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a b s t r a c t

In this paper, a simulation-based optimizationmethod for the design of antenna patterns in
mobile broadcasting, multi-bandwidth operation and the 802.11a WLAN is presented. The
simulation-based genetic algorithm (GA) is advanced for the antenna design automation
with requested specifications. The corresponding cost function in optimization is evaluated
by an external numerical electromagnetic (EM) solver, where the communication between
the GA and EM solver is implemented with our unified optimization framework (UOF). An
A Z-shaped antenna is explored as an example to express the optimization methodology
with respect to the specific return loss. Inspired by the scenario of GA for the optical
proximity correction in our earlier work, we firstly partition the edges of the antenna into
small segments, and then adjust the movements of each segment to construct a newer
geometry for the designed antenna with a better return loss. The external EM solver is
then performed to calculate the return loss of the newer antenna. The optimized antenna
pattern is achievedwhen the simulated results meet the specific constraints, and then UOF
exports the antenna patternwith the better return loss evaluated by the external EM solver.
Otherwise, the evolutionary algorithm will enable us to search for a better solution again.
UOF presents the capability in the optimization with an external solver. Our preliminary
numerical results confirm the robustness and efficiency of the developed simulation-based
optimization method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A trend of portable device integration has arisen in last decade, due to the massive growth of wireless communications,
and products are expected to have multiple wireless service. As a result, a single, small antenna with the ability to operate
effectively over each required bands, is desired. Modern antenna applications have special specifications, such as small
size, multi-band, broadband requirement, beam-forming, high system gain and so on, in communication systems [1–14]. In
the past years, in order to achieve the desired specifications based on well-known geometry, how to adjust the geometry
to get the best design has been a state-of-art, and needs more experience through trial-and-error process. Recently, the
optimization scheme, genetic algorithm (GA) [15–21], is considered to be a efficiency approach to optimize the antenna to
satisfy requested specifications andmakedesignprocedure fully automatic [1–14]. Based onpre-selecteddesignparameters,
such as the geometry dimensions [1,3,8–12], loads locations and the corresponding values [1,11], the number of elements
of fractals [2,5,6], the number of antenna arrays [3,12], the existence of discretized patterns [4,7], and so on, GA adjusts
those antennas automatically and communicates with full-wave electromagnetic solvers to evaluate the cost function. The
GA-based optimized dual-band antenna has been studied bymany research groups [4,7,9,10], and could be divided into two
different approaches. One starts froma rectangular antennawith its geometry discretizing into sequential uniformelements,
and then GA is used to decide which elements are reserved or removed from the geometry [4,7]. The optimized antenna
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consists of those reserved elements. The other approach uses the parts of geometry as the parameters in the optimization
procedure, such as the patch length, width, etc., and then automatically tunes those values [9,10]. As far as we know, the
notch and slit-loaded entries provide extra resonant frequencies and introduce a new band into the original antenna [22].
Hence the approach in [4,7] works well, but their ability depends on the grid’s size. Recently, the wire antenna optimization
using GA has been studied [23]. However, such bending approach cannot be used in planer antenna design. To make GA
more flexible in planer antenna design optimization, we provide a new approach to optimize the planer antenna.
In this work, we implement an optimization method to enhance the receiving and transmitting abilities of the given

antenna with GA and numerical simulation. Based on our experience and technique of using GA to optical proximity
correction (OPC) [24–26], transistor model parameter extraction [27,28] and doping profile optimization [29], we, for the
first time, advance the idea of pattern correction in OPC for antenna design optimization. The proposed method partitions
the edges of the antenna into some sections (small segments), and then those sections can be shifted in the normal direction
of the edges to improve the return loss of the antenna. This novel approach means the variation of geometry has more
freedom than the two approaches mentioned above. It can extend the geometry without limited boundaries and can
construct geometry without specific form. The involved simulator solves theMaxwell’s equations by finite elementmethod.
The Maxwell’s equations govern the performance in electric and magnetic fields, and the simulated results are applied to
evaluate the newly generated antenna. A Z-shaped antenna is used in our examination, which has radiation elements and a
ground plane on the sameplane, and it has only one clear band. To enhance the second band,we try to add the discontinuities
for current on the patch (i.e., change the geometry of the antenna). Both the accuracy and computational efficiency show
that the evolved antenna satisfies the specification.
The paper is organized as follows. In Section 2, we briefly introduce the finite element method for the numerical solution

of the adopted Maxwell’s equations. In Section 3, the procedure of the GA-based optimization method is stated in details. In
Section 4, results and a discussion are given. Finally, we draw conclusions and suggest future work.

2. The finite element method for electromagnetic problem in antenna design

In this section, we state the Maxwell’s equations which are fundamental in electromagnetics [30]. The Maxwell’s and
continuity equations in the differential form are

∇ × E = −
∂B
∂t
, (1)

∇ × H =
∂D
∂t
+ J, (2)

∇ · D = ρ, (3)
∇ · B = 0, (4)

and

∇ · J = −
∂ρ

∂t
, (5)

where E is electric field intensity, D is electrical flux density, H is magnetic field intensity, B is magnetic flux density, J is
electric current density, and ρ is electric charge density. The bold face denotes vectors. Consider that the time-harmonic
Eqs. (1), (2) and (5) can be rewritten in the following forms

∇ × E = −ȷωB, (6)
∇ × H = ȷωD+ J, (7)

and

∇ · J = −ȷωρ, (8)

where ω = 2π f , and f is the operation frequency. Based on the time-harmonic case with constitutive relations, the vector
wave equations can be derived as

∇ ×

(
1
µr
∇ × E

)
− ω2E = −jωJ, (9)

∇ ×

(
1
εr
∇ × H

)
− ω2µrH = ∇ ×

(
J
εr

)
, (10)

where εr is the premitivity and µr is the premiability. Now we introduce how to apply the finite element method (FEM) to
solve Maxwell’s equations for the antenna design problem. To derive the FEM formulations, first we consider the boundary
value problem in three-dimension (3D) with the general form

−
∂

∂x

(
αx
∂φ

∂x

)
−
∂

∂y

(
αy
∂φ

∂y

)
−
∂

∂z

(
αz
∂φ

∂z

)
+ βφ = f ,∀ (x, y, z) ∈ V , (11)
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Fig. 1. An illustration of the problem domain for the examined antenna (gray area). For the studied structure of the antenna, the upper line presents the
ground plane and the lower rectangle behaves as the radiation element.
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V3

V4

Fig. 2. The linear tetrahedral element. The labels for four nodes are local indices in FEM.

and the boundary conditions are φ = p on S1 and(
αx
∂φ

∂x
x̂+ αy

∂φ

∂y
ŷ+ αz

∂φ

∂z
ẑ
)
· n̂+ γφ = q, (12)

on S2.φ denotes the unknown function,V is the simulation domain, S1 is the surfacewith theDirichlet boundary condition, S2
is the surface with the boundary condition of the third kind, and other parameters are knownwhen converting the physical
problem into the boundary value problem. In our examined antenna case, as shown in Fig. 1, the antenna with dimension
30 mm × 30 mm (gray area) is surrounded by the cubic with dimension 190 mm × 190 mm × 160 mm. The boundary
conditions of all the edges, such as absorbing boundary condition (ABC) [31–33], perfectly matched layer (PML) [34,35], etc.,
satisfy the third kind boundary condition.
The corresponding variational problem for above boundary value problem is

∂F (φ)
∂φ

= 0, (13)

where

F (φ) =
1
2

∫∫∫
V

[
αx

(
∂φ

∂x

)2
+ αy

(
∂φ

∂y

)2
+ αz

(
∂φ

∂z

)2
+ βφ2

]
dV +

∫∫
S2

(γ
2
φ2 − qφ

)
dS −

∫∫∫
V
f φdV , (14)

and F(φ) is named functional. The unknown function can be obtained by solving Eq. (14). To compute the solution, FEM
is applied. FEM first discretizes the 3D simulation domain using tetrahedral elements and calculates the expression of the
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unknown function on each element. For example, Fig. 2 shows a linear tetrahedral element, which uses four vertices V1, V2,
V3, and V4 as the basis to represent the electric and magnetic field within the element. It mimics the unknown function as

φe (x, y, z) = ae + bex+ cey+ dez, (15)

where the superscript e denotes the region of each discretized element. After discretization, Eqs. (13) and (14) can be
transferred into the matrix form such as{

∂F (φ)
∂φ

}
=

M∑
e=1

{
∂F e (φe)
∂φe

}
+

Ms∑
s=1

{
∂F sb (φ

s)

∂φs

}

=

M∑
e=1

([
K
e
] {
φ
e
}
−

{
b
e
})
+

Ms∑
s=1

([
K
s
] {
φ
s
}
−

{
b
s
})
= {0} . (16)

In the above expression, {A} denotes a column vector, [A] denotes a matrix, e is the entry corresponding to discretized
element, superscript s denotes the entry corresponding to surface, M represents the total discretized elements inside the
simulation domain, Ms denotes the total elements on the boundaries of the simulation domain, and the bar over entries
in the equation denotes the global representation which transfers from the local representation without bar. Finally, the
solution will be obtained by solving the Eq. (16). Comparing Eq. (11) with Eqs. (9) and (10), the parameters in Eq. (11) can be
extracted. Also, the boundary conditions and the continuity of fields between twomaterials in the electromagnetic problem
can also be related to Eq. (15) and (16). For open structures, in order to truncate the problem into the finite domain, ABC and
PML are used to model the boundary conditions and to avoid the reflection at artificial boundaries [30–35]. The radiation
pattern and the return loss are then evaluated to show the antenna property [36].

3. The intelligent methodology

As a designer drew a blueprint of an antenna for the specific purpose, a fine tune process should be performed repeatedly
for further improvement. We already know the geometry of the antenna affects its performance. However, the major
difficulty is how the antenna shape affects its performance. For an antenna designer, when one fine tunes the shape, it
is just like making a wild guess. To automate the search for the optimized antenna shape in an efficient way, GA is a
good candidate of optimization methods in the simulation-based procedure. Fig. 3 shows the flowchart of the proposed
optimization approach. During the procedure, the original antenna shape is divided into small segments. The movements
of those segments are then optimized with respect to the calculated results, using GA. Then the GA is applied to correct the
antenna shape and outputs a new geometry of antenna. To evaluate the cost function in GA, the external EM solver is used
to simulate the new antenna. This procedure will continue until all the specifications are satisfied by the optimized antenna.
Wehave implemented this optimization procedure in our developed unified optimization framework (UOF) [15,16]. UOF has
already provided an efficientway in OPC problemusing a simulation-based optimization scheme. Based on such a successful
experience, we now extend the idea to do the simulation-based antenna optimization. There are several components in the
GA [15–19], such as problem definition, encoding method, fitness evaluation, selection method, and crossover procedure,
and a mutation scheme has to be performed for an evolutionary process. A computational procedure for the implemented
GA in the optimal antenna design problem is shown below.

GA with antenna design problem
Begin
Partition edges of antenna into segments
For j = 1 to Number of segments
GeneEncode(Segment[j])

End For
While ErrorNorm does not satisfy the stop

criteria
Evolution()
UpdateSegment()
return_loss(optimized) = External EM

Solver(CorrectedShape)
ErrorNorm

= return_loss(optimized)− return_loss(original)
End While
Output optimized antenna

End

The combination of simulation-based intelligent antenna optimization and GA adopts GA as an optimizer to search for
the best movement of each segment and to then produce an optimized shape. The implementation of each procedure in the
proposed GA is described as follows.
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Partition the edges of the
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Construct the geometry
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Simulate the new antenna to
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 by GA
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Fig. 3. A flowchart for the proposed optimization approach in antenna design.

Fig. 4. Encoding method for the antenna optimization problem and crossover and mutation operation.

(1) Problem Definition
Our goal in the antenna design problem is to obtain an optimized antennawhose geometry produces the improved return

loss within the requested frequency bandwidth. It means that the GA will find out the best configuration of the antenna
shape, and the extracted return loss of the optimized antenna is less than the return loss of the original antenna within such
bandwidth. In the antenna optimization, the relationship between specification, corrected shape, their return losses and
errors can be written as follows:
Specification: Return_loss(goal)|fi ;
Corrected Shape: CS;
Return loss: Return_loss(optimized) = External EM Solver(CS); and
Error: Err =

∑Nf
i=1

(
Return_loss(optimized)|fi − Return_loss(goal)|fi

)
;

where the Return_loss(goal)|fi is the return loss at the specified frequency fi, and Nf denotes the total number of specified
frequencies. In this work, the external EM solver, such as HFSS [37], FEKO [38], IE3D [39], etc. is used to solve the return loss
of the antenna.
(2) Encoding Method
The encoding method is the procedure that encodes the target parameters into genes. In the proposed method, we

encode the movements of each segment into genes. For example, in the chromosome P1P2P3P4, the genes P1, P2, P3, and
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Fig. 5. The original geometry of examined antenna and the partitioned segments. The black rectangular frame near the top line is the contact for input
excitation. The partitioned segments allow us to perturb the geometry without spatial limitation in a specific region. The Zoom-in plot shows the diagram
for the segment movement.

P4 can represent the movements of different segments, and can be seen in Fig. 4. In the GA with simulation-based antenna
optimization problem, all unknowns to be extracted are floating-point numbers. We transform these continuous floating-
point numbers into discrete steps (Psteps) through step function, as shown in Eq. (17), instead of real numbers, and we
encode the discrete steps as genes on chromosomes. The discrete steps show the strongly combinatorial properties, and we
have found that this representation has better results in crossover and mutation.

Pvalue = Pmin + Psteps
Pmax − Pmin
Resolution

, (17)

where the Pvalue is the real value of themovement orwidthwhich is a float-point number. Pmin and Pmax are theminimumand
maximum values of each parameter, and Resolution defines the magnitude of single step to vary of a parameter. Then, the step
function Psteps can be encoded, and the real number problem is translated into genes. Here the binary values representation
is used. To show how to apply the encodingmethod to fine tune the antenna geometry, the bottom one of the Fig. 4 presents
the movements of one partitioned segment.
In this work, the movements of segments satisfy the following rules. Each segment from 1 to 15, as shown in Fig. 5, can

shift inward or outward within a specified range, while the value of parameter 16 to 20 indicates the width of the top line.
And they can be efficiently achieved via the encoding method.
(3) Fitness Evaluation
The fitness evaluation calculates the fitness score for each chromosome. The fitness score can be seen as the

accommodation status of each chromosome in the current environment. In our optimization scheme, the user-defined
specification for return loss is used as the fitness. Due to the different operation frequencies, the return losses within the
bandwidth around those operation frequencies are taken into account. Herewe use the difference of the return loss between
the adjusted antenna and the specification as the fitness. It can be rewritten in the following formulation

F =
#freq∑
i=1

(
return_lossi − RLth,i

)
, (18)

where F is the fitness, the return_lossi denotes the optimized return loss at requested frequency i, RLth,i means the specific
return loss needed to be achieved at frequency i, and #freq is the number of requested frequencies. The smaller fitness
reflects the optimized return loss is close to the specification.
(4) Selection Method
After the fitness score for each chromosome is obtained, a selection method selects chromosomes that will stay in the

population and breed the next generation. There are many selection schemes, such as ranking selection, roulette wheel
selection, and tournament selection. The ranking selection selects chromosomes with the rule of first-rate score. The
roulette wheel selection gives each chromosome a different chosen rate by the average score and the fitness scores of each
chromosome; and the tournament selection chooses several pairs of chromosomes and selects the better one of each pair.
In this work, the ranking selection is chosen for its simplicity.
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Fig. 6. The return loss of the original geometry and requested return loss. The goal is tomake the return loss reach the gray region along the two dash lines.
The original antenna is a dual-band design but has only one clear band at 2.6 GHz. The return loss on the frequency 4.9 GHz still has room for performance
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Fig. 7. Some generations of antenna patterns in GA procedure.

(5) Crossover Procedure and Mutation Scheme
When selection has been carried out, we will perform the crossover procedure. Crossover procedure mates two

chromosomes selected by the selection method, to generate new chromosomes. To generate offspring, the crossover
operator gives a few cuts on the parent chromosomes and exchanges the genes. In this work, the single-point cut crossover
scheme is adopted. After the crossover procedure, a certain rate of the newborn chromosomesmutates into another different
chromosomes. The mutation rate is typically less than 1%. The mutation scheme may act in different ways. In the proposed
method, it increases the mutation rate when the behavior tends to a saturation situation, and decreases the mutation rate
when the population achieves a high diversity. Both crossover and mutation are shown in Fig. 4.
After the above steps are complete, the GA evaluates the next population and continues until certain stop criteria is

reached.

4. Results and discussion

Fig. 5 shows the original shape of the examined antenna. The studied structure is a Z-shaped antenna and has radiation
elements and ground plane on the same plane. As shown in Fig. 5, the top line is the ground plane, the bottom rectangle
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Fig. 9. (a) An optimized geometry of the examined antenna after our optimization scheme. The geometry of radiation element is obviously tuned by GA
to enhance the transmitting and receiving properties of the antenna. (b) The return loss of the optimized antenna.

represents the radiation element, and the segments 1–20 are the partitions for evolution. Fig. 6 shows the return loss of the
original antenna. The dual operating frequencies are set to 2.6 and 4.9 GHz. The frequency 2.6 GHz is referred as the ‘‘S-band’’
used for mobile broadcasting and the frequency 4.9 GHz is used by the 802.11aWLAN protocol. Our target is to improve the
return loss for both operating frequencies — 2.6 and 4.9 GHz. It means the return loss will reach the gray region at those two
frequencies along the dash lines in the figure. Apply GA to search the better antenna patterns automatically. The antenna
patterns in some generations are shown in Fig. 7. Fig. 8 shows the corresponding return losses for the antenna patterns in
each generation. The number on the subplots in Fig. 7 represents the number of generations in GA procedure. Fig. 8 shows
that the return loss of the second band has been improved as the number of generations increase.When the antenna pattern
generated by GA satisfies the design specifications, it will be the optimized pattern. Fig. 9(a) shows the optimized geometry,
and Fig. 9(b) illustrates the corresponding result. Compared with Fig. 6, the return loss on the frequencies of 2.6 and 4.9 GHz
is down to 20 dB for the optimized antenna, which is a significant improvement. As shown in Fig. 5, the original Z-shape
antenna is located in the xy-plane and its normal vector is in the z direction.
For the radiation property of the desired antenna, we want to hold the omidirectional radiation in the xz-plane after

the proposed optimization scheme. The radiation patterns are calculated by solving the Maxwell’s equations. As shown
in Figs. 10 and 11, the original antenna has omidirectional gain pattern in the xz-plane at 2.6 GHz and 4.9 GHz. After
optimization, the gain patterns are still omidirectional in the xz-plane at the dual operating frequencies, as shown in Figs. 12
and13. FromFigs. 10–13,wenotice that the gain of the optimized antenna is close to that of the original one at both operating
frequencies, which reserves the omidirectional radiation property. But the return losses are obviously improved after the
optimization.
To analyze the convergence of the proposed intelligent approach, here the convergence under different mutation rates

and population sizes are further examined. The parameter setting for GA in this work is as follows: crossover rate is 0.6,
selection rate is 0.6, new spring rate is 0.3. Fig. 14 shows the fitness score convergence behavior for the antenna optimization
with differentmutation rates, where the population size used in this testing is equal to 5.We note that generations increase,
and the results suggest that the high mutation rates over 0.3 keep the population diverse and have better evolutionary
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Fig. 10. The gain pattern for the original antenna at 2.6 GHz. The left object is the 3D gain pattern. The right one is the 2D gain pattern. The solid line
represents the gain pattern in the xz-plane, and the dashed line is the gain pattern in the xy-plane. The original antenna has an omidirectional gain pattern
of 2.6 GHz.

Fig. 11. The gain pattern for the original antenna at 4.9 GHz. The left object is the 3D gain pattern. The right one is the 2D gain pattern. The solid line
represents the gain pattern in the xz-plane, and the dashed line is the gain pattern in the xy-plane. The original antenna has a near omidirectional gain
pattern of 4.9 GHz.

results. Fig. 15 shows the fitness score versus the extraction time; three different population sizes are compared using the
samemutation rate 0.6. The results indicate that the best performance is achieved when the population size of 5 is adopted.

5. Conclusions

In this paper, a simulation-based optimization method for the design of an antenna has been presented. GA works well
for the antenna design automation on our UOF, and communicated with an external numerical EM solver. This method
minimizes the return loss under the frequencies 2.6 and 4.9 GHz. Improved return loss is observed, and the effect of
this method for the optimized configuration is examined and discussed. The receiving and transmitting properties of the
optimized antenna are simulated and the resulting gain pattern is still omidirectional in the xz-plane. Furthermore, the
gain is close to the original antenna. The optimized antenna has a gain pattern as good as the original one, but the operating
frequencies are enhanced for dual band design. To validate thismethod, more antennaswith different operating frequencies
will be examined, such as wire antenna, patch antenna, broadband antenna, etc. Furthermore, UOF also has capability to
connect with other external software through the script file, which can generate the antenna geometry.We believe that this
optimization method can benefit the RF antenna design applied for mobile broadcasting and the 802.11a WLAN.
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Fig. 12. The gain pattern for the optimized antenna at 2.6 GHz. The left object is the 3D gain pattern. The right one is the 2D gain pattern. The solid line
represents the gain pattern in the xz-plane, and the dashed line is the gain pattern in the xy-plane. The optimized antenna holds the near omidirectional
gain pattern at 2.6 GHz.

Fig. 13. The gain pattern for the optimized antenna at 4.9 GHz. The left object is the 3D gain pattern. The right one is the 2D gain pattern. The solid line
represents the gain pattern in the xz-plane, and the dashed line is the gain pattern in the xy-plane. The optimized antenna has a near omidirectional gain
pattern at 4.9 GHz.

Fig. 14. A plot of fitness score convergence vs the number of generations with respect to different mutation rates.
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Fig. 15. A plot of fitness score convergence vs the number of generations with respect to different population sizes.
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