
Candidate	ORFs in	Size of	Location	Analysis and research of
plasmids	Candidate	ORFs	of ORFs	ORFs relevant to this study
	plasmid	(amino	in	
	inserts	acids)	Stanford	
			database	
C13	13a	380	Contig	• Protein containing six
	(<i>REP3</i>)		6-2308	C2H2 type zinc finger
				domains, predicted as a
				transcriptional factor
	13b	345	Contig	
			6-2021	
C19	19a	694	Contig	• Protein with weak
	(REP4)		6-2505	similarity to S.
				cerevisiae Mnn4p,
				which is required for
			and the second	transfer of
		. S.		mannosylphosphate
	19b	340	Contig	10
			6-2505	1.1.1
C82	82	785	Contig	 Protein with weak
	(<i>REP5</i>)	200	6-2197	similarity to S. pombe
				Gti1p, which is
				involved in gluconate
				transport induction
C92	92	507	Contig	• Protein containing two
	(<i>REP6</i>)		6-2488	zinc finger C2H2 type
				repeats, which bind
				nucleic acids
				• mRNA abundance is
				greater in C. albicans
				strains highly resistant
				to azole (MIC >64
				mg/ml) than in strains
				weakly resistant to
				azole (MIC <0.25
				mg/ml)

Table 1. The relevant information of the isolated ORFs

Table 2. The differences in *CDR1* promoter sequence between SC5314 and Ym990348 strains. * means no nucleic acids. Taking second line for example, there are no nucleotides in Ym990348 promoter corresponding to T in SC5314*CDR1* promoter at –803 position.

The position at <i>CDR1</i>	SC5314 CDR1	Ym990348 CDR1
promoter	promoter sequence	promoter sequence
-803	Т	*
-526	С	G
-516~ -511	GAATC	*
-481~ -480	*	ТССТ
-436	Т	G
-431~ -429	GCA	*
-377	G	*
-235~ -234	*	AA
-234	C	Т
-110~ -99	*	TTGTTACTTAC
-184	* 5	Т
-9	CE	G
	FILL TROG	

William.

Appendix 1. Predicted structural organization of Cdr1p and nucleotide binding domain (NBD). The topological model of Cdr1p shows two putative transmembrane domains (TMD) and two NBDs. Each TMD comprises six R-helices spanning the lipid membrane. The cytoplasmic domains of Cdr1p, i.e., NBD1 and NBD2, are located at the N- and C-terminus, respectively. (Jha *et al.*, 2003)