R TR tau s S AT
A monte-carlo study on earth-skimming tau

neutrinos

SRR T

RES SIS RIS

P ERRO93E T



A monte-carlo study on earth-skimming tau neutrinos

TFIE P Fﬁ%—éair Student : Chan-Hin long
?ﬁ;ﬁ%’ I PFE’WF Advisor : Guey-Lin Lin
Bt 55
i}fail’plizl‘a”fv?
=~
ﬁE A E R
A Thesis

Submitted to Institute of Physics
College of Science
National Chiao Tung University
in partial Fulfillment of the Requirements
For the Degree of
Master

in
Institute of Physics

June 2004

Hsinchu, Taiwan, Republic of China



2

A% DL MORE 3 SCOBRAS Y 1995 SR A0 BES, [R R i 2 B & (R A B 35 7 T vy B
TR/ NRHZ B U R B H B SR AN E R B, Mip R R R A A . & E
FEAE AT RIRBATE , BER MR RE S TAE. AR A, mELmEHANREY, BE
EXSE M SERGZ MY S . EMIRVEE T, BRl T REECE KA S R E T, R B
R NERIRREE, FrUl B B AR 2 BB E R B i R B N

FESRELRIET . H—ERBRIR T S Rmtoh. 7 i B e i 2 B 8 S5 AN O TR
BRPE. ToERE R S Al LUEERS R DUAIAR . BAHRIEE IR, ARt E EARE
EERFCRENEREE. BT, HEHRNENEE REFHIBER. WERMBER I
ZHINREE, (B EERNREIFEN+ 2 BR. E#e I EERI. EERAREE
. WEMRERZEENEL, WARRANEZEE, MAZERIREMIITES . K
BRI TR ST A .

11 DU 45 B B R e R e TARRY . SRR Al i A B B Y . B UG R AR
P2 R R B ERAR . A ORYEE N A E AW PTRIIE R T 1R 2 BUE S
ARG, P DA A BERE RA T 5 B AR BIF S AR . REHARE AT AN B 2 AR B B . (8 ASER SCRE
JEA5E A

BT WP SC R IR E AN, R B A SR RS AT . R R i P B R £
TOEE. FAEMANAKEEIR RS " FERF 2 ER TR, AR e R EE
U B B BRR 2 5l . R B R F IR SRR B H RIS R AR AR
T8, BETEEHMIRE D LR, EREEAR S BEEEEEERET . #BEE
B BB AT AR AR I 5 3R M BUE T VARG S (I AT BE B AR, SRR A 2R
PR T IEMEBL S . A RERIUGEREE . MZAr R T —E R BUERRAR L, £ Z R
EHOMIRREE N, EREPIRIEE S TR, EEREEET AR T KBS ARE
BEHER . ZRIBEEE THCERMBTRE AT AREEE . BUE AR 35 5 228 BUER 1 S ER ) 52 R
KBS . HRESTRE=ENHRECRME T —LEE EREEBME, —F8LOKE. ER
ERERE FAEERS HFA O, EROEFERANMERF——HRB TER. BE
AR I 3 BN A B ER SR A ARG, o3 B BRI AT RRIR B E R REIE A AL
BIAF HERER L. B s H RIS R SRR 22 R AR R M E B R &

HHEEFERRENS . SEEH L LRSI B RE, I E— R
At A



Contents
1 Introduction

2 Monte-carlo method
2.1 Randomwvariable . .. ... ... .. ... ... ... ...,
2.2 Cross section and probability . . . . . . ... ... ... ... ...
2.3 Mapping from the randomnumber . . . . . . ... .. ... ... ..
24 Expectationvalue . . . . ... ...
2.5 Fractionofenergylossy . .. ... ... ... ... .. .......
2.6 Poisson (decay) process . . . . . . . . ..o i e e
2.7 General decay process . . . . . . . . ...
2.8 Totalenergyloss . . . . . .. ... ... ...

2.9 Tau-leptonRange . . . o8 i foe o oL

3 Process for v, and 7
3.1 Processforv, . . =. . . o o T

32 ProcessforT . . .w . clATEEEY LAY Lo

4 Tau-lepton energy loss
4.1 Deterministicapproach . . . . . ... .. ... ... .........
4.2 Stochasticapproach . . . . . . .. ... ... ...
4.2.1 Hard-termenergyloss . . ... ... ... ... .......

422 Softtermenergyloss . . . . . . ... ...
5 Simulation results
6 Discussion

7 Conclusion

N

AN N W

12
12
13

15
15
16
17
18

18

32

47



1 Introduction

Tau neutrinos can be detected when they skim the Earth and produce tau-leptons. One
can identify the v, source by measuring the 7 energy. For the single energy v, source,
the produced tau-lepton energy is predicted to be unique when we apply the deter-
ministic method. In reality, it should be an energy spectrum. We present our Monte-
carlo simulation results on tau-lepton energy spectrum induced by the Earth-skimming
tau neutrinos, taking into account the inelasticity of neutrino-nucleon scatterings and
the tau-lepton energy loss in detail. We argue that the tau-lepton flux resulting from
neutrino-nucleon scatterings inside the earth is controlled by the tau-lepton range,
rather than the distance of tau-leptons/neutrinos traverse inside the Earth. We also
comment on the energy-resolution of tau neutrinos in the earth-skimming detection
strategy.

In Sec. 2, we discuss the basic concepts of Monte-carlo method, and the strategy
for calculating the energy loss"and decay:processes. In, Sec. 3, we introduce the pro-
cesses relevant to the propagations of - and 7 inside the Earth. In Sec. 4, we compare
the difference between deterministic method and the'Monte-carlo method for the de-
scription of energy loss. In Sec. 5;,we.summarize our simulation results, including the
tau-lepton energy spectra arising from incident v, with different energies. In Sec. 6,
we analyze the simulation results, and establish the relationship between the v, — 7

conversion rate and the medium thickness. Sec. 7 is the conclusion.

2 Monte-carlo method

Usually, an analytic solution of a problem is deterministic. It provides an exact solution
for a set of given initial or boundary conditions. Furthermore, some numerical algo-
rithms are developed from this deterministic skill. Therefore, we can obtain a unique
solution by this type of numerical method.

On the contrary, Monte-carlo method treats a physical problem as a stochastic pro-
cess. It involves some random variables to construct the stochastic world. Why do we

choose this strategy? It is because some processes are better described in this way. In



section 4.2, we consider the tau-lepton energy loss in a medium as a stochastic process.
In this situation, energy loss is a function of random numbers. Hence energy loss is
a random variable as well. Consequently, we expect to obtain different energy loss
for the same initial tau-lepton energy. Although some variables are created by random
numbers, it is important to note that they must satisfy a distribution function, to be

described in Sec 2.3.

2.1 Random variable

The characteristics of Monte-carlo method is the random number. Some variables in
Monte-carlo method are no longer deterministic. Let us generate a random number

r € [0, 1] and an arbitrary variable y(r) depending on it,

y(O) = Ymin (D

y(l) = - Ymax, (2)
it is a mapping : [0, 1] — {Winin, Ymaxl:

2.2 Cross section and probability

We describe the interaction probability in the medium by the differential cross section

do

dy with y the inelasticity of the collision and the total cross section,

Ymax ]y
= —dy. 3
o / dy Y 3)

Ymin
Note that the total cross section ¢ may not be 1. In order to normalize it, one can divide

o by itself,

d dP
1:2:/_"dy:/—dy=/dp, (4)
o ody dy
d a8

where dP = %" is normalized an dy

dy|y—y, is the probability for an event with

Y € [yo,yo + dy.



2.3 Mapping from the random number

Let r € [0,1] is a generated random number, we need to design a mapping from the
random number 7 to the variable y. An event occurs more easily if it occupies a larger
random number range dr. Although we have not defined the concept of probability, let

us consider a mapping given as follows :

dr = k% ay, 5)
dy

where k is a unknown constant. Integrating this relation gives

T Yy d
. / ar' = / 99 1y (©)
0 Ymin dy

Let us require the following:

Ym in d
for Yy = ymm, = k/ _U,dy/ =0, (7
Ymin. dy
Ymax d
for y=ymax, "=k 4dy'=k-a:1. (8)
Ymin dy

The 2nd equation holds if k¥ = 1/o. Therefore,

1 (Y do
—— —dv'. 9
T 0/ dy,y )

Ymin
This relation means that we can obtain the random number r corresponding to a
given y, by integrating the differential cross section Z—Z. It is easy to construct a table
for r in numbers of y. From this table, one obtains a y from an arbitrary random number
r. We have said that

—=—— (10)
is the differential probability. From Eqgs. (5) and (9),

dP

dr = —d
s dyy

1D



and

Y
- / =i (12)

Ymin Y

The condition r = 1 for y = ymax implies

Ymax dP 1 Ymax d
/ Ty = —/ iy = 1. (13)
Yoin Y O Syin A
We have shown that the total probability for the range [¢min, Ymax] is 1. Hence
Y2 dP
pP= —dy’ 14
/ dy Y (14)

is the probability for the events with y € [y1, yo).
We still need to confirm that dr is proportional to the area of integral under %.
From Eq. (11), an infinitestimal area ofisquare dr. is the product of % and dy. Because

the area of square is in proportien to its width,and height,

dr o« dy, (15)
dr d—P ] (16)
dy

thus, the range of random number is proportional to the differential probability %. We
remark that % is a function of y. As we generate a random number r between 0 and

1, it is apparent that we are more likely to obtain a y whose % is larger.

2.4 Expectation value

The expectation value of y is defined as follows:

Ymax dP
= —dy. 1
(y) / Y dy (17)

Ymin
In general, we obtain the expectation value by integrating y% directly. On the other
hand, Monte-carlo method provides another way to do that.
In order to apply the Monte-carlo method, one must generate sufficent events. The

events number needed depends on the type of system. The more events we have, the



more accuracy we achieve. For an individual event, we create a random number r;. In
section 2.3, we have introduced the method for finding the (r;, y;) table from %. For
a given random number 7;, there is a correspondence y;. Assuming that we generate

N events, the expectation value (y) is just the average of y;,

N
) =Y = (18)
=1

=ls

We have tranformed the problem from the integral of y % to the sum of y; /N.

2.5 Fraction of energy loss y

Let us define the physical meaning of y. For a particle with an initial energy F, its
energy is changed to E’ after one step of interaction. The fraction of difference between

E and E' is

19)

i.e., y is the fraction of particle energy loss. The expectation value (y) can be estimated
by Eq. (17) in a deterministic_process.. Although different values for y are possible,
we only obtain its expectation value. After several steps of interaction, the total energy
loss is also a definite value.

Strictly speaking, y should be considered as a random variable in the Monte-carlo
method. Each time we create a random number r, the random variable y is obtained
by Eq. (9), or by the (7, y;) table from Sec. 2.3. Consequently, the total energy loss

resulting from several steps of interaction is no longer a definite value.

2.6 Poisson (decay) process

Let us assume that a process N = {N,} denotes the numbers of interaction in ¢ steps.

It is called a Poisson process when it holds the following properties.
1. N; is an positive integer.

2. For integers i, s > 0, N;+s — N, is independent of {NV,,; u < i}.



3. Forintegers ¢, s > 0, N;;+s — N; is independent of 7.

Therefore, the interaction of Poisson process is independent of the past history, and
also the survival probability. For a particle runs in a distance z, its survival probability

Pf§ can be written as the form

Pj=e"T, (20)

where L is the interaction thickness. The interaction (decay) probability is
Pi=1-Pj=1-¢"1. (1)

The differential decay probability is

dP; 1

= e £, (22)

It is normalized already because
 dP, A -
/ “ER 1y g B / e~ Ldx
o dx L5

= 1. (23)

As we show in Sec. 2.3, the mapping from random number r to x is
* dP,
ro= / < 4o’
o dx’

= 1l—¢% (24)

forr € [0,1] and = € [0, 00). It is the same to write as

(25)

<
I
99

(S}

or



x=—L" logr, (26)

since only the relation between dr and dz is crucial. If we always obtain a random
number in the higher probability region of z, this mapping should be satisfied that Ar

is a monotonous decreasing function on z,

Ar=r(zte)—r(e) = F e E, @n

_ztate _zta
A = eI —eT T
= ef%(e wfa feff)
i=tity
ST\ (28)

Since & > 0, e~ < 1, then A7’ < Ar+“This"shows that Ar is a monotonous
decreasing function on z. Ffom now.on, we can generate a random number r, and
obtain the position of interaction.with Eq. (26). This:is applicable to neutrino-nucleon
interactions. In the situation of Poisson process, this method reduces the computing
time because we do not need to use the step by step method shown in Sec. 2.7. We
can obtain the decay position x straightforwardly by substituting a random number r

to Eq. (26).

2.7 General decay process

In general, the tau-lepton decay is not a Poisson process since the tau-lepton energy
changes rapidly as it interacts in the medium. The tau-lepton survival probability is no
longer given by Eq. (20). We should choose a step by step method rather than solving
Eq. (26). When the step size Az is small enough comparing with the decay length D,

we can make the following approximation by the Tayor series,

e Az Az
Pa=1-Pi=1-c ¥ x1-(1-7)=75"

oo



The differential decay probability is
dz
dP d — 5, (29)

where D is the decay length given by

E

D-—C, — 2
Ca 106 GeV’

(30)

Cy = 48.9 m and F is the energy of the tau-lepton. The tau-lepton decay length is 48.9

m when its energy is 10° GeV.

2.8 Total energy loss

Here we give the difinitation of a stochastic energy loss process F = {F,,;n € N} for

n steps. We assume that the probability is independent of the past history,
P{E.+1 =j|Bos -, Bu¥:= P{E, 4 = j|En}. (31)

The probability of getting E,, 1= depends on. E,; only. We can rewrite the proba-

bility in a simple form,
P{E”H‘l = j|E’n = Z} = P(Z7.7)7 (32)

a transition matrix for the n-th step to (n + 1)-th step. The energy relation of the
n — n+ 1stepis

Enp1 =1 —y)Ey,

where y is the random number, depending on the type of the energy loss. Consider
there are only two steps,

E ={FEy, E1,E>},



the energy after the first and second step should be

E1 = (1 — yl)EO

Ey = (1—-y2)E1=1—y2)(1—wy1)Eo.

Let us consider a particle which has initial energy Ey = ag and goes through a stochas-
tic process. After two steps of energy loss, its energy is reduced to F». For a stochastic

system, the probability that we obtain Fy = as is

P{Eg = a2|E0 = ao} = Z P(ao,al)P(al,ag)

a1€EFE

= P%*(ag,as). (33)
For example, we have a 2 x 2 transitionymatrix;

/20|l /4
2G5 =,
3/5 27577 0

where P(1,1) = 1/2 and P(2,3) = 1/3.The two steps transition matrix P2 can be

obtained from P,

17/30 9/40 5/24
P*=| 8/15 3/10 1/6
17/30 3/20 17/60

In a general n-step case, the probability for E = a,, after the particle going through

n-step of energy loss is

P{E'n = an|EO = aO} = Z P(ao, al)P(ala a2) T P<an—2a an—l)P<an—1aan)
a1,az-an
= P"(ao,an). (34)

The quantity P"(ag, ay,) is the probability for a particle to decrease its energy from

ap to a,. In the same way, we have P"(ao, a,,),P™(ag,al) - --. This means that we

10



have a range for F,, from a single initial energy Ey. In other words, by Monte-carlo

method, we shall obtain a distribution rather than a single value for the final-state en-

ergy.

2.9 Tau-lepton Range

In general, we define the 7 range as
(X) =) o/P{X =4}, (35)
x/

where P{X = z'} is the probability that we obtain the events X = z’. By numerical

method, we can evaluate this probability by

N{X =2'}

X —gihmsserray

(36)

where Y N{Q} is the total event number and N{X = z’} is the number of events
whose final penetrating distance is #/. If% > 0, it is-equivalent to transform to the

other form,

(X)=> 2a'P{X =2} = /OOO P{X > z'}dx’. (37)

It is easy to prove that by considering the discrete system, dr = Az = 1. We can

rewrite the integral as

/OO P{X > '}z’ = i P{X > 2'}Ax

0 2—0

= iP{X>x’}

= ;?§(=1}+P{X:2}+P{X:3}+---
+P{X =2} +P{X=3}+P{X=4}+---
+P{X =3} +P{X =4} +P{X =5} +---

= 1. P{X=1}+2 P{X=2}+3-P{X =3} +---

11



Charge current thickness/m

Figure 1: Charge current scattering thickness in standard rock.

= Z:E’P{X giud ).

3 Process for v, andi7

We generate a process is that a:million.of v-‘pass through the standard rock. Some v,
may lose their energy in rock, while @ part-of the.; may change to 7 by the charge-
current scattering, with the v, — 7 conversion rate depending on the v, energy. After
the charge-current scattering, 7 is produced and travels through the rock. Due to its
interaction with the rock, the 7 energy is decreased. As a result, 7 may decay back to
v, and repeat the above process. Eventually, some of the 7 could come out of the rock

and can be observed by the detector.

3.1 Process for v,

The neutral-current interaction takes away the energy of v, and the charge-current
scattering changes v to 7. The thickness of charge-current interaction is decreased

with energy, as shown in Fig. 1 [4].

12



3.2 Process for 7

As discussed in the previous section 7 is produced from the v charge-currentscattering

process. It may further go through the pair production [6] and photonuclear scatterings

[7]. As aresult, 7 loses its energy. Besides losing the energy, 7 may decay to v.- by the

following processes [2],

T — Viuvy,

T —  Ur€le,

T — Vrp,

T 2l IV#G.

where the v, energy is a distribution-described by Z—Z with

S Eu.,./E‘r

The energy of v is

E, =yE..

T

(38)
(39)
(40)
(41)

(42)

(43)

(44)

As in the previous section, y is calculated by a random number r with Eq. (12).

Fig. 2 shows the distribution of y. Only the range of process (38) is [0, 1]. The range

of y for each decay channel is shown in Table 1. We note that v can also be produced

from 7 by the charge-current scattering.

13



dn/dy

Process | Ymin | Ymaz | Branching ratio |
T — Ur iV, 0 1 0.18
T — Vsl 0 1 0.18

T — UpT 0 0.9938 0.12

T —Up 0 0.8130 0.26

T — Vraq 0 0.5209 0.13

Table 1: The range of y for the 7 decay processes.

T

— . TOVHY,
—. Tovev
T €

— _ToVT

T

TV P

+ Tova,

—— Total dn/dy

Figure 2: The distribution of y for the 7 decay processes.
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4 Tau-lepton energy loss

4.1 Deterministic approach

If we assume that the scattering process is deterministic, the energy loss,

—dE = (y)EdP,,

(45)

is also deterministic, where (y) is the expectation value of y, which is defined in Eq.

(19) and d P, is the tau-lepton interaction probability,

with L the interaction thickness. The interaction thickness can be calculated by

Ere |t
no

(46)

(47)

where o is the tau-lepton interaction cross section and » is the number density of the

medium nuclei,

(48)

with p the medium density, N4 the Avogadro’s number, A the mass of target nucleus

per mole. From Eq. (45) :

—dE = (y)EdP,
- wpY
= (y)E%adw
Ny [Ymex g
= EpdeA - yédy
- e[ v

15
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where we have applied

1 Ymax do.
= — —d
(y) a/y e

min
and

dX = pdzx.

The energy loss per unit slant depth (in units of g/cm?) can be expressed in the form:

dF
—E§=§:mE (50)

X = pa, (51)

where p is the medium density and z is the distance in cm, 3; is defined as

N [Umax ey
Bi=— / y—dy'. (52)
Ay

The 7 denotes the type of interactions. In.other words; we consider all types of in-
teractions, photonuclear and pait. production;. for the.tau-lepton energy loss. In the

deterministic approach, we take the average forthefraction of energy loss y. Hence 3;

is an exact value, so is the fil—)b;,

dE NE [¥m g,
dX ~ 474 Yy

Ymin

dy. (53)

4.2 Stochastic approach

The previous section shows that the process is deterministic when we take the average

for 3;. From Eq. (10), we can rewrite Eq. (52) into

ﬂi:NO'i/ymax dpd :NO'i

1 V™= (y)- (54)

Ymin

16



In this form, (3; is a function of total cross section o; and the expectation value of y. In

Sec. 2.4, Monte-carlo method turns the problem from an integral to an average,

J (55)

=zlE

N
NO',L' NOUL'

However, this is still not our goal because this (; is still an average value for one step

of energy loss. We intend to consider each event individually. The procedure is :
1. Calculate interaction thickness L by Eq. (47).

2. Choose the length for each step dz, such that the interaction probability dp for

each step of tau-lepton propagation is dp = dfx.

3. Generate a random number to determinate whether or not the interaction occurs.

The probability must be equal to,dp we.have before.
4. If the interaction happens,'the energy10ss should be y - E for the distance dx.

We remark that, in step 2, dzis 'decreased with dx. Does the energy loss depend on
the choice for dx? To make sure, weicompare-the-total energy loss for two different dz
case. If we choose (dz); = 0.1-Eand (dz)2 = 0.01-F, dp; = 0.1 and dps = 0.01. For
the total interval h, the first case performs 10% times energy loss processes and 100%
times for the second one. It is important to recall that the chance for an energy loss to
occur, is p; = 0.1 for the first case and po, = 0.01 for the second case. Thus, it is harder
for the second case to interact. Consequently, the choice of interaction probability does

not effect the total energy loss if we neglect the other numerical problems.

4.2.1 Hard-term energy loss

Knowing that the tau-lepton energy loss can be deduced from a random variable, we
proceed to discuss the hard term energy loss. In order to evaluate the energy loss from
Sec. 4.2, we need to obtain a y; from a random number mapping, shown as Sec. 2.3

shows. Thus, we integrate the differential cross section over the interval [ymin, ¥,

1 Y do
r= —/ de’. (56)

g Ymin Y

17



However, Z—Z [5] has a singular point at y = 0. Hence the integral diverges as y — 0.
We set Yeut > Ymin in order to avoid this problem,

1 Y
r= —/ %dy'. (57)

g Yeut Y

When we pick up a y from this integral, the energy loss is called the hard-term. The
remaining energy loss in the region [Ymin, Ymax)s [Ymin, Yeut)» 1S compensated by the

soft-term in Sec. 4.2.2.

4.2.2 Soft-term energy loss

Since the integral region of y is reduced from [Ymin, Ymax) tO [Ycut, Ymax] in the hard-
term energy loss, it is essential to restore the energy loss from [Ymin, Yeut]. We treat

this term as a deterministic process. From Eqs (53),

min

dE NE (V% do,
_(2al ENHAES du. 58
( dX) ft Ei ) /y Yoy, (58)

This energy loss term is called the soft-term. The integral of y ‘il‘;j on [Ymin, Yout)

is finite due to y — 0. Furthermorte, the whole.energy loss is the sum of soft and hard

term,
dE N Yeut do-t

= E(—
iX ~ & (3 Yy

dy + y;)- (59)

Ymin
The ¢ denotes the type of the interaction and y; the random variable. Remark that

only the hard term, E - y;, is treated as a stochastic process.

5 Simulation results

First, we start from the propagation of tau-lepton inside the standard rock. In this situta-
tion, we only need to consider the pair production and photonuclear interactions which
cause the energy loss of 7. In view of experimental situation, we require the simulation
to stop at F, = 50 GeV [1]. We consider a system that the medium is unlimited in

order to measure the penetrating distance of incident 7, and consequently determine

18



Total events : 165

Initial E_=1 0'° Gev

Number of t©

Penetrating distance/m

Figure 3: The tau-lepton penetrating distance in the standard rock considering only
decay (without energy loss interaction). Initial tau-lepton energy is 10'° GeV. The
exponential decay constant is about —2 x 1076 /m.

the 7 range. This algorithm has been shown in Sec. 2.9. By simulating the incident
tau-leptons, we can obtain the 7 range by Eq. (35) and Eq. (36). It is the expectation
value of tau-lepton penetrating distance in the medium. The tau-lepton ranges from
the Monte-carlo method are compared with the deterministic results. They are shown
in Fig. 4, 6, 9 and the fractions of difference between two approaches are illustrated
in Fig. 7,11. The comparsion of our result with other Monte-carlo calculation [1], is
shown in Fig. 10.

Having obtained the tau-lepton range, we consider the v, process with a finite

medium length. In the v, process, incident v, may change to 7 after the charge-current

19




T

—— Monte carlo method

+ Decay length with formula : 48.9*en/10° |

R
I

2 ; | ; | ; |

8 9

10
Energy/GeV

10

Figure 4: Tau-lepton range considering only the decay process.
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12000 T T T T T T

Total events : 1(55
10000

Initial E_ =100 Gev

8000

6000

Number of ©

4000

2000

Penetrating distance/m x10*

Figure 5: The tau-lepton penetrating distance inside the standard rock considering the
pair production interaction. Initial energy of 7 is 10° GeV.
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—+— Deterministic method

—%— Monte carlo method |]

2 ; R ; | ; |

10
8 9

10
Energy/GeV

10

10

Figure 6: Tau-lepton range considering the pair production interaction.
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Percentage difference

Energy/GeV

Figure 7: The fraction of difference in the tau-range between the Monte-carlo method
and the deterministic method. The comparison is made by considering only the pair-
production loss.
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14000 T T T T T T T T

12000

T

Total events : 10

Initial E =10'° GeV
10000 T

T

8000

T

6000

T

Number of T

T

4000

2000 -

| | | |

0 0.5 1 1.5 2 25 3 3.5 4
Penetrating distance/m

Figure 8: The tau-lepton penetrating distance inside the standard rock considering the
pair production and photonuclear interactions. Initial energy of 7 is 10'° GeV.
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Figure 9: Tau-lepton range considering the pair production and photonuclear interac-
tions.
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Figure 10: The comparsion with the Monte-carlo calculation by Reno [1].
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Figure 11: The fraction of difference in the tau-range between the Monte-carlo method
and the deterministic method. The comparison is made by considering the pair-
production and photonuclear losses.
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Figure 12: Tau-lepton energy distribution forithe single-interaction process. Initial
energy of incident v, is 10% GeV.

scattering. Then only some of the 7 can travel to the end of medium without decaying.
We shall calculate the energy distribution of these survival 7. We simulate the incident
v, propagating into three different medium lengths, 2 x 10%,5 x 10%, 105 m standard
rock. A detector is placed at some distance from the end of the medium to count the
number of survival 7. This is the way to detect v in the neutrino-telescope experiment.
The energy distributions for 7 and the conversion rate for v, — 7 are shown in Fig.
12, 13, 14 show.

In addition, the multiple interaction is possible if we consider the decay process
and charge-current scattering of 7. This outgoing v/, is a new source of input for the
system. But the energy of this type of regenerated v/, is lower than the original due to

the large energy loss of 7 interactions. The simulation is restarted with lower energy
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Figure 13: Tau-lepton energy distribution for the single-interaction process. Initial
energy of incident v, is 10'° GeV.
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Figure 14: The conversion percentage for v, — 7 in a single-interaction process with
the medium length 10° m.
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incident v,. Although the interaction thickness of charge-current is increased, some
extra events may convert into 7 and received by the detector. Fig. 15-23 show the

energy distribution.
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Figure 15: Tau-lepton energy distribution for'multiple-interaction process. Initial en-
ergy of incident v, is 107 GeV and the thickness of standard rock is 2 x 10% m.

6 Discussion

In the unbounded medium case, we calculate the tau range, which is the average tau-
lepton penetrating distance in the medium. The range for 10'° GeV tau-lepton without
energy loss is 5 x 10° m, shown as Fig. 4. But the range is decreased to 5.5 x 10*
m when we consider the pair production energy loss, shown as Fig. 6. Furthermore,
the range is 1.2 x 10* m after adding the photonuclear energy loss. Thus, the tau
range is decreased by the scatterings. In addition, we obtain a distribution of tau-lepton
penetrating distance rather than an average value, Fig. 3, 5, 8, by the Monte-carlo
method. When comparing results of the Monte-carlo method with those given by the

deterministic method [3], we find that the tau range in Monte-carlo method is shorter.
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Figure 16: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 107 GeV and the thickness of standard rock is 5 x 10% m.

| Rock thickness | v, — 7 rate |

2 x 10* m 0.015%
5x 10*m 0.013%
1x10°m 0.013%

Table 2: The relation between standard rock thickness and v, — 7 rate for E, = 107
GeV.

Rock thickness | v, — 7 rate |

2x10*m 4.8%
5 x 10* m 4.307%
1x10°m 3.385%

Table 3: The relation between standard rock thickness and v, — 7 rate for E,, = 1010
GeV.
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Figure 17: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 107 GeV and the thickness of standard rock is 1 x 10° m.
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Figure 19: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 10° GeV and the thickness of standard rock is 1 x 10° m.
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Figure 20: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 10'° GeV and the thickness of standard rock is 2 x 104 m.
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Figure 21: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 10'° GeV and the thickness of standard rock is 4 x 104 m.
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Figure 22: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 10'° GeV and the thickness of standard rock is 1 x 10° m.

39



1400 ———————

1200+ Total events : 1(f3 .
Initial E =10"" GeV
1000 | v .
o Rate of v.—1: 5.323%
‘S 800
o
o)
e
>S5 600
Z
400
200
O il n el n n il il i1 .
10° 10° 10 10° 10° 10" 10
T energy/GeV

Figure 23: Tau-lepton energy distribution for multiple-interaction process. Initial en-
ergy of incident v, is 10! GeV and the thickness of standard rock is 1 x 10° m.
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The fraction of difference in the tau range is 12.5% when we only consider the pair
production loss in the case of £, = 10 GeV, shown as Fig. 7. It becomes 25%
with the adding of the photonuclear loss, shown as Fig. 11. It means that we obtain a
different tau range with the Monte-carlo method, especially in the case of high energy
tau, Fig. 11.

Next, we consider the incident v, in the finite thickness medium. The exit tau is
detected through its induced air showers by the detector placed at some distance from
the end of the medium. The v, — 7 conversion rate is shown in Fig. 14. Note
that the rate is increased with the incident v energy because that the v charge-current
interaction length is shorter. Thus, the high energy v.- flux is easy to scatter and produce
7 in the medium. Moreover, the high energy tau range is longer and the producted tau
may survive until reaching the end of the medium. As a result, the v, — 7 conversion
rate increases with the E,,.

Next we discuss the relationship betWeen the medium thickness and the v, — 7
rate for the 10'° GeV incident, = After we change the medium thickness from 1 x 10°
mto5 x 10* m and 2 x 10* m, the ¥ "= 7.rate issincreased by about 0.5% and
1%, respectively as shown in Tab. 3. But in the case 107 GeV, the difference reduced
to be about 0.002%, as shown in Tab. 2, One'can understand this by the probability
density of v, charge-current scattering. In the high-energy v, case, the probability
for v; N charge-current scattering is higher and it leads to a decreased v, flux. Thus,
the v, flux is decreased with the medium thickness and the tau flux is decreased also.
On the contrary, the low energy v, is hard to scatter in the medium and the 7 flux is
independent of the medium thickness.

We estimate the numerical value of the conversion rate. Since we consider the
charge-current scattering as a Poisson process, by Eq. (22) , the normalized probability

density is

= —e T, (60)

where L. is the charge-current interaction thickness shown in Fig. 1. If the medium

thickness is L,,, the probability that we can obtain the 7 in the range L., — R, < z <
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Figure 24: Charge current interactionprobability for' £, = 107 GeV and E, =
100 GeV.

L,,is
L’VTL

1 .
P{L,—R; <x<Lp}= / I e Lecdz, (61)
Lm,_RT cc

where R is the tau lepton range, which increases with E.. By approximation, we
can pick E. = F, if we neglect the energy loss of v, scatterings. Since L.. decrease

df;“ is sharper in high energy case. The % of £, = 107

with E,, the curve of
is lower than the case of E, = 10'C if the penetrating distance is below 6 x 10° m,
shown as Fig. 24. Therefore, in this low penetrating distance, P{L,,—L¢c < < Ly, }
increases with F,,.

The tau-lepton range in rock for E, = 10'° GeV is 1.18 x 10* m, Fig. 9, and the
medium thickness is 2 x 10* m. It means that the detector can see the exit 7 when it is
created in the range

82x10°m <z <2 x 10%m,
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and the probability is

2x10*m

P{82x10°m <z <2x 10*m} = / e Teedr=53%.  (62)

8.2x103 m Lcc

Similarly, for the 5 x 10* m and 10° m medium, the probabilities are

5%x10% m

P{382x10"m <z <5x10"m} = / e Lecdr = 4.58%, (63)

3.82x104m Lec

10° m

1
P{8.82x10°m <z < 10°m} = / e Tecdr = 3.6%. (64)
8.82x10% m Lcc

These probabilities are illustrated in Fig. 26. The corresponding for £ = 107 GeV
and E = 10'! GeV can be found in Fig. 25, 27.

The difference of these three probabilities are 0.7% and 0.98%. This is consistent
with the results shown by Tab. 3. We-conclude thatthe decreasing of v, — 7 rate with
increasing medium lengths is caused byithe decreasing of the charge-current scattering
probability. Furthermore, we-can explain why the difference is smaller in £ = 107

GeV in Tab. 2. We only need-to focus‘on.the.changes of L.. and the tau range. For a

dP..
dx

larger L., the slope of is reduced and the differences for integrals in Eq. 61 with
respect to different regions are decreased ‘also. This is the reason why the difference of
rate in Tab. 2 is lower than in Tab. 3.

In all energy spectra, Fig.15-23, the number of 7 decreases rapidly in the energy
region below 102 GeV and it is independent of the initial energy of .. It is due to the
fact that 7 decay easily when its energy is below 102 GeV.

Finally, a plateau can be found in the 7 energy spectra arising from ultra-high en-
ergy initial v, Fig. 23. It means that we cannot easily identify the energy of the
original high-energy v, unless a huge number of 7 are detected. On the other hand,

the energy spectra of low energy source is sharp whereas the v, — 7 conversion rate

is too low. So it is hard to detect enough events for data analysis in this case.
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7 Conclusion

We have studied the behavior of v and 7 in standard rock by appling the Monte-carlo
method. Unlike the deterministic method, the 7 energy distribution resulting from the
propagation of single-energy tau-neutrinos can be obtained in this way. The Monte-
carlo method also gives a shorter tau-lepton range. Furthermore, we have tried to
explain the relationship between the v, — 7 rate and the medium thickness in Sec. 6.
A challenge for v, energy resolution is presented. The task to reconstruct the original

v, energy is non-trivial due to the plateau of the 7 energy spectra.
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