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a b s t r a c t

With microprocessor power densities escalating rapidly when technology scales below
nanometer regime, there is an exigent need for developing innovative cooling systems
for electronic product design. The high temperature of chips greatly affects its reliability,
raises the leakage power consumed to unprecedented levels, and makes cooling systems
significantly more expensive. The maximum temperature of a block in a chip depends not
only on its own power density, but also on the chip area in each blocks. In this paper,
we employ geometric programming (GP) for the optimization problem of temperature
reduction and chip area floorplanning. We notice that the formulated model is a nonlinear
convex problem; consequently, its solution can be solved GP method. Based upon an
incremental floorplanning problem together with the GP model, the temperature-aware
floorplanning scheme significantly reduces peak module temperature with minimal chip
area impact. For Microelectronics Center of North Carolina (MCNC) ami33 under a testing
environment temperature of 0 ◦C, compared with the maximum temperature of the
original module, the maximum temperature of the optimized one could be reduced from
90 ◦C to 10 ◦C, where the minimized chip area is about 700 mm2. For the case of MCNC
ami49, the maximum temperature reduction is 60 ◦C (i.e., its reduction is from 65 ◦C to
5 ◦C) with a minimal chip area of 2500 mm2. We have numerically found a floorplan
which can reduce themaximum temperature of the chip andminimize the chip area while
maintaining comparable performance simultaneously.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the exponentially increasing power densities, leakage, cooling costs, and reliability concerns inmicroprocessors
have resulted in crucial cooling down chip temperature problem and become a first class design constraint like performance
and power. In order to keep the chip temperature below a certain limit, the increasing chip area could be modeled as a
cost function in an optimization problem. Since the cost of increasing the chip area is about the inverse rate as power
density, reducing themaximum temperature in the chip can reduce the cost of the cooling system,which constitutes amajor
component of the overall cost. Unfortunately, it is very hard for a system designer to meet all the geometric constraints of
a chip to lower the temperature. Therefore, it is essential to execute the incremental modifications [1–10]. Increasing in
power density of digital circuits has been a significant process in advanced microprocessor design. Recently temperature-
aware designs have been proposed [3]. Temperature-aware design issues for Simultaneous Multithreading (SMT) and
Chip Multiprocessing architectures (CMP) have been studied [4]. The thermal efficiency of SMT and CMP architectures
have been taken into account [5] and temperature-aware microarchitectures have been proposed [6,7]. However, it will
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benefit the design if a cost function that can co-optimize temperature reduction and chip area minimization in the
optimization problem. Mathematically, a geometric programming (GP) is one of the optimization approaches which is
characterized by objective and constraint functionswith special forms. Recently, numbers of practical problems, particularly
in semiconductor and electronic circuit design, have been found to be equivalent (or can be well transformed) to GP’s
form [11–21]. Consequently, interior-point algorithm has been developed to solve the large-scale GP problem efficiently
and reliably [11–13], which benefits the development of semiconductor and electronic circuit design.
In this study, we formulate the examined problem as a nonlinear convex problem. Then, the design of incremental

floorplanning can be expressed as a special form of optimization problem, the so-called geometric programming, for which
can be transformed into a convex optimization problem, and then solved in a cost-effective way. For Microelectronics
Center of North Carolina (MCNC) ami33 under a testing environment temperature of 0 ◦C, compared with the maximum
temperature of the original module, the maximum temperature of the optimized one could be reduced from 90 ◦C to 10 ◦C,
where the minimized chip area is about 700 mm2. For the case of MCNC ami49, the maximum temperature reduction is
60 ◦C (i.e., its reduction is from 65 ◦C to 5 ◦C) with a minimal chip area of 2500 mm2. We have successfully modified a
floorplanning program to include temperature as an objective for block area to reduce the hot spot temperature. Our result
shows that it is possible to find a floorplan that can reduce the maximum temperature of the chip and minimize the chip
area while maintaining comparable performance at the same time.
This paper is organized as follows. In Section 2, the design of incremental floorplanning and temperature reduction

problem is formulated as a geometric programmingmodel. In Section 3, the formulated problems of temperature reduction
and chip area are solved simultaneously and discussed. Finally we draw conclusions and suggest future work.

2. The formulation of geometric programming problem

Let f be a real-valued function of n real and positive variables x1, . . . , xn; it is called a posynomial function if it has the
form:

f (x1 · · · xn) =
t∑
k

ckx
α1k
1 x

α2k
2 · · · x

αnk
n , (1)

where Ck = 0 and aik ∈ R. When t = 1, f is called a monomial function. Posynomials are closed under sums, products, and
nonnegative scaling. A geometric program (GP) has the form:

min f0(x)
s.t fi(x) ≤ 1, i = 1, 2, . . . ,m,

gi(x) = 1, i = 1, 2, . . . , q,
xi > 0, i = 1, 2, . . . , n,

(2)

where fi are posynomial functions and gi are monomial functions. We notice that the most important feature of GP is that
they can be globally solved with great efficiency. GP solution algorithms also determine whether the problem is infeasible.
Also, the starting point for the optimization algorithm does not have any effect on the final solution; indeed, a starting
point or initial design is completely unnecessary. In the placement problem considered, as shown in Fig. 1(a), each module
in the partition has an associated area ai. A given partition (floorplan) is first converted into a graph representation. An
optimization problem is then formulated from the representation. Consider the given partition, as shown in Fig. 1(a), where
module i has width x and height h. The width of the enclosing the all module isW and height H. By the graph representation
we can obtain the following optimization problem.

minWH. (3)

This problem is subject to the following constraints. Incremental module width constraints:

xi ≥ wi or
wi

xi
≤ 1, (4)

where the module width after increasing must be larger than the original width. Incremental module height constraints:

yi ≥ hi or
hi
yi
≤ 1, (5)

where the module height after increasing must be larger than the original height. Chip width constraints:

x1 + x2 ≤ W , x3 + x4 ≤ W or
x1 + x2
W

≤ 1,
x3 + x4
W

≤ 1. (6)

The total widths are then less than the minimized chip width. The constraints of chip height are:

y1 + y3 ≤ H, y2 + y4 ≤ H or
y1 + y3
H

≤ 1,
y2 + y4
H

≤ 1. (7)
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a b

c d

Fig. 1. The example of sample chip for (a) the original chip, (b) the chip after area minimization, (c) the chip between temperature and area which is not
optimized, and (d) the co-optimization of chip area and module temperatures.

The total heights are then less than the minimized chip width. These expressions show that it is a linear optimization
problem, and all of the geometric constraints can be rewritten as posynomial inequalities. The optimization problem could
be changed to a geometric programming problem. Fig. 1(b) shows the chip after area minimization. Moreover, we can add
themaximizedmodule temperature as constraints. Fig. 1(c) shows eachmodule has its isolated temperature Ti. The isolated
module temperature can be calculated by:

Ti = Pit/kai, (8)

where Pi is the power consumption, t is the thickness of the chip, k is the thermal conductivity of the material, ai is the
module area. By the graph representation constraints from Eqs. (4)–(7) and module temperature constraints, we can obtain
the following optimization problem:

minαWH + (1− α)
n∑
i=1

Ti, (9)

where α is the weights of the area and the maximum temperature in the chip, respectively. This expression shows that it
is forms a nonlinear optimization programming problem, and the additional module temperature constraint is a monomial
equality. The optimization problem could further be transformed to a geometric programming problem. Fig. 1(d) shows the
co-optimization of chip after area incremental and module temperature after reduction.

3. Results and discussion

The formulated GP is numerically solved using a set of extended codes [22]. For the MCNC ami33 problem, it has
99 variables, 186 linear constraints and 33 nonlinear constraints. For the MCNC ami49, it has 147 variables, 292 linear
constraints and 49 nonlinear constraints. Each run of parquet takes about 30 s for MCNC ami33 and 50 s for MCNC ami49
running on a single PC. We ran the chip MCNC ami33 and MCNC ami49 to generate the case for weight from 0.1 to 0.9.
Figs. 2(a) and 3(a) show the position and area of original MCNC ami33 and MCNC ami49. Figs. 2(b) and 3(b) show the area
after optimization. For MCNC ami33, the red modules are the unchangedmodules and the orange ones are the module after
optimization. For MCNC ami49, the blue modules are the unchanged modules and the amethyst ones are the module after
optimization. Since the parquet generated floorplanmay have some unused space, the position of somemodules is changed
to fill the unused space. For chip area minimization, the modules area is almost unchanged for MCNC ami33 and MCNC
ami49. For the co-optimization of the maximized temperature reduction and the chip area minimization to MCNC ami33
and MCNC ami49, as expected, increasing the area of the chip will decrease the power density of the blocks and thus affects
the temperature of the chip, as shown in Figs. 4 and 5.
The dead space of optimal MCNC ami49 is larger than MCNC ami33 because the arrangement of MCNC ami49 is more

complicate than that of MCNC ami33. When the area of module increases to reduce the temperature of module, for MCNC
ami33, it can use the dead space sufficiently. For the MCNC ami49, it is hard to meet all the minimization of dead space
because the shape and area of modules after increasing is difficult to compromise between position and shape due to the
complicate arrangement. Fig. 6 shows the temperature reduction varies from 60 ◦C (the maximum temperature) to 10 ◦C
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Fig. 2. (a) The position and area of the original MCNC ami33 and (b) the chip area after the minimization.
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Fig. 3. (a) The position and area of the original MCNC ami49 and (b) the chip area after the minimization.
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Fig. 4. The co-optimal MCNC ami33 chip for the maximize temperature reduction and chip area minimization.
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Fig. 5. The co-optimal MCNC ami49 chip for maximized temperature reduction and chip area minimization.

a

b

Fig. 6. The original module temperature and the temperature after reduction for the (a) MCNC ami33 and (b) MCNC ami49.

(the minimum one) when α is 0.5 for MCNC ami33; similarly the temperature reduction can vary from 60 ◦C to 0 ◦C for
MCNC ami49. Fig. 7 shows the incremental area on each module. The incremental area could be up to 30 mm2 and a low
bound is 8 mm2 for MCNC ami33; it varies from 70 mm2 to 0 mm2 for MCNC ami49. For MCNC ami33, the modified and
optimized results of temperature reduction and incremental area for all 33 modules are almost as well as we expected. The
temperature depends on the power which generated by each module and the area increase on each module. On the other
hand, the original temperaturemay also determine themaximum chip area (H×W ); besides, the position of eachmodule is
also a part of factor to determine the chip area. For themodulewith large dead space, it may result inmore incremental area.
For module 1 in MCNC ami49, the temperature reduction is up to 60 ◦C and the incremental area is up to 70 mm2. But for
the module i.e., module 23, the temperature and area are almost unchanged. The experimental result significantly confirms
our arguments. For the module 1, we find, as shown in Figs. 3 and 5, the position of module 1, can increase the module area
to reduce its module temperature without increasing the minimized chip area. Contrary to module 1, other modules are
difficult to increase the module area because their critical original position and the arrangement between other modules,
which may significantly increase chip area with the incremental module area.

Figs. 8(a) and 9(b) show the temperature after reduction and area after incremental of MCNC ami33 modules for weight
from 0.1 to 0.9, Fig. 10(a) shows the total chip area of MCNC ami33. With a large weight in chip area, the flexibility of
temperature reduction is decreased. The temperature distribution and area of eachmodule for the MCNC ami49 are studied
in Figs. 8(b) and 9(b). For the temperature distribution in Fig. 8(b), and chip area in Fig. 10(b), the increase of chip temperature
is saturated as the weight larger than 0.5 because the dead space of ami49 is used up. Figs. 8–10 account for an important
thing: for large chip, theweight of area has to be adjusted to balance the objective function to in chip design. For the practical
condition, we may set the temperature for all modules under a certain limit from 30 ◦C to 70 ◦C. Fig. 11 shows the chip area
as a function of temperature limit. With the tighter temperature constraint, the chip is increased significantly. To study the
efficiency of the proposed method, a standard nonlinear optimization problem solver Lingo

r©
[23] is used as a benchmark.

It requires 120 and 210 s for MCNC ami33 and MCNC ami49 but GP takes only about 30 s for MCNC ami33 and 50 s for
MCNC ami49, respectively. The proposed approach is about four times faster than the result of Lingo

r©
. For more realistic

large-scale problem, we expect that the difference of computational cost will be significant.
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a

b

Fig. 7. The original module area and the area after incremental for the (a) MCNC ami33 and (b) MCNC ami49.

a

b

Fig. 8. Temperature after reduction of all modules for α from 0.1 to 0.9 for the (a) MCNC ami33 and (b) MCNC ami49.

a

b

Fig. 9. The area of modules after increasing for α from 0.1 to 0.9 for the (a) MCNC ami33 and (b) MCNC ami49.
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a

b

Fig. 10. The incremental chip area for α from 0.1 to 0.9 for the (a) MCNC ami33 and (b) MCNC ami49.

a

b

Fig. 11. The incremental chip area after setting temperature limit from 30 ◦C to 70 ◦C for the (a) MCNC ami33 and (b) MCNC ami49.

4. Conclusions

A computational efficient geometric programming approach has been proposed to solve the incremental floorplanning
for thermal optimization problem. To reduce the temperature budget and decrease the chip area in the design stage, the
problem has been formulated as a GP one. We notice that GP method has several advantages. First, the GP approach yields
efficient solutions, which can be solved in seconds. The approach is extensible, in the sense that other GP compatible
constraints can be added, without loss of efficiency. In the same spirit, an accurate formulation of the temperature-aware
model could be used similarly provided it is GP compatible. Another general advantage of the GP method is that it is
guaranteed to always find the globally optimal solution. In particular, the GPmethod does not be trapped in a locally optimal
design. Themain limitation of the GP approach lies in themodels, which are restricted to have a specific analytical form, i.e.,
posynomial or monomial while this form is fairly general. The experiment results show that the MCNC ami33, a maximum
temperature reduction of 80 ◦C has been obtained, while keepingminimized chip area about 700mm2. For theMCNC ami49,
the maximum temperature reduction is 60 ◦C, in which the minimized chip area is kept about 2500 mm2, and the two
cases take fewer computational time, compared with the simulation cost of Lingo

r©
. The computational performance and

theoretical analysis are currently under further examination.
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