Growth factor	Produced in wound by	Responsive cells	Role in repair
TGF-β	platelet	macrophage	Chemotatic to macrophage
(1, 2, 3)	neutrophil	fibroblast	Inhibitor of proliferation
	macrophage	epithelial cell	Anti-inflammatory
	epithelial cell		Regulator of differentiation
			Control matrix synthesis
PDGF	platelet	neutrophil	Chemotactic to neutrophil and
(AA, AB, BB)	neutrophil macrophage	macrophage	macrophage
	endothelial cell	fibroblast	Proliferation of fibroblast and
_		endothelial cell	endothelial cell
EGF	platelet	keratinocyte	Re-epithelialization
	macrophage epithelial	fibroblast	(keratinocyte migration)
_	cell		
TGF-α	platelet	keratinocyte	Re-epithelialization
	macrophage endothelial	fibroblast	(keratinocyte migration)
	cell epithelial cell		
bFGF	macrophage	endothelial cell	Angiogenesis
(FGF-2)	fibroblast	fibroblast	Fibroblast proliferation
	endothelial cell 刻 😽	smooth muscle cell	
aFGF	macrophage	fibroblast	Proliferation and migration of
(FGF-1)	fibroblast	endothelial cell	fibroblast, endothelial cell and
	endothelial cell	epithelial cell	epithelial cell
			Angiogenesis
KGF	macrophage	epithelial cell	Proliferation of epithelial cell
(FGF-7)	fibroblast	keratinocyte	Differentiation of epithelial cell
IL-1	macrophage	macrophage	Inflammatory cell recruitment,
	fibroblast	keratinocyte	matrix synthesis and
	keratinocyte	fibroblast	remodeling
		endothelial cell	
VEGF	platelet	endothelial cell	Angiogenesis
	macrophage		(endothelial cell migration and
	keratinocyte		proliferation)
	smooth muscle cell		
IGF	platelet	keratinocyte	Proliferation of fibroblast and
	macrophage fibroblast	fibroblast	keratinocyte

Table 1. Major growth factors associated with wound repair

From: Hart J, 1999

Table 2. Primer sets used for RT-PCR

Primer sequence		PCR product	
mRNA template	(sense/anti-sense)	size (bp)	
MMP-1	5'-ATTTCTCCGCTTTTCAACTT-3'	167	
	5'-ATGCACAGCTTTCCTCCACT-3'		
MMP-9	5'-CATCTTCCAAGGCCAATCCTACTCC-3'	441	
	5'-GATGCCATTCACGTCGTCCTTATGC-3'		
β-actin	5'-CGTCATACTCCTGCTTGCTGATCCACATCTGC-3'	870	
	5'-ATCTGGCACCACACCTTCTACAATGAGCTGCG-3'		

From: S Holvoet et al., 2003

Placental extract	bFGF	EGF	PIGF	
(1 mg/ml)	(ng/ml)			
ddH ₂ O	24.35±1.98	10.39±1.56	2.53±0.47	
0.1M NaCl	29.01±3.54	13.03±1.07	2.31±0.04	
1M MgCl ₂	33.52 ±2.64	23.23±2.53	3.40±0.34	
2M Urea	86.46±2.36	50.36 ±1.65	8.96±0.24	
	E		Average ± SD.	
	189			
Thomas and				

Table 3. Various growth factors in porcine placental extracts withdifferent extraction solutions determined by ELISA

B.

Figure 1. Various growth factors in placental extracts. Porcine placental extracts were subjected to western blot, and blots were incubated with (A) anti-TGF- β 1; (B) anti-bFGF antibodies. Human placental extracts were subjected to western blot, and blots were incubated with (C) anti-TGF- β 1; (D) anti-bFGF antibodies. Blots are representative of those obtained in three separate experiments, with similar results.

- Lane 1: 0.5% CS (negative control)
- Lane 2: 15% CS (positivecontrol)
- Lane 3: $5 \mu g/ml H_2O$ extract
- Lane 4: $10 \,\mu\text{g/ml} \,\text{H}_2\text{O} \,\text{extract}$
- Lane 5: $20 \mu g/ml H_2O$ extract
- Lane 6: $50 \mu g/ml H_2O$ extract
- Lane 7: $80 \mu g/ml H_2O$ extract
- Lane 8: 100µg/ml H₂O extract
- Lane 9: 5 µg/ml 1M MgCl₂ extract
- Lane 10: 10 µg/ml 1M MgCl₂ extract
- Lane 11: 20 µg/ml 1M MgCl₂ extract
- Lane 12: 50 µg/ml 1M MgCl₂ extract
- Lane 13: 80 µg/ml 1M MgCl₂ extract

- Lane 14: 5 µg/ml 2M Urea extract
- Lane 15: 10 µg/ml 2M Urea extract
- Lane 16: 20 µg/ml 2M Urea extract
- Lane 17: 50 µg/ml 2M Urea extract
- Lane 18: $5 \mu g/ml H_2O$ extract (human placenta)
- Lane 19: 10 µg/ml H₂O extract (human placenta)
- Lane 20: 20 μ g/ml H₂O extract (human placenta)
- Lane 21: 50 µg/ml H₂O extract (human placenta)
- Lane 22: 80 μ g/ml H₂O extract (human placenta)
- Lane 23: 100 µg/ml H₂O extract (human placenta)

Figure 2.A Effects of various concentrations of placental extracts in different extraction solvents on NIH3T3 fibroblast proliferation. Cells were incubated for 18 h in DMEM only in order to bring most of cells into G0 phase of cell cycle. Thereafter, medium was replaced with various doses of placental extracts in 0.5% CS and incubations were continued for 20 h. The percentages of proliferous cells were determined by MTT assay. Data are shown as means \pm S.D. of triplicate determinations and representative of three experiments. **P*<0.05

Lane 1: 0.5% CS (negative control) Lane 13: 5 µg/ml 2M Urea extract 15% CS (positivecontrol) Lane 2: Lane 14: 10 µg/ml 2M Urea extract Lane 3: $5 \,\mu g/ml H_2O$ extract Lane 15: 20 µg/ml 2M Urea extract Lane 4: $10 \,\mu\text{g/ml}\,\text{H}_2\text{O}\,\text{extract}$ Lane 16: 50 µg/ml 2M Urea extract $20 \ \mu g/ml H_2O$ extract Lane 5: Lane 17: $5 \mu g/ml H_2O$ extract (human placenta) Lane 6: 50 µg/ml H₂O extract Lane 18: 10 µg/ml H₂O extract (human placenta) $80 \ \mu g/ml H_2O \ extract$ Lane 7: Lane 19: 20 µg/ml H₂O extract (human placenta) Lane 8: 5 μg/ml 1M MgCl₂ extract Lane 20: 50 μ g/ml H₂O extract (human placenta) Lane 9: 10 μg/ml 1M MgCl₂ extract Lane 21: 80 μ g/ml H₂O extract (human placenta) Lane 10: 20 µg/ml 1M MgCl₂ extract Lane 22: 100 μ g/ml H₂O extract (human placenta) Lane 11: 50 µg/ml 1M MgCl₂ extract Lane 12: 80 µg/ml 1M MgCl₂ extract

Figure 2.B Effects of various concentrations of placental extracts in different extraction solvents on HaCaT keratinocyte proliferation. Cells were incubated for 18 h in DMEM only in order to bring most of cells into G0 phase of cell cycle. Thereafter, medium was replaced with various doses of placental extracts in 0.5% FCS and incubations were continued for 24 h. The percentages of proliferous cells were determined by MTT assay. Data are shown as means \pm S.D. of triplicate determinations and representative of three experiments. **P*<0.05

Lane 1:	0.5% CS (negative control)	Lane 11: 5 µg/ml 2M Urea extract
Lane 2:	15% CS (positive control)	Lane 12: 10 µg/ml 2M Urea extract
Lane 3:	5 μ g/ml H ₂ O extract	Lane 13: 20 µg/ml 2M Urea extract
Lane 4:	10 μ g/ml H ₂ O extract	Lane 14: 50 µg/ml 2M Urea extract
Lane 5:	20 μg/ml H ₂ O extract	Lane 15: 5 μ g/ml H ₂ O extract (human placenta)
Lane 6:	50 μg/ml H ₂ O extract	Lane 16: $10 \ \mu g/ml H_2O$ extract (human placenta)
Lane 7:	5 μg/ml 1M MgCl ₂ extract	Lane 17: 20 μ g/ml H ₂ O extract (human placenta)
Lane 8:	10 μg/ml 1M MgCl ₂ extract	Lane 18: 50 μ g/ml H ₂ O extract (human placenta)
Lane 9:	20 µg/ml 1M MgCl ₂ extract	Lane 19: 80 μ g/ml H ₂ O extract (human placenta)
Lane 10:	50 µg/ml 1M MgCl ₂ extract	Lane 20: 100 µg/ml H ₂ O extract (human placenta)

Figure 2.C Effects of various concentrations of placental extracts in different extraction solvents on CPAE cell proliferation. Cells were incubated for 18 h in DMEM only in order to bring most of cells into G0 phase of cell cycle. Thereafter, medium was replaced with various doses of placental extracts in 0.5% FCS and incubations were continued for 24 h. The percentages of proliferous cells were determined by MTT assay. Data are shown as means \pm S.D. of triplicate determinations and representative of three experiments. **P*<0.05

Figure 3. Flow cytometric analysis of the effect of different concentrations porcine placental extracts on cell cycle of fibroblasts. After incubation with 50 μ g/ml different porcine placental extracts for 20 h, cells were harvested and stained with propidium iodide and analyzed for S phase of cell cycle. Data represent as means of duplicates ± S.D. **P*<0.05

Figure 4.A Effects of porcine placental extracts on wound healing of HaCaT cells. In this assay, cell migration from the edges of "scrape-wounded" monolayers to cover the denuded surface. Cell monolayers were scraped with a P-200 pipette tip and treated with placental extracts. Wounded cultures were allowed to re-epithelialize for 24 h in the presence of placental extracts. Wells were photographed at 0 h (A-F) and 24 h (G-L) adjacent to a reference line drawn on the bottom of the plate. (A, G) control; (B, H) 10% FCS; (C, I) 50 μ g/ml H₂O extract; (D, J) 50 μ g/ml NaCl extract; (E, K) 50 μ g/ml MgCl₂ extract; (F, L) 50 μ g/ml urea extract (original magnification ×100).

Figure 4.B Effects of porcine placental extracts on wound healing of CPAE cells. In this assay, cell migration from the edges of "scrape-wounded" monolayers to cover the denuded surface. Cell monolayers were scraped with a P-200 pipette tip and treated with placental extracts. Wounded cultures were allowed to re-epithelialize for 24 h in the presence of placental extracts. Wells were photographed at 0 h (A-F) and 24 h (G-L) adjacent to a reference line drawn on the bottom of the plate. (A, G) control; (B, H) 20% FCS; (C, I) 50 μ g/ml H₂O extract; (D, J) 50 μ g/ml NaCl extract; (E, K) 50 μ g/ml MgCl₂ extract; (F, L) 50 μ g/ml urea extract (original magnification ×100).

Lane 13: 100 µg/ml 2M Urea extract

Figure 5.A Porcine placental extracts mediated NIH3T3 fibroblasts adhesion. After seeding and incubation, cells attached to the surfaces were quantified. Negative control was coated with 1%BSA. Data represent as means \pm S.D. of triplicate determinations and representative of three experiments. All **P* value<0.05

- Lane 1 : 1% BSA only (negative control)
- Lane 2 : $10 \ \mu g/ml \ H_2O \ extract$
- Lane 3 : $50 \mu g/ml H_2O$ extract
- Lane 4 : $100 \,\mu\text{g/ml}\,\text{H}_2\text{O}\,\text{extract}$
- Lane 5 : 10µg/ml 0.1M NaCl extract
- Lane 6 : 50µg/ml 0.1M NaCl extract
- Lane 7 : 100µg/ml 0.1M NaCl extract
- Lane 8 : 10µg/ml 1M MgCl₂ extract
- Lane 9 : 50 µg/ml 1M MgCl₂ extract
- Lane 10: 100 µg/ml 1M MgCl₂ extract
- Lane 11: 10 µg/ml 2M Urea extract
- Lane 12: 50 μ g/ml 2M Urea extract
- Lane 13: 100 µg/ml 2M Urea extract

Figure 5.B Porcine placental extracts mediated HaCaT keratinocytes adhesion. After seeding and incubation, cells attached to the surfaces were quantified. Negative control was coated with 1%BSA. Data represent as means of duplicates \pm S.D. **P*<0.05

Figure 5.C Porcine placental extracts mediated CPAE epithelial cells adhesion. After seeding and incubation, cells attached to the surfaces were quantified. Negative control was coated with 1%BSA. Data represent as means \pm S.D. of triplicate determinations and representative of three experiments. **P*<0.05

Figure 6. Schematic of cell interaction with the external environment. Transmembrane receptors bind ligands in the extracellular domain, and transmit signals to the interior of the cell. The receptor may be an enzyme itself which is activated on ligand binding, or it may increase its affinity for molecules which become active enzymes upon binding to the receptor. The boundaries between soluble ligands and physical ligands are not strict, as some growth factors are found primarily in matrix-bound form.

From: Griffith LG, 2000

Figure 7. MMP-1 and MMP-9 expression wasn't regulated at its mRNA level. HaCaT cells were treated with in serum-free medium for various durations. Total RNA was isolated from cell layer at 0, 12, 24, 36, or 48 h (M: DNA ladder; Lane 1: control; Lane 2-6: 0, 12, 24, 36, 48 h) and analyzed by RT-PCR. (C) β-actin was monitored as a loading control.

Figure 8. Expression time course of gelatinase activities of porcine placental extracts using gelatin zymography on HaCaT keratinocytes. The gelatinase activities were visualized on a non-reducing 10% SDS-PAGE containing 0.1% gelatin. After electrophoresis, gels were incubated in 2.5% Triton X 100 to move SDS, then in reaction buffer at 37°C overnight. Staining was performed with Coomassie Blue R 250. Lane 1: control; Lane 2-6: 0, 12, 24, 36, or 48 h

Figure 9.A Expression of gelatinase activities of different porcine placental extracts using gelatin zymography. HaCaT cells treated with 50 μ g/ml different porcine placental extracts stimulated MMP-2 activation after 48 h. M: protein standard maker, Lane1-6:control (DMEM only), 10% FCS, H₂O extract, 0.1M NaCl, 1M MgCl₂, 2M urea. Data are representative of those obtained in two separate experiments, with similar results.

Figure 9.B Expression of gelatinase activities of different human placental extracts using gelatin zymography. HaCaT cells treated with 50 µg/ml different human placental extracts stimulated MMP-2 activation after 48 h. M: protein standard maker, Lane1-6:control (DMEM only), 10% FCS, H₂O extract, 0.1M NaCl, 1M MgCl₂, 2M urea. Data are representative of those obtained in two separate experiments, with similar results.