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Abstract This paper studies the minimization of total
weighted completion time in the relocation problem on a
single machine. The relocation problem, formulated from
an area redevelopment project, can be treated as a resource-
constrained scheduling problem. In this paper, we show four
special cases to be NP-hard in the strong sense. Problem
equivalence between the unit-weighted case and the UET
(unit-execution-time) case is established. For two further re-
stricted special cases, we present a polynomial time approx-
imation algorithm and show its performance ratio to be 2.

Keywords Relocation problem · Resource-constrained
scheduling · NP-hardness · Approximation algorithm

1 Introduction

Resource constraints are one of the most commonly con-
sidered factors in project management and scheduling. In
this paper, we study a variant of the relocation problem that
involves scheduling with generalized resource constraints.
Formally, there is a set of jobs J = {J1, J2, . . . , Jn} avail-
able for processing on a single machine. A pool of V0 units
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of a common single-type resource is given for processing
the jobs. A job Ji ∈ J requires and consumes αi units of
the resource from the resource pool. That is, when the job
Ji is to be processed, there must be at least αi units of the
resource in the pool. Upon its completion, the job Ji will
immediately return βi units back to the resource pool. The
job Ji has a processing length (time) pi and a weight wi .
A schedule is said to be feasible if all jobs can be success-
fully processed. As no idle time is assumed, throughout this
paper, schedule and sequence are used interchangeably if no
confusion would arise. Let Ci be the completion time of the
job Ji in a particular schedule. The studied problem is to
determine a schedule that is feasible with respect to V0 and
the total weighted completion time

∑n
i=1 wiCi is minimum.

Let us denote the problem by RPWT.
The relocation problem was first proposed and formu-

lated from a redevelopment project in Boston (Kaplan 1986;
Kaplan and Berman 1988; PHRG 1986). There were sev-
eral buildings to be demolished and rebuilt. Before each
building was redeveloped, its tenants had to be temporar-
ily housed until new capacities were available for reloca-
tion. Tenants were not subjected to reside at the old site.
Given a fixed budget for temporary housing during the re-
development, the municipal government needed to deter-
mine a reconstruction sequence of the buildings such that
all tenants could be successfully evacuated and housed dur-
ing the course of the project. The significance of the re-
location problem could be attributed to its potential appli-
cations in database management (Amir and Kaplan 1988)
and financial planning (Xie 1997). Moreover, the reloca-
tion problem provides a generalization of conventional re-
source constraints (Blazewicz et al. 1983; Hammer 1986;
Brucker et al. 1999) by allowing that the amount of resource
βi returned by a job can be less than, equal to or greater
than αi , the amount the job has required.

mailto:alvenko@math.nsc.ru
mailto:bmtlin@mail.nctu.edu.tw


124 J Sched (2010) 13: 123–129

In a basic model of the relocation problem, the temporal
parameter pi is not included, i.e., given a fixed amount of the
resource, the problem is to plan a feasible redevelopment se-
quence of the buildings. The minimization counterpart of the
feasibility problem is to determine the minimum initial bud-
get required for the existence of a feasible sequence. Kaplan
and Amir (1988) showed that this minimization problem is
equivalent to the well-known makespan minimization in a
two-machine flowshop (Johnson 1954). Kaplan (1986) and
Amir and Kaplan (1988) addressed the deployment of mul-
tiple working crews. If there are available crews and suf-
ficient resource, the development of several buildings can
overlap. Kononov and Lin (2006) showed that minimizing
the makespan is strongly NP-hard even when there are only
two working crews, all buildings have the same process-
ing time and the new capacity of each building is no less
than its original capacity. They also proposed approxima-
tion algorithms and analyzed the associated performance ra-
tios. Sevastyanov et al. (2009) investigated the relocation
problem of makespan minimization subject to release dates.
They analyzed the complexities of several cases and also
developed a pseudo-polynomial time algorithm, based on a
multi-parametric dynamic programming technique, for the
case where the number of different release dates is constant.

To the best of our knowledge, the problem of minimizing
the total weighted completion time studied in this paper is
new. In Sect. 2, we study the computational complexities of
several special cases. The equivalence between special cases
will be given to extend the complexity results. Section 3 is
devoted the development and analysis of an approximation
algorithm for two further restricted cases. We analyze the
performance ratio of the proposed algorithm. An instance
is given to establish the tightness of the ratio. Concluding
remarks will be presented in Sect. 4.

2 Complexity results and problem equivalence

In this section, we give the complexity results of the RPWT
problem. Auxiliary notations for the following discussion
are required. The contribution of the job Ji is defined by δi =
βi − αi . The resource level at time t is denoted by Vt . If at
time t some job Ji completes and another job Jj starts being
processed, Vt gives the resource level of the moment after Ji

deposits the resource it produces and before Jj requires the
resource for processing. Let σ be a particular sequence or
schedule of jobs. The job in position i,1 ≤ i ≤ n, is denoted
by σ(i). The resource level at time t subject to schedule σ

is specified by Vt (σ ). If no confusion arises, Vt will be used
for simplicity. The weighted sum of job completion times
subject to a feasible schedule σ is represented by Z(σ).

Although the WSPT (Weighted Shortest Processing Time
First) rule (Smith 1956) optimally solves the 1||∑wiCi

problem, it cannot deal with the RPWT problem. Consider
the following numerical example of 4 jobs and V0 = 0.

Jobs J1 J2 J3 J4

pi 1 1 1 1

wi 1 1 1 5

αi 0 0 0 10

βi 2 3 5 10

By the WSPT rule, the job J4 should be processed first.
In RPWT, the lack of resource, however, defers the process-
ing of J4. The example indicates the difficulty in composing
an optimal schedule as well as suggests the design of NP-
hardness proofs.

The NP-hardness results start with the case where each
job makes non-positive contributions and has a unit execu-
tion time (UET), i.e., δi ≤ 0 and pi = 1 for all jobs Ji ∈ J .
The reduction is based upon the following Ordered Numer-
ical 3-Dimensional Matching problem, which can be easily
transformed from the well-known Numerical 3-Dimensional
Matching problem (Garey and Johnson 1979).

Ordered Numerical 3-Dimensional Matching (ON3M
problem)

Instance. An integer bound B ∈ Z+, the sets of in-
dices A1 = {1, . . . ,m}, A2 = {m+ 1, . . . ,2m}, A3 = {2m+
1, . . . ,3m}, a positive size xi of each element i, 1 ≤ i ≤ 3m,

with
∑3m

i=1 xi = mB and x1 ≥ x2 ≥ · · · ≥ xm ≥ xm+1 ≥
· · · ≥ x2m ≥ x2m+1 ≥ · · · ≥ x3m.

Question. Can A1 ∪ A2 ∪ A3 be partitioned into m dis-
joint sets A1,A2, . . . ,Am such that each Aj ,1 ≤ j ≤ m,

contains exactly one element from each of A1, A2, A3 and∑
i∈Aj

xi = B?

Theorem 1 The RPWT problem is strongly NP-hard, even
if δi ≤ 0 and pi = 1 for all jobs Ji ∈ J .

Proof Given 3m,B , and A1, A2, A3 as specified for ON3M,
we let θk = ∑

i∈Ak
xi for 1 ≤ k ≤ 3. Let η = 3m2B . An in-

stance I of 6m − 3 jobs is constructed as follows:

• Basic jobs Ji, 1 ≤ i ≤ 3m,
αi = mB + xi, βi = 0,wi = η + xi .

• Connecting jobs J3(m+l−1)+k , 1 ≤ l ≤ m − 1, 1 ≤ k ≤ 3,
α3(m+l−1)+k = β3(m+l−1)+k = (3mB + B)(m − l),

w3(m+l−1)+k = 0.

The initial resource level is V0 = (3mB +B)m. Through-
out the proof, we use Z∗ to denote 3mη(3m − 1) +
3mB(m − 1) + ∑

i∈A1
xi + 2

∑
i∈A2

xi + 3
∑

i∈A3
xi . Note

that Z∗ < 3mη(3m − 1) + 3mB(m − 1) + 3(
∑

i∈A1
xi +

∑
i∈A2

xi + ∑
i∈A3

xi) = 3mη(3m − 1) + 3m2B. It can be
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showed that a feasible schedule of I with
∑

wiCi ≤ Z∗
exists if and only if the ON3M problem has a partition as
specified. Please refer to Appendix A for the details of the
proof. �

Next we investigate the case where all jobs have non-
negative contributions and a unit execution time.

Theorem 2 The RPWT problem is strongly NP-hard, even
if δi ≥ 0 and pi = 1 for all jobs Ji ∈ J .

Proof Similarly, from an instance of the ON3M problem,
we construct an instance I of 6m − 3 jobs as follows:

• Basic jobs Ji,1 ≤ i ≤ 3m,
αi = 0, βi = mB + xi,wi = B − xi .

• Connecting jobs J3(m+i−1)+k,1 ≤ i ≤ m − 1,1 ≤ k ≤ 3,
α3(m+i−1)+k = β3(m+i−1)+k = (3mB +B)i,w3(m+i−1)+k

= η.

Because all jobs have non-negative contributions, we set
the initial resource level as V0 = 0. Using a similar line
of reasoning as in the proof of Theorem 1, we can show
that there exists a feasible schedule of I with a weighted
completion time of no more than 3η(3m − 7)(m − 1) +
12m2B − 3

∑
i∈A1

xi − 2
∑

i∈A2
xi − ∑

i∈A3
xi if and only

if the ON3M problem has the required partition. �

Following the above two theorems, we subsequently
want to study the complexity status of the following two
problems with arbitrary processing times and a unit weight:
(1) δi ≥ 0,wi = 1; and (2) δi ≤ 0,wi = 1. In the follow-
ing, we show the strong connection between the UET case
(pi = 1) and the unit-weighted case (wi = 1). We adopt the
definition on p. 118 from Korte and Vygen textbook (Korte
and Vygen 2006) for our case.

Let us consider two minimization problems P and Q
with objective functions �P and �Q, correspondingly. We
say that the problem P totally reduces to the problem Q if
there are functions f and g, each computable in linear time,
such that f transforms an instance I of P to an instance Ī

of Q, and g transforms a solution σ̄ of Ī to a solution σ of
I and �P (I, σ ) = �Q(Ī , σ̄ ). If P totally reduces to Q and
Q totally reduces to P , then both problems are called totally
equivalent.

Theorem 3 The UET case (pi = 1) and the unit-weighted
case (wi = 1) are totally equivalent.

Proof Let I be an instance of the UET case containing
n jobs J = {J1, J2, . . . , Jn} with αi, βi and wi given for
each job Ji and an initial resource level V0. We construct
an instance Ī of the unit-weighted case having n jobs J̄ =
{J̄1, . . . , J̄n} with p̄i = wi, ᾱi = βi, and β̄i = αi . Set the ini-
tial resource level V̄0 = V0 + ∑n

i=1(βi − αi).

Let σ = (σ (1), σ (2), . . . , σ (n)) be a feasible permuta-
tion of jobs in the UET case. We show that σ̄ = (σ (n),

σ (n − 1), . . . , σ (1)) is feasible for Ī . Indeed, let V̄k de-
note the amount of resource after the completion of the jobs
Jσ(n), . . . , Jσ(k+1) in σ̄ . We have V̄k − ᾱσ (k) = V̄0 +
∑n

i=k+1(β̄σ (i)−ᾱσ (i))−ᾱσ (k) = V0 +∑k
i=1(βσ(i)−ασ(i))−

βσ(k) = V0 + ∑k−1
i=1 (βσ(i) − ασ(i)) − ασ(k) ≥ 0. The last in-

equality follows from the feasibility of schedule σ . Thus,
we get V̄k ≥ ᾱσ (k), and the feasibility of σ̄ is guaranteed.

Let Ci(σ ) and Ci(σ̄ ) denote the completion times of
the job Ji in schedules σ and σ̄ , respectively. Then,∑n

i=1 Ci(σ̄ ) = ∑n
k=1 kp̄σ̄ (n−k+1) = ∑n

k=1 kwσ(k) =∑n
i=1 wiCi(σ ). It follows that if we can get an optimal

schedule of the UET case, then we can easily construct an
optimal one of the unit-weighted case, and vice versa. �

Note that an instance of the UET case with δi ≤ 0 is to-
tally equivalent to an instance of the unit-weighted case with
δi ≥ 0, and that an instance of the UET case with δi ≥ 0 is
totally equivalent to an instance of the unit-weighted case
with δi ≤ 0. Therefore, two results follow from Theorem 1
and Theorem 2.

Corollary 1 The RPWT problem is strongly NP-hard, even
if δi ≥ 0 and wi = 1 for all jobs Ji ∈ J .

Corollary 2 The RPWT problem is strongly NP-hard, even
if δi ≤ 0 and wi = 1 for all jobs Ji ∈ J .

3 2-Approximation algorithm

In this section, we present a 2-approximation algorithm for
the UET case with δi ≥ 0 for all jobs Ji . The algorithm dis-
patches jobs in a greedy way. In the relocation problem, in-
tuition suggests that a job is preferred if it is more impor-
tant (wi is larger) or produces more resource (δi is larger).
Taking into account both attributes, we therefore create a se-
quence π1 of all jobs in non-increasing order of weights wi

and a sequence π2 of all jobs in non-increasing order of con-
tributions δi . In the course of execution of the algorithm, a
job Ji is called available at time t if its resource requirement
αi ≤ Vt . The algorithm starts by locating the first available
job of sequence π1. The job, if it exists, is assigned to the
first position of our schedule. If no job is available, then
infeasibility arises. The same logic is applied to sequence
π2 for the second position of our schedule. The dispatching
process is continued, by exploiting π1 and π2 alternatively,
until either all jobs are dispatched or infeasibility is encoun-
tered.

Algorithm W
Input. An initial resource level V0 and a job set J with pi =
1, αi ≤ βi for all Ji ∈ J ;
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Output. A feasible schedule σ or “No feasible schedule”.

1. For i = 0,1, . . . , �n
2 � do

2. If no job is available then stop and report
“no feasible schedule”.

3. Let Jk be the first available job in π1.

4. Set σ(2i +1) = k and delete Jk from π1 and π2.

5. Set V2i+1 = V2i + δk.

6. If all jobs are scheduled then stop and output σ .
7. If no job is available then stop and report

“no feasible schedule”.
8. Let Jk be the first available job in π2.

9. Set σ(2i +2) = k and delete Jk from π1 and π2.

10. Set V2i+2 = V2i+1 + δk.

11. End For
12. Stop and output σ

The running time of Algorithm W is analyzed as follows.
The execution consists of O(n) iterations. Step 3 and Step 8
require O(n) time to locate the first available element in the
sequence π1 and in the sequence π2. Therefore, the overall
running time is O(n2). The following lemma is concerned
with the feasibility of produced schedules.

Lemma 1 If Algorithm W cannot generate a feasible sched-
ule of the given instance, then there exists no feasible sched-
ule of the instance.

Proof Assume Algorithm W terminates without a feasible
schedule after successfully scheduling k jobs, 1 ≤ k < n.
Let σ ′ be some feasible schedule and the index i,1 ≤ i < k,

be the first position where σ(i) 
= σ ′(i). We locate the job
Jσ(i) in the schedule σ ′ and insert it into the position i of
the schedule σ ′. The new schedule remains feasible because
the job Jσ(i) has non-negative contributions. Repeating the
process, we can come up with a feasible schedule whose first
k jobs are the same as those in σ , which is, however, infeasi-
ble. A contradiction arises. Therefore, no feasible schedule
can exist if Algorithm W stops without a feasible schedule
constructed. �

To analyze the performance ratio, we let σ be the sched-
ule obtained by Algorithm W and let σ ∗ be an optimal
schedule.

Lemma 2 Vt (σ
∗) ≤ V2t (σ ) for all t = 1, . . . , �n

2 �.

Proof Note that for a specific t , Vt (σ
∗) = V0 + ∑t

i=1 δσ ∗(i)
and V2t (σ ) = V0 + ∑2t

i=1 δσ(i). To show
∑t

i=1 δσ ∗(i) ≤
∑2t

i=1 δσ(i) for any t = 1, . . . , �n
2 �, we prove by induction

on t that for any t = 1, . . . , �n
2 � there is a one-to-one map-

ping ft : {δσ ∗(1), . . . , δσ ∗(t)} → {δσ(1), . . . , δσ(2t)} such that
δσ ∗(i) ≤ ft (δσ ∗(i)) for all 1 ≤ i ≤ t .

For t = 1, define f1(δσ ∗(1)) = max{δσ(1), δσ(2)} ≥ δσ ∗(1).
Assume there exists a mapping ft as specified for some t ,
1 ≤ t < �n

2 �. It follows that Vt (σ
∗) ≤ V2t (σ ) for this t.

Consider the case for t + 1. Define ft+1(δσ ∗(i)) = ft (δσ ∗(i))
for all 1 ≤ i ≤ t . If δσ ∗(t+1) ≤ δσ(2t+2), then define
ft+1(δσ ∗(t+1)) = δσ(2t+2), and the proof is complete. On
the other hand, if δσ ∗(t+1) > δσ(2t+2), then by the logic of
Algorithm W, in the schedule σ the job Jσ ∗(t+1) should
have been scheduled earlier than the job Jσ(2t+2), in other
words, δσ ∗(t+1) = δσ(j) for some j,1 ≤ j ≤ 2t + 1. Let
job Jσ ∗(k) be the job satisfying ft+1(δσ ∗(k)) = δσ(j). If
δσ ∗(k) ≤ δσ(2t+2), then redefine ft+1(δσ ∗(k)) = δσ(2t+2), and
define ft+1(δσ ∗(t+1)) = δσ(j) (δσ(j) = δσ ∗(t+1)). The map-
ping ft+1 satisfies the required criterion, and thus the proof
is complete. If, however, δσ ∗(k) > δσ(2t+2), then repeat
the above process to redefine the mapping ft+1. Because
|{δσ ∗(1), δσ ∗(2), . . . , δσ ∗(t+1)}| < |{δσ(1), δσ(2), . . . , δσ(2t+2)}|
and we never use any element of σ ∗ twice, the process will
terminate with a mapping ft+1 as specified. �

Theorem 4 Algorithm W for the RPWT problem with δi ≥ 0
and pi = 1 has a performance ratio of 2.

Proof Given the job weights wσ ∗(1),wσ ∗(2), . . . ,wσ ∗(n)

along the positions in an optimal schedule σ ∗, we have
the weighted completion time Z(σ ∗) = ∑n

k=1 kwσ ∗(k). The
following discussion will construct a sequence σ ′ out of σ

such that Z(σ) ≤ Z(σ ′) and Z(σ ′) ≤ 2Z(σ ∗). The second
inequality will be established by confirming that the coef-
ficient of any job weight wσ ∗(k),1 ≤ k ≤ �n

2 �, is no greater
than the coefficient of the job weight wσ ′(2k−1). In the proof,
we focus on the coefficients of job weights and ignore the
feasibility issue of the constructed intermediate sequences.

Initially, let σ ′ = σ . For each k from �n
2 � down to 1, we

consider two cases:
Case 1. The job Jσ ∗(k) with the weight wσ ∗(k) occupies a
position from {1,2, . . . ,2k − 1} in σ ′.
In this case, the coefficient of weight wσ ∗(k) is less than 2k

in σ ′.
Case 2. The job Jσ ∗(k) with the weight wσ ∗(k) occupies a
position from {2k,2k + 1, . . . , n} in σ ′.
From Lemma 2 and the fact that all jobs have non-negative
contributions, the inequality

Vk−1(σ
∗) ≤ V2k−2(σ

′) ≤ V2k−1(σ
′)

will hold. Therefore, in the execution of Algorithm W, the
job Jσ ∗(k) is in the candidate list for position 2k − 1. Due to
the selection logic of Algorithm W, we know that wσ ∗(k) ≤
wσ ′(2k−1). Swapping the positions of job weights wσ ∗(k) and
wσ ′(2k−1) in σ ′ will not decrease the total weighted comple-
tion time of σ ′. Moreover, the coefficient of wσ ∗(k) is now
2k − 1.
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The above iterative process will result in a sequence σ ′
such that

Z(σ ′) ≤
n∑

k=1

2kwσ ∗(k) = 2Z(σ ∗).

Moreover, Z(σ ′) ≥ Z(σ) is maintained in the iterative
process. Therefore, we have Z(σ)/Z(σ ∗) ≤ 2 and the proof
is complete. �

To examine the tightness of the performance ratio, we
consider an instance with V0 = 0 and J = {J1, J2, . . . , Jn},
where n is even. The jobs are defined as

αi = 0, βi = 0,wi = 1, for i = 1,2, . . . ,
n

2
;

αi = 0, βi = 1,wi = 0, for i = n

2
+ 1,

n

2
+ 2, . . . , n.

Applied to this instance, Algorithm W produces the sched-
ule

σ =
(

1,
n

2
+ 1,2,

n

2
+ 2, . . . ,

n

2
− 1, n

)

with Z(σ) = 1 + 3 + · · · + (n − 1) = n2−n
4 . The optimal

schedule of the instance is

σ ∗ =
(

1,2, . . . ,
n

2
,
n

2
+ 1, . . . , n

)

with Z(σ ∗) = 1 + 2 + · · · + n
2 = n2+2n

8 . Therefore,

limn→∞ Z(σ)
Z(σ ∗) = 2.

By the problem equivalence given in Theorem 3, Algo-
rithm W can be applied to generate an approximate solution
for the problem with δi ≤ 0 and wi = 1.

4 Conclusion

In this paper, we have considered the minimization of the
weighted sum of completion times in the relocation prob-
lem, which is a generalized resource-constrained scheduling
problem. Four restricted cases were shown to be strongly
NP-hard. In the proof, we have also introduced the equiv-
alence between the UET case and the unit-weighted case.
A polynomial-time approximation algorithm with a perfor-
mance ratio of 2 was presented for the special case with
δi ≥ 0 and pi = 1. We gave an instance to establish the
tightness of the ratio. By the equivalence conveyed by The-
orem 3, the approximation result can be applied to the spe-
cial case with δi ≤ 0 and wi = 1. An intriguing phenom-
enon is that the proof techniques used to establish the per-
formance ratio cannot be modified to the two other cases:
δi ≤ 0 and pi = 1, and δi ≥ 0 and wi = 1. It could be in-
teresting to develop approximation algorithms for these two

special cases. Moreover, investigating the approximability
or inapproximability of the general version of the RPWT
problem could be another research topic.
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Appendix A: Detailed proof of Theorem 1

Assume that the connecting jobs start in increasing order of
their indices. If it is not the case, we let Ji and Jj be the
two connecting jobs with i < j and Jj preceding Ji in some
optimal schedule σ . We swap their positions. Since their net
contributions and weights are equal to zero, the swap will
not change the amount of resource over time and the value
of the objective function. So we just need to be sure that
Ji and Jj are still available in new positions. Since all jobs
have non-positive contributions, the amount of resource will
not increase over time. Further, the inequality αi ≥ αj holds
and Ji is available in σ . It follows that both jobs are available
after the swap.

IF Let the sets A1,A2, . . . ,Am be a partition as specified
in the ON3M problem. Let πl be a permutation of integers
of Al in increasing order. Define the sequence

σ0 = (
π1,3m + 1,3m + 2,3m + 3,π2, . . . , πl,3(m + l − 1)

+ 1,3(m + l − 1) + 2,3(m + l − 1)

+ 3,πl+1, . . . , πm

)
.

It is easy to verify that the schedule defined by the integers
in σ0 as job indices is feasible. Now we calculate the to-
tal weighted completion time, Z(σ0), of the schedule. Here-
after, subscripts enclosed by brackets are positional indices
for a particular schedule. Because the jobs indexed by the
elements of set Al are processed from time 6(l − 1) to time
6l − 3 and the weights of all connecting jobs are 0, we have

Z(σ0) =
m∑

l=1

3∑

k=1

(
6(l − 1) + k

)
(η + x[6(l−1)+k])

=
m∑

l=1

(18l − 12)η +
m∑

l=1

3∑

k=1

6(l − 1)x[6(l−1)+k]

+
m∑

l=1

3∑

k=1

kx[6(l−1)+k].

Note that the indices 6(l − 1) + 1,6(l − 1) + 2 and
6(l − 1) + 3 correspond to the integers of the set Al. Thus,
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we have
∑3

k=1 x[6(l−1)+k] = B for all l = 1, . . . ,m. It fol-
lows that

Z(σ0) = 9m(m + 1)η − 12mη + 6
m∑

l=1

(l − 1)B

+
m∑

l=1

3∑

k=1

kx[6(l−1)+k]

= 3mη(3m − 1) + 3mB(m − 1)

+
m∑

i=1

3∑

k=1

kx[6(l−1)+k].

When σ0 was constructed, each element of Ak, k = 1,2, or
3, corresponds to some position 6(l −1)+k, l = 1,2, . . . ,m

in σ0. It follows that for a specific k,
∑m

l=1 kx[6(l−1)+k] =
k
∑

i∈Ak
xi , and we obtain Z(σ) = Z∗.

ONLY IF Let σ be a feasible schedule of the instance
I such that Z(σ) ≤ Z∗. Firstly, we show that connecting
J3(m+l−1)+k does not start after time 6l + k − 4,1 ≤ l ≤
m − 1,1 ≤ k ≤ 3. Let J3(m+l−1)+k be some connecting job
that starts at time τ > 6l + k − 4. In the schedule σ, ex-
actly 3(l − 1) + k − 1 connecting jobs will complete before
J3(m+l−1)+k . It follows that at least 3l + 1 basic jobs com-
plete before τ . Then,

Vτ ≤ (3mB + B)m − (3l + 1)mB

= (3mB + B)(m − l) − B(m − l)

< (3mB + B)(m − l).

The last strict inequality follows from l ≤ m − 1. Thus,
α3(m+l−1)+k = (3mB + B)(m − l) > Vτ , and we get a con-
tradiction to the feasibility of schedule σ . Consequently, for
all l and k,1 ≤ l ≤ m − 1,1 ≤ k ≤ 3, the completion time
of job J3(m+l−1)+k must be less than or equal to 6l + k − 4.
Let J3(m+l−1)+k be some connecting job which starts at time
τ < 6l + k − 4 in the schedule σ . We move J3(m+l−1)+k to
time 6l+k−4 and shift all jobs between τ +1 and 6l+k−4
one unit earlier. Because α3(m+l−1)+k = β3(m+l−1)+k and
w3(m+l−1)+k = 0, the move will not increase the objective
function value.

Thus, we proved that the connecting jobs must oc-
cupy time intervals [6l − 3,6l), l = 1, . . . ,m − 1 and, cor-
respondingly, the basic jobs must occupy time intervals
[6(l − 1),6l − 3), l = 1, . . . ,m. It is clear that each interval
[6l − 6,6l − 3) contains exactly three jobs J[6l−6], J[6l−5],
and J[6l−4]. Let Bl = ∑3

k=1 x[6(l−1)+k]. Next we show that

s∑

l=1

Bl =
s∑

l=1

3∑

k=1

x[6(l−1)+k] ≤ sB (1)

for all s = 1, . . . ,m. Let s′ be some index such that (1) does
not hold. Then,

V6s′−3 = V0 −
s′

∑

l=1

3∑

k=1

α[6(l−1)+k]

= (3mB + B)m −
[

3s′mB +
s′

∑

l=1

3∑

k=1

x[6(l−1)+k]

]

< (3mB + B)(m − s′).

It is a contradiction to the feasibility of the schedule σ

because the connecting job J3(m+s′−1)+1 requires (3mB +
B)(m − s′) units of the resource.

Finally, we have

Z(σ) =
m∑

l=1

3∑

k=1

(
6(l − 1) + k

)
(η + x[6(l−1)+k])

= 9m(m + 1)η − 12mη +
m∑

l=1

3∑

k=1

6(l − 1)x[6(l−1)+k]

+
m∑

l=1

3∑

k=1

kx[6(l−1)+k].

The second term
∑m

l=1
∑3

k=1 6(l − 1)x[6(l−1)+k] can be fur-
ther elaborated as follows:

m∑

l=1

3∑

k=1

6(l − 1)x[6(l−1)+k]

= 6
m∑

l=1

(l − 1)Bl

= 6

(
m∑

l=1

mBl −
m∑

l=1

(m − l + 1)Bl

)

= 6
(
m2B − (

mB1 + (m − 1)B2 + · · · + Bm

))

= 6

(

m2B −
(

m∑

l=1

Bl +
m−1∑

l=1

Bl + · · · +
1∑

l=1

Bl

))

≥ 6m2B − 6(mB + (m − 1)B + · · · + B) (by (1))

= 3mB(m − 1).

Incorporating the inequality into the equation of Z(σ), we
get

Z(σ) ≥ 3mη(3m − 1) + 3mB(m − 1)

+
m∑

l=1

3∑

k=1

kx[6(l−1)+k]. (2)
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The last term in (2) is at least
∑

i∈A1
xi + 2

∑
i∈A2

xi +
3
∑

i∈A3
xi . Indeed, the equality

m∑

l=1

3∑

k=1

kx[6(l−1)+k] =
∑

i∈A1

xi + 2
∑

i∈A2

xi + 3
∑

i∈A3

xi

holds if for all l, the job J[6(l−1)+1] corresponds to some el-
ement from the set A1, the job J[6(l−1)+2] corresponds to
some element from the set A2, and the job J[6(l−1)+3] corre-
sponds to some element from the set A3. It follows that

Z ≥ 3mη(3m − 1) + 3mB(m − 1) +
∑

i∈A1

xi

+ 2
∑

i∈A2

xi + 3
∑

i∈A3

xi = Z∗.

Equations (1) and (2) together imply that Z = Z∗ if and
only if

∑s
l=1 Bl = sB for all s, 1 ≤ s ≤ m. It follows that

Bl = B,1 ≤ l ≤ m, and the corresponding instance of the
Ordered Numerical 3-Dimensional Matching problem has
the required partition. The proof is complete.
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