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蛋白質於細胞位置之預測 
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指導教授：黃鎮剛博士 
 

 

國立交通大學 生物科技學系 博士班 

摘 要       
 

 

蛋白質在細胞體內的位置(subcellular localization)與其生理功能有著密不可分的關係，一般相

信，在此有利的線索下，能幫助研究者更快速有效的分析該蛋白質的功能；在此需求下，近年

來不斷的有相關的預測工具被發展出來，胺基酸與核甘酸序列數目快速增長的當前，透過計算

工具直接針對序列作預測和分析尤其重要，而這些根據不同演算法(algorithms)所發展的各種

方法差異極大，應用的序列來源物種和各細胞位置的預測結果也有很大的變異。在這篇論文

中，首先我利用支持向量機(Support Vector Machines)，根據各種不同多樣特性的 n-peptide 

組成份，並針對已知的幾個標準資料群作測試，都能比原有的方法得到更好的預測結果。接下

來，為了持續改進原有的方法同時也希望深入探討這個方法的優缺點和限制，便更進一步利用

序列比對的方式檢測這些標準資料群，發現目前各廣泛使用的資料群中均存在非常高比例的同

源性序列(highly homologous sequences) ，以至於造成高估的預測結果；而前人的研究中，如

Rost and Nair (Protein Sci, 11:2836-47 (2002))曾探討蛋白質序列的相似度與細胞位置的關係，即

在相同細胞位置的蛋白質帶有著較為保留的胺基酸序列(conserved sequence)，對於序列和細胞

位置的關係，明確劃定了一個序列比對可辨識的相似度界限(threshold)；同時我發展了一個雙

層支持向量機(two-level support vector machine)系統，於第一層由胺基酸序列所轉換的不

同特徵向量(feature vectors)製造數種有效的支持向量機分類器(SVM classifiers) ，第二層

將上述的分類器的預測結果由支持向量機結合，藉此得到一個預測某蛋白質可能細胞位置的機

率分布值；再將序列比對與此方法分別應用於目前兩個非常常用的標準資料群，前者並全面性

的兩兩配對比較其序列相似度(sequence identity)，與前人研究相符，在胺基酸序列相似度小於

30%時，序列比對所能判別該蛋白質所在細胞位置的能力急劇降低，而雙層的支持向量機預測

力則不受影響並遠優於序列相似度判別的效力，利用這樣的特性進一歩將兩者有效結合，此合

成方法得到了極佳的預測結果。我們將此方法所發展的工具建置成網頁伺服器，命名為 CELLO 
(subCELlular Localization predictive system) ，供研究者使用，對於大量 high-throughput 的蛋白

質體和基因體資料分析應有相當的幫助。 
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Prediction of Protein Subcellular Localization 

 
student：Chin-Sheng Yu Advisors：Dr. Jenn-Kang Hwang 
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ABSTRACT 
 

 

Since the protein's function is usually related to its subcellular localization, the ability to predict 

subcellular localization directly from protein sequences will be useful to biologists to infer protein 

function. Recent years we have seen a surging interest in the development of novel computational 

tools to predict subcellular localization. With the rapid increase of sequenced genomic data, the need 

for an automated and accurate tool to predict subcellular localization becomes increasingly important. 

At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of 

success for specific organisms and for certain localization categories. In this thesis, I used support 

vector machine (SVM) method based on n–peptide composition in predicting the subcellular 

locations of proteins. For an unbiased assessment of the results, we apply our approach to several 

independent data sets in the beginning. In those data sets, our approach gives superior performance 

compared with other approaches. A number of authors have noticed that sequence similarity is useful 

in predicting subcellular localization. For example, Rost and Nair (Protein Sci, 11:2836-47 (2002)) 

have carried out extensive analysis of the relation between sequence similarity and identity in 

subcellular localization and found a close relationship between them above a certain similarity 

threshold. However, many existing benchmark data sets used for the prediction accuracy assessment 

contain highly homologous sequences – some data sets comprising sequences up to 80-90% 

sequence identity. Using these benchmark test data will surely lead to overestimation of the 

performance of the methods considered. Here, we developed an approach based on a two-level SVM 

system: the first level comprises a number of SVM classifiers, each based on a specific type of 

feature vectors derived from sequences; the second level SVM classifier functions as the jury 

machine to generate the probability distribution of decisions for possible localizations. We compare 

our approach with a global sequence alignment approach and other existing approaches for two 
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often-used benchmark data sets – one comprising prokaryotic sequences and the other eukaryotic 

sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to 

check the relationship between sequence homology and localization. Our results, which are 

consistent with previous studies, indicate that the homology search approach performs surprisingly 

well for sequences sharing homology as low as 30%, but its performance deteriorates considerably 

for sequences sharing lower sequence identity. A data set of high homology levels will obviously 

lead to biased assessment of the performances of the predictive approaches - especially those relying 

on homology search or sequence annotations. Since our two-level classification system based on 

SVM does not rely on homology search, its performance remains relatively unaffected by sequence 

homology. When compared with other approaches, our approach outperformed other existing 

approaches, even though some of which use homology search as part of their algorithms. 

Furthermore, for the practical purpose, we also develop a practical hybrid method that pipelines the 

two-level SVM classifier and the homology search method in sequential order as a general tool for 

the sequence annotation of subcellular localization. Our approaches should be valuable in the high 

throughput analysis of genomics and proteomics. 
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Chapter 1 

GENERAL INTRODUCTION 

The cell is the basic unit of life. Based on the structure differences of cell, organisms can be 

divided into two broad groups, the prokaryotes (bacteria) and the eukaryotes (all other forms 

of life, like plants and animals), which the former live itself as a single cell and the later live 

with others as an organization with several degrees of differentiating complex. Both of the 

single one are so small that invisible to the human eye. Roughly, bacterial cells are in the size 

of a few micrometers (10-6 m), and eukaryotic cells are 10- to 20-fold larger for any single 

one.  

There are some appearance differences in structure between the two groups. One of the most 

fundamental distinctions is the real, membrane-enveloped nucleus to box the inheritance 

materials only for eukaryotic cells. In addition, most eukaryotic cells have many similar 

membrane-bound internal compartments term as organelles, and they are highly specialized 

for particular functions, whereas the prokaryotic cells do not have. Biologists can recognize 

them with the assistance of electron microscopy. By the way, essential materials for 

corresponding cellular processes are bounded and therefore high concentrations for those are 

kept inside. For example, chemical reactions in mitochondria involved in energy production, 

photosynthesis in chloroplasts involved in converting solar energy into sugars, proteins and 

lipids synthesized in endoplasmic reticulum (ER), secretory proteins and polysaccharides 

synthesized in Golgi complex, hydrolases storing and molecules digesting in lysosomes, 

something temporary storage or transport in vacuoles, and an internal framework called  

cytoskeleton, helps to establish cell shape and maintain cell moment and cell division. 
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However, most cellular functions act in the cytoplasm or on the plasma membrane of 

prokaryotes. And the inheritance materials gather near the center of the cell nakedly, instead 

of a special internal membrane-enclosed nucleus. There exist so many significant structural, 

biochemical, and genetic differences in cellular form that people distinguish them easily. And 

almost both researches are usually discussed separately. 

Even relative few cause damages healthily or economically, most of the many thousand 

bacterial species known as harmless. Microbiologists study for medical diagnosis and 

treatment or other academic or industrial purposes through a series of experiments. 

Differential staining techniques were developed in order to isolate, enumerate, and identify 

targets from the samples. Some chemical materials force dye inside or outside the bacterial 

cells makes us distinguish them by color from others. For instance, the well known acid-fast 

stain is for the bacteria that cause tuberculosis. Besides, Gram staining is one of the most 

important and widely used staining techniques for bacteria. After a process of more than one 

dye solution smearing and washing out, Gram-positive bacteria retain the crystal violet dyed 

deep violet purple color; and Gram-negative bacteria lost the dye and appear red with safranin. 

Both cases just differ in thickness and substances composition of the cell wall.  Simply, the 

cell use membrane as boundary to form a closed room against environment. The boundary of 

cytoplasmic area contains essential material for a whole life. In bacteria, there is usually a 

layer of cell wall outside the membrane. Thus the great difference in the staining appearance 

between the two bacterial groups makes us detect the structure of the cells definitely. The cell 

walls of Gram-negative ones are generally thinner (10 to 15 nm) than those of Gram-positive 

bacteria (20 to 25 nm). The former is obviously more complex seen by electron microscopy. 

An outer membrane inside the wall contains a thin layer of peptidoglycan. And there is also 

an additional periplasmic space between the cytoplasmic membrane and the outer 
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membrane. The later do not have this space, that is, there is no outer membrane inside their 

cell wall.  

Cell structure and function diverge for different organisms of various size, shapes, and forms, 

even for different individual in the same body. Cells share common chemical molecules as 

building blocks and physical universe as interacting behaves. The major bases – proteins, 

nucleic acids, and polysaccharides are synthesized by series of chemical reactions for 

maintaining normal cellular organization and function. Most of them are too small or too thin 

to be seen under the light microscope and the sizes are about in the range of one to ten 

nanometers.  Proteins are considered to be necessary everywhere in the cell. In addition to 

enzymes, proteins form the basis of most cellular structures. Connective tissue, muscle fibrils, 

cilia, flagella – all are made primarily or partially of proteins. 

Tremendous amounts of DNA and protein sequences data have come out from experiment 

upon recent progress in genomics research. When many molecular sequences are in long-

winded prospecting for role and property identification, much more mines are waiting in the 

process simultaneously. Hence, to develop useful computational tools to extract relevant 

biological information from sequences in a short time becomes even more important 

nowadays. Since the protein's function is closely associated with its subcellular localization, 

the ability to predict protein subcellular localization will be useful in the characterization of 

the expressed sequences of unknown functions and interactions. Besides providing the clues 

of cell physiological properties, it will be helpful for the design of protein isolation and data 

analysis in experiment, furthermore, in medical researches. 

In recent years, many efforts[1-21] have been made to predict protein subcellular locations 

based on the cell structure definition as described above. These approaches cover 
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various types of algorithms such as the knowledge-based expert system[15], the artificial 

neural networks[13, 16, 18], the support vector machines (SVM)[11, 17, 20, 21], the 

covariant discriminant algorithm[2, 5], or the Bayesian networks[8, 9, 19]. The most used 

features are the short N-terminal amino acid sequences[6, 7, 14-16] (i.e., the sorting or signal 

peptides), or the amino acid compositions[2, 5, 10, 11, 13, 17, 18] (or the general n-peptide 

compositions[20, 21]) derived from the whole amino acid sequences. Other approaches make 

use of additional information like sequence profiles derived from PSI-BLAST[1, 8-10], the 

ontology labels or the text annotations of the sequence databases[12, 19, 22]. In this thesis, we 

improved present approach through characteristics extraction from sequences and feedbacks 

to ensure some information correlating to protein localization.  
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Chapter 2 

Prediction for subcellular localization of proteins from different datasets by support vector 

machines based on n-peptide compositions 
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INTRODUCTION 

Some studies[11, 18] have shown that methods based on the amino acid composition appear 

be more robust to errors in 5' gene annotation than those based on targeting sequences. 

Recently, Andrade et al[23] found that the total amino acid composition of the surface 

residues carries a signal that could help to identify the subcellular location, and they 

postulated that proteins in each location adapt their structures to their environmental 

variations throughout evolution. A number of studies[2, 5, 11, 18, 23] have shown that amino 

acid composition is a useful feature vector in the prediction of protein subcellular location as 

well as other protein global properties, such as protein folds[24, 25], disulfide bridges[26] and 

protein thermophilicity[27]. 

Reinhardt and Hubbard[18] applied  neural networks to the prediction of subcellular location 

of proteins and obtained a prediction accuracy of 81% for three subcellular locations in 

prokaryotic organisms and 66% for four locations in eukaryotic proteins. Using the same data 

set, Hua and Sun obtained a prediction accuracy of 91.4% for prokaryotic organisms and 

79.4% for eukaryotic organisms using SVM based on amino acid composition. Cedano et al[2] 

carried out a correlation analysis of the amino acid composition and the cellular location of 

five protein classes and have developed a program ProLock to predict the cellular locations of 

proteins. However, there are concerns that the methods based on the amino acid composition 

could have an intrinsic limitation on their predictive performance, because the amino acid 

composition does not have sequence-order information.  Chou and coworkers developed 

approaches based on the pseudo amino acid composition[28], which is designed to include 

sequence correlation effects. For a data set[5, 28] comprising 12 location categories, the 

prediction accuracy reached 73.0% based on the pseudo amino acid composition, which is 
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significantly higher than those results based on general amino acid composition.  

Gram-negative bacteria have five major subcellular localization sites that include the 

cytoplasm, the inner membrane, the outer membrane, the periplasm, and the extracellular 

space. PSORT I[29] has been the most widely used predictive tool for Gram-negative bacteria. 

However, it does not predict extracellular sequences, and its predictive performance reaches 

only 61% in overall prediction accuracy for a standard data set [9]. Recently Gardy et al.[9], 

combining different algorithms and input information, developed a multimodular method 

PSORT-B. This approach comprises six modules examining the query sequence specifically 

for different characteristics such as amino acid composition, similarity to proteins of known 

localization, presence of a signal peptide, transmembrane α-helices, and motifs corresponding 

to specific localizations. This program then constructs a Bayesian network to generate a final 

probability value for each localization site. This approach yields an overall prediction 

accuracy of 75% for all location sites, significantly improving the previous results of PSORT 

I by 14%. However, despite the great improvement, PSORT-B gives modest prediction for 

some subcellular locations. For example, it gives a poor predictive accuracy of 58% for 

periplasmic sequences and 69% for cytoplasmic sequences.  

Recently, we have developed an SVM method based on the n–peptide composition encoding 

scheme[25]. This coding scheme has the advantage of incorporating global sequence in a 

systematic way, which has been successfully applied to the prediction of protein folds[25]. In 

this work, we extend the approach to the prediction of protein subcellular locations. In order 

to get unbiased assessment of the results, we applied our approach to three independent data 

sets: the first set consisting of 997 prokaryotic proteins in three localization categories and 

2427 eukaryotic proteins in four location categories[18]; the second set comprising 2191 
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proteins in 12 subcellular locations[30]; and the third set including 1443 protein sequences in 

five localization sites[9]. In those data sets, our approach gives superior performance 

(accuracy) compared with other approaches.  

 

MATERIALS AND METHODS 

Support Vector Machine (SVM) 

Given training vectors xi,  i =1,..., l  and a vector y  defined as: yi =1if xi  is in one class, and 

yi = −1 if xi  is in the other class. The support vector technique[31] tries to find the separating 

hyperplane wT xi + b = 0  with the largest distance between two classes, measured along a line 

perpendicular to this hyperplane. This requirement is equivalent to minimizing 1
2 wT w  with 

respect to w  and b  under the constraint that yi wT xi + b( )≥1. However, in practice, these data 

to be classified may not be linearly separable. To overcome this difficulty, SVM non-linearly 

transforms the original input space into a higher dimensional feature space by 

φ(x) = (φ1(x),φ2(x), ...)  and tries to minimize the object function 1
2 wT w + C ξ ii=1

l∑  with 

respect to w , b  and ξ , under the constraint that yi wTφ(xi) + b[ ]≥1−ξ i , where ξi ≥ 0 . The 

function K xi,x j( )≡ φ xi( )T φ x j( ) is usually called the kernel function. Note that training data x 

is mapped into a (possibly infinite) vector in a higher dimensional space; since in the higher 

dimensional space, it is more possible that data can be linearly separated. This procedure has 

the advantage of allowing training errors, since we do not require that training data should be 

always on the correct side of the separating hyperplane wT x + b = 0 , and we also try to 

minimize the training error ∑ =

l

i i1
ξ  in the objective function. In the end, the decision 
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function is written as f (x) = sign(wTφ(x) + b). In other words, for a test vector wT x + b > 0, 

we classified it to be in class 1. Otherwise, we think it is in the second class. Those xi 's  that 

are used to construct w  and b  are called support vectors.  

In the training process, only part of the training data are used to construct the hyperplane, 

hence avoiding the overfitting problem usually plaguing other machine learning methods. 

These data constructing the classifier are called support vectors. The preliminary tests showed 

that the radial basis function (RBF) kernel gave results better than other kernels. Therefore, in 

this work we used the RBF kernel for all the experiments. 

An important issue of optimizing SVMs is the selection of parameters. For SVM training, a 

few parameters such as the penalty parameter and the kernel parameter of the RBF function 

must be determined in advance. Choosing optimal parameters for SVM is an important step in 

SVM design. We used the cross-validation on different parameters for the model 

selection[32]. In this work, all SVM calculations were performed by using LIBSVM[33], a 

general library for support vector classification and regression. 

Coding schemes 

In the past study[25], we have shown that protein descriptors based on the n–peptide 

composition are effective in predicting protein folds. For the simplest case n =1, the n–

peptide composition were reduced to the amino acid composition, which can also be 

considered as a first-order approximation to the global protein sequence. When n = 2, the n–

peptide composition gives 20 × 20 = 400 dipeptide composition. When n gets larger, the n-

peptide compositions will cover more global sequence information, but at the same time, such 

a coding scheme becomes not only impractical from a computational viewpoint but also 

undoable from a learning viewpoint. However, the size problem can be overcome if we 
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regroup the amino acids into a smaller group of classes, according to their physico-chemical 

properties or the structural properties. In this work, we use the notation An  to denote the n-

peptide composition of amino acids; Fn  to denote the reduced amino acid composition in 

which 20 amino acids are classified into four groups: polar, nonpolar, acid and base; and Xk  

to denote the partitioned amino acid composition in which the sequence is partitioned into k 

regions of equal length, and each partitioned sequence described by its amino acid 

composition are concatenated together. For example, the notation 5X  denotes that the 

sequence is divided into 5 subsequences, each of which is encoded by A1 (note that 1X  is 

equivalent to A1). Similar sequence coding schemes such as the n-gram hashing function has 

also been successfully applied to the protein classification[34, 35]. And further, amino acid 

composition can be substituted for reduced amino acid composition in this partitioned feature. 

Like Fn  and Xk , the combined new one denotes as Fn Xk . These input vectors can be 

concatenated into one long input vector and fed into SVM. In this work, we used A + B + CD 

to denote three SVM classifiers, which are trained with input vector A, B and the combined 

input vector CD, and the final prediction is decided by the jury votes from the classifiers. 

Training and testing the SVM classifiers 

For multi-class SVM classification, we use the one-against-one (OAO) method[25].  Given J  

classes of subcellular locations, we construct J J −1( )/2 SVM classifiers for a given type of 

input vector and train with proteins from two different subcellular locations. For each penalty 

parameter and kernel parameter, cross validation combining with the OAO method is used for 

estimating the performance of the model. Therefore, for each model, J J −1( )/2  decision 

functions share the same parameter. Each protein in the test set always get a vote from each 

binary classifier. In the end, we used the jury voting to determine the final assignment of 
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locations to each sequence in the test set. In the case of identical votes, we gave more weight 

to the vote from X4 because of the better performance. The general architecture of our 

predictive system is shown in Figure 1. We use the standard Qi  percentage accuracy[36-38] 

and the Matthew's correlation coefficient[39] MCC  for assessing the accuracy of subcellular 

location identification:  Qi = ci /ni, where ni  is the number of test data in the ith  subcellular 

location and ci  the number correctly predicted. The overall Qt  is given by Qt = wiQii

F∑ , 

where w = ni /N . The Matthew's correlation coefficient  MCC is given by[39] 

MCCi =
tpitni − fpi fni

tpi + fni( ) tpi + fpi( ) tni + fpi( ) tni + fni( )
, 

where tpi is the true positives in location i , tni  is the true negatives in location i , fpi is the 

false positives and fni  is the false negatives. MCCi  is one for a perfect prediction, and zero 

for a completely random prediction. 

We also assess the performance of the classifiers by the Jackknife test, which measure the 

prediction accuracy systematically by singling out one sequence as a test case from the data 

set during the training process and then testing the classifiers against this single protein. The 

Jackknife test is considered as the most objective and effective method in assessing the 

statistical prediction[40], and all our results reported here are done with the jackknife tests.  

All computations are done on a 48 double-CPU PC cluster running in the Linux system. And 

for convenience, we denoted our Subcellular Localization Predictive System as CELLO. 

Data sets  

We use three independent data sets for the assessment of our approach. The first data set is 
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that of Reinhardt and Hubbard[18], called the RH dataset. The RH data set consists of two 

parts: the prokaryotic set and the eukaryotic set. The prokaryotic set includes 997 protein 

sequences in three categories: 688 cytoplasmic proteins, 202 periplasmic proteins and 107 

extracellular proteins; the eukaryotic set includes 2427 sequences in four location categories: 

1097 nuclear proteins, 684 cytoplasmic proteins, 321 mitochondrial proteins and 325 

extracellular proteins. The pair sequence identities are less than 90% among the data set to 

avoid a bias towards large sequence families with high similarity. The second data set is from 

Chou and Elrod[5, 28], referred to as the CE data set. This data set contains 2191 protein 

sequences in 12 categories, which consists of 145 chloroplast proteins, 571 cytoplasm, 34 

cytoskeleton, 49 endoplasmic reticulum (ER), 224 extracellular, 25 Golgi apparatus, 37 

lysosome, 84 mitochondria, 272 nuclear proteins, 27 peroxisome, 699 plasma membrane, and 

24 vacuole. In this data set, there are sequence pairs with sequence identity > 90%, though the 

average sequence identity in each category is less than 12%. The third data set we used is the 

same with Gardy et al.[9], termed the PS 1.0 dataset (for the version 1.0), extracted from 

SWISS-PROT release 40.29[41]. This data set consists of 1443 protein sequences: 1302 

proteins localized in a single subcellular site, which are 248 cytoplasmic, 268 inner membrane, 

244 periplasmic, 352 outer membrane, and 190 extracellular. This data set also includes a 

further 141 proteins resident at multiple localization sites: 14 cytoplasmic/inner membrane, 

50 inner membrane/periplasmic, and 77 outer membrane/extracellular.  

 

RESULTS AND DISCUSSION 

The RH data set 
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In order to have an unbiased assessment, we tested our approach on two data sets. The first 

one is the RH data set, a benchmark data set studied by a number of investigators[5, 11, 18, 

42, 43]. In Table 1 and 2, we summarize the prediction accuracies using different input 

vectors by Jackknife tests on the eukaryotic and prokaryotic set, respectively. Only the best 

results of the given coding schemes are reported. For eukaryotic sequences (Table 1), the 

overall prediction accuracy with the portioned amino acid composition X4  is the best among 

the single parameter sets. The SVM based on the dipeptide composition A2 performs slightly 

better than based on the amino acid composition A1. The SVM based on the reduced amino 

acid representation 53 XF  gives relatively poor prediction accuracy. The multiple input vectors 

A1 + A2 + X4 + F3X3  give prediction accuracies higher than those of the single parameter 

sets – the best overall prediction accuracy for eukaryotic sequences is 87.0%. Among the 4 

subcellular locations, the prediction accuracy for the nuclear sequences reaches 96.0%. The 

prediction accuracies for mitochondrial location are relatively lower – the best prediction 

accuracy is 69.5%. 

For prokaryotic proteins (Table 2), the single input vector A1 , A2  and X4  already give 

excellent prediction accuracies around 91-92%, while both multiple input vectors gives the 

slightly better overall prediction accuracies.  The prediction accuracy for cytoplasmic 

sequences can reach 99.7%.  In general, the prediction accuracies for prokaryotic sequences 

are higher than those for eukaryotic sequences. 

 

Comparison with other approaches 

The RH data set has been studied by a number of investigators. There are the neural 
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network method described by Reinhardt and Hubbard[18], the SVM by Hua and Sun[11], the 

covariant discriminant method by Chou and Elrod[5], the Markov chains model by Yuan[43] 

and the nearest neighbor algorithm by Chou and Cai[42] using a hybrid method of the 

function domain composition and pseudo amino acid composition. Tables 3 and 4 summarize 

the predictive performance of these approaches for the RH data set. All results are obtained by 

the Jackknife tests expect those of the Reinhardt and Hubbard, which are computed with six-

fold validation. It should be also noted that Chou and Cai did not report any results for 

individual location category.  

For the eukaryotic sequences (Table 3), our overall prediction accuracy is favored as 

compared to other approaches. Our prediction accuracy Qt = 88.1% is 21% higher than that 

of Reinhardt & Hubbard, 14% higher than that of Yuan, and 7.9% higher than that of Hua and 

Sun. For the subcellular locations, our prediction accuracy reaches 96.0% for the nuclear 

location – almost 10% higher than that of Hua & Sun. Our MCC's for subcellular locations 

are also significantly higher than those of other approaches. For example, our value of MCC 

for cytoplasmic sequences is 0.80, which is higher than both Yuan (0.60), and Hua and Sun 

(0.64). For mitochondria locations, our prediction accuracy (69.5%) is similar to that of Yuan, 

but our correlation coefficient (0.77) for this location is significantly higher than that of Yuan 

(0.53). Though Chou & Cai obtained an overall prediction accuracy better than our approach 

(about 2%), they reported neither Q  nor MCC for each subcellular location, so it is not 

possible to make any further comparison between these two approaches. 

For the prokaryotic sequences (Table 4), our method gives the superior predictive 

performance in both Q's and MCC's. Our Matthews correlation coefficients for subcellular 

locations are higher than those of all other approaches. For example, our value of MCC for the 
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cytoplasmic location is 0.90, higher than both Yuan (0.83), and Hua and Sun (0.86). Though 

our prediction accuracy for periplasmic proteins is lower than that of Reinhardt and Hubbard, 

we like to mention that their results are obtained with six-fold cross validation instead of the 

Jackknife tests.  

The CE dataset 

To include sequence-order effects, Chou has developed the coding scheme based on the 

pseudo amino acid composition[28], which consists of 20 + λ  discrete numbers, where the 

first 20 numbers are identical with those in the amino acid composition and the remaining 

numbers represent λ  different ranks of sequence correlation factors. Using the pseudo amino 

acid composition, Chou[28]  have extensively studied the CE data set by different approaches, 

such as the least Euclidean distance method developed by Nakashima et al[44],  the ProtLock 

by Cedano et al[2]  and  the covariant discriminant approach[5] by Chou. Table 5 compares 

theses results by Jackknife tests. This table lists complete only Q's and MCC's for subcellular 

locations by our approach, this is because that Chou[28] reported only the total prediction 

accuracy Qt's. Our approach gives the best overall prediction accuracy Qt = 83.2% , 

significantly higher than those of other approaches.  Both Q's and MCC's vary considerably 

with regards to the locations. This is due to the highly uneven distributions of sequences in 

each location category (varying from 699 sequences in membrane to 24 in vacuole) – for 

example, the first five locations (as indicated by italics in the table) contain 87% of all 

sequences in 12 locations. If considered only the five most populated categories, our approach 

gives excellent results – the overall prediction accuracy is 90.3%, which is higher than 80.9% 

by Chou[28]. The CE data set, unlike the RH data set, includes many location categories that 

contain very small number of sequences (7 out of 12 locations contain only 13% of total 
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sequences), and this is the main reason that our prediction accuracies for these locations are 

generally poor. But we expect the prediction will greatly improve when more data are 

included. Despite the deficiency of the CE data set, our prediction accuracies for subcellular 

locations are still significantly higher than other approaches. 

The PS 1.0 dataset 

In Table 6, we compared the predictive performances of CELLO, PSORT I, PSORT-B, and 

SubLoc for five subcellular localization sites. Because the original SubLoc for prokaryotes 

predicts only three subcellular localization sites (cytoplasmic, periplasmic, and extracellular), 

we used the A1 SVM classifier for the current data set. The results are obtained with fivefold 

cross-validation. The overall prediction accuracy of CELLO reached 89%, which is 14% 

higher than that of PSORT-B, 28% higher than that of PSORT I, and 10% higher than that of 

SubLoc. In general, CELLO achieves better prediction accuracy for all subcellular 

localization sites than do the other approaches. Noticeably, our prediction accuracy for 

cytoplasmic location (Qi = 91%) is 22% higher than that of PSORT-B, and for periplasmic 

location (Qi = 87%) is 30% higher. These are very significant improvements on the previous 

results. In CELLO, the only prediction <80% is for extracellular location (Qi = 79%), but it is 

still 9% higher than that of PSORT-B. Although the prediction accuracy Qi offers a 

convenient measure for predictive performances, one should be careful in drawing hasty 

conclusion from Qi, because it overlooks overpredictions. MCC, taking into account of both 

under- and overpredictions, offers a complementary measurement for the predictive 

performances. For example, PSORT I gives a remarkable prediction accuracy, Qi = 95%, for 

inner membrane, but, due to overpredictions, it gives a less impressive MCC = 0.64, which is 

much lower than that of CELLO (MCC = 0.92) and other approaches. CELLO also performs 
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better than other approaches in terms of MCCs. The MCCs of CELLO ranges consistently 

between 0.80 and 0.92, but the MCCs of PSORT-B deviate greatly among location sites (the 

difference between MCCs reached 0.24). PSORT-B gives a particularly poor prediction for 

periplasmic location (MCC = 0.69), compared with that of CELLO (MCC = 0.80). The 

inconsistent prediction accuracies of PSORT-B for different localization sites may reflect the 

uneven predictive performances of different modules in PSORT-B. It is also worth noting that 

even though PSORT-B uses different modules and input information tuned up for specific 

localization sites, CELLO, a single module approach, achieved better predictive performances. 

For example, PSORT-B uses HMMTOP[45] to predict inner membrane sequences, 

HMMTOP being a well-known hidden Markov model approach specifically designed to 

identify transmembrane proteins, but CELLO still gives better results, Qi = 88% and MCC = 

0.92, compared with Qi = 79% and MCC = 0.85 obtained by PSORT-B. It is interesting to 

note that SubLoc shows a better overall performance than the more complicated multimodular 

PSORT-B. SubLoc can be seen as a special case of CELLO, because SubLoc uses amino acid 

compositions as the only input vectors. This surprisingly good predictive performances 

support previous observations that amino acid composition is indeed a good discriminator for 

subcellular localization. 

 

CONCLUSION 

In this chapter, we apply the SVM approach based on n–peptide composition to the prediction 

of subcellular locations. For an unbiased assessment of the results, we test our approach by 

Jackknife tests on three independent data sets. Our approach yields significantly better 

prediction performance for all data sets than existing approaches in both overall prediction 
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accuracy and the correlation coefficients for associated subcellular locations. It is worth 

noting that our approach based on n–peptide composition also outperforms those approaches 

based on Markov chains model and pseudo amino acid composition, which include the order 

information. In addition, CELLO is a simple, straightforward implementation of a single 

module (SVM) based on multiple n-peptide composition to predict subcellular localization. It 

does not need specialized algorithms or particular input vectors for each subcellular 

localization site. Compared with CELLO, PSORT-B comprises six modules, with different 

modules examining specific localization sites, the results of which are then used to construct a 

Bayesian network to generate a final probability for localization sites. However, it is 

remarkable that CELLO gives significantly better predictive performances. Because CELLO 

is a simple straightforward implementation of SVM classifiers, one can easily extend CELLO 

to other organisms. An interesting question is whether CELLO, trained specifically for Gram-

negative bacteria, can also predict heterologous expression of proteins in prokaryotic hosts. 

The availability of such predictive system would surely be helpful to researchers working on 

recombinant protein expression. Unfortunately, such study is presently hindered by the 

relatively scant amount of relevant testing data. However, it is expected that with more data 

accumulated in the future, such study will become more feasible. We have implemented a 

CELLO Web server, which is available at http://cello.life.nctu.edu.tw. 
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Chapter 3 

Improvement and analysis for prediction subcellular localization 
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INTRODUCTION 

Many efforts attempted to improve the prediction of protein subcellular localization through 

methods combination recently. For instance, some approaches make use of additional 

information like sequence profiles derived from PSI-BLAST[1, 8-10] or the ontology labels 

or the text annotations of the sequence databases[12, 19, 22]. In general, these approaches 

perform well for specific organisms and for certain localization categories. However, it is 

noticed that the benchmark data sets used for the assessment of the predictive performances of 

most methods usually contain highly homologous sequences. For example, the data set of 

Reinhardt and Hubbard[18] as well as that of Garg et al[10] include sequences up to 90% 

sequence identity, and the data set of Park and Kanehisa[17] comprises sequences up to 80% 

sequence identity. Several groups[46, 47] have already pointed out that there is a close 

relationship between sequence similarity and identity in both subcellular localization and the 

signal peptide cleavage sites. For example, Nair and Rost[46] have performed large-scale 

analysis of the relation between sequence similarity and identity in subcellular localization. 

Their results show that one can accurately infer the subcellular compartment of a protein if 

one can find close homologs of experimentally verified localization using the HSSP 

distance[46], a measure for sequence similarity accounting for pairwise sequence identity and 

alignment length.  It is well known in the study of secondary structure prediction[38, 48, 49] 

that the homologous sequences are meticulously removed from the testing-training data sets. 

For example, the popular benchmark RS126 set[38] comprises sequences that no sequence 

pairs share more than 25% sequence identity (over a length of more than 80 residues). The 

training-testing data sets of high homology will obviously lead to over-prediction, i.e., the 

positive predictions may due to the presence of highly similar sequences in both training and 

testing sets instead of the effectiveness of the approaches in extracting key features 
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associated with the investigated properties. In this work, we developed a two-level SVM 

system to predict subcellular localization: the first level comprises a number of SVM 

classifiers, each based on a distinctive set of feature vectors derived from sequences. The 

second level consists of a jury SVM that processes the outputs from the previous SVM 

classifiers to generate the probability distribution of subcellular localization. We showed that 

this two-level approach performs better than other approaches for data sets comprising 

sequences of low homology. We denoted this 2-level SVM predictor of subcellular 

localization as CELLO II. Furthermore, using the relationship between sequence similarity 

and identity in subcellular localization[46, 47], we propose a practical pipeline approach 

combining CELLO II and the sequence alignment method to predict subcellular localization.   

 

MATERIALS AND METHODS 

Support Vector Machines 

(Please see in MATERIALS AND METHODS in Chapter 2.) 

Coding schemes 

The n-peptide composition 

We have previously developed a general global sequence descriptor based on the n–peptide 

composition codings (denoted by An ) to discriminate protein properties in a number of 

applications[20, 21, 25, 50]. In the case of n =1, the A1 coding is reduced to the usual amino 

acid composition, which can be considered as the first-order approximation to the complete 

protein sequence. The A2  coding gives the dipeptide composition. As n increases, the 
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An  coding provides progressively more detailed sequential information.  In the limit that n is 

the whole length of the sequence, the An  becomes the sequence itself. The An  coding scheme 

has the advantage of systematically extracting more information from sequences when n  

increases. In the case of n ≥ 3, the computation of An  becomes not only impractical from a 

learning viewpoint but also susceptible to the danger of over-fitting. We can overcome the 

size problem by regrouping the amino acids into smaller number of classes according to their 

physico-chemical properties.  In this work, we use the following classification schemes of the 

amino acids based on their physico-chemical properties - we use Hn  for polar (RKEDQN), 

neutral (GASTPHY) and hydrophobic (CVLIMFW)[51]; Vn  for small (GASCTPD), medium 

(NVEQIL) and large van der Waals force (MHKFRYW)[51]; Zn  for of low polarizability 

(GASDT), medium (CPNVEQIL) and high (KMHFRYW)[51];  Pn  for low polarity 

(LIFWCMVY), neutral (PATGS) and high polarity (HQRKNED)[51]; Fn  for acidic (DE), 

basic (HKR), polar (CGNQSTY) and nonpolar (AFILMPVW); Sn  for  acidic (DE), basic 

(HKR), aromatic (FWY), small hydroxyl (ST), sulfur-containing (CM) and aliphatic 

(AGPILV); En  for  acidic (DE), basic (HKR), aromatic (FWY), small hydroxyl (ST), sulfur-

containing (CM), aliphatic 1 (AGP) and  aliphatic 2 (ILV). For clarity, these coding schemes 

are summarized in Table 7. 

The partitioned amino acid composition 

 We use Xk
Y  to denote the partitioned amino acid composition in which the sequence is 

partitioned into k  subsequences of equal length, and each fragment encoded by the particular 

amino acid compositionY . For example, the notation X5
A1 denotes that the sequence is divided 

into 5 subsequences, each of which is encoded by A1 (note that X1
A1  is equivalent to A1). The 



 

 23

coding Xk
Y  provides information about the local properties of sequences.   

The g-gap dipeptide composition 

Another generalized sequence composition is the g-gap dipeptide compositions, denoted by 

Dg , in which we compute the composition of the sequence of the form a(x)g b, where a  and 

b  denote two specific amino acid types, and (x)g  denotes g  intervening amino acids of 

arbitrary type x . Note that in the special case of g = 0, D0  is equivalent to A2.  

The local amino acid composition 

We use Wl  to denote the amino acid composition of a sliding window of length l centered on 

a given amino acid type. The Wl  provides information of the flanking sequences of a given 

amino acid type.  Note that when l is the length L  of the whole sequence, WL  reduced to A1.  

The two level SVM classifier system 

The first level SVM classifiers comprise a number of separate SVM classifiers, each based on 

a specific sequence coding as described in the previous section. For the sake of notation 

simplicity, we use the coding symbol to represent the SVM classifier based on that coding. 

For example, we denote the SVM system comprising 3 classifiers, say, A , B and C  by the 

shorthand symbol A + B + C . In this work, the first level classifiers consist of the following 

SVMs: ∑∑∑∑
′∈∈==
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1 , where S = {H3,P3,F3,S2, E2}  and ′ S = {7,…,15} . 

Each SVM generates a probability distribution[20, 21, 25] of the subcellular localization 

based on its particular sequence coding. A second SVM (i.e. the jury SVM) is used to process 

these probability distributions to generate the final probability distribution and the location 
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with the largest probability is used as the prediction. The two-level SVM system is shown 

schematically in Fig. 2.   

Performance assessment 

Following the previous works[21, 25], we use the percentage accuracy to assess the accuracy 

of the subcellular localization identification:  Qi = ci /ni , where ci  is the number correctly 

predicted in the ith  subcellular location and ni  is the number of sequences in that location. 

The overall prediction accuracy is given by  

P = f iQi
i

∑         (1) 

where f i = ni /N   and N is the total number of sequences. Though the percentage accuracy 

( Qi  or P ) provides a convenient measure for predictive performance, the Matthew's 

Correlation Coefficient[39] (MCC) gives  a more precise measurement for predictive 

performance:  

MCCi =
TPiTNi − FPiFNi

TPi + FNi( ) TPi + FPi( ) TNi + FPi( ) TNi + FNi( )
  (2) 

where TPi is the true positives in location i , TNi  is the true negatives in location i , FPi  is the 

false positives and FNi  is the false negatives. The value of MCCi  is 1 for a perfect prediction, 

0 for a completely random prediction and –1 for a perfect reverse correlation. 

The sequence-localization relationship 

The query sequence is aligned against the data set of sequences of known localization. If the 

top-ranking aligned sequence has an identical localization with the query sequence, the 
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sequence pair will be counted as a positive hit, or else as a negative hit. We performed all-

against-all sequence alignment using the global alignment program ALIGN developed by 

Myers and Miller[52].  

Data sets  

Two data sets were used in the experiment. The first data set, referred to as PS 2.0 data set 

(the version 2.0), is composed of Gram-negative sequences[8]. We selected from the data set 

only those sequences with a single localization (there are 4 groups of sequences with double 

localization, the average of which accounts for about 1% of the original data set). This 

resultant data set comprises 1444 protein sequences for five subcellular locations: 

extracellular (190), cytoplasmic (278), cytoplasmic membrane (309), periplasmic (276) and 

outer membrane (391). The second data set is from Park and Kanehisa, referred to as the PK 

dataset[17]. The sequences are selected from SWISSPROT[53] release 39.0 in such a way 

that the pair wise sequence identities are below 80%. The PK dataset contains 7589 

eukaryotic protein sequences for 12 subcellular locations – chloroplast (671), cytoplasmic 

(1245), cytoskeleton (41), endoplasmic reticulum (ER) (114), extracellular space (862), Golgi 

apparatus (48), lysosome (93), mitochondria (727), nucleus (1932), peroxisome (125), plasma 

membrane (1677) and vacuoles proteins (54).  We followed the same validation procedures 

for predictive performances as those of the previous works[8, 13, 17].  

 

RESULTS  

The sequence-localization relationship 
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The sequence homology of a data set can be easily inspected using the pair distribution of 

sequence identities, which shows the relative numbers of sequence pairs that share a given 

percentage sequence identity. Fig. 3 shows the pair distributions of the sequence identities of 

the PS (Fig. 3A) and the PK (Fig. 3B) data sets.  Both data sets peak at 20% sequence identity. 

However, it is easy to see that significant amount of sequences have a sequence identity 

≥ 30%  in both data sets. Using all-against-all sequence alignment through ALIGN, we 

compared the identity in sequence against the identity in localization for the PS and PK data 

sets (Figs. 4A and 4B). In general, when sequence identity ≥ 25%, the sequences usually 

share identical localization (however, in the PK data set, the abnormal behaviors of points at 

sequence identities ≥ 80% are due to the relatively smaller example sizes at those regions). 

We observe that the relationships between sequence identity and identity in localization are 

quite similar for these data sets. We also built a much larger data set from SWISSPROT 

release 41.0 by excluding any sequences annotated as MEMBRANE, POSSIBLE, 

PROBABLE, SPECIFIC PERIODS, or BY SIMILARITY[13]. The resultant data set 

(referred to as SW41) comprises 9851 eukaryotic proteins sequences distributing in 5 

locations: extracelluar, cytoplasmic, mitochondria, nuclear and others. We also observe in the 

SW41 data set a similar relationship (Fig. 4C) between sequence identity and localization 

identity, i.e. when sequence identity ≥ 25%, it is very likely that the sequences also share 

identical localization. 

Comparison of different coding schemes 

Tables 8 and 9 compare the performances of different coding schemes for the PK and the PS 

data sets. The SVM based on the multiple coding schemes uses a second level SVM (i.e., 

CELLO II) to make the jury decision of the final prediction, while the SVM based on the 
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single parameter set use the output with the largest probability as the prediction. The general 

trends of the overall performances of the single parameter sets are quite similar for both data 

sets (Table 8 and 9). For certain rows of subcellular compartments, the performances of the 

single parameter sets fluctuate considerably. For example, in Table 8, the prediction accuracy 

for chloroplast ranges from 57% to 72 %. On the other hand, the single parameter sets 

perform similarly for some subcellular compartments like, for example, the plasma membrane 

(Table 8), for which the overall prediction accuracy ranges from 86% to 92%. The overall 

prediction accuracy with the partitioned amino acid composition X4
A1  is the best among the 

single parameter sets for both data sets. In general, the results based on the multiple feature 

vector coding schemes are consistently better than those based on the single feature vector. 

This is probably due to the complementarity of information encoded in the single parameter 

sets. Our results are consistent with previous studies[3, 21, 25, 50, 54] that SVM based on the 

multiple feature vectors usually performs better than that based on the single feature vector. 

Comparison of CELLO II and ALIGN 

In Fig. 5, we compare the predictive performances of CELLO II and ALIGN for the PS and 

PK data sets, respectively. The predictive performances of ALIGN are estimated with simple 

procedures as follows. We take the top 1 hit from the all-against-all alignments from ALIGN 

and, if the localization of the hit sequence is identical to that of query sequence, it is counted 

as a positive hit, otherwise a negative hit. For the sake of comparison, we plot the prediction 

accuracies of both methods as a function of sequence identity. The procedures go as follows: 

assume that there are N sequences in the data set. By performing all-against-all sequence 

alignments, we can obtain for any given sequence N – 1 sequence identities sii, where 

i = 1… N – 1. The value SI = max(sii) sets the upper limit of the sequence identity for the 
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specific sequence sharing with the other sequences. The prediction accuracies of CELLO II 

and ALIGN for the sequences are plotted against their associated SIs. For both data sets, we 

observe that, when the sequence identity is ≥ 30%, ALIGN generally performs slightly better 

than CELLO II does. However, the predictive performances of ALIGN drop considerably 

when sequence identity is below 20%. On the other hand, the predictive performances of 

CELLO II remain more consistent throughout the sequence identity range.   

In Tables 10 and 11, we list the prediction accuracies of CELLO II and ALIGN for each 

individual subcellular location with sequence identity ≥ 30% and < 30%, respectively.  For 

sequence identity ≥ 30%, ALIGN performs slightly better than CELLO II does, though both 

CELLO II and ALIGN perform well. However, when sequence identity < 30%, CELLO II 

performs significantly better than ALIGN. For example, the MCCs of CELLO II for 

cytoplasmic and cytoplasmic membrane localizations are both 0.85, while those of ALIGN 

for these two localizations are 0.41 and 0.62 in PS data set, respectively. The MCCs of 

CELLO II are in general higher than those of ALIGN by 16-44% in the low homology region 

(i.e. sequence identity < 30%).  

Comparison with other approaches 

The previous results suggest a simple hybrid procedure to predict subcellular localization: for 

a query sequence, we use ALIGN to search against the data set composed of sequences of 

known subcellular localization.  As shown Fig. 4C, the accuracy shows a transition in the 

SW41 data set, which comprises 9851 sequences, at around 30% sequences identity from 

accurate distinction to inaccurate distinction. The localization annotation of the top hit 

sequence sharing a 30% or greater sequence identity with the query sequence was used as the 

prediction of its localization. However, Rost[55] have previously shown that the 
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results from sequence alignment really depends on the choice of sequence database and its 

corresponding annotation set[55]. In practice, we can use the more sophisticated similarity 

measure like HSSP distance developed by Nair and Rost[46]. Also, we can always construct 

an updated sequence database comprising large amount of sequences– for example, like the 

SW41 data set with the sequences of dubious annotations removed. If ALIGN fails, the ab 

initio CELLO II will be used to predict subcellular localization of the query sequence. We 

simply refer the approach as HYBRID. Table 12 compares the results of CELLLO II, ALIGN 

and PSORTb 2 and the hybrid method for the PS data set. All results are averaged over the 5-

fold cross validation. As expected, the hybrid method gives the best overall prediction 

accuracy (92%), followed by CELLO II (90%), PSORTb 2 (83%) and ALIGN (81%). It is 

interesting to note that ALIGN appears to perform surprisingly well for the PS2 data set in 

comparison with that of PSORTb 2. However, the good performances of ALIGN are due to 

the relatively high sequence homology bias inherent in the PS data set (see Fig. 3A).  

However, it is noted that PSORTb 2 also contains a sequence comparison module SCL-

BLAST, which performs a BLASTP search against the expanded PSORTdb database of 

known localization. Among these methods, CELLO II is the only method that does not rely 

on homology search; however, its performance is still among the best next only to HYBRID.  

CELLO II performs especially well for the cytoplasmic localization, yielding a prediction 

accuracy 95% and MCC 0.89 (in comparison, PSORTb 2 gives 70% and 0.77, respectively, 

for the same localization).  

In Table 13 we compare the results of HYBRID, CELLO II, ALIGN and the PK method for 

the eukaryotic PK data set. The PK method used SVM based on compositions of amino acids 

and amino acid pairs to predict protein subcellular localization. HYBRID as expected gives 

the best overall performance (91.6%). ALIGN (85.8%) performs slightly better than 
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CELLO II (85.0%). The PK method gives a 78.2% overall prediction accuracy. However, the 

good performance of ALIGN is obviously due to the even higher homology levels of the PK 

data set (Fig. 3B). In fact, when the homologous sequences (sequence identity ≥ 30%) are 

removed in the PK data set, the overall prediction accuracy of ALIGN drops to 57%.  Both 

CELLO II and the PK method belong to the class of the ab inito methods and do not rely on 

homology search; CELLO II performs significantly better. 

It is interesting to note that different approaches produce quite similar trends of prediction 

accuracies for a number of subcellular compartments (Tables 12 and 13). For example, all 

approaches perform well for subcellular compartments associated with membranes 

(cytoplasmic membrane or outer membrane in Table 12, and plasma membrane in Table 13). 

The good prediction accuracies are probably due to the distinct sequence features of the 

membrane proteins. Indeed, even the topology of the transmembrane proteins can be 

predicted with relatively good accuracy from protein sequences[45, 56, 57]. We also found 

that the nuclear, extracellular and chloroplast localization are among the best predicted in the 

eukaryotes (Table 13). On the other hand, Golgi and vacuole are among the worst predicted in 

the eukaryotes. The poor performances are probably due to the relatively small number of 

sequences in the data set and the possible multiple localizations of these sequences. It is 

expected that the prediction will improve when more sequence data with reliable localization 

annotations are coming in.   

At present, our program does not deal with proteins with multiple subcellular localizations[8, 

54]. It is quite straightforward to extend our approach to the cases of multiple localizations.  

Since our output is in fact a probability distribution of a given set of localizations, it is 

possible, instead of taking the single one with highest probability, to set a probability 
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threshold value to determine the possible multiple localizations. 

 

DISCUSSION 

In this work, we found that sequence identity is quite useful in identifying subcellular 

localization of homologous sequences down to 25% sequence identity. Furthermore, we 

found that the homology search method gives surprisingly good results for the two popular 

benchmark data sets. However, on closer inspection, these good performances are in fact due 

to the relatively high homology levels in the data sets and the performances go down 

drastically when the homologous sequences are removed from the data sets. We have 

developed an ab initio approach CELLO II based on a 2-level SVM system to predict protein 

subcellular localization. Its performance is comparable to the homology search method in the 

high homology regions and much superior to the homology search method for sequences in 

the low homology regions. We also showed that CELLO II performs better than other current 

methods for these data sets. For practical purpose, we also develop a hybrid approach 

combining CELLO II and the sequence alignment method, which may be applied to a wide 

range of sequence identity and provide a useful tool for biologists.  
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Table 1. Comparison of predictive performances using different n-peptide coding schemes by 

jackknife test for the RH eukaryotic data set. 

Localizations A1 A2 S1 F3X5 X4 A1+A2+X4 A1+A2+X4+F3X5 

Cytoplasm 79.2 79.8 79.2 76.2 82.5 85.1 86.3 

Extracellular 80.6 79.7 78.8 73.8 84.0 84.3 84.0 

Mitochondria 59.2 62.6 60.1 53.9 66.7 63.2 69.5 

Nucleus 90.5 93.9 90.3 86.8 94.3 96.0 96.0 

Overall accuracy 81.9 83.9 81.7 77.7 86.0 87.0 88.1 
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Table 2. Comparison of predictive performances using different n-peptide coding schemes by 

jackknife tests for the RH prokaryotic data set. 

Localizations A1 A2 S1 F5 X4 A1+A2+X4 A1+A2+X4+F3X3 

Cytoplasm 98.7 98.1 98.8 94.2 98.0 99.3 99.7 

Periplasm 76.7 73.8 76.2 60.9 81.2 80.7 80.2 

Extracellular 75.7 77.6 74.8 72.9 72.9 76.6 75.7 

Overall 91.8 91.0 91.7 85.2 91.9 93.1 93.2 
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Table 3. Comparison of different approaches in the prediction of subcellular localizations for 

the RH eukaryotic sequences 

CELLO 
Reinhardt &

 Hubbard*[18] Yuan[43] Hua & Sun[11] Chou & Cai[42]

Localizations† 

Q %( ) MCC Q %( ) MCC Q %( ) MCC Q %( ) MCC Q %( ) MCC

Cytoplasm (1097) 86.3 0.80 55 – 78.1 0.60 76.9 0.64 – – 

Extracellular (325) 84.0 0.89 75 – 62.2 0.63 80.0 0.78 – – 

Mitochondria (321) 69.5 0.77 61 – 69.2 0.53 56.7 0.58 – – 

Nucleus (1097) 96.0 0.83 72 – 74.1 0.68 87.4 0.75 – – 

Overall 88.1  66  73.0  79.4  90.4  

†The number of sequences is indicated in the parenthesis. 

*The results are obtained with 6-fold cross validation.  
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Table 4. Comparison of different approaches in the prediction of subcellular localizations for 

the RH prokaryotic sequences 

CELLO Reinhardt & 
Hubbard*[18] Yuan[43] Hua & 

Sun[11] 
Chou & 
Cai[42] 

Localizations† 

Q %( ) MCC Q %( ) MCC Q %( ) MCC Q %( ) MCC Q %( ) MCC

Cytoplasm(688) 99.7 0.90 80 – 93.6 0.83 97.5 0.86 – – 

Periplasm(202) 80.2 0.81 85 – 79.7 0.69 78.7 0.78 – – 

Extracellular(107) 75.7 0.81 77 – 77.6 0.77 75.7 0.77 – – 

Overall 93.1   – 80.9 – 89.1 – 91.4 – 89.3 – 

†The number of sequences is indicated in the parenthesis  

*The results are obtained with 6-fold cross validation, while all other are obtained with the Jackknife tests.  
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Table 5. Comparison of different approaches in the prediction of subcellular localizations by 

jackknife tests on CE data set 

CELLO§ ProtLock[2, 28] Least Euclidean 
distance[28, 44] 

Augmented covariant-
discriminant[4, 28] 

Localizations† 

Q %( ) MCC Q %( )/MCC Q %( )/MCC Q %( )/MCC 

Plasma membrane (699) 95.6 0.93 – – – 

Cytoplasm (571) 95.1 0.77 – – – 

Nucleus (272) 89.8 0.80 – – – 

Extracellular (224)  75.1 0.75 – – – 

Chloroplast (145)  70.7 0.81 – – – 

Mitochondria (84) 38.1 0.59 – – – 

ER (49) 37.7 0.60 – – – 

Lysosome (37) 34.2 0.54 – – – 

Cytoskeleton (34) 36.1 0.60 – – – 

Golgi (25) 19.2 0.40 – – – 

Peroxisome (27) 33.3 0.58 – – – 

Vacuole (24) 24.0 0.45 – – – 

Qt (%) 83.2 – 48.7 49.1 73.0 

†The number of sequences is indicated in the paraenthesis.             §Using 53421 XFXAA +++ . 
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Table 6. The comparison of predictive performances of different approaches in the prediction 

of subcellular localization for Gram-negative bacteria (PS 1.0 data set) 

CELLO PSORT-B PSORT I SubLoca 

Localizations 
Q %( ) MCC Q %( ) MCCb Q %( ) MCCb Q %( ) MCC 

Cytoplasm 90.7 0.85 69.4 0.79 75.4 0.58 75.0 0.74 

Inner membrane 88.4 0.92 78.7 0.85 95.1 0.64 82.8 0.89 

Periplasm 86.9 0.80 57.6 0.69 66.4 0.55 68.9 0.71 

Outer membrane 94.6 0.90 90.3 0.93 54.5 0.47 89.1 0.86 

Extracellular 78.9 0.82 70.0 0.79 – – 69.5 0.78 

Overall 88.9   – 74.8 – 60.9 – 78.5 – 

a The original SubLoc for prokaryotes predicts only three subcellular localization sites, therefore, we retrained 

the A1 SVM for this data set using the one-against-one method, which is different from the original one-against-

all method. 

b MCCs are calculated using the precision and recall values reported in Gardy et al.[9]. 

Accuracy is in %. 
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Table 7. The coding schemes of the amino acids compositions based on different 

classification definitions 

Coding Schemes Classification types Amino acid types 
H Polar                  

Neutral               
Hydrophobic            

RKEDQN 
GASTPHY 
CVLIMFW 

V Small                  
Medium                 
Large                  

GASCTPD 
NVEQIL 
MHKFRYW 

Z Low polarizability     
Medium polarizability  
High polarizability  

GASDT 
CPNVEQIL 
KMHFRYW 

P Low polarity           
Neutral polarity       
High polarity  

LIFWCMVY 
PATGS 
HQRKNED 

F Acidic           
Basic                 
Polar                 
Nonpolar 

DE 
HKR 
CGNQSTY 
AFILMPVW 

S 

Acidic 
Basic 
Aromatic 
Small hydroxyl 
Sulfur-containing 
Aliphatic 

DE 
HKR 
FWY 
ST 
CM 
AGPILV 

E 

Acidic 
Basic 
Aromatic 
Small hydroxyl 
Sulfur-containing 
Aliphatic 1 
Aliphatic 2 

DE 
HKR 
FWY 
ST 
CM 
AGP 
ILV  
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Table 8. Comparison of predictive performances (accuracies) using different coding schemes 
for the PK data set 

 A1 A2 X4
A1  3F

5X  2s
5X  2E

5X  3H
5X  3P

5X  13W  CELLO II

Chloroplast 62.0 67.4 72.0 56.8 66.5 69.3 57.5 59.6 69.6 79.9 

Cytoplasm 67.5 69.8 70.1 66.3 67.7 70.5 62.2 63.3 69.9 77.2 

Cytoskeleton 60.0 47.5 65.0 45.0 45.0 47.5 40.0 35.0 67.5 67.5 

ER 48.2 65.8 60.5 56.1 55.3 60.5 52.6 55.3 55.3 67.5 

Extracellular 75.1 76.8 82.1 75.3 76.3 82.8 78.4 78.7 80.7 90.2 

Golgi 17.0 21.3 38.3 29.8 29.8 36.2 23.4 27.7 27.7 53.2 

Lysosome 61.3 65.6 64.5 44.1 51.6 55.9 47.3 49.5 69.9 68.8 

Mitochondria 44.8 53.1 59.4 49.7 51.0 60.5 34.7 40.0 51.6 72.9 

Nucleus 86.7 87.0 89.8 78.9 84.2 86.4 84.9 85.7 89.9 91.0 

Peroxisome 16.0 30.4 35.2 30.4 41.6 40.0 28.0 31.2 32.0 47.2 

Plasma membrane 88.4 89.3 90.3 85.6 87.3 89.6 89.0 90.0 92.2 95.9 

Vacuole 31.5 50.0 35.2 25.9 33.3 33.3 20.4 18.5 44.4 51.9 

Overall 73.4 76.1 78.8 70.7 74.1 77.7 71.1 72.6 78.1 85.0 
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Table 9. Comparison of predictive performances (accuracies) using different coding schemes 

for the PS 2.0 data set  

 A1 A2 X4
A1  3F

5X  2s
5X  2E

5X 3H
5X  3P

5X  13W  CELLO II

Cytoplasm 86.7 82.7 90.3 80.9 81.3 80.6 82.0 79.1 84.5 95.3

Cytoplasmic Membrane 90.0 89.3 87.4 87.7 89.3 90.6 88.3 88.7 90.0 90.0

Periplasm 79.3 79.3 84.1 71.4 72.8 79.0 68.8 72.1 81.2 87.7

Outer Membrane 90.5 92.8 91.3 86.2 89.0 91.6 83.6 85.9 88.5 92.8

Extracellular 76.8 74.7 78.9 66.8 71.1 74.7 61.6 67.4 76.3 79.5

Overall 85.7 85.2 87.3 80.1 82.1 84.6 78.6 80.1 85.0 90.0
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Table 10-1. Comparison of CELLO II and ALIGN for the sequences with sequence 

identity ≥ 30%  in the PS 2.0 data set 

CELLO II ALIGN* 
Localization Amount

Accuracy MCC Accuracy MCC 

Cytoplasm 74 94.6 0.92 93.2 0.93 

Cytoplasmic Membrane 156 98.1 0.97 99.4 0.99 

Periplasm 180 92.8 0.90 94.4 0.94 

Outer Membrane 316 96.5 0.96 99.4 0.99 

Extracellular 139 90.6 0.90 98.6 0.98 

Overall 865 94.9 - 97.7 - 

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 46

Table 10-2. Comparison of CELLO II and ALIGN for the sequences with sequence 

identity ≥ 30%  in the PK data set. 

CELLO II ALIGN* 
Localization Amount

Accuracy MCC Accuracy MCC 

Chloroplast 602 83.2 0.85 94.5 0.94 

Cytoplasm 991 84.6 0.79 93.5 0.91 

Cytoskeleton 31 80.7 0.90 96.8 0.97 

ER 98 77.6 0.86 92.9 0.93 

Extracellular 730 93.8 0.92 97.7 0.98 

Golgi 35 65.7 0.79 94.3 0.93 

Lysosome 77 71.4 0.81 93.5 0.93 

Mitochondria 539 78.7 0.79 88.9 0.89 

Nucleus 1358 94.0 0.89 99.0 0.99 

Peroxisome 103 57.3 0.70 90.3 0.89 

Plasma membrane 984 99.2 0.97 99.6 0.99 

Vacuole 39 71.8 0.78 89.7 0.89 

Overall 5587 88.9 - 96.0 - 

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 
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Table 11-1. Comparison of CELLO II and ALIGN for the sequences with sequence 

identity %30<  in the PS 2.0 data set. 

CELLO II ALIGN* 
Localization Amount 

Accuracy MCC Accuracy MCC 

Cytoplasm 204 95.6 0.85 42.2 0.41 

Cytoplasmic Membrane 153 81.7 0.85 68.6 0.62 

Periplasm 96 78.1 0.68 54.2 0.38 

Outer Membrane 75 77.3 0.72 81.3 0.46 

Extracellular 51 49.0 0.56 43.1 0.40 

Overall 579 82.6 - 56.3 - 

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 
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Table 11-2. Comparison of CELLO II and ALIGN for the sequences with sequence 

identity < 30% in the PK data set 

CELLO II ALIGN* 
Localization Amount 

Accuracy MCC Accuracy MCC 

Chloroplast 69 50.7 0.47 40.6 0.25 

Cytoplasm 250 48.0 0.42 34.4 0.24 

Cytoskeleton 9 22.2 0.38 33.3 0.20 

ER 16 6.25 0.12 37.5 0.30 

Extracellular 131 70.2 0.66 55.7 0.41 

Golgi 12 16.7 0.29 41.7 0.37 

Lysosome 16 56.3 0.65 37.5 0.32 

Mitochondria 188 56.4 0.53 34.6 0.27 

Nucleus 574 83.8 0.68 63.1 0.54 

Peroxisome 22 0 0 31.8 0.26 

Plasma membrane 691 91.2 0.89 71.8 0.70 

Vacuole 15 0 0 0 0 

Overall 1993 74.2 - 57.1 - 

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 
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Table 12. Comparison of the prediction accuracies of different approaches in the prediction of 

subcellular locations for the PS 2.0 data set 

 HYBRID CELLO II ALIGN* PSORTb 2[8] 

Localization Accuracy MCC Accuracy MCC Accuracy MCC Accuracy MCC 

Cytoplasm 95.0 0.89 95.3 0.89 55.8 0.62 70.1 0.77 

Cytoplasmic membrane 90.6 0.92 90.0 0.91 84.1 0.82 92.6 0.92 

Periplasm 88.8 0.84 87.7 0.82 80.4 0.73 69.2 0.78

Outer membrane 95.1 0.93 92.8 0.90 95.9 0.81 94.9 0.95 

Extracellular 85.3 0.87 79.5 0.82 83.7 0.82 78.9 0.86 

Overall 91.6 - 90.0 - 81.1 - 82.6 -

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 
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Table 13. Comparison of prediction accuracies of different approaches in the prediction of 

subcellular localizations for the PK dataset 

 HYBRID CELLO II ALIGN* The PK method[17]

Localization Accuracy MCC Accuracy MCC Accuracy MCC Accuracy MCC

Chloroplast 90.0 0.88 79.9 0.81 89.0 0.83 72.3 -

Cytoplasm 84.4 0.81 77.2 0.71 81.6 0.77 72.2 -

Cytoskeleton 80.0 0.87 67.5 0.81 82.5 0.71 58.5 -

ER 80.7 0.85 67.5 0.78 85.1 0.82 46.5 -

Extracellular 93.5 0.93 90.2 0.88 91.3 0.87 78.0 -

Golgi 74.5 0.81 53.2 0.69 80.9 0.77 14.6 -

Lysosome 87.1 0.89 68.8 0.78 83.9 0.81 61.8 -

Mitochondria 80.5 0.80 72.9 0.72 74.8 0.73 57.4 -

Nucleus 94.5 0.90 91.0 0.83 88.3 0.86 89.6 -

Peroxisome 74.4 0.80 47.2 0.63 80.0 0.76 25.2 -

Plasma membrane 96.1 0.96 95.9 0.94 88.1 0.89 92.2 - 

Vacuole 64.8 0.75 51.9 0.66 64.8 0.72 25.0 -

Overall 90.3 - 85.0 - 85.8 - 78.2 -

*The localization annotation of the top hit of the alignment list is used as the predicted localization. 

 

 

 



Figure 1. The query sequence is encoded by different coding schemes to obtain (a1a2…), (b1b2…), and (c1c2…),
which are used to train the SVM classifiers. We combine votes from these classifiers and use the jury
votes to determine the final assignment. We use four coding schemes in this work, which are A1, A2, X4,
and F3X5. Because we use the one-against-one methods, we construct  SVM classifiers for the prediction

of J(J-1)/2 subcellular localization sites.
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Figure 2. The first level classification system comprises  SVMs based on different feature vectors: (               ) ,
(              ), … and (               ). These SVMs generate  probability distributions (              ), (        ),  …
and (               ) of  subcellular localizations. A second layer SVM (as a jury SVM) is used to process these
probability distributions to generate the final probability distribution .
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Figure 3.  (A) The pair distribution of the sequence identities of the PS data set. Each bin (the width set to 5% 
sequence identity) represents the relative amount of the sequence pairs that share a given percentage
sequence identity. For example, all sequences in each bin (say 20%) will share a pair sequence identity
between 17.5% and 22.5% against each other. The value of the pair distribution is normalized by
averaged over the total area under the distribution curve. Note that there are a few examples in the 15%
and 100%  sequence identity bins. 
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Figure 3. (B) The pair distribution of the sequence identities of the PK data set. There are a few examples in the
15% and 80-100% sequence identity bins.
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Figure 4. (A) The bar charts of localization identity vs. sequence identity for the PS data set.
(B) The bar charts of localization identity vs. sequence identity for the PK data set.
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Figure 4. (C) The bar charts of localization identity vs. sequence identity for the SW41 data set.
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Figure 5. (A) The distributions of prediction accuracies as a function of sequence identity of both CELLO II 
(white bar) and ALIGN (black bar) for the PS data set. Note that we did not plot the prediction 
accuracies for those sequence identity bins that have relatively small example sizes as mentioned in the
figure caption of Fig. 2.
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Figure 5. (B) The distributions of prediction accuracies as a function of sequence identity of both CELLO II 
(white bar) and ALIGN (black bar) for the PK data set. Note that we did not plot the prediction
accuracies for those sequence identity bins that have relatively small example sizes as mentioned in the
figure caption of Fig. 2.
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