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1 Introduction

Tau neutrinos can be detected when they skim the Earth and produce tau-leptons. One

can identify the ντ source by measuring the τ energy. For the single energy ντ source,

the produced tau-lepton energy is predicted to be unique when we apply the deter-

ministic method. In reality, it should be an energy spectrum. We present our Monte-

carlo simulation results on tau-lepton energy spectrum induced by the Earth-skimming

tau neutrinos, taking into account the inelasticity of neutrino-nucleon scatterings and

the tau-lepton energy loss in detail. We argue that the tau-lepton flux resulting from

neutrino-nucleon scatterings inside the earth is controlled by the tau-lepton range,

rather than the distance of tau-leptons/neutrinos traverse inside the Earth. We also

comment on the energy-resolution of tau neutrinos in the earth-skimming detection

strategy.

In Sec. 2, we discuss the basic concepts of Monte-carlo method, and the strategy

for calculating the energy loss and decay processes. In Sec. 3, we introduce the pro-

cesses relevant to the propagations of ντ and τ inside the Earth. In Sec. 4, we compare

the difference between deterministic method and the Monte-carlo method for the de-

scription of energy loss. In Sec. 5, we summarize our simulation results, including the

tau-lepton energy spectra arising from incident ντ with different energies. In Sec. 6,

we analyze the simulation results, and establish the relationship between the ντ → τ

conversion rate and the medium thickness. Sec. 7 is the conclusion.

2 Monte-carlo method

Usually, an analytic solution of a problem is deterministic. It provides an exact solution

for a set of given initial or boundary conditions. Furthermore, some numerical algo-

rithms are developed from this deterministic skill. Therefore, we can obtain a unique

solution by this type of numerical method.

On the contrary, Monte-carlo method treats a physical problem as a stochastic pro-

cess. It involves some random variables to construct the stochastic world. Why do we

choose this strategy? It is because some processes are better described in this way. In
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section 4.2, we consider the tau-lepton energy loss in a medium as a stochastic process.

In this situation, energy loss is a function of random numbers. Hence energy loss is

a random variable as well. Consequently, we expect to obtain different energy loss

for the same initial tau-lepton energy. Although some variables are created by random

numbers, it is important to note that they must satisfy a distribution function, to be

described in Sec 2.3.

2.1 Random variable

The characteristics of Monte-carlo method is the random number. Some variables in

Monte-carlo method are no longer deterministic. Let us generate a random number

r ∈ [0, 1] and an arbitrary variable y(r) depending on it,

y(0) = ymin (1)

y(1) = ymax, (2)

it is a mapping : [0, 1] → [ymin, ymax].

2.2 Cross section and probability

We describe the interaction probability in the medium by the differential cross section

dσ
dy

with y the inelasticity of the collision and the total cross section,

σ =

∫ ymax

ymin

dσ

dy
dy. (3)

Note that the total cross section σ may not be 1. In order to normalize it, one can divide

σ by itself,

1 =
σ

σ
=

∫

dσ

σdy
dy =

∫

dP

dy
dy =

∫

dP, (4)

where dP = dσ
σ

is normalized and dP
dy

dy|y=y0
is the probability for an event with

y ∈ [y0, y0 + dy].
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2.3 Mapping from the random number

Let r ∈ [0, 1] is a generated random number, we need to design a mapping from the

random number r to the variable y. An event occurs more easily if it occupies a larger

random number range dr. Although we have not defined the concept of probability, let

us consider a mapping given as follows :

dr = k
dσ

dy
dy, (5)

where k is a unknown constant. Integrating this relation gives

r =

∫ r

0

dr′ = k

∫ y

ymin

dσ

dy′
dy′. (6)

Let us require the following:

for y = ymin, r = k

∫ ymin

ymin

dσ

dy′
dy′ = 0, (7)

for y = ymax, r = k

∫ ymax

ymin

dσ

dy′
dy′ = k · σ = 1. (8)

The 2nd equation holds if k = 1/σ. Therefore,

r =
1

σ

∫ y

ymin

dσ

dy′
dy′. (9)

This relation means that we can obtain the random number r corresponding to a

given y, by integrating the differential cross section dσ
dy

. It is easy to construct a table

for r in numbers of y. From this table, one obtains a y from an arbitrary random number

r. We have said that
dP

dy
≡

1

σ

dσ

dy
(10)

is the differential probability. From Eqs. (5) and (9),

dr =
dP

dy
dy (11)
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and

r =

∫ y

ymin

dP

dy′
dy′. (12)

The condition r = 1 for y = ymax implies

∫ ymax

ymin

dP

dy′
dy′ =

1

σ

∫ ymax

ymin

dσ

dy′
dy′ = 1. (13)

We have shown that the total probability for the range [ymin, ymax] is 1. Hence

P ≡

∫ y2

y1

dP

dy′
dy′ (14)

is the probability for the events with y ∈ [y1, y2].

We still need to confirm that dr is proportional to the area of integral under dP
dy

.

From Eq. (11), an infinitestimal area of square dr is the product of dP
dy

and dy. Because

the area of square is in proportion to its width and height,

dr ∝ dy, (15)

dr ∝
dP

dy
, (16)

thus, the range of random number is proportional to the differential probability dP
dy

. We

remark that dP
dy

is a function of y. As we generate a random number r between 0 and

1, it is apparent that we are more likely to obtain a y whose dP
dy

is larger.

2.4 Expectation value

The expectation value of y is defined as follows:

〈y〉 =

∫ ymax

ymin

y
dP

dy
dy. (17)

In general, we obtain the expectation value by integrating y dP
dy

directly. On the other

hand, Monte-carlo method provides another way to do that.

In order to apply the Monte-carlo method, one must generate sufficent events. The

events number needed depends on the type of system. The more events we have, the
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more accuracy we achieve. For an individual event, we create a random number ri. In

section 2.3, we have introduced the method for finding the (ri, yi) table from dP
dy

. For

a given random number ri, there is a correspondence yi. Assuming that we generate

N events, the expectation value 〈y〉 is just the average of yi,

〈y〉 =

N
∑

i=1

yi

N
. (18)

We have tranformed the problem from the integral of y dP
dy

to the sum of yi/N .

2.5 Fraction of energy loss y

Let us define the physical meaning of y. For a particle with an initial energy E, its

energy is changed to E ′ after one step of interaction. The fraction of difference between

E and E′ is

y =
E − E′

E
, (19)

i.e., y is the fraction of particle energy loss. The expectation value 〈y〉 can be estimated

by Eq. (17) in a deterministic process. Although different values for y are possible,

we only obtain its expectation value. After several steps of interaction, the total energy

loss is also a definite value.

Strictly speaking, y should be considered as a random variable in the Monte-carlo

method. Each time we create a random number r, the random variable y is obtained

by Eq. (9), or by the (ri, yi) table from Sec. 2.3. Consequently, the total energy loss

resulting from several steps of interaction is no longer a definite value.

2.6 Poisson (decay) process

Let us assume that a process N = {Ni} denotes the numbers of interaction in i steps.

It is called a Poisson process when it holds the following properties.

1. Ni is an positive integer.

2. For integers i, s > 0, Ni+s − Ni is independent of {Nu; u ≤ i}.
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3. For integers i, s > 0, Ni+s − Ni is independent of i.

Therefore, the interaction of Poisson process is independent of the past history, and

also the survival probability. For a particle runs in a distance x, its survival probability

P c
d can be written as the form

P c
d = e−

x

L , (20)

where L is the interaction thickness. The interaction (decay) probability is

Pd = 1 − P c
d = 1 − e−

x

L . (21)

The differential decay probability is

dPd

dx
=

1

L
e−

x

L . (22)

It is normalized already because

∫

∞

0

dPd

dx
dx =

1

L

∫

∞

0

e−
x

L dx

= −( lim
x→∞

e−
x

L − e−
0
L )

= 1. (23)

As we show in Sec. 2.3, the mapping from random number r to x is

r =

∫ x

0

dPd

dx′
dx′

=
1

L

∫ x

0

e−
x
′

L dx′

= 1 − e−
x

L , (24)

for r ∈ [0, 1] and x ∈ [0,∞). It is the same to write as

r = e−
x

L , (25)

or
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x = −L · log r, (26)

since only the relation between dr and dx is crucial. If we always obtain a random

number in the higher probability region of x, this mapping should be satisfied that ∆r

is a monotonous decreasing function on x,

∆r = r(x + ε) − r(x) = e−
x+ε

L − e−
x

L . (27)

By comparing ∆r of the difference regions of x, that is x′ = x + α, where α > 0.

∆r′ = e−
x+α+ε

L − e−
x+α

L

= e−
α

L (e−
x+ε

L − e−
x

L )

= e−
α

L ∆r (28)

Since α > 0, e−
α

L < 1, then ∆r′ < ∆r. This shows that ∆r is a monotonous

decreasing function on x. From now on, we can generate a random number r, and

obtain the position of interaction with Eq. (26). This is applicable to neutrino-nucleon

interactions. In the situation of Poisson process, this method reduces the computing

time because we do not need to use the step by step method shown in Sec. 2.7. We

can obtain the decay position x straightforwardly by substituting a random number r

to Eq. (26).

2.7 General decay process

In general, the tau-lepton decay is not a Poisson process since the tau-lepton energy

changes rapidly as it interacts in the medium. The tau-lepton survival probability is no

longer given by Eq. (20). We should choose a step by step method rather than solving

Eq. (26). When the step size ∆x is small enough comparing with the decay length D,

we can make the following approximation by the Tayor series,

Pd = 1 − P c
d = 1 − e−

∆x

D ≈ 1 − (1 −
∆x

D
) =

∆x

D
.
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The differential decay probability is

dPd =
dx

D
, (29)

where D is the decay length given by

D = Cd ·
E

106 GeV
, (30)

Cd = 48.9 m and E is the energy of the tau-lepton. The tau-lepton decay length is 48.9

m when its energy is 106 GeV.

2.8 Total energy loss

Here we give the difinitation of a stochastic energy loss process E = {En; n ∈ N} for

n steps. We assume that the probability is independent of the past history,

P{En+1 = j|E0, ..., En} = P{En+1 = j|En}. (31)

The probability of getting En+1 = j depends on En only. We can rewrite the proba-

bility in a simple form,

P{En+1 = j|En = i} ≡ P (i, j), (32)

a transition matrix for the n-th step to (n + 1)-th step. The energy relation of the

n → n + 1 step is

En+1 = (1 − y)En,

where y is the random number, depending on the type of the energy loss. Consider

there are only two steps,

E = {E0, E1, E2},

9



the energy after the first and second step should be

E1 = (1 − y1)E0

E2 = (1 − y2)E1 = (1 − y2)(1 − y1)E0.

Let us consider a particle which has initial energy E0 = a0 and goes through a stochas-

tic process. After two steps of energy loss, its energy is reduced to E2. For a stochastic

system, the probability that we obtain E2 = a2 is

P{E2 = a2|E0 = a0} =
∑

a1∈E

P (a0, a1)P (a1, a2)

≡ P 2(a0, a2). (33)

For example, we have a 2 × 2 transition matrix,

P =













1/2 1/4 1/4

2/3 0 1/3

3/5 2/5 0













,

where P (1, 1) = 1/2 and P (2, 3) = 1/3.The two steps transition matrix P 2 can be

obtained from P ,

P 2 =













17/30 9/40 5/24

8/15 3/10 1/6

17/30 3/20 17/60













.

In a general n-step case, the probability for E = an after the particle going through

n-step of energy loss is

P{En = an|E0 = a0} =
∑

a1,a2···an

P (a0, a1)P (a1, a2) · · ·P (an−2, an−1)P (an−1, an)

≡ P n(a0, an). (34)

The quantity P n(a0, an) is the probability for a particle to decrease its energy from

a0 to an. In the same way, we have P n(a0, a
′

n),P n(a0, a
′′

n) · · ·. This means that we
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have a range for En from a single initial energy E0. In other words, by Monte-carlo

method, we shall obtain a distribution rather than a single value for the final-state en-

ergy.

2.9 Tau-lepton Range

In general, we define the τ range as

〈X〉 =
∑

x′

x′P{X = x′}, (35)

where P{X = x′} is the probability that we obtain the events X = x′. By numerical

method, we can evaluate this probability by

P{X = x′} =
N{X = x′}
∑

N{Ω}
, (36)

where
∑

N{Ω} is the total event number and N{X = x′} is the number of events

whose final penetrating distance is x′. If x > 0, it is equivalent to transform to the

other form,

〈X〉 =
∑

x′

x′P{X = x′} =

∫

∞

0

P{X > x′}dx′. (37)

It is easy to prove that by considering the discrete system, dx = ∆x = 1. We can

rewrite the integral as

∫

∞

0

P{X > x′}dx′ =

∞
∑

x′=0

P{X > x′}∆x

=

∞
∑

x′=0

P{X > x′}

= P{X = 1}+ P{X = 2}+ P{X = 3}+ · · ·

+P{X = 2} + P{X = 3} + P{X = 4} + · · ·

+P{X = 3} + P{X = 4} + P{X = 5} + · · ·

= 1 · P{X = 1} + 2 · P{X = 2}+ 3 · P{X = 3}+ · · ·

11
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Figure 1: Charge current scattering thickness in standard rock.

=
∑

x′

x′P{X = x′}.

3 Process for ντ and τ

We generate a process is that a million of ντ pass through the standard rock. Some ντ

may lose their energy in rock, while a part of the ντ may change to τ by the charge-

current scattering, with the ντ → τ conversion rate depending on the ντ energy. After

the charge-current scattering, τ is produced and travels through the rock. Due to its

interaction with the rock, the τ energy is decreased. As a result, τ may decay back to

ντ and repeat the above process. Eventually, some of the τ could come out of the rock

and can be observed by the detector.

3.1 Process for ν
τ

The neutral-current interaction takes away the energy of ντ , and the charge-current

scattering changes ντ to τ . The thickness of charge-current interaction is decreased

with energy, as shown in Fig. 1 [4].
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3.2 Process for τ

As discussed in the previous section τ is produced from the ντ charge-current scattering

process. It may further go through the pair production [6] and photonuclear scatterings

[7]. As a result, τ loses its energy. Besides losing the energy, τ may decay to ντ by the

following processes [2],

τ → ντµνµ, (38)

τ → ντeνe, (39)

τ → ντπ, (40)

τ → ντρ, (41)

τ → ντa1. (42)

where the ντ energy is a distribution described by dn
dy

with

y = Eντ
/Eτ (43)

The energy of ντ is

Eντ
= yEτ . (44)

As in the previous section, y is calculated by a random number r with Eq. (12).

Fig. 2 shows the distribution of y. Only the range of process (38) is [0, 1]. The range

of y for each decay channel is shown in Table 1. We note that ντ can also be produced

from τ by the charge-current scattering.
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Process ymin ymax Branching ratio
τ → ντµνµ 0 1 0.18
τ → ντeνe 0 1 0.18
τ → ντπ 0 0.9938 0.12
τ → ντρ 0 0.8130 0.26
τ → ντa1 0 0.5209 0.13

Table 1: The range of y for the τ decay processes.
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Figure 2: The distribution of y for the τ decay processes.
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4 Tau-lepton energy loss

4.1 Deterministic approach

If we assume that the scattering process is deterministic, the energy loss,

−dE ≡ 〈y〉EdPσ , (45)

is also deterministic, where 〈y〉 is the expectation value of y, which is defined in Eq.

(19) and dPσ is the tau-lepton interaction probability,

dPσ =
dx

L
, (46)

with L the interaction thickness. The interaction thickness can be calculated by

L =
1

nσ
, (47)

where σ is the tau-lepton interaction cross section and n is the number density of the

medium nuclei,

n =
ρNA

A
, (48)

with ρ the medium density, NA the Avogadro’s number, A the mass of target nucleus

per mole. From Eq. (45) :

−dE = 〈y〉EdPσ

= 〈y〉E
dx

L

= 〈y〉E
ρNA

A
σdx

= Eρdx
NA

A

∫ ymax

ymin

y
dσ

dy
dy

=
NA

A
EdX

∫ ymax

ymin

y
dσ

dy
dy, (49)
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where we have applied

〈y〉 =
1

σ

∫ ymax

ymin

y
dσ

dy
dy

and

dX = ρdx.

The energy loss per unit slant depth (in units of g/cm2) can be expressed in the form:

−
dE

dX
=

∑

i

βiE (50)

X = ρx, (51)

where ρ is the medium density and x is the distance in cm, βi is defined as

βi =
N

A

∫ ymax

ymin

y
dσi

dy′
dy′. (52)

The i denotes the type of interactions. In other words, we consider all types of in-

teractions, photonuclear and pair production, for the tau-lepton energy loss. In the

deterministic approach, we take the average for the fraction of energy loss y. Hence βi

is an exact value, so is the dE
dX

,

−
dE

dX
=

∑

i

NE

A

∫ ymax

ymin

y
dσi

dy
dy. (53)

4.2 Stochastic approach

The previous section shows that the process is deterministic when we take the average

for βi. From Eq. (10) , we can rewrite Eq. (52) into

βi =
Nσi

A

∫ ymax

ymin

y
dP

dy
dy =

Nσi

A
〈y〉. (54)
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In this form, βi is a function of total cross section σi and the expectation value of y. In

Sec. 2.4, Monte-carlo method turns the problem from an integral to an average,

βi =
Nσi

A
〈y〉 ≡

Nσi

A

N
∑

j=1

yj

N
. (55)

However, this is still not our goal because this βi is still an average value for one step

of energy loss. We intend to consider each event individually. The procedure is :

1. Calculate interaction thickness L by Eq. (47).

2. Choose the length for each step dx, such that the interaction probability dp for

each step of tau-lepton propagation is dp = dx
L

.

3. Generate a random number to determinate whether or not the interaction occurs.

The probability must be equal to dp we have before.

4. If the interaction happens, the energy loss should be y · E for the distance dx.

We remark that, in step 2, dx is decreased with dx. Does the energy loss depend on

the choice for dx? To make sure, we compare the total energy loss for two different dx

case. If we choose (dx)1 = 0.1·L and (dx)2 = 0.01·L, dp1 = 0.1 and dp2 = 0.01. For

the total interval h, the first case performs 10 h
L

times energy loss processes and 100 h
L

times for the second one. It is important to recall that the chance for an energy loss to

occur, is p1 = 0.1 for the first case and p2 = 0.01 for the second case. Thus, it is harder

for the second case to interact. Consequently, the choice of interaction probability does

not effect the total energy loss if we neglect the other numerical problems.

4.2.1 Hard-term energy loss

Knowing that the tau-lepton energy loss can be deduced from a random variable, we

proceed to discuss the hard term energy loss. In order to evaluate the energy loss from

Sec. 4.2, we need to obtain a yj from a random number mapping, shown as Sec. 2.3

shows. Thus, we integrate the differential cross section over the interval [ymin, y],

r =
1

σ

∫ y

ymin

dσ

dy′
dy′. (56)
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However, dσ
dy

[5] has a singular point at y = 0. Hence the integral diverges as y → 0.

We set ycut > ymin in order to avoid this problem,

r =
1

σ

∫ y

ycut

dσ

dy′
dy′. (57)

When we pick up a y from this integral, the energy loss is called the hard-term. The

remaining energy loss in the region [ymin, ymax], [ymin, ycut], is compensated by the

soft-term in Sec. 4.2.2.

4.2.2 Soft-term energy loss

Since the integral region of y is reduced from [ymin, ymax] to [ycut, ymax] in the hard-

term energy loss, it is essential to restore the energy loss from [ymin, ycut]. We treat

this term as a deterministic process. From Eq. (53),

−(
dE

dX
)soft =

∑

i

NE

A

∫ ycut

ymin

y
dσi

dy
dy. (58)

This energy loss term is called the soft-term. The integral of y dσi

dy
on [ymin, ycut]

is finite due to y → 0. Furthermore, the whole energy loss is the sum of soft and hard

term,

−
dE

dX
=

∑

i

E(
N

A

∫ ycut

ymin

y
dσi

dy
dy + yj). (59)

The i denotes the type of the interaction and yj the random variable. Remark that

only the hard term, E · yj , is treated as a stochastic process.

5 Simulation results

First, we start from the propagation of tau-lepton inside the standard rock. In this situta-

tion, we only need to consider the pair production and photonuclear interactions which

cause the energy loss of τ . In view of experimental situation, we require the simulation

to stop at Eτ = 50 GeV [1]. We consider a system that the medium is unlimited in

order to measure the penetrating distance of incident τ , and consequently determine
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Figure 3: The tau-lepton penetrating distance in the standard rock considering only
decay (without energy loss interaction). Initial tau-lepton energy is 1010 GeV. The
exponential decay constant is about −2 × 10−6/m.

the τ range. This algorithm has been shown in Sec. 2.9. By simulating the incident

tau-leptons, we can obtain the τ range by Eq. (35) and Eq. (36). It is the expectation

value of tau-lepton penetrating distance in the medium. The tau-lepton ranges from

the Monte-carlo method are compared with the deterministic results. They are shown

in Fig. 4, 6, 9 and the fractions of difference between two approaches are illustrated

in Fig. 7,11. The comparsion of our result with other Monte-carlo calculation [1], is

shown in Fig. 10.

Having obtained the tau-lepton range, we consider the ντ process with a finite

medium length. In the ντ process, incident ντ may change to τ after the charge-current
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Figure 4: Tau-lepton range considering only the decay process.
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Figure 5: The tau-lepton penetrating distance inside the standard rock considering the
pair production interaction. Initial energy of τ is 1010 GeV.
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Figure 6: Tau-lepton range considering the pair production interaction.
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Figure 7: The fraction of difference in the tau-range between the Monte-carlo method
and the deterministic method. The comparison is made by considering only the pair-
production loss.
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Figure 8: The tau-lepton penetrating distance inside the standard rock considering the
pair production and photonuclear interactions. Initial energy of τ is 1010 GeV.
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Figure 9: Tau-lepton range considering the pair production and photonuclear interac-
tions.
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Figure 10: The comparsion with the Monte-carlo calculation by Reno [1].
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Figure 11: The fraction of difference in the tau-range between the Monte-carlo method
and the deterministic method. The comparison is made by considering the pair-
production and photonuclear losses.
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Figure 12: Tau-lepton energy distribution for the single-interaction process. Initial
energy of incident ντ is 108 GeV.

scattering. Then only some of the τ can travel to the end of medium without decaying.

We shall calculate the energy distribution of these survival τ . We simulate the incident

ντ propagating into three different medium lengths, 2 × 104, 5 × 104, 105 m standard

rock. A detector is placed at some distance from the end of the medium to count the

number of survival τ . This is the way to detect ντ in the neutrino-telescope experiment.

The energy distributions for τ and the conversion rate for ντ → τ are shown in Fig.

12, 13, 14 show.

In addition, the multiple interaction is possible if we consider the decay process

and charge-current scattering of τ . This outgoing ντ is a new source of input for the

system. But the energy of this type of regenerated ντ is lower than the original due to

the large energy loss of τ interactions. The simulation is restarted with lower energy
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Figure 13: Tau-lepton energy distribution for the single-interaction process. Initial
energy of incident ντ is 1010 GeV.
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incident ντ . Although the interaction thickness of charge-current is increased, some

extra events may convert into τ and received by the detector. Fig. 15-23 show the

energy distribution.
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Figure 15: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 107 GeV and the thickness of standard rock is 2 × 104 m.

6 Discussion

In the unbounded medium case, we calculate the tau range, which is the average tau-

lepton penetrating distance in the medium. The range for 1010 GeV tau-lepton without

energy loss is 5 × 105 m, shown as Fig. 4. But the range is decreased to 5.5 × 104

m when we consider the pair production energy loss, shown as Fig. 6. Furthermore,

the range is 1.2 × 104 m after adding the photonuclear energy loss. Thus, the tau

range is decreased by the scatterings. In addition, we obtain a distribution of tau-lepton

penetrating distance rather than an average value, Fig. 3, 5, 8, by the Monte-carlo

method. When comparing results of the Monte-carlo method with those given by the

deterministic method [3], we find that the tau range in Monte-carlo method is shorter.
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Figure 16: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 107 GeV and the thickness of standard rock is 5 × 104 m.

Rock thickness ντ → τ rate
2 × 104 m 0.015%
5 × 104 m 0.013%
1 × 105 m 0.013%

Table 2: The relation between standard rock thickness and ντ → τ rate for Eν = 107

GeV.

Rock thickness ντ → τ rate
2 × 104 m 4.8%
5 × 104 m 4.307%
1 × 105 m 3.385%

Table 3: The relation between standard rock thickness and ντ → τ rate for Eν = 1010

GeV.
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Figure 17: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 107 GeV and the thickness of standard rock is 1 × 105 m.
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Figure 18: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 108 GeV and the thickness of standard rock is 1 × 105 m.
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Figure 19: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 109 GeV and the thickness of standard rock is 1 × 105 m.
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Figure 20: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 1010 GeV and the thickness of standard rock is 2 × 104 m.
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Figure 21: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 1010 GeV and the thickness of standard rock is 4 × 104 m.
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Figure 22: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 1010 GeV and the thickness of standard rock is 1 × 105 m.
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Figure 23: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident ντ is 1011 GeV and the thickness of standard rock is 1 × 105 m.
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The fraction of difference in the tau range is 12.5% when we only consider the pair

production loss in the case of Eτ = 1010 GeV, shown as Fig. 7. It becomes 25%

with the adding of the photonuclear loss, shown as Fig. 11. It means that we obtain a

different tau range with the Monte-carlo method, especially in the case of high energy

tau, Fig. 11.

Next, we consider the incident ντ in the finite thickness medium. The exit tau is

detected through its induced air showers by the detector placed at some distance from

the end of the medium. The ντ → τ conversion rate is shown in Fig. 14. Note

that the rate is increased with the incident ντ energy because that the ντ charge-current

interaction length is shorter. Thus, the high energy ντ flux is easy to scatter and produce

τ in the medium. Moreover, the high energy tau range is longer and the producted tau

may survive until reaching the end of the medium. As a result, the ντ → τ conversion

rate increases with the Eν .

Next we discuss the relationship between the medium thickness and the ντ → τ

rate for the 1010 GeV incident ντ . After we change the medium thickness from 1×105

m to 5 × 104 m and 2 × 104 m, the ντ → τ rate is increased by about 0.5% and

1%, respectively as shown in Tab. 3. But in the case 107 GeV, the difference reduced

to be about 0.002%, as shown in Tab. 2. One can understand this by the probability

density of ντ charge-current scattering. In the high-energy ντ case, the probability

for ντN charge-current scattering is higher and it leads to a decreased ντ flux. Thus,

the ντ flux is decreased with the medium thickness and the tau flux is decreased also.

On the contrary, the low energy ντ is hard to scatter in the medium and the τ flux is

independent of the medium thickness.

We estimate the numerical value of the conversion rate. Since we consider the

charge-current scattering as a Poisson process, by Eq. (22) , the normalized probability

density is
dPcc

dx
=

1

Lcc

e−
x

Lcc , (60)

where Lcc is the charge-current interaction thickness shown in Fig. 1. If the medium

thickness is Lm, the probability that we can obtain the τ in the range Lm −Rτ < x <
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Figure 24: Charge current interaction probability for Eν = 107 GeV and Eν =
1010 GeV.

Lm is

P{Lm − Rτ < x < Lm} =

∫ Lm

Lm−Rτ

1

Lcc

e−
x

Lcc dx, (61)

where Rτ is the tau lepton range, which increases with Eτ . By approximation, we

can pick Eτ = Eν if we neglect the energy loss of ντ scatterings. Since Lcc decrease

with Eν , the curve of dPcc

dx
is sharper in high energy case. The dPcc

dx
of Eν = 107

is lower than the case of Eν = 1010 if the penetrating distance is below 6 × 105 m,

shown as Fig. 24. Therefore, in this low penetrating distance, P{Lm−Lcc < x < Lm}

increases with Eν .

The tau-lepton range in rock for Eτ = 1010 GeV is 1.18 × 104 m, Fig. 9, and the

medium thickness is 2× 104 m. It means that the detector can see the exit τ when it is

created in the range

8.2× 103 m < x < 2 × 104 m,
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and the probability is

P{8.2× 103 m < x < 2 × 104 m} =

∫ 2×10
4
m

8.2×103 m

1

Lcc

e−
x

Lcc dx = 5.3%. (62)

Similarly, for the 5× 104 m and 105 m medium, the probabilities are

P{3.82× 104 m < x < 5 × 104 m} =

∫ 5×10
4
m

3.82×104 m

1

Lcc

e−
x

Lcc dx = 4.58%, (63)

P{8.82× 104 m < x < 105 m} =

∫ 10
5
m

8.82×104 m

1

Lcc

e−
x

Lcc dx = 3.6%. (64)

These probabilities are illustrated in Fig. 26. The corresponding for E = 107 GeV

and E = 1011 GeV can be found in Fig. 25, 27.

The difference of these three probabilities are 0.7% and 0.98%. This is consistent

with the results shown by Tab. 3. We conclude that the decreasing of ντ → τ rate with

increasing medium lengths is caused by the decreasing of the charge-current scattering

probability. Furthermore, we can explain why the difference is smaller in E = 107

GeV in Tab. 2. We only need to focus on the changes of Lcc and the tau range. For a

larger Lcc, the slope of dPcc

dx
is reduced and the differences for integrals in Eq. 61 with

respect to different regions are decreased also. This is the reason why the difference of

rate in Tab. 2 is lower than in Tab. 3.

In all energy spectra, Fig.15-23, the number of τ decreases rapidly in the energy

region below 108 GeV and it is independent of the initial energy of ντ . It is due to the

fact that τ decay easily when its energy is below 108 GeV.

Finally, a plateau can be found in the τ energy spectra arising from ultra-high en-

ergy initial ντ , Fig. 23. It means that we cannot easily identify the energy of the

original high-energy ντ , unless a huge number of τ are detected. On the other hand,

the energy spectra of low energy source is sharp whereas the ντ → τ conversion rate

is too low. So it is hard to detect enough events for data analysis in this case.
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Figure 25: The probabilities of charge current scattering for Eν = 107 GeV, the three
regions of integral area are the probabilities of medium with 2 × 104m, 5 × 104m,
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Figure 26: The probabilities of charge current scattering for Eν = 1010 GeV, the three
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7 Conclusion

We have studied the behavior of ντ and τ in standard rock by appling the Monte-carlo

method. Unlike the deterministic method, the τ energy distribution resulting from the

propagation of single-energy tau-neutrinos can be obtained in this way. The Monte-

carlo method also gives a shorter tau-lepton range. Furthermore, we have tried to

explain the relationship between the ντ → τ rate and the medium thickness in Sec. 6.

A challenge for ντ energy resolution is presented. The task to reconstruct the original

ντ energy is non-trivial due to the plateau of the τ energy spectra.
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