:

0 0 0] 0.27:+0.20 0.12

A' =10 —-0.64 OB =158 .—245 129z =-0.02.
0 0 =0 0.29° —0.58 0.47
0 0 0] 0- -017 -0.68

A*=|0 —0.83 0 B*=| 0.20 =0.65 0.40 | z*=0.37.
0 0 0] =011 0.08 -0.15
0 0 0 009 126 -122

A*=|0 053 0| B’=|-1.58 -1.70 -0.57 |z’ =1.78.
0 0 0 0.59 0.50 1.54

Based on the learned structure and parameters of the RFCNN, we test several
images and three of those images as shown in Fig. 2.10. Figs. 2.10(a), 2.10(c), and
2.10(e) are the testing images and Figs. 2.10(b), 2.10(d), and 2.10(f) are the
corresponding results of defect inspection. From Figs. 2.10(a) to 2.10(f), we can see
that the learned structure and CNN templates of the RFCNN are well suited to detect
the defects of color filer images. It has also been tested that detection results are still
good if the images are shifted, that is because that the RFCNN only considers the

central pixel and its 8 connected neighbors and they are still regular patterns after

40



Figure 2.10 Experimental (Testing) results,of-the learned RFCNN. (a), (c), and (e) are

input testing images. (b), (d), and (f) are.corresponding detection results.

images are shifted. Therefore if the images are shifted, we need not re-teach the
network.

The conventional methods using CNN for defect inspection [38]-[41] are using
one or a set of CNN templates, which can be obtained by experiential engineers or
learned by examples, to detect defect. To compare the RFCNN with conventional
methods, we performed some experiments using a single CNN whose template is
learned by genetic algorithm (GA). We find that the training image, shown in Fig.
2.8(a), cannot be learned well by using only a single CNN. However, if we have the
training images and corresponding desired outputs as shown in Figs. 2.11(a) to 2.11

(d), the CNN template can be learned well by GA (A GA-based template learning for
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defect inspection is described in Appendix A.1). This fact implies that different kinds
of defects in color filter need different CNN templates. That is, we can first identify
the categories of defects and make each CNN template of defect category learned by
GA. However, this will cause related questions as follows. First, how many defect
categories, which determine how many CNN templates, should be classified? Second,
how can we be sure which defects belong to the same category? In other words, what
is the corresponding desired output for the uncategorized defects of color filter?
Therefore it is difficult to manually use the divide-and-conquer principle to learn the
templates of CNNs by GA. For the dilemma mentioned above, the proposed RFCNN
provides a good alternative to solve this kind of problem.

To make the RFCNN converge more quickly during learning, GA can be used to
learn some CNN templates to initialize the consequent part of the RFCNN. Though
this experiment focuses on defeet inspection of color filter, the proposed RFCNN can

be also applied to those images with tegular-pattern; such as texture webs.

[ | il |
BUBNEEN
inpppnnNn
TN
NUNENuR

{c) {d)

Figure 2.11 Training images by GA. (a) and (c) are input images. (b) and (d) are

corresponding desired outputs.
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The main idea of the proposed RFCNN is an integrated system of FIS and CNNs,
which can construct fuzzy rules and CNN templates automatically. The example for
the defect inspection of color filter has been demonstrated to verify the capability of
the RFCNN. In addition to the defect inspection of color filter, we believe such an
integrated CNN system, the RFCNN, has potential to solve more complex intelligent
problems such as biological phenomena or other applications. Since CNN bears the
characteristic of high-speed processing based on analog circuit realization, it will be
very useful to realize the RFCNN by analog circuits. As studied in [7, 11], the
elementary fuzzy-logic computations, such as the min, max, and fuzzification
operator in a fixed neighborhood, have already been designed in CNN. Therefore, it is
very promising and feasible to implement the RFCNN in the future work. An
implementation scheme to realize the RFCNN includes the two following steps. First,
use the RFCNN to learn the fuzzy.rules and €NN, templates. Second, construct a FIS
based on the learned fuzzy rules-and CNN-templates.

For taking into account the non-idealities‘or mismatch due to the manufacturing,
there are some ways can be done as follows:

1.  We may add constraints with upper bound and lower bound to the learned

parameter in learning algorithm.

2. The interval parameter learning is also available in [42] such that a tolerant

range of parameters (weights) deviation can be achieved.

3. Since the proposed RFCNN can learn the structure and parameters

automatically, we can increase the number of CNN and other nodes
automatically to achieve the required accuracy if the target accuracy has not

been satisfied.
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2.5. Concluding Remarks

In this chapter we propose a novel framework, called RFCNN, for automatically
constructing a multiple-CNN integrated neural system. This CNN-based fuzzy neural
network can automatically learn its proper network structure and parameters
simultaneously. The structure learning includes the creation of fuzzy rules and CNNs
with a new on-line adaptive ICA mixture-model technique. The parameter learning
includes the tuning of fuzzy membership functions and CNN templates based on the
ordered derivative calculus. The proposed RFCNN provides a solution to the current
dilemma on the decision of templates and/or fuzzy rules in the existing integrated
(fuzzy) CNN systems. In order to verify the capability of the RFCNN, a real-world
defect inspection problem has been démonstrated. The experimental results show that
the proposed scheme is effective and promising, “An extended framework to the

RFCNN including the coupled €NNs is deéscribed in next chapter.
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3. A Recurrent Fuzzy Coupled Cellular Neural
Network System with Automatic Structure and

Template Learning

In this chapter, we extend our previously proposed multi-CNN integrated system,
called recurrent fuzzy CNN (RFCNN) which considers uncoupled CNNs only, to
automatically learn the proper network structure and parameters simultaneously of
coupled CNNs, which is called RFCCNN (recurrent fuzzy coupled CNN). The
proposed RFCCNN provides a solution to the current dilemma on the decision of
templates and/or fuzzy rules in the existing mtegrated (fuzzy) CNN systems. For
comparison, the capability of the proposed RFCCNN is demonstrated on the same
defect inspection problems. Simulationtesults show that the proposed RFCCNN

outperforms the RFCNN.

3.1. Introduction

Since the RFCNN, described in Chapter 2, only considers the learning of
uncoupled CNN templates, its ability to solve more complex high-level machine
vision problems is quite limited. In this chapter we extend the RFCNN to
automatically learn the proper network structure and parameters simultaneously of
coupled CNNs. Due to the inclusion of coupled CNNs, the RFCCNN has shown more
powerful abilities in detecting the fine detailed defects of color filters, compared to
the previous RFCNN, in the simulations.

Since a new architecture of the RFCCNN, extended from the previous RFCNN,
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is proposed, the derivation of equations and learning algorithm, simulation results and
discussions are novel. In short, there are two main differences. First, we propose a
more complete architecture than the previous RFCNN. Second, simulation results
show that the proposed RFCCNN outperforms the RFCNN.

The chapter is organized as follows. Section 2 describes the structure and
functions of the proposed RFCCNN. Section 3 briefly describes the on-line structure
and parameters learning algorithm for the RFCCNN. Section 4 gives simulation

results and discussions. Finally, conclusions are summarized in the last section.

3.2. Structure of the RFCCNN

In this section, the structure of the proposed RFCCNN shown in Fig. 3.1 is
introduced. For clarity, we consider a CNN; with time constant = 1, time step = 1, and

neighborhood within a radius =1, which is characterized by the following templates:

a'sia a'ae @t bty b'ao b
A =|a'o aoo aor|yBe=bo-1 boo boil| ['=2Z (3.1
a1 ao  a'u b1 bio b

where A', B', and z' is feedback template, control template, and bias of the ith
CNN, respectively. By defining a CNN as above, the six-layered RFCCNN network

will realize a fuzzy model of the following form:

Rule i: IF x, is M| and...x, is M...and x, is M,

THEN y,(t+1) is f (A'y,(t)+ B'u(t)+z'(¢)) (3.2)
or

Rule i: IF x, is M| and...x;, is M;...and x, is M,

f'(ai—l,—lyl-’l (t)+ ai—l,oyl-,2 () +...+ ail,lyl-& (t)+

THEN y,(r+1) is * | | o
b o ax, () +b" 10X, (1) +... +b'11xy (1) + ' (1))

(3.3)
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where the current input vector is u=X,=[x, .., X, , A ()

is a' oy () +a 0y, (O)+.+ay, (1) , B'u(t)
isb'1o1x, (1) +b'-ox, (1) +...+ b 1ix, (1), fis a bipolar sigmoid function, M’ is a

fuzzy set, and a},, b'is, and z' are consequent parameters representing feedback

template, control template, and bias of the ith CNN, respectively. The RFCCNN is a
six-layered network structure with one feedback layer and can automatically learn its
proper network structure (the creation of fuzzy rules and CNNs) and parameters (the
tuning of fuzzy membership functions and CNN templates) simultaneously. In this
chapter, as defined in (3.1) to (3.3), we extend the RFCNN to RFCCNN including the
structure and parameter learning of coupled CNN cells. The six-layered network
structure of the RFCCNN is mostly, theisame as that of the RFCNN, except for the

feedback layer. In the feedback dayer of the RFCCNN; the feedbacks are from coupled
CNNs, ie., Ay, (1) isa'-i-1y,, @)+ a0y, ,(f)+i+a'11y,,(¢), but in the feedback
layer of the original RFCNN, the feedbacks are from uncoupled CNNs only, i.e.,
A'y.(t) is a'ooy,(t). The details of the function of each node of the RFCNN are

described in Section 2 of Chapter 2.

3.3. Learning Algorithms for the RFCCNN

Similarly, two types of learning, structure and parameter learning, are used
concurrently for the RFCCNN. The structure-learning algorithm of the RFCCNN is
the same as those of the RFCNN. For the details of structure-learning algorithm of
RFCCNN based on on-line ICA mixture model are described in Section 3.1 of

Chapter 2. For parameter-learning algorithm of RFCCNN, they are described in the
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Figure 3.1 Structure of the proposed RFCCNN.
rest of this section.

After the network structure is adjusted according to the current training pattern,
the network then enters the parameter identification phase to adjust the parameters of
the network optimally based on the same training pattern. Notice that the following
parameter learning is performed on the whole network after structure learning; no
matter whether the nodes (links) are newly added or are existent originally. Since the
RFCCNN is a dynamic system with feedback connections, the backpropagation
learning algorithm cannot be applied to it directly. Also, due to the on-line learning
property of the RFCCNN, the off-line learning algorithms for the recurrent neural
networks, like backpropagation through time and time-dependent recurrent

backpropagation [12], cannot be applied here. Instead, the ordered derivative [14],
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which is a partial derivative whose constant and varying terms are defined using an
ordered set of equations, is used to derive our learning algorithm. The ordered set of
equations, described in Section 2 in each layer, is summarized in (3.5)-(3.10). Our

goal is to minimize the error function

E(41) =17, (44 1)~y + DF = a(e+ 1), (34)
where y? (t+1)is the desired output, y,,(t+1) is the current output, and &(¢+1)

is (y,,(t+1)—y? (t+1)). For each training data set, starting at the input nodes, a

forward pass is used to compute the activity levels of all the nodes in the network to
obtain the current output y_ (#+1). In the followings, dependency on time will be
omitted unless emphasis on temporal relationships is required.

Summarizing the node functions defined in Section 2, the function performed by

the network is

You (A1) = Dot (3.5)
u> =0® =o® " p", (3.6)
where
h = flu1=u? (3.7)
0® 2 ——1 (3.9)
l+e ™
xX'(t+1)=Aly, (1) + Blu(t)+z' (1), (3.9)

and (3.1) is redefined as the following equation for clarity:
Ay =[a],a5,a5;a},a5,a¢;a5,ag,a5], B =[b],b5,b5;by,b3,bys b, by, by]. (3.10)

With the above formula and the error function defined in (3.4), we can derive the

update rules for the free parameters in the RFCCNN as follows.
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Update rule of aj (the parameter of feedback template of the ith CNN) is

a (t+1)=a (1) - ELFD G.11)
éaj
O'E(t+1) OE (r+1)+Z OE (t+1) 07Y,,(t+1)
oa oy r OV i (t+1) 2y (3.12)
_OE (t+1) 0"y, (t+]) '
oy, (t+1) 661;
where
M_ s(t+1), (3.13)
oy, (t+1)
and
0" Y, (t+1) zayw, (+1)8°0," _3,,(t+1) 80" (3.14)
8a; T 80k 8a} 60[(4) 8aj ' '
where
Wou (E+ 1) 4
5™ i) (4)2 (t+1y=1, (3.15)
and
+ @)
7o a, [0 (A y, (1) + Biu(t) + 2 ()
6aj oa
" (3.16)
= (1+0{")(1-0)[y, (1) +d *; I
Hence, the parameter a' is updated by
a'(t+1)=al(t)—ne(t+1){h' A+0")1-0{ )y, () +a' y’()]}. (3.17)

I oa
Similarly, the parameter bj. (the parameters of control template of the ith CNN)
is updated by
bi(t+1)=b\ (1) —ne(t+D[h' (1+0{)1-0{")x (1)] (3.18)
and the parameter z, (the bias of the ith CNN) is updated by
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Z(t+1) =2 () —net+ DA (1+0)(1-0!)]. (3.19)
As shown in (3.14) to (3.16), the update rules are in recursive form. The value

o y/ Gaj. is equal to zero initially. For the rest free parameters in the RFCCNN, they

are obtained during the structure-learning phase by the on-line ICA mixture model

algorithm proposed in Section 3.1 of Chapter 2.

3.4. Experimental Results and Discussions

For comparison to the RFCNN described in Chapter 2, the capability of the
proposed RFCCNN is demonstrated on the same defect inspection problems for color
filter. As mentioned earlier, the difficulties in the defect inspection of color filter are
its complex texture and demand' for high-speeéd processing. For the reasons of
high-speed processing, and that-different kinds of defects in color filter need different
CNN templates and some complex defects-cannot be detected by a single CNN, the
proposed RFCCNN is a good alternative to detect defect of color filter images. The
way to train the RFCCNN is the same as the RFCNN. The training image and
corresponding desired output are shown in Figs. 2.8(a) and 2.8(b). As mentioned in
Section 3, there are no rules (and no CNNs) in the RFCCNN initially. They are
created dynamically as learning proceeds upon receiving on-line incoming training
data by performing the learning processes. When the learning processes are done, six
clusters (six fuzzy rules and CNN templates) were obtained. For the example of color
filter, it takes about 90 seconds to learn the structure (interconnection set) and the
parameters with Pentium IV 2.0G PC. However, the training can be done oft-line, so
it is not a problem for the on-line processing of CNN. For simulation in this chapter, it
causes about 9 seconds. After the proposed RFCCNN is implemented by analog

circuit in the future, we believe that the processing times will be much faster than
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those of simulation.

Figure 3.2 shows the output of RFCCNN and the outputs of Layer 3, 4, and
Feedback Layer for the training image. Figures 3.2(a) shows the output of the
RFCCNN. Figures 3.2(b) to 3.2(g) show the outputs of the six Layer-4 nodes,
respectively, i.e., the outputs of the six CNNs in the Feedback Layer multiplied by the
outputs of the six Layer-3 nodes (i.e., firing strength of each rule), respectively.
Figures 3.2(h) to 3.2(m) show the outputs of the six CNNs in the Feedback Layer,
respectively. Figures 3.2(o) to 3.2(t) show the outputs of the six Layer-3 nodes,
respectively (firing strength of each rule). The sum of the outputs of the six Layer-4
nodes (i.e., Figs. 3.2(b) to 3.2(g)) forms the RFCCNN final output (Fig. 3.2(a)). From
Figs. 3.2(b) to 3.2(g), we can see that CNNs 4 and 5 take care of the defect texture on
the right side of the training image, CNNs 1| and 6 mainly take care of the defect
textures on the left side of the training image,and. the other CNNs balance the output
of the RFCCNN. The template of each-leatned-ENN 1s given in (3.20).

Based on the learned structure and parameters of the RFCCNN, we test several
images and some of those images as shown in Fig. 3.3. Figs. 3.3(a), 3.3(d), and 3.3(g)
are input testing images. Figs. 3.3(b), 3.3(e), and 3.3(h) are corresponding detection
results of the RFCCNN. Figs. 3.3(c), 3.3(f), and 3.3(i) are corresponding detection
results of the uncoupled RFCNN. From Figs. 3.3(b), 3.3(e), and 3.3(h), we can see
that the learned structure and CNN templates of the RFCCNN are well suited to detect
the defects of color filer images. It has also been confirmed that detection results are
still good if the images are shifted or rotated. One of simulation results is shown in

Fig. 3.4.
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Figure 3.2 The outputs of Layer 3, 4, and Feedback Layer for the training image. (a)
The output of the RFCCNN. (b)~(g) The outputs of the six Layer-4 nodes,
respectively. (h)~(m) The outputs of the six CNNs in the Feedback Layer, respectively.
(n)~(s) The outputs of the six Layer-3 nodes, respectively (firing strength of each

rule).
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-034 -024 O 0.67 0.15 -0.03
A'=1-0.20 0 039,B'=|-031 -0.54 0.09 |,z' =0.90.

0.60 043 0.19 0.10 -0.08 0.28
(2030 -023 0 ~0.50 —0.22 -0.01
A*=|-042 -039 —0.14|B>=|-008 011 0.19 |z*>=0.10.
0 012 0 | ~0.06 025 0.07
[-025 -020 0.1 ] ~0.03 0.13 -0.18
A*=[-046 -030 —-0.06| B =|-039 049 -0.18] 2> =—0.05.
|—0.05 —0.08 —0.09 026 022 051
[—0.11 001 028 0.11 040 025
A*=|-025 -026 —0.02[,B*=|-0.08 0.61 0.39]z*=0.33.
—0.06 —0.06 0.11 | 0. 001 007
030 -034 —0.03] 0.64 —0.10 027
A’ =[-027 -0.16 —0.01|B°=/0.12 090 0.09 | z°=-0.14.
| 016 —0.10 0.18 | 0.08 054 —0.15
[~0.14 -0.09 0.06 035 -0.17 —-0.02 (3.20)
A*=|-037 -027 -0.14| B®=/+0.57 -028 —0.03|z°=-0.16.
1003 0 012 —0.64 2012 —0.20

From Fig. 3.3, we can see some differénces between RFCCNN (coupled RFCNN)
and uncoupled RFCNN for defect inspection of color filter. First, as shown in Figs.
3.3(g) to 3.3(i), the results of the coupled RFCNN is better than those of uncoupled
RFCNN for detecting the large defects on the top-left of test image shown in Fig.
3.3(g). Second, as shown in all test images and corresponding detection results, the
results of the coupled RFCNN are better than those of uncoupled RFCNN for
detecting the black defects. The results of the coupled RFCNN are better for detecting
the large defects in that the coupled RFCNN, like coupled CNN, has fully outputs
feedback and will take care of further neighboring pixels. Some quantity comparisons
are shown in Table 3.1. Here detection rate is defined as the ratio of detected defect
pixel number to real defect pixel number. As we can see from Table 3.1, the detection
rates of the RFCCNN are better than those of the RFCNN, no matter for the all
defects, large defects, or black defects. More testing images and corresponding
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detection results of the RFCCNN are shown in Fig. 3.5 to 3.8.

(b) (c)
(e (H
(h) (M
Figure 3.3 Simulation (Testing)-results-of the léarned RFCCNN and RFCNN. (a), (d),

and (g) are input testing images. (b),.(e), and (h).are corresponding detection results of
RFCCNN. (¢), (f), and (i) are corresponding detection results of uncoupled RFCNN.

Table 3.1 Comparison of detection rate.

Detection rate of the Detection rate of the
RFCCNN RFCNN
All defects 56% 43%
Large defects 76% 52%
Black defects 72% 51%
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(a) (b)

Figure 3.4 Simulation results of shifted and rotated images. (a), (c), and (e) are input
testing images of original, shifted; and rotated ones, respectively. (b), (d), and (e) are

corresponding detection results 0f RECCNN.

(b ()

O] (f

(h) (M
Figure 3.5 Other testing results of the learned RFCCNN and RFCNN, part 1. (a), (d),
and (g) are input testing images. (b), (e), and (h) are corresponding detection results of

RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN.
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Figure 3.6 Other testing results of the learned RFCCNN and RFCNN, part 2. (a), (d),

and (g) are input testing images. (b), (e); and (h).are corresponding detection results of
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN.

(b) (c)
(e) M
(h) ()
Figure 3.7 Other testing results of the learned RFCCNN and RFCNN, part 3. (a), (d),

and (g) are input testing images. (b), (e), and (h) are corresponding detection results of
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN.
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Figure 3.8 Other testing results of the learned RFCCNN and RFCNN, part 4. (a), (d),

and (g) are input testing images. (b), (e); and (h).are corresponding detection results of
RFCCNN. (c), (f), and (i) are corresponding detection results of uncoupled RFCNN.

The main idea of the proposed RFCCNN is an integrated system of FIS and
CNNs, which can construct fuzzy rules and CNN ‘templates automatically. There are
two general approaches to realizing the RFCNN model by real-time hardware. First, it
can be “coded” and run in the CNN universal machine (CNNUM). The CNN-UM can
handle analog and digital signals with built-in converters and memories by
instructions. It is generally considered as a general-purpose image-processing
computer. In fact, a fuzzy-rule-based image-processing algorithm [7] has been
successfully implemented on the CNN-UM. Another approach is to design
application-specific RFCNN circuits for particular applications with prelearned fuzzy
rules and CNN templates. To achieve this, the circuit design technique of multilayer
CNN [43, 44] called MLCNN can be applied to implement the multilayer structure of
the proposed RFCNN model in Figure 3. A CNN-based Gaussian function circuit as

designed in [45] can realize the Gaussian membership function required in Layer 2.
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The fuzzy logic operations in Layers 3 and 4 can be realized by analog CNN circuits
as studied in [7, 11]. Therefore, it is very promising and feasible to implement the

RFCCNN using high-speed analogic circuits.

3.5. Concluding Remarks

In this chapter, we extended our previous work, called RFCNN, from
considering uncoupled CNNs to coupled CNNs, called RFCCNN, for automatically
constructing a multiple-CNN integrated neural system. This CNN-based fuzzy neural
network can automatically learn its proper network structure and parameters
simultaneously. In order to verify the capability of the RFCCNN, a defect inspection
problem has been demonstrated and compared to the RFCNN. The simulation results
show that the performance of the.proposéd RECCNN is better than that of RFCNN. In
addition, a scheme for hardwate realization of the RFCCNN has been proposed. We
believe such an integrated CNN- system, ‘the-RFCCENN, has potential to solve more

complex intelligent problems.
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4. Conclusions and Perspectives

In this thesis we propose two novel frameworks, called RFCNN and RFCCNN,
for automatically constructing a multiple-CNN integrated neural system to solve more
complex intelligent problems. This CNN-based fuzzy neural network can
automatically learn its proper network structure and parameters simultaneously. That
is, the fuzzy rules and the corresponding templates of CNNs can be learned and
obtained automatically, instead of assigning the corresponding templates of CNNs in
advance and manually getting the fuzzy rules by domain experts. In the
RFCNN/RFCCNN, each learned fuzzy tule.corresponds to a CNN. Hence, each CNN
takes care of a fuzzily separated’problemiteégion, and the functions of all CNNs are
integrated through the fuzzy inference mechanism: A new on-line adaptive ICA
mixture-model technique is proposed:for structure learning of the RFCNN/RFCCNN,
which can be applied to not only the‘proposed CNN integrated systems (i.e., the
RFCNN and the RFCCNN), but also generic neural fuzzy network, such as
ICA-mixture-model-based  self-constructing  FNN  [46]. The  proposed
RFCNN/RFCCNN provides a solution to the current dilemma on the decision of
templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. In order
to verify the capability of the RFCNN and the RFCCNN, a real-world defect
inspection problem has been demonstrated and compared. The experimental results
show that the proposed schemes are effective and promising. Besides the defect
inspection of color filter, the proposed RFCNN/RFCCNN can be also applied to those
images with regular pattern, such as texture webs.

In addition, a scheme for hardware realization of the RFCCNN has been
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proposed. We believe such an integrated CNN system, the RFCCNN, has potential to
solve more complex intelligent problems and those that one single CNN cannot solve.
The future works include finding more real-world applications, extending the

framework, and designs specific-application analogic CNN circuits.
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Appendix

A.1 GA-based Template Learning for Defect

Inspection

In this appendix, we propose a CNN-based defect inspection algorithm to detect
defect images with regular pattern such as color filter, where the templates of CNN
are obtained by means of GA. The CNN is a good alternative to achieve the high
speed processing of defect inspeetion and genetic algorithm is applied to learn
templates of CNN, which can-perform defect inspection for color filter and web
material images. Experimental 'results.show;, that the proposed algorithm is a

promising method to detect the defects-of color filter images.

A1l.1 Introduction

In [38]-[41], a CNN (cellular neural network) based defect inspection algorithm
was proposed to detect defect images. However, their test images belonged to uniform
webs such as metal laminates [38], [39] and cotton [41]. In this appendix, we propose
a CNN-based defect inspection algorithm to detect defect images with regular pattern
such as color filter and texture webs images, where the templates of CNN are
obtained by means of GA (genetic algorithm). The main advantages of using CNN are
capable of operating at a very high speed. Many industrial inspections such as visual

quality control of color filter and web materials mentioned above, require real-time
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processing. Therefore analog CNN chips are well suited to this kind of visual
inspection applications.

Several prototype CNN architectures have been implemented to show the
capability of very high speed compared with traditional digital image processor.
However, even in the simplest case, there is no methodology that allows us to get the
template associated to a given image-processing task. Nossek [12] made an overview
of CNN template design and learning. The template coefficients of a CNN can be
found by design [12], [13] or by learning [12], [38], [39]. “By design” or “designing
fixed points” bears the following drawbacks: it is only suitable to binary images and it
is not guaranteed that all its initial states will converge to the prescribed global stable
points. “By learning” or “global learning” [12], [13], [38], [39], which has to learn by
a set of input images (training pattérns) and the corresponding desired output images,
is a robust tool to obtain template coefficients-of a CNN. In this appendix, we choose
GA to determine CNN template coefficients-for ‘defect inspection, since GA is a
global learning tool and it is very. suitable-to"gray level images. The GA-based

template learning for defect inspection will be described in the following section.

A1.2 The Proposed GA-based Template Learning

In the section, we shall introduce a CNN-based defect inspection scheme with
the feature of automatic template generation learned from input/output training
examples using GA (genetic algorithm). The number of parameters in a complete
CNN template set (neighborhood within a radius =1) is 19, which is shown in (A.1);
where 9 parameters for each matrix (4 and B 3x3 matrices) and one for the bias
current /. In the case that the image processing task has a symmetric behavior (e.g.,

averaging, border detection, etc.), the chromosome length can be reduced to 7
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representative parameters (3 parameters for each matrix and another one for the bias

current).
a;; dp a4y b, b, b,
A=\|a, ay ay|,B=|b, by, by|Z=1 (A.1)
sy dzp 4y by, by, by

The speed of convergence in the GA depends on the selected options. Population
size determines the number of chromosomes in population. If there are too many
chromosomes, GA converges slowly. On the other hand, if there are too few
chromosomes, only a small part of search space is explored. Crossover selects genes
from parent chromosomes and creates a new offspring. In this algorithm, a
one-crossover point is used. Mutation follows crossover. It is to prevent falling all
solutions in population into a local optimum by e¢hanging randomly the new offspring.

This algorithm searches *the | template. to minimize a performance index
proportional to the difference between pixels from the current settled output image

and the desired one. This performance index is as{(A.2):
i
S(p)=B2 ! =y(p)| (A2)
i=1
where p is the template, & is the number of the CNN cells, ! is the value of ith pixel

of desired output, y,(p)is the value of corresponding pixel of settled output, S =

5 if the output image is completely white or black, and £ =1 otherwise. The overall

flow of automatic template generation using GA is shown in Fig. A.1.

A1.3 Experimental Results

In this section, the genetic algorithm has been used to learn some templates,
which can perform defect inspection for color filter images. Our template format is

shown in (A.3), which resulted in good performance in our experimental results.
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Load images:
Input
Initial state
Desired output

v

Population initialization
Evaluation of the fitness
function of each chromosome

\

Selecting parents by a roulette
wheel selection.

Mating the parents by a one-
CrOSSOVEr process.

Mutating the offspring.

Y

Obtaining a new generation

Predetermined
ondition is achieved?

False
True

End

Fig. A.1 The overall flow of automatic template generation using GA.

0 a, O 0 b, O
A=|a, ay, a,|,B=|b, by, b, Z=1 (A.3)
0 a, 0 0 b, O

We utilize 5 bits for encoding each template parameter, then the utilized length of
the chromosome for encoding the template parameters is 5 (parameters) x 5
(bits/parameters) = 25 bits. The CNN simulator parameters used in GA are as follows:

population size = 60, crossover probability = 80%, mutation rate = 5%, the time step
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of the simulation = 0.2, the number of iteration = 25, (which correspond
approximately to 5 7 when R = 1 and C = 1). To improve GA performance, we use the
elitist strategy that copies the best member of each generation into the succeeding
generation.

Figure A.2 shows the trained images. Fig. A.2(a) shows the input image and Fig.
A.2(b) shows the desired image. The templates, learned by using GA according to
(A.2), are shown in (A.4). Fig. A.3 shows the test images with templates learned by
GA. Figs. A.3(a), A.3(c), and A.3(e) are the input images and Figs. A.3(b), A.3(d), and
A.3(f) are the corresponding results of defect inspection with the templates in (A.4).
From Figs. A.3(a) to A.3(f), we can see that the learned templates are well suited to

detect the defect of color filer images.

fiEH
(a) (b)

Fig. A.2 Trained images. (a) Input image. (b) Desired output.

0 36 O 0 87 O
A=|36 -74 3.6,B=|87 -1.0 87|,Z=-10.0 (A4)
0 36 0 0 87 O

As mentioned earlier, we focus on defect images with regular defect patterns,
which belong to texture webs and cannot be detected by simple algorithms such as
thresholding. Fig. A.4 shows the compared results. Fig. A.4(a) shows the defect
detection result by GA, where the original image is from Fig. A.3(e). Figure A.4(b)
shows defect detection result by thresholding. Obviously, simple algorithms such as

thresholding do not work for this kind of defect images.
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To test the robustness of templates obtained by the genetic algorithm, we change
template values by 10 % variation randomly. The modified templates are shown in
(A.5) and (A.6). The input image is shown in Fig. A.3(e) and the corresponding test
results are shown in Fig. A.5(a) and A.5(b). Figure A.5(a) shows good result due to
parameter variation. However, Fig. A.5(b) shows poor result because some false

defects are detected.

F ==
=

(2) (b)

el

s
| w b
| 4}

(e) ()

Fig. A.3 Test images using templates learned by GA.

(a) (b)

Fig. A .4 Test results obtained by (a) GA. (b) thresholding.
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0 33 0 0 79 0]
A=|33 67 33/,B=|79 -09 79|,Z=-9.0
[0 33 0| 0 79 0 (AS)
[0 33 0] 0 91 0
A=|33 -6 33|,B=|91 09 9.1,Z=-9.0
0 33 0] 0 91 0 (A6)

(a) (b)

Fig. A.5 Test results using templates from (A.5) and (A.6).

A1l.4 Conclusion

This chapter proposes a CNN-based defect inspection algorithm to detect defect
images with regular pattern such as color filter or web materials images. Genetic
algorithm is used to learn templates of CNN, which can perform defect inspection for
color filter images. Experimental results show that the proposed algorithm is a

promising method to detect the defects of color filter images.
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