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ABSTRACT

Since the protein's function is usually related to its subcellular localization, the ability to predict
subcellular localization directly from protein sequences will be useful to biologists to infer protein
function. Recent years we have seen a surging interest in the development of novel computational
tools to predict subcellular localization. With the rapid increase of sequenced genomic data, the need
for an automated and accurate tool to predict subcellular-localization becomes increasingly important.
At present, these approaches, based on a:wide range of algorithms, have achieved varying degrees of
success for specific organisms and for certain: localization categories. In this thesis, | used support
vector machine (SVM) method based on ‘n=peptide composition in predicting the subcellular
locations of proteins. For an unbiased assessment of the results, we apply our approach to several
independent data sets in the beginning. In those data sets, our approach gives superior performance
compared with other approaches. A number of authors have noticed that sequence similarity is useful
in predicting subcellular localization. For example, Rost and Nair (Protein Sci, 11:2836-47 (2002))
have carried out extensive analysis of the relation between sequence similarity and identity in
subcellular localization and found a close relationship between them above a certain similarity
threshold. However, many existing benchmark data sets used for the prediction accuracy assessment
contain highly homologous sequences — some data sets comprising sequences up to 80-90%
sequence identity. Using these benchmark test data will surely lead to overestimation of the
performance of the methods considered. Here, we developed an approach based on a two-level SVM
system: the first level comprises a number of SVM classifiers, each based on a specific type of
feature vectors derived from sequences; the second level SVM classifier functions as the jury
machine to generate the probability distribution of decisions for possible localizations. We compare

our approach with a global sequence alignment approach and other existing approaches for two



often-used benchmark data sets — one comprising prokaryotic sequences and the other eukaryotic
sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to
check the relationship between sequence homology and localization. Our results, which are
consistent with previous studies, indicate that the homology search approach performs surprisingly
well for sequences sharing homology as low as 30%, but its performance deteriorates considerably
for sequences sharing lower sequence identity. A data set of high homology levels will obviously
lead to biased assessment of the performances of the predictive approaches - especially those relying
on homology search or sequence annotations. Since our two-level classification system based on
SVM does not rely on homology search, its performance remains relatively unaffected by sequence
homology. When compared with other approaches, our approach outperformed other existing
approaches, even though some of which use homology search as part of their algorithms.
Furthermore, for the practical purpose, we also develop a practical hybrid method that pipelines the
two-level SVM classifier and the homology search method in sequential order as a general tool for
the sequence annotation of subcellular localization. Our approaches should be valuable in the high

throughput analysis of genomics and proteomics:
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Chapter 1

GENERAL INTRODUCTION

The cell is the basic unit of life. Based on the structure differences of cell, organisms can be
divided into two broad groups, the prokaryotes (bacteria) and the eukaryotes (all other forms
of life, like plants and animals), which the former live itself as a single cell and the later live
with others as an organization with several degrees of differentiating complex. Both of the
single one are so small that invisible to the human eye. Roughly, bacterial cells are in the size
of a few micrometers (10° m), and eukaryotic cells are 10- to 20-fold larger for any single

one.

There are some appearance differences in structure between the two groups. One of the most
fundamental distinctions is the:real, membrane-enveloped nucleus to box the inheritance
materials only for eukaryotic cells. In"addition, most eukaryotic cells have many similar
membrane-bound internal compartments term as organelles, and they are highly specialized
for particular functions, whereas the prokaryotic cells do not have. Biologists can recognize
them with the assistance of electron microscopy. By the way, essential materials for
corresponding cellular processes are bounded and therefore high concentrations for those are
kept inside. For example, chemical reactions in mitochondria involved in energy production,
photosynthesis in chloroplasts involved in converting solar energy into sugars, proteins and
lipids synthesized in endoplasmic reticulum (ER), secretory proteins and polysaccharides
synthesized in Golgi complex, hydrolases storing and molecules digesting in lysosomes,
something temporary storage or transport in vacuoles, and an internal framework called

cytoskeleton, helps to establish cell shape and maintain cell moment and cell division.



However, most cellular functions act in the cytoplasm or on the plasma membrane of
prokaryotes. And the inheritance materials gather near the center of the cell nakedly, instead
of a special internal membrane-enclosed nucleus. There exist so many significant structural,
biochemical, and genetic differences in cellular form that people distinguish them easily. And

almost both researches are usually discussed separately.

Even relative few cause damages healthily or economically, most of the many thousand
bacterial species known as harmless. Microbiologists study for medical diagnosis and
treatment or other academic or industrial purposes through a series of experiments.
Differential staining techniques were developed in order to isolate, enumerate, and identify
targets from the samples. Some chemical materials force dye inside or outside the bacterial
cells makes us distinguish them by.color from others. For instance, the well known acid-fast
stain is for the bacteria that cause.tuberculosis. Besides, Gram staining is one of the most
important and widely used staining technigues-for bacteria. After a process of more than one
dye solution smearing and washing out; Gram=positive bacteria retain the crystal violet dyed
deep violet purple color; and Gram-negative bacteria lost the dye and appear red with safranin.
Both cases just differ in thickness and substances composition of the cell wall. Simply, the
cell use membrane as boundary to form a closed room against environment. The boundary of
cytoplasmic area contains essential material for a whole life. In bacteria, there is usually a
layer of cell wall outside the membrane. Thus the great difference in the staining appearance
between the two bacterial groups makes us detect the structure of the cells definitely. The cell
walls of Gram-negative ones are generally thinner (10 to 15 nm) than those of Gram-positive
bacteria (20 to 25 nm). The former is obviously more complex seen by electron microscopy.
An outer membrane inside the wall contains a thin layer of peptidoglycan. And there is also
an additional periplasmic space between the cytoplasmic membrane and the outer

2



membrane. The later do not have this space, that is, there is no outer membrane inside their

cell wall.

Cell structure and function diverge for different organisms of various size, shapes, and forms,
even for different individual in the same body. Cells share common chemical molecules as
building blocks and physical universe as interacting behaves. The major bases — proteins,
nucleic acids, and polysaccharides are synthesized by series of chemical reactions for
maintaining normal cellular organization and function. Most of them are too small or too thin
to be seen under the light microscope and the sizes are about in the range of one to ten
nanometers. Proteins are considered to be necessary everywhere in the cell. In addition to
enzymes, proteins form the basis of most cellular structures. Connective tissue, muscle fibrils,

cilia, flagella — all are made primarily or partially of proteins.

Tremendous amounts of DNA and protein-sequences data have come out from experiment
upon recent progress in genomics research. When -many molecular sequences are in long-
winded prospecting for role and property identification, much more mines are waiting in the
process simultaneously. Hence, to develop useful computational tools to extract relevant
biological information from sequences in a short time becomes even more important
nowadays. Since the protein's function is closely associated with its subcellular localization,
the ability to predict protein subcellular localization will be useful in the characterization of
the expressed sequences of unknown functions and interactions. Besides providing the clues
of cell physiological properties, it will be helpful for the design of protein isolation and data

analysis in experiment, furthermore, in medical researches.

In recent years, many efforts[1-21] have been made to predict protein subcellular locations

based on the cell structure definition as described above. These approaches cover



various types of algorithms such as the knowledge-based expert system[15], the artificial
neural networks[13, 16, 18], the support vector machines (SVM)[11, 17, 20, 21], the
covariant discriminant algorithm[2, 5], or the Bayesian networks[8, 9, 19]. The most used
features are the short N-terminal amino acid sequences|[6, 7, 14-16] (i.e., the sorting or signal
peptides), or the amino acid compositions[2, 5, 10, 11, 13, 17, 18] (or the general n-peptide
compositions[20, 21]) derived from the whole amino acid sequences. Other approaches make
use of additional information like sequence profiles derived from PSI-BLASTI[1, 8-10], the
ontology labels or the text annotations of the sequence databases[12, 19, 22]. In this thesis, we
improved present approach through characteristics extraction from sequences and feedbacks

to ensure some information correlating to protein localization.



Chapter 2

Prediction for subcellular localization of proteins from different datasets by support vector

machines based on n-peptide compositions



INTRODUCTION

Some studies[11, 18] have shown that methods based on the amino acid composition appear
be more robust to errors in 5' gene annotation than those based on targeting sequences.
Recently, Andrade et al[23] found that the total amino acid composition of the surface
residues carries a signal that could help to identify the subcellular location, and they
postulated that proteins in each location adapt their structures to their environmental
variations throughout evolution. A number of studies[2, 5, 11, 18, 23] have shown that amino
acid composition is a useful feature vector in the prediction of protein subcellular location as
well as other protein global properties, such as protein folds[24, 25], disulfide bridges[26] and

protein thermophilicity[27].

Reinhardt and Hubbard[18] applied neural networks to the prediction of subcellular location
of proteins and obtained a prediction accuracy of 81% for three subcellular locations in
prokaryotic organisms and 66% for four'locations in-eukaryotic proteins. Using the same data
set, Hua and Sun obtained a prediction accuracy of 91.4% for prokaryotic organisms and
79.4% for eukaryotic organisms using SVM based on amino acid composition. Cedano et al[2]
carried out a correlation analysis of the amino acid composition and the cellular location of
five protein classes and have developed a program ProLock to predict the cellular locations of
proteins. However, there are concerns that the methods based on the amino acid composition
could have an intrinsic limitation on their predictive performance, because the amino acid
composition does not have sequence-order information. Chou and coworkers developed
approaches based on the pseudo amino acid composition[28], which is designed to include
sequence correlation effects. For a data set[5, 28] comprising 12 location categories, the

prediction accuracy reached 73.0% based on the pseudo amino acid composition, which is



significantly higher than those results based on general amino acid composition.

Gram-negative bacteria have five major subcellular localization sites that include the
cytoplasm, the inner membrane, the outer membrane, the periplasm, and the extracellular
space. PSORT 1[29] has been the most widely used predictive tool for Gram-negative bacteria.
However, it does not predict extracellular sequences, and its predictive performance reaches
only 61% in overall prediction accuracy for a standard data set [9]. Recently Gardy et al.[9],
combining different algorithms and input information, developed a multimodular method
PSORT-B. This approach comprises six modules examining the query sequence specifically
for different characteristics such as amino acid composition, similarity to proteins of known
localization, presence of a signal peptide, transmembrane a-helices, and motifs corresponding
to specific localizations. This program then constructs a Bayesian network to generate a final
probability value for each localization site.~-This approach yields an overall prediction
accuracy of 75% for all locationsites, significantly improving the previous results of PSORT
| by 14%. However, despite the great/improyement, PSORT-B gives modest prediction for
some subcellular locations. For example, it gives a poor predictive accuracy of 58% for

periplasmic sequences and 69% for cytoplasmic sequences.

Recently, we have developed an SVM method based on the n—peptide composition encoding
scheme[25]. This coding scheme has the advantage of incorporating global sequence in a
systematic way, which has been successfully applied to the prediction of protein folds[25]. In
this work, we extend the approach to the prediction of protein subcellular locations. In order
to get unbiased assessment of the results, we applied our approach to three independent data
sets: the first set consisting of 997 prokaryotic proteins in three localization categories and

2427 eukaryotic proteins in four location categories[18]; the second set comprising 2191



proteins in 12 subcellular locations[30]; and the third set including 1443 protein sequences in
five localization sites[9]. In those data sets, our approach gives superior performance

(accuracy) compared with other approaches.

MATERIALS AND METHODS
Support Vector Machine (SVM)

Given training vectors x,, i=1...,1 and a vector y defined as: y, =1if x, is in one class, and
y,=—11if x, is in the other class. The support vector technique[31] tries to find the separating
hyperplane w'x, + b=0 with the largest distance between two classes, measured along a line
perpendicular to this hyperplane.:This requirement is equivalent to minimizing 3 w'w with

respect to w and b under the constraint that yi(wai + b)zl. However, in practice, these data

to be classified may not be linearly separable. To overcome this difficulty, SVM non-linearly

transforms the original input space into a higher dimensional feature space by

#(x) = (¢,(x),4,(X),...) and tries to minimize the object function lszw+CZ::l§i with
respect tow, b and &, under the constraint that yi[wT¢(xi)+b]21—§i, where & >0. The

function K(xi,xj)z #(x;) ¢(xj) is usually called the kernel function. Note that training data x

is mapped into a (possibly infinite) vector in a higher dimensional space; since in the higher
dimensional space, it is more possible that data can be linearly separated. This procedure has
the advantage of allowing training errors, since we do not require that training data should be

always on the correct side of the separating hyperplane w'x+b=0, and we also try to

minimize the training error Z::lgi in the objective function. In the end, the decision
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function is written as f (x) = sign(w' ¢(x) + b). In other words, for a test vector w'x +b >0,
we classified it to be in class 1. Otherwise, we think it is in the second class. Those x;'s that

are used to construct w and b are called support vectors.

In the training process, only part of the training data are used to construct the hyperplane,
hence avoiding the overfitting problem usually plaguing other machine learning methods.
These data constructing the classifier are called support vectors. The preliminary tests showed
that the radial basis function (RBF) kernel gave results better than other kernels. Therefore, in
this work we used the RBF kernel for all the experiments.

An important issue of optimizing SVMs is the selection of parameters. For SVM training, a
few parameters such as the penalty parameter and the kernel parameter of the RBF function
must be determined in advance. Choosing.optimal parameters for SVM is an important step in
SVM design. We used the -cross-validation on -different parameters for the model
selection[32]. In this work, all SVM <calculations were performed by using LIBSVM[33], a

general library for support vector classification and regression.

Coding schemes

In the past study[25], we have shown that protein descriptors based on the n—peptide
composition are effective in predicting protein folds. For the simplest case n=1, the n-
peptide composition were reduced to the amino acid composition, which can also be
considered as a first-order approximation to the global protein sequence. When n =2, the n—
peptide composition gives 20 x 20 =400 dipeptide composition. When n gets larger, the n-
peptide compositions will cover more global sequence information, but at the same time, such
a coding scheme becomes not only impractical from a computational viewpoint but also
undoable from a learning viewpoint. However, the size problem can be overcome if we

9



regroup the amino acids into a smaller group of classes, according to their physico-chemical
properties or the structural properties. In this work, we use the notation A, to denote the n-
peptide composition of amino acids; F, to denote the reduced amino acid composition in
which 20 amino acids are classified into four groups: polar, nonpolar, acid and base; and X,
to denote the partitioned amino acid composition in which the sequence is partitioned into k
regions of equal length, and each partitioned sequence described by its amino acid

composition are concatenated together. For example, the notation X, denotes that the

sequence is divided into 5 subsequences, each of which is encoded by A, (note that X, is
equivalent to A,). Similar sequence coding schemes such as the n-gram hashing function has
also been successfully applied to the protein classification[34, 35]. And further, amino acid
composition can be substituted for reduced amino acid composition in this partitioned feature.
Like F, and X,, the combined: new one denotes as F, X,. These input vectors can be
concatenated into one long inputivector and-fedinto SVM. In this work, we used A+ B+ CD
to denote three SVM classifiers, which are-trained with input vector A, B and the combined

input vector CD, and the final prediction is decided by the jury votes from the classifiers.
Training and testing the SVM classifiers

For multi-class SVM classification, we use the one-against-one (OAO) method[25]. Given J
classes of subcellular locations, we construct J(J -1)/2 SVM classifiers for a given type of
input vector and train with proteins from two different subcellular locations. For each penalty
parameter and kernel parameter, cross validation combining with the OAO method is used for
estimating the performance of the model. Therefore, for each model, J(J-1)/2 decision
functions share the same parameter. Each protein in the test set always get a vote from each

binary classifier. In the end, we used the jury voting to determine the final assignment of
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locations to each sequence in the test set. In the case of identical votes, we gave more weight
to the vote from X, because of the better performance. The general architecture of our
predictive system is shown in Figure 1. We use the standard Q, percentage accuracy[36-38]
and the Matthew's correlation coefficient[39] MCC for assessing the accuracy of subcellular

location identification: Q, =c,/n,, where n, is the number of test data in the i"" subcellular
location and c; the number correctly predicted. The overall Q, is given by Q, :zipwiQi,

where w =n, /N . The Matthew's correlation coefficient MCC is given by[39]

tp,tn, — fp, fn,
\/(tpi + fn X(tp; + fp Xtn, + fp )(tn, + fni)'

MCC, =

where tp, is the true positives in location i, tn, is_the true negatives in location i, fp, is the
false positives and fn, is the false negatives.! MCC. is one for a perfect prediction, and zero

for a completely random prediction.

We also assess the performance of the"¢classifiers by the Jackknife test, which measure the
prediction accuracy systematically by singling out one sequence as a test case from the data
set during the training process and then testing the classifiers against this single protein. The
Jackknife test is considered as the most objective and effective method in assessing the
statistical prediction[40], and all our results reported here are done with the jackknife tests.
All computations are done on a 48 double-CPU PC cluster running in the Linux system. And

for convenience, we denoted our Subcellular Localization Predictive System as CELLO.

Data sets

We use three independent data sets for the assessment of our approach. The first data set is

11



that of Reinhardt and Hubbard[18], called the RH dataset. The RH data set consists of two
parts: the prokaryotic set and the eukaryotic set. The prokaryotic set includes 997 protein
sequences in three categories: 688 cytoplasmic proteins, 202 periplasmic proteins and 107
extracellular proteins; the eukaryotic set includes 2427 sequences in four location categories:
1097 nuclear proteins, 684 cytoplasmic proteins, 321 mitochondrial proteins and 325
extracellular proteins. The pair sequence identities are less than 90% among the data set to
avoid a bias towards large sequence families with high similarity. The second data set is from
Chou and Elrod[5, 28], referred to as the CE data set. This data set contains 2191 protein
sequences in 12 categories, which consists of 145 chloroplast proteins, 571 cytoplasm, 34
cytoskeleton, 49 endoplasmic reticulum (ER), 224 extracellular, 25 Golgi apparatus, 37
lysosome, 84 mitochondria, 272 nuclear:proteins, 27 peroxisome, 699 plasma membrane, and
24 vacuole. In this data set, thereare sequence pairs with sequence identity > 90%, though the
average sequence identity in each category is less than 12%. The third data set we used is the
same with Gardy et al.[9], termed the"PS 1.0 dataset (for the version 1.0), extracted from
SWISS-PROT release 40.29[41]. This data set consists of 1443 protein sequences: 1302
proteins localized in a single subcellular site, which are 248 cytoplasmic, 268 inner membrane,
244 periplasmic, 352 outer membrane, and 190 extracellular. This data set also includes a
further 141 proteins resident at multiple localization sites: 14 cytoplasmic/inner membrane,

50 inner membrane/periplasmic, and 77 outer membrane/extracellular.

RESULTS AND DISCUSSION

The RH data set

12



In order to have an unbiased assessment, we tested our approach on two data sets. The first
one is the RH data set, a benchmark data set studied by a number of investigators[5, 11, 18,
42, 43]. In Table 1 and 2, we summarize the prediction accuracies using different input
vectors by Jackknife tests on the eukaryotic and prokaryotic set, respectively. Only the best
results of the given coding schemes are reported. For eukaryotic sequences (Table 1), the
overall prediction accuracy with the portioned amino acid composition X, is the best among
the single parameter sets. The SVM based on the dipeptide composition A, performs slightly
better than based on the amino acid composition A.. The SVM based on the reduced amino

acid representation F,X; gives relatively poor prediction accuracy. The multiple input vectors

A+ A, + X, +F;X; give prediction accuracies higher than those of the single parameter
sets — the best overall prediction agcuracy for eukaryotic sequences is 87.0%. Among the 4
subcellular locations, the prediction accuracy for the-nuclear sequences reaches 96.0%. The
prediction accuracies for mitochondrial”location are-relatively lower — the best prediction

accuracy is 69.5%.

For prokaryotic proteins (Table 2), the single input vector A, A, and X, already give
excellent prediction accuracies around 91-92%, while both multiple input vectors gives the
slightly better overall prediction accuracies. The prediction accuracy for cytoplasmic
sequences can reach 99.7%. In general, the prediction accuracies for prokaryotic sequences

are higher than those for eukaryotic sequences.

Comparison with other approaches

The RH data set has been studied by a number of investigators. There are the neural

13



network method described by Reinhardt and Hubbard[18], the SVM by Hua and Sun[11], the
covariant discriminant method by Chou and Elrod[5], the Markov chains model by Yuan[43]
and the nearest neighbor algorithm by Chou and Cai[42] using a hybrid method of the
function domain composition and pseudo amino acid composition. Tables 3 and 4 summarize
the predictive performance of these approaches for the RH data set. All results are obtained by
the Jackknife tests expect those of the Reinhardt and Hubbard, which are computed with six-
fold validation. It should be also noted that Chou and Cai did not report any results for

individual location category.

For the eukaryotic sequences (Table 3), our overall prediction accuracy is favored as
compared to other approaches. Our prediction accuracy Q, =88.1% is 21% higher than that
of Reinhardt & Hubbard, 14% higher than that of Yuan, and 7.9% higher than that of Hua and
Sun. For the subcellular locations;-our prediction- accuracy reaches 96.0% for the nuclear
location — almost 10% higher than that of-Hua:& Sun. Our MCC's for subcellular locations
are also significantly higher than those of ether approaches. For example, our value of MCC
for cytoplasmic sequences is 0.80, which is higher than both Yuan (0.60), and Hua and Sun
(0.64). For mitochondria locations, our prediction accuracy (69.5%) is similar to that of Yuan,
but our correlation coefficient (0.77) for this location is significantly higher than that of Yuan
(0.53). Though Chou & Cai obtained an overall prediction accuracy better than our approach
(about 2%), they reported neither Q nor MCC for each subcellular location, so it is not

possible to make any further comparison between these two approaches.

For the prokaryotic sequences (Table 4), our method gives the superior predictive
performance in both Q's and MCC's. Our Matthews correlation coefficients for subcellular

locations are higher than those of all other approaches. For example, our value of MCC for the
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cytoplasmic location is 0.90, higher than both Yuan (0.83), and Hua and Sun (0.86). Though
our prediction accuracy for periplasmic proteins is lower than that of Reinhardt and Hubbard,
we like to mention that their results are obtained with six-fold cross validation instead of the

Jackknife tests.

The CE dataset

To include sequence-order effects, Chou has developed the coding scheme based on the
pseudo amino acid composition[28], which consists of 20+ A discrete numbers, where the
first 20 numbers are identical with those in the amino acid composition and the remaining
numbers represent A different ranks of sequence correlation factors. Using the pseudo amino
acid composition, Chou[28] have extensively;studied the CE data set by different approaches,
such as the least Euclidean distance method developed by Nakashima et al[44], the ProtLock
by Cedano et al[2] and the covariant discriminant approach[5] by Chou. Table 5 compares
theses results by Jackknife tests. This table lists complete only Q's and MCC's for subcellular
locations by our approach, this is because that Chou[28] reported only the total prediction
accuracy Qs. Our approach gives the best overall prediction accuracy Q,=83.2% ,
significantly higher than those of other approaches. Both Q's and MCC's vary considerably
with regards to the locations. This is due to the highly uneven distributions of sequences in
each location category (varying from 699 sequences in membrane to 24 in vacuole) — for
example, the first five locations (as indicated by italics in the table) contain 87% of all
sequences in 12 locations. If considered only the five most populated categories, our approach
gives excellent results — the overall prediction accuracy is 90.3%, which is higher than 80.9%
by Chou[28]. The CE data set, unlike the RH data set, includes many location categories that

contain very small number of sequences (7 out of 12 locations contain only 13% of total
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sequences), and this is the main reason that our prediction accuracies for these locations are
generally poor. But we expect the prediction will greatly improve when more data are
included. Despite the deficiency of the CE data set, our prediction accuracies for subcellular

locations are still significantly higher than other approaches.

The PS 1.0 dataset

In Table 6, we compared the predictive performances of CELLO, PSORT I, PSORT-B, and
SubLoc for five subcellular localization sites. Because the original SubLoc for prokaryotes
predicts only three subcellular localization sites (cytoplasmic, periplasmic, and extracellular),
we used the A; SVM classifier for the current data set. The results are obtained with fivefold
cross-validation. The overall predictionjaceuracy of CELLO reached 89%, which is 14%
higher than that of PSORT-B, 28% higher than that of PSORT I, and 10% higher than that of
SubLoc. In general, CELLO ;achieves better prediction accuracy for all subcellular
localization sites than do the other approaches; Noticeably, our prediction accuracy for
cytoplasmic location (Q; = 91%) is 22% higher than that of PSORT-B, and for periplasmic
location (Qi = 87%) is 30% higher. These are very significant improvements on the previous
results. In CELLO, the only prediction <80% is for extracellular location (Q; = 79%), but it is
still 9% higher than that of PSORT-B. Although the prediction accuracy Q; offers a
convenient measure for predictive performances, one should be careful in drawing hasty
conclusion from Q;, because it overlooks overpredictions. MCC, taking into account of both
under- and overpredictions, offers a complementary measurement for the predictive
performances. For example, PSORT | gives a remarkable prediction accuracy, Q; = 95%, for
inner membrane, but, due to overpredictions, it gives a less impressive MCC = 0.64, which is

much lower than that of CELLO (MCC = 0.92) and other approaches. CELLO also performs
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better than other approaches in terms of MCCs. The MCCs of CELLO ranges consistently
between 0.80 and 0.92, but the MCCs of PSORT-B deviate greatly among location sites (the
difference between MCCs reached 0.24). PSORT-B gives a particularly poor prediction for
periplasmic location (MCC = 0.69), compared with that of CELLO (MCC = 0.80). The
inconsistent prediction accuracies of PSORT-B for different localization sites may reflect the
uneven predictive performances of different modules in PSORT-B. It is also worth noting that
even though PSORT-B uses different modules and input information tuned up for specific
localization sites, CELLO, a single module approach, achieved better predictive performances.
For example, PSORT-B uses HMMTOP[45] to predict inner membrane sequences,
HMMTOP being a well-known hidden Markov model approach specifically designed to
identify transmembrane proteins, but GELLLO still gives better results, Q; = 88% and MCC =
0.92, compared with Q; = 79% and MCC-=-0.85 obtained by PSORT-B. It is interesting to
note that SubLoc shows a better @verall performance than the more complicated multimodular
PSORT-B. SubLoc can be seen as<a special case of CELLO, because SubLoc uses amino acid
compositions as the only input vectors. This surprisingly good predictive performances
support previous observations that amino acid composition is indeed a good discriminator for

subcellular localization.

CONCLUSION

In this chapter, we apply the SVM approach based on n—peptide composition to the prediction
of subcellular locations. For an unbiased assessment of the results, we test our approach by
Jackknife tests on three independent data sets. Our approach yields significantly better

prediction performance for all data sets than existing approaches in both overall prediction
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accuracy and the correlation coefficients for associated subcellular locations. It is worth
noting that our approach based on n—peptide composition also outperforms those approaches
based on Markov chains model and pseudo amino acid composition, which include the order
information. In addition, CELLO is a simple, straightforward implementation of a single
module (SVM) based on multiple n-peptide composition to predict subcellular localization. It
does not need specialized algorithms or particular input vectors for each subcellular
localization site. Compared with CELLO, PSORT-B comprises six modules, with different
modules examining specific localization sites, the results of which are then used to construct a
Bayesian network to generate a final probability for localization sites. However, it is
remarkable that CELLO gives significantly better predictive performances. Because CELLO
is a simple straightforward implementation ‘of SVM classifiers, one can easily extend CELLO
to other organisms. An interesting question is whether CELLO, trained specifically for Gram-
negative bacteria, can also predict heteralogous expression of proteins in prokaryotic hosts.
The availability of such predictive'system would surely be helpful to researchers working on
recombinant protein expression. Unfortunately, such study is presently hindered by the
relatively scant amount of relevant testing data. However, it is expected that with more data
accumulated in the future, such study will become more feasible. We have implemented a

CELLO Web server, which is available at http://cello.life.nctu.edu.tw.
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Chapter 3

Improvement and analysis for prediction subcellular localization
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INTRODUCTION

Many efforts attempted to improve the prediction of protein subcellular localization through
methods combination recently. For instance, some approaches make use of additional
information like sequence profiles derived from PSI-BLAST]1, 8-10] or the ontology labels
or the text annotations of the sequence databases[12, 19, 22]. In general, these approaches
perform well for specific organisms and for certain localization categories. However, it is
noticed that the benchmark data sets used for the assessment of the predictive performances of
most methods usually contain highly homologous sequences. For example, the data set of
Reinhardt and Hubbard[18] as well as that of Garg et al[10] include sequences up to 90%
sequence identity, and the data set of Park and Kanehisa[17] comprises sequences up to 80%
sequence identity. Several groups[46, 47] have already pointed out that there is a close
relationship between sequence similarity and identity-in both subcellular localization and the
signal peptide cleavage sites. For example;-Nair and Rost[46] have performed large-scale
analysis of the relation between sequence. similarity and identity in subcellular localization.
Their results show that one can accurately infer the subcellular compartment of a protein if
one can find close homologs of experimentally verified localization using the HSSP
distance[46], a measure for sequence similarity accounting for pairwise sequence identity and
alignment length. It is well known in the study of secondary structure prediction[38, 48, 49]
that the homologous sequences are meticulously removed from the testing-training data sets.
For example, the popular benchmark RS126 set[38] comprises sequences that no sequence
pairs share more than 25% sequence identity (over a length of more than 80 residues). The
training-testing data sets of high homology will obviously lead to over-prediction, i.e., the
positive predictions may due to the presence of highly similar sequences in both training and
testing sets instead of the effectiveness of the approaches in extracting key features
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associated with the investigated properties. In this work, we developed a two-level SVM
system to predict subcellular localization: the first level comprises a number of SVM
classifiers, each based on a distinctive set of feature vectors derived from sequences. The
second level consists of a jury SVM that processes the outputs from the previous SVM
classifiers to generate the probability distribution of subcellular localization. We showed that
this two-level approach performs better than other approaches for data sets comprising
sequences of low homology. We denoted this 2-level SVM predictor of subcellular
localization as CELLO IlI. Furthermore, using the relationship between sequence similarity
and identity in subcellular localization[46, 47], we propose a practical pipeline approach

combining CELLO Il and the sequence alignment method to predict subcellular localization.

MATERIALS AND METHODS

Support Vector Machines

(Please see in MATERIALS AND METHODS in Chapter 2.)

Coding schemes

The n-peptide composition

We have previously developed a general global sequence descriptor based on the n—peptide
composition codings (denoted by A,) to discriminate protein properties in a number of
applications[20, 21, 25, 50]. In the case of n=1, the A, coding is reduced to the usual amino
acid composition, which can be considered as the first-order approximation to the complete

protein sequence. The A, coding gives the dipeptide composition. As n increases, the

21



A, coding provides progressively more detailed sequential information. In the limit that n is
the whole length of the sequence, the A, becomes the sequence itself. The A, coding scheme

has the advantage of systematically extracting more information from sequences when n

increases. In the case of n >3, the computation of A, becomes not only impractical from a

learning viewpoint but also susceptible to the danger of over-fitting. We can overcome the
size problem by regrouping the amino acids into smaller number of classes according to their
physico-chemical properties. In this work, we use the following classification schemes of the
amino acids based on their physico-chemical properties - we use H, for polar (RKEDQN),
neutral (GASTPHY) and hydrophobic (CVLIMFW)[51]; V, for small (GASCTPD), medium
(NVEQIL) and large van der Waals force (MHKFRYW)[51]; Z, for of low polarizability
(GASDT), medium (CPNVEQIL)2and high (KMHFRYW)[51]; P, for low polarity
(LIFWCMVY), neutral (PATGS) and high polarity - (HQRKNED)[51]; F, for acidic (DE),
basic (HKR), polar (CGNQSTY) and-nonpelar. (AFILMPVW); S, for acidic (DE), basic
(HKR), aromatic (FWY), small hydrexyl-(ST), sulfur-containing (CM) and aliphatic
(AGPILV); E, for acidic (DE), basic (HKR), aromatic (FWY), small hydroxy! (ST), sulfur-
containing (CM), aliphatic 1 (AGP) and aliphatic 2 (ILV). For clarity, these coding schemes

are summarized in Table 7.
The partitioned amino acid composition

We use X, to denote the partitioned amino acid composition in which the sequence is
partitioned into k subsequences of equal length, and each fragment encoded by the particular

amino acid compositionY . For example, the notation X2* denotes that the sequence is divided

into 5 subsequences, each of which is encoded by A, (note that X, is equivalent to A ). The
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coding X, provides information about the local properties of sequences.
The g-gap dipeptide composition

Another generalized sequence composition is the g-gap dipeptide compositions, denoted by

D, in which we compute the composition of the sequence of the form a(x),b, where a and
b denote two specific amino acid types, and (x), denotes g intervening amino acids of

arbitrary type x. Note that in the special case of g=0, D, is equivalent to A,.

The local amino acid composition

We use W, to denote the amino acid composition of a sliding window of length | centered on
a given amino acid type. The W, provides information of the flanking sequences of a given

amino acid type. Note that when-l is the length L of the whole sequence, W reduced to A, .

The two level SVM classifier system

The first level SVM classifiers comprise a number of separate SVM classifiers, each based on
a specific sequence coding as described in the previous section. For the sake of notation
simplicity, we use the coding symbol to represent the SVM classifier based on that coding.
For example, we denote the SVM system comprising 3 classifiers, say, A, B and C by the

shorthand symbol A+ B+ C. In this work, the first level classifiers consist of the following

9 6
SVMs: > X2 +> D, +> XX+> W, , where S={H,,P,F,S,E,} and $'={7,....15}.
k=1 k=0

xeS leS’
Each SVM generates a probability distribution[20, 21, 25] of the subcellular localization
based on its particular sequence coding. A second SVM (i.e. the jury SVM) is used to process

these probability distributions to generate the final probability distribution and the location
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with the largest probability is used as the prediction. The two-level SVM system is shown

schematically in Fig. 2.
Performance assessment

Following the previous works[21, 25], we use the percentage accuracy to assess the accuracy
of the subcellular localization identification: Q,=c,/n;, where c; is the number correctly
predicted in the i" subcellular location and n, is the number of sequences in that location.

The overall prediction accuracy is given by
P= Z f.Q (1)

where f,=n,/N and N is the total number.of sequences. Though the percentage accuracy
(Q, or P) provides a convenient measure for predictive performance, the Matthew's
Correlation Coefficient[39] (MCC) ‘gives~=a maore precise measurement for predictive
performance:

c_ TPTN, — FPFN,
" J(TP,+ FN,)(TP, + FP)(TN, + FP, (TN, + FN,)

(2)

where TP, is the true positives in location i, TN, is the true negatives in location i, FP, is the
false positives and FN; is the false negatives. The value of MCC, is 1 for a perfect prediction,

0 for a completely random prediction and —1 for a perfect reverse correlation.

The sequence-localization relationship

The query sequence is aligned against the data set of sequences of known localization. If the

top-ranking aligned sequence has an identical localization with the query sequence, the
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sequence pair will be counted as a positive hit, or else as a negative hit. We performed all-
against-all sequence alignment using the global alignment program ALIGN developed by

Myers and Miller[52].

Data sets

Two data sets were used in the experiment. The first data set, referred to as PS 2.0 data set
(the version 2.0), is composed of Gram-negative sequences[8]. We selected from the data set
only those sequences with a single localization (there are 4 groups of sequences with double
localization, the average of which accounts for about 1% of the original data set). This
resultant data set comprises 1444 protein sequences for five subcellular locations:
extracellular (190), cytoplasmic (278), cyteplasmic membrane (309), periplasmic (276) and
outer membrane (391). The second data set Is from Park and Kanehisa, referred to as the PK
dataset[17]. The sequences are selected from SWISSPROTI[53] release 39.0 in such a way
that the pair wise sequence identities are below:" 80%. The PK dataset contains 7589
eukaryotic protein sequences for 12 subcellular locations — chloroplast (671), cytoplasmic
(1245), cytoskeleton (41), endoplasmic reticulum (ER) (114), extracellular space (862), Golgi
apparatus (48), lysosome (93), mitochondria (727), nucleus (1932), peroxisome (125), plasma
membrane (1677) and vacuoles proteins (54). We followed the same validation procedures

for predictive performances as those of the previous works[8, 13, 17].

RESULTS

The sequence-localization relationship
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The sequence homology of a data set can be easily inspected using the pair distribution of
sequence identities, which shows the relative numbers of sequence pairs that share a given
percentage sequence identity. Fig. 3 shows the pair distributions of the sequence identities of
the PS (Fig. 3A) and the PK (Fig. 3B) data sets. Both data sets peak at 20% sequence identity.
However, it is easy to see that significant amount of sequences have a sequence identity
>30% in both data sets. Using all-against-all sequence alignment through ALIGN, we
compared the identity in sequence against the identity in localization for the PS and PK data
sets (Figs. 4A and 4B). In general, when sequence identity >25%, the sequences usually
share identical localization (however, in the PK data set, the abnormal behaviors of points at
sequence identities >80% are due to the relatively smaller example sizes at those regions).
We observe that the relationships between'seéquence identity and identity in localization are
quite similar for these data sets- We also built.a much larger data set from SWISSPROT
release 41.0 by excluding any seguences annotated as MEMBRANE, POSSIBLE,
PROBABLE, SPECIFIC PERIODS, ‘or BY SIMILARITY[13]. The resultant data set
(referred to as SWA41) comprises 9851 eukaryotic proteins sequences distributing in 5
locations: extracelluar, cytoplasmic, mitochondria, nuclear and others. We also observe in the
SW41 data set a similar relationship (Fig. 4C) between sequence identity and localization
identity, i.e. when sequence identity >25%, it is very likely that the sequences also share

identical localization.

Comparison of different coding schemes

Tables 8 and 9 compare the performances of different coding schemes for the PK and the PS
data sets. The SVM based on the multiple coding schemes uses a second level SVM (i.e.,

CELLO I1) to make the jury decision of the final prediction, while the SVM based on the
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single parameter set use the output with the largest probability as the prediction. The general
trends of the overall performances of the single parameter sets are quite similar for both data
sets (Table 8 and 9). For certain rows of subcellular compartments, the performances of the
single parameter sets fluctuate considerably. For example, in Table 8, the prediction accuracy
for chloroplast ranges from 57% to 72 %. On the other hand, the single parameter sets
perform similarly for some subcellular compartments like, for example, the plasma membrane
(Table 8), for which the overall prediction accuracy ranges from 86% to 92%. The overall
prediction accuracy with the partitioned amino acid composition X;* is the best among the
single parameter sets for both data sets. In general, the results based on the multiple feature
vector coding schemes are consistently better than those based on the single feature vector.
This is probably due to the complementarity of information encoded in the single parameter
sets. Our results are consistent with previous:studies[3, 21, 25, 50, 54] that SVM based on the

multiple feature vectors usually performs better than that based on the single feature vector.
Comparison of CELLO Il and ALIGN

In Fig. 5, we compare the predictive performances of CELLO Il and ALIGN for the PS and
PK data sets, respectively. The predictive performances of ALIGN are estimated with simple
procedures as follows. We take the top 1 hit from the all-against-all alignments from ALIGN
and, if the localization of the hit sequence is identical to that of query sequence, it is counted
as a positive hit, otherwise a negative hit. For the sake of comparison, we plot the prediction
accuracies of both methods as a function of sequence identity. The procedures go as follows:
assume that there are N sequences in the data set. By performing all-against-all sequence
alignments, we can obtain for any given sequence N -1 sequence identities si;, where

i=1... N—1. The value SI = max(si;) sets the upper limit of the sequence identity for the
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specific sequence sharing with the other sequences. The prediction accuracies of CELLO Il
and ALIGN for the sequences are plotted against their associated Sls. For both data sets, we
observe that, when the sequence identity is > 30%, ALIGN generally performs slightly better
than CELLO Il does. However, the predictive performances of ALIGN drop considerably
when sequence identity is below 20%. On the other hand, the predictive performances of

CELLO Il remain more consistent throughout the sequence identity range.

In Tables 10 and 11, we list the prediction accuracies of CELLO Il and ALIGN for each
individual subcellular location with sequence identity > 30% and < 30%, respectively. For
sequence identity > 30%, ALIGN performs slightly better than CELLO I1 does, though both
CELLO Il and ALIGN perform well. However, when sequence identity < 30%, CELLO II
performs significantly better than*ALIGN. For example, the MCCs of CELLO Il for
cytoplasmic and cytoplasmic membrane localizations: are both 0.85, while those of ALIGN
for these two localizations are 0.41'and-0:62-in PS data set, respectively. The MCCs of
CELLO Il are in general higher than‘those of ALIGN by 16-44% in the low homology region

(i.e. sequence identity < 30%).

Comparison with other approaches

The previous results suggest a simple hybrid procedure to predict subcellular localization: for
a query sequence, we use ALIGN to search against the data set composed of sequences of
known subcellular localization. As shown Fig. 4C, the accuracy shows a transition in the
SW41 data set, which comprises 9851 sequences, at around 30% sequences identity from
accurate distinction to inaccurate distinction. The localization annotation of the top hit
sequence sharing a 30% or greater sequence identity with the query sequence was used as the

prediction of its localization. However, Rost[55] have previously shown that the
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results from sequence alignment really depends on the choice of sequence database and its
corresponding annotation set[55]. In practice, we can use the more sophisticated similarity
measure like HSSP distance developed by Nair and Rost[46]. Also, we can always construct
an updated sequence database comprising large amount of sequences— for example, like the
SW41 data set with the sequences of dubious annotations removed. If ALIGN fails, the ab
initio CELLO 11 will be used to predict subcellular localization of the query sequence. We
simply refer the approach as HYBRID. Table 12 compares the results of CELLLO II, ALIGN
and PSORTb 2 and the hybrid method for the PS data set. All results are averaged over the 5-
fold cross validation. As expected, the hybrid method gives the best overall prediction
accuracy (92%), followed by CELLO Il (90%), PSORTb 2 (83%) and ALIGN (81%). It is
interesting to note that ALIGN appears:to 'perform surprisingly well for the PS2 data set in
comparison with that of PSORTbB 2. However, the good performances of ALIGN are due to
the relatively high sequence hemology bias inherent in the PS data set (see Fig. 3A).
However, it is noted that PSORThH 2 "also contains a sequence comparison module SCL-
BLAST, which performs a BLASTP search against the expanded PSORTdb database of
known localization. Among these methods, CELLO 11 is the only method that does not rely
on homology search; however, its performance is still among the best next only to HYBRID.
CELLO 11 performs especially well for the cytoplasmic localization, yielding a prediction
accuracy 95% and MCC 0.89 (in comparison, PSORTDb 2 gives 70% and 0.77, respectively,

for the same localization).

In Table 13 we compare the results of HYBRID, CELLO II, ALIGN and the PK method for
the eukaryotic PK data set. The PK method used SVM based on compositions of amino acids
and amino acid pairs to predict protein subcellular localization. HYBRID as expected gives
the Dbest overall performance (91.6%). ALIGN (85.8%) performs slightly better than
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CELLO 11 (85.0%). The PK method gives a 78.2% overall prediction accuracy. However, the
good performance of ALIGN is obviously due to the even higher homology levels of the PK
data set (Fig. 3B). In fact, when the homologous sequences (sequence identity > 30%) are
removed in the PK data set, the overall prediction accuracy of ALIGN drops to 57%. Both
CELLO Il and the PK method belong to the class of the ab inito methods and do not rely on

homology search; CELLO Il performs significantly better.

It is interesting to note that different approaches produce quite similar trends of prediction
accuracies for a number of subcellular compartments (Tables 12 and 13). For example, all
approaches perform well for subcellular compartments associated with membranes
(cytoplasmic membrane or outer membrane in Table 12, and plasma membrane in Table 13).
The good prediction accuracies are probably due.to the distinct sequence features of the
membrane proteins. Indeed, even..the topology .of- the transmembrane proteins can be
predicted with relatively good accuracy. from-protein sequences[45, 56, 57]. We also found
that the nuclear, extracellular and chioreplast localization are among the best predicted in the
eukaryotes (Table 13). On the other hand, Golgi and vacuole are among the worst predicted in
the eukaryotes. The poor performances are probably due to the relatively small number of
sequences in the data set and the possible multiple localizations of these sequences. It is
expected that the prediction will improve when more sequence data with reliable localization

annotations are coming in.

At present, our program does not deal with proteins with multiple subcellular localizations[8,
54]. It is quite straightforward to extend our approach to the cases of multiple localizations.
Since our output is in fact a probability distribution of a given set of localizations, it is

possible, instead of taking the single one with highest probability, to set a probability
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threshold value to determine the possible multiple localizations.

DISCUSSION

In this work, we found that sequence identity is quite useful in identifying subcellular
localization of homologous sequences down to 25% sequence identity. Furthermore, we
found that the homology search method gives surprisingly good results for the two popular
benchmark data sets. However, on closer inspection, these good performances are in fact due
to the relatively high homology levels in the data sets and the performances go down
drastically when the homologous sequences are removed from the data sets. We have
developed an ab initio approach CELLO 11 basedion a 2-level SVM system to predict protein
subcellular localization. Its perfarmance is comparable to the homology search method in the
high homology regions and much superior to the homology search method for sequences in
the low homology regions. We also‘showed that CELLO 11 performs better than other current
methods for these data sets. For practical purpose, we also develop a hybrid approach
combining CELLO Il and the sequence alignment method, which may be applied to a wide

range of sequence identity and provide a useful tool for biologists.
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Table 1. Comparison of predictive performances using different n-peptide coding schemes by

jackknife test for the RH eukaryotic data set.

Localizations A A S, FsXs Xa  A+A+X, A+A+HX R X

Cytoplasm 792 798 792 762 825 85.1 86.3
Extracellular 806 79.7 788 738 840 84.3 84.0
Mitochondria  59.2 626 60.1 539 66.7 63.2 69.5

Nucleus 90.5 939 903 868 943 96.0 96.0
Overall accuracy 819 839 8.7 77.7 86.0 87.0 88.1
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Table 2. Comparison of predictive performances using different n-peptide coding schemes by

jackknife tests for the RH prokaryotic data set.

Localizations A A, Sl Fs Xs  AitA+X, ArtA+X+F3X3

Cytoplasm 98.7 98.1 98.8 94.2 98.0 99.3 99.7
Periplasm 76.7 738 76.2 60.9 81.2 80.7 80.2
Extracellular 75.7 776 748 729 729 76.6 75.7
Overall 91.8 91.0 91.7 852 919 931 93.2
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Table 3. Comparison of different approaches in the prediction of subcellular localizations for

the RH eukaryotic sequences

Reinhardt & .
CELLO Hubbard*[18] Yuan[43] Hua & Sun[11] Chou & Cai[42]

Localizationst

Q%) mcc Q%) mcc Q(%) mcc Q%) mMcc Q%) mcc

Cytoplasm (1097) 863 0.80 55 781 060 769 064 - -

Extracellular (325) 84.0 0.89 75 - 622 0.63 80.0 0.78 - -

Mitochondria (321) 69.5 0.77 61 - 692 053 567 058 - -

Nucleus (1097)  96.0 0.83 72 s, 741 068 874 0.75 - -
Overall 88.1 66 73.0 79.4 90.4

tThe number of sequences is indicated in the parenthesis:

*The results are obtained with 6-fold cross validation:
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Table 4. Comparison of different approaches in the prediction of subcellular localizations for

the RH prokaryotic sequences

Reinhardt & Hua & Chou &

CELLO  \ypbard*1g] YUa43]  sunp1]  caif42]

Localizationst

Q@) Mcc Q(®%) McC Q(%)Mcc Q%) Mcc Q%) MmccC

Cytoplasm(688) 99.7 090 80 - 93.6 0.83 975 086 - -
Periplasm(202) 80.2 081 8 - 797 069 787 078 - -
Extracellular(107) 75.7 0.81 77 - 77.6 0.77 757 077 - -

Overall 931 -.809 - 891 - 914 - 893 -

TThe number of sequences is indicated-in the parenthesis

*The results are obtained with 6-fold crass.validation;while all other are obtained with the Jackknife tests.
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Table 5. Comparison of different approaches in the prediction of subcellular localizations by

jackknife tests on CE data set

Least Euclidean ~ Augmented covariant-

CELLOS ProtLock[2, 28] distance[28, 44] discriminant[4, 28]

Localizationst

Q®) mcc  Q(%)mcc Q(%)mcc Q(%)/mcc

Plasma membrane (699) 95.6 0.93 - - -

Cytoplasm (571) 95.1 0.77 - - _
Nucleus (272) 89.8 0.80 - - -
Extracellular (224) 75.1 0.75 = - —
Chloroplast (145) 70.7 0.81 — - _
Mitochondria (84) 38.1 0:59 - - -
ER (49) 37.7 0.60 - - _
Lysosome (37) 34.2 0.54 - - -
Cytoskeleton (34) 36.1 0.60 - - -
Golgi (25) 19.2  0.40 - - _
Peroxisome (27) 33.3 0.58 - - —
Vacuole (24) 24.0 0.45 - - —

Q,(%) 83.2 - 48.7 49.1 73.0

TThe number of sequences is indicated in the paraenthesis. §Using A+ At X+ RXs,
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Table 6. The comparison of predictive performances of different approaches in the prediction

of subcellular localization for Gram-negative bacteria (PS 1.0 data set)

CELLO PSORT-B PSORT I SubLoc?

Localizations
Q%) McCC Q®%) mMmcC® Q®%) mMcCC® Q%) MCC

Cytoplasm 90.7 0.85 69.4 0.79 75.4 0.58 75.0 0.74

Inner membrane 884  0.92 787 0.85 95.1 0.64 82.8 0.89

Periplasm 869 080 57.6 0.69 66.4 0.55 68.9 0.71

Outer membrane 94.6 0.90 90.3 0.93 54.5 0.47 89.1 0.86

Extracellular 78.9 0.82 70.0 0.79 - - 69.5 0.78

Overall 88.9 - 74.8 - 60.9 - 78.5 -

® The original SubLoc for prokaryotes predicts‘only three subcellular localization sites, therefore, we retrained
the A; SVM for this data set using the one-against-one method, which is different from the original one-against-
all method.

b MCCs are calculated using the precision and recall values reported in Gardy et al.[9].

Accuracy is in %.
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classification definitions

Table 7. The coding schemes of the amino acids compositions based on different

Coding Schemes

Classification types

Amino acid types

H Polar RKEDQN
Neutral GASTPHY
Hydrophobic CVLIMFW

\ Small GASCTPD
Medium NVEQIL
Large MHKFRYW

Z Low polarizability GASDT
Medium polarizability CPNVEQIL
High polarizability KMHFRYW

P Low polarity LIFWCMVY
Neutral polarity PATGS
High polarity HQRKNED

F Acidic DE
Basic HKR
Polar CGNQSTY
Nonpolar AFILMPVW
Acidic DE

s Basic HKR
Aromatic FWY
Small"hydroxyl ST
Sulfur-coentaining CM
Aliphatic AGPILV
Acidic DE
Basic HKR

E Aromatic FWY
Small hydroxyl ST
Sulfur-containing CM
Aliphatic 1 AGP
Aliphatic 2 ILV
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Table 8. Comparison of predictive performances (accuracies) using different coding schemes
for the PK data set

Ay A, Xfl XSFa X XSEz X5H3 XSPa W, CELLO I

Chloroplast 62.0 67.4 72.0 56.8 66.5 69.3 57.5 59.6 69.6 79.9

Cytoplasm 67.5 69.8 70.1 66.3 67.7 70.5 62.2 63.3 69.9 77.2

Cytoskeleton 60.0 47.5 65.0 45.0 45.0 47.5 40.0 35.0 67.5 67.5

ER 48.2 65.8 60.5 56.1 55.3 60.5 52.6 55.3 55.3 67.5

Extracellular 75.1 76.8 82.1 75.3 76.3 82.8 78.4 78.7 80.7 90.2

Golgi 17.0 21.3 38.3 29.8 29.8 36.2 23.4 27.7 27.7 53.2

Lysosome 61.3 65.6 64.5 44.1 51.6 55.9 47.3 49.5 69.9 68.8

Mitochondria  44.8 53.1 59.4 449.7 51.0 60.5 34.7 40.0 51.6 72.9

Nucleus 86.7 87.0 89.8 _78.9 84.2 . 86.4 84.9 85.7 89.9 091.0

Peroxisome 16.0 30.4 35.2 380.4--41.6- 40.0 28.0 31.2 32.0 47.2

Plasma membrane 88.4 89.3 90.3 “85.6..87.3 89.6 89.0 90.0 92.2 95.9

Vacuole 31.5 50.0 35.2 25.9 33.3 33.3 20.4 18.5 44.4 51.9

Overall 73.4 76.1 78.8 70.7 74.1 77.7 71.1 72.6 78.1 85.0

43



Table 9. Comparison of predictive performances (accuracies) using different coding schemes

for the PS 2.0 data set
A A, xfl X 5':3 XS X SEZ X 5H3 X 53 Wy, CELLO Il
Cytoplasm 86.7 82.7 90.3 80.9 81.3 80.6 82.0 79.1 84.5 95.3
Cytoplasmic Membrane 90.0 89.3 87.4 87.7 89.3 90.6 88.3 88.7 90.0 90.0
Periplasm 79.3 79.3 84.1 71.4 72.8 79.0 68.8 72.1 81.2 87.7
Outer Membrane 90.5 92.8 91.3 86.2 89.0 91.6 83.6 85.9 88.5 92.8
Extracellular 76.8 74.7 78.9 66.8 71.1 74.7 61.6 67.4 76.3 79.5
Overall 85.7 85.2 87.3 80.1 82.1 84.6 78.6 80.1 85.0 90.0
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Table 10-1. Comparison of CELLO Il and ALIGN for the sequences with sequence

identity = 30% in the PS 2.0 data set

Localization Amount CELLON ALIGN
Accuracy MCC Accuracy MCC
Cytoplasm 74 94.6 0.92 93.2 0.93
Cytoplasmic Membrane 156 98.1 0.97 99.4 0.99
Periplasm 180 92.8 0.90 94.4 0.94
Outer Membrane 316 96.5 0.96 99.4 0.99
Extracellular 139 90.6 0.90 98.6 0.98

Overall 865 94.9 - 97.7 -

*The localization annotation of the top:hit of the alignment list is:sed as the predicted localization.
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Table 10-2. Comparison of CELLO Il and ALIGN for the sequences with sequence

identity > 30% in the PK data set.

Localization Amount CELLON ALIGN

Accuracy MCC Accuracy MCC
Chloroplast 602 83.2 0.85 94.5 0.94
Cytoplasm 991 84.6 0.79 935 0.91
Cytoskeleton 31 80.7 0.90 96.8 0.97
ER 98 77.6 0.86 92.9 0.93
Extracellular 730 93:8 0.92 97.7 0.98
Golgi 35 65.7 0.79 94.3 0.93
Lysosome 77 71.4 0.81 93.5 0.93
Mitochondria 539 78.7 0.79 88.9 0.89
Nucleus 1358 94.0 0.89 99.0 0.99
Peroxisome 103 57.3 0.70 90.3 0.89
Plasma membrane 984 99.2 0.97 99.6 0.99
Vacuole 39 71.8 0.78 89.7 0.89

Overall 5587 88.9 - 96.0 -

*The localization annotation of the top hit of the alignment list is used as the predicted localization.
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Table 11-1. Comparison of CELLO Il and ALIGN for the sequences with sequence

identity < 30% in the PS 2.0 data set.

Localization Amount CELLOM ALIGN
Accuracy MCC Accuracy MCC
Cytoplasm 204 95.6 0.85 42.2 041
Cytoplasmic Membrane 153 81.7 0.85 68.6 0.62
Periplasm 96 78.1 0.68 54.2 0.38
Outer Membrane 75 77.3 0.72 81.3 0.46
Extracellular 51 49.0 0.56 43.1 0.40

Overall 579 82.6 - 56.3 -

*The localization annotation of the top-hit of the alignment list is‘used as the predicted localization.
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Table 11-2. Comparison of CELLO Il and ALIGN for the sequences with sequence

identity < 30% in the PK data set

Localization Amount CELLOM ALIGN®

Accuracy MCC Accuracy MCC
Chloroplast 69 50.7 0.47 40.6 0.25
Cytoplasm 250 48.0 0.42 344 0.24
Cytoskeleton 9 22.2 0.38 33.3 0.20
ER 16 6.25 0.12 375 0.30
Extracellular 131 70:2 0.66 55.7 0.41
Golgi 12 16.7 0.29 41.7 0.37
Lysosome 16 56.3 0.65 37.5 0.32
Mitochondria 188 56.4 0.53 34.6 0.27
Nucleus 574 83.8 0.68 63.1 0.54
Peroxisome 22 0 0 31.8 0.26
Plasma membrane 691 91.2 0.89 71.8 0.70

Vacuole 15 0 0 0 0

Overall 1993 74.2 - 57.1 -

*The localization annotation of the top hit of the alignment list is used as the predicted localization.
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Table 12. Comparison of the prediction accuracies of different approaches in the prediction of

subcellular locations for the PS 2.0 data set

HYBRID CELLO I ALIGN* PSORTD 2[8]

Localization Accuracy MCC Accuracy MCC Accuracy MCC Accuracy MCC

Cytoplasm 95.0 0.89 95.3 0.89 55.8 0.62 70.1 0.77

Cytoplasmic membrane  90.6 0.92 90.0 0.91 84.1 0.82 92.6 0.92

Periplasm 88.8 0.84 87.7 0.82 80.4 0.73 69.2 0.78
Outer membrane 95.1 0.93 92.8 0.90 95.9 0.81 94.9 0.95

Extracellular 85.3 0.87 79.5 0.82 83.7 0.82 78.9 0.86

Overall 91.6 T 90.0 E 81.1 - 82.6 -

*The localization annotation of the top hit.of the-alignmentilist/is used as the predicted localization.
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Table 13. Comparison of prediction accuracies of different approaches in the prediction of

subcellular localizations for the PK dataset

HYBRID CELLO I ALIGN* The PK method[17]

Localization ~ Accuracy MCC Accuracy MCC Accuracy MCC  Accuracy MCC

Chloroplast 90.0 0.88 79.9 0.81 89.0 0.83 72.3
Cytoplasm 84.4 0.81 77.2 0.71 81.6 0.77 72.2 -
Cytoskeleton 80.0 0.87 67.5 0.81 82.5 0.71 58.5 -
ER 80.7 0.85 67.5 0.78 85.1 0.82 46.5 -
Extracellular 935 0.93 90.2 0.88 91.3 0.87 78.0 -
Golgi 74.5 0.81 53.2 0:69 80.9 0.77 14.6 -
Lysosome 87.1 0.89 68.8 0.78 83.9 0.81 61.8 -
Mitochondria 80.5 0.80 72.9 0.72 74.8 0.73 57.4 -
Nucleus 94.5 0.90 91.0 0:83 88.3 0.86 89.6 -
Peroxisome 74.4 0.80 47.2 0.63 80.0 0.76 25.2 -

Plasma membrane 96.1 0.96 95.9 0.94 88.1 0.89 92.2 -

Vacuole 64.8 0.75 51.9 0.66 64.8 0.72 25.0 -
Overall 90.3 - 85.0 - 85.8 - 78.2 -

*The localization annotation of the top hit of the alignment list is used as the predicted localization.
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~MVTI VCLDLGYTLKVNKLVPCPAGKL Query sequence

Codln,g,lf" : Codlng 2 ™. Coding m
aa,... bb,... C,C,... Input vector
SVM SVM Classifiers
Jury
votes

Localization prediction

Figure 1. The query sequence is encoded by different coding schemes to obtain (a,a,...), (b;b,...), and (c,c,...),
which are used to train the SVM classifiers. We combine votes from these classifiers and use the jury

votes to determine the final assignment. We use four coding schemes in this work, which are A;, A,, X
and F;X.. Because we use the one-against-one methods, we construct SVM classifiers for the prediction
of J(J-1)/2 subcellular localization sites.
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~MVTIVCLDLGYTLKVNKLVPCPAGKL..

Codi,ngfl‘/ . Coding 2 . Coding m
a4 v A
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SVM SVM SVM
pLP; .- P P P;--- Py PPy - Py
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Query seguence

"The 1st layer SVMs

" The 2" layer SVM

J

Figure 2. The first level classification system comprises SVMs based on different feature vectors: (allal2 )
(aZa?_ ), ..-and(a"a; ...). These SVMs generate probability distributions (a;aj..) (a2a?2..). -
and ( a{“ arzn ..) of subcellular localizations. A second layer SVM (as a jury SVM) is used to process these
probability distributions to generate the final probability distribution .

52



Proportion(%)

0.35
0.30
0.25
0.20
0.15
0.10
0.05

0.00

Figure 3.

O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Seqguence identity (%)

(A) The pair distribution of the sequence identities of the PS data set. Each bin (the width set to 5%
sequence identity) represents the relative amount of the sequence pairs that share a given percentage
sequence identity. For example, all sequences in each bin (say 20%) will share a pair sequence identity
between 17.5% and 22.5% against each other. The value of the pair distribution is normalized by
averaged over the total area under the distribution curve. Note that there are a few examples in the 15%
and 100% sequence identity bins.
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Figure 3. (B) The pair distribution of the sequence identities of the PK data set. There are a few examples in the
15% and 80-100% sequence identity bins.
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Figure 4. (A) The bar charts of localization identity vs. sequence identity for the PS data set.

(B) The bar charts of localization identity vs. sequence identity for the PK data set.
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Figure 4. (C) The bar charts of localization identity vs. sequence identity for the SW41 data set.
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Figure 5. (A) The distributions of prediction accuracies as a function of sequence identity of both CELLO II
(white bar) and ALIGN (black bar) for the PS data set. Note that we did not plot the prediction
accuracies for those sequence identity bins that have relatively small example sizes as mentioned in the
figure caption of Fig. 2.
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Figure 5. (B) The distributions of prediction accuracies as a function of sequence identity of both CELLO I
(white bar) and ALIGN (black bar) for the PK data set. Note that we did not plot the prediction

accuracies for those sequence identity bins that have relatively small example sizes as mentioned in the
figure caption of Fig. 2.
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