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Abstract—The goal of solving an algebraic Riccati equation is to find the stable invariant subspace
corresponding to all the eigenvalues lying in the open left-half plane. The purpose of this paper is to
propose a structure-preserving Lanczos-type algorithm incorporated with shift and invert techniques,
named shift-inverted J-Lanczos algorithm, for computing the stable invariant subspace for large
sparse Hamiltonian matrices. The algorithm is based on the J-tridiagonalization procedure of a
Hamiltonian matrix using symplectic similarity transformations. We give a detailed analysis on the
convergence behavior of the J-Lanczos algorithm and present error bound analysis and Paige-type
theorem. Numerical results for the proposed algorithm applied to a practical example arising from
the position and velocity control for a string of high-speed vehicles are reported.

Keywords—Riccati equation, Hamiltonian matrix, J-Lanczos algorithm, J-tridiagonalization,
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1. INTRODUCTION

The problem of solving the algebraic Riccati equation
-XNX+XA+ATX+K =0, (1.1)

where X, N, K, and A are real n x n matrices, K = K > 0 (positive semidefinite) and N =
NT >0, frequently arises in optimal-control problems. It is assumed that (A, B) is stabilizable
and (C, A) is detectable, where B and C are full rank factorizations of N and K, respectively [1].

Under these assumptions, equation (1.1) has a unique symmetric positive semidefinite solution.
Y

A well-known procedure is to compute the n-dimensional invariant subspace [z

] corresponding
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to the stable eigenvalues of the Hamiltonian matrix
A N ]

M=[K —AT

The solution of equation (1.1) is then obtained by X = —ZY ! [1].

Many structure-preserving numerical algorithms have been proposed for computing the invari-
ant subspace of a Hamiltonian matrix, thus for solving the algebraic Riccati equation {1.1), see,
e.g., [2-7]. One type of these methods, [2,3] are based on the symplectic QR-type transforma-
tions in which the SR decomposition with symplectic similarity transformations is used to replace
the usual QR decomposition. The other type of methods exploit the square of the Hamiltonian
matrix (skew Hamiltonian) to compute the corresponding eigenvalues and use them to find the
stable invariant subspaces. These algorithms are very efficient for problems of small or medium
sizes, but they become inadequate for very large and sparse cases.

Since there is also a wide class in control theory, such as position and velocity control [8] or
circulant system analysis [9], which leads to solve large sparse Hamiltonian eigenvalue problems,
it is not practical to perform algorithms that require the modifications of the underlined Hamil-
tonian matrix for this type of applications. Hence, some Lanczos-type algorithms were proposed
in [10-12] for computing large sparse Hamiltonian eigenvalue problems, in which the nonsym-
metric look-ahead Lanczos algorithm is applied to reduce the Hamiltonian matrix to a block
tridiagonal matrix without modifying the matrix itself.

In this paper, we present a structure-preserving Lanczos-type algorithm, named J-Lanczos al-
gorithm, for solving large sparse Hamiltonian eigenvalue problems. In this algorithm, the Hamil-
tonian matrix M is partially reduced to a J-tridiagonal matrix using a sequence of symplectic
similarity transformations. Just like the conventional Lanczos algorithm, information about M’s
extreme eigenvalues tends to emerge long before the J-tridiagonalization process is completed.
The J-Ritz pairs (eigen-pairs of J-tridiagonal submatrices) computed by QR or symplectic QR-
like algorithm [2] are used to approximate the extreme eigen-pairs of M.

The goal of solving the algebraic Riccati equation (1.1) is to find the stable invariant subspace
corresponding to all the eigenvalues lying in the open left-half plane. Since the J-Lanczos algo-
rithm converges to the extreme eigenvalues fast, there are two important aspects in practice. One
is to develop a shift strategy for determining a sequence of shifts so that the J-Lanczos algorithm
can be sequentially applied to the new shifted and inverted Hamiltonian matrices. The other is
to determine how many shifts with how many J-Lanczos steps should be used. In practice, we
begin with the zero shift and then we use the distribution density of the computed eigenvalues
to predict the next shift and the number of the J-Lanczos steps. We name this approach the
shift-inverted J-Lanczos algorithm.

Although the proposed J-Lanczos algorithm is mathematically equivalent to the the Lanczos-
type algorithms in {10-12], derivation of J-Lanczos algorithm starts from a different point of
view. Furthermore, an error bound analysis based on [13] which demonstrates the convergence
behavior of the J-Lanczos algorithm is analyzed in depth in this paper for the J-Ritz values.
We also present a variant Paige-type theorem [14] for the J-Lanczos algorithm which shows that
the constructed J-Lanczos vectors will lose the symplecticity when some J-Ritz values begin to
converge.

We organize this paper as follows. Some definitions that related to the so-called J-structure
matrices are reviewed in the preliminary Section 2. In Section 3, we establish the existence
theorem of the J-tridiagonalization of a Hamiltonian matrix and develop the J-Lanczos algo-
rithm. The convergence analysis of the J-Ritz value and a variant Paige-type theorem for the J-
Lanczos are presented in Section 4. Shift-invert strategies and numerical results for the proposed
J-Lanczos method applied to a practical example arising from the position and velocity control
for a string of high-speed vehicles [8] are discussed in Section 5. Concluding remarks are given
in Section 6.
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2. PRELIMINARIES

Herein, we denote the n x n identity matrix by I,, and define

f [0 I
el 2 5]
Note that J71 = JT = —J,. Let II, € R?"X?" be the permutation matrix

I, = [e1,€3,...,62n_1,€2,€4,...,€2n ], (2.1)

where e; is the jth column of the identity matrix I,. If confusion is unlikely, the subscript n
will be omitted.

A matrix § € R?*2™ (n > m) is symplectic if STJ,S = Jn. A matrix M € R2X2 jg
Hamiltonian if and only if (JM)T = JM. The definitions for the J-structure matrices [2], SR
factorization, and Krylov matrices that will be referred later in this paper are given as follows.

Gu Gm]
G =
[GZI G2

DEFINITION 2.1. Let

be a 2n x 2n matrix with G;; € R**".

(i) G is called a J-Hessenberg matrix if G11,G21, and G2 are upper triangular and Gy is
upper Hessenberg. In addition, G is called an unreduced J-Hessenberg matrix if G5 is
unreduced and G2, is nonsingular.

(ii) G is called a J-upper triangular matrix if G11, G12, and G2 are upper triangular and Gg;
is strictly upper triangular. In addition, G is J-strictly upper triangular if G1; and Ga
are strictly upper triangular.

(iii) G is called a J-tridiagonal matrix if G11, G21, and Ga, are diagonal and G is tridiagonal.

DEFINITION 2.2. Suppose A € R?"*?™ (n > m). The factorization A = SR, where S € R2n*?™
is symplectic and R € R?®™%2™ js J_._triangular is called an SR-factorization of A.

DEFINITION 2.3. Let M € R?"%2" be a Hamiltonian matrix. Given z € R?" and a positive
integer j.
(i) The Krylov matrix of M with respect to T and j is defined by

Kj = K[vav2j] = [vaxv-'-yMj—ll' | ij,...,sz_lx] .

(ii) The Krylov subspace spanned by the columns of K{M, z,2j] is denoted by K(M, x, 25).

3. J-TRIDIAGONALIZATION AND J-LANCZOS ALGORITHM

In this section, we establish the existence theorem of the J-tridiagonalization of a Hamiltonian
matrix and develop the related J-Lanczos algorithm. This algorithm is equivalent to the algo-
rithms proposed in [10-12], however, the derivation starts from a completely different point of
view. First, the results of [3, Theorem 3.4, (i),(ii)] is generalized to a more general form.

THEOREM 3.1. Let M € R be 3 Hamiltonian matrix and for a given 2n-vector q1, Km =
K[M,q1,2m], m < n, be a Krylov matrix with rank (Kp,) = 2m. If Kpll, = SpRy is an
SR-factorization, then

Hpy = (J g ShJ) MSm, (3.1)

is an unreduced Jy,-tridiagonal matrix such that
MSm = SmHm + 2megn (3.2)

and (JLST J)zn =0, for a suitable z,, € R?™.
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PROOF. For any given ¢1, one can find a vector y, L Range(K,,) and scalars ay,q;,...,
02m-1 € R such that M2mg, = 3214, Mig, + y,. Here ym can be a zero vector. Let

=0
0 (24
1 0 (03]
C, = . . .
0
1 aom—
Then we have
MK, = KCom + YméEgpm. (3.3)

Since KpIly = SR is an SR-factorization with Ry, a 2m x 2m nonsingular J,,-triangular
matrix equation (3.3) can be written as

MSp = SRl Colly Ry + binyme, .,
where 6m = €J,, Ry eam. Thus, by letting §m = 6m(JE 8% J)ym, We have
(JmSmd) MSp, = Ry} Con Il Ry + Gmegn = Him.

Since R,, and R} are Jp,-triangular and HLCmHm is Jm-Hessenberg, Hy, is J,,-Hessenberg.
But (J,T,S,T,J)MS,,. is Hamiltonian, therefore Hy, is Jn-tridiagonal. Since Ry, is nonsingular
and Cy, is companion it follows that H,, is unreduced.

To prove (3.2), we use (3.3)

MKy = KnCrn + ymed,,

1o JE .
=Kn N N B L + Ymelm
1 0 0 -«« 0 Q2m-1
= KmZm + M™qe,.,.

Since Kp,I1,,, = SRy, it follows that
MS,, = S,, (R,,.n;z,,,nmR,;l + (I Smdm) " M‘*‘mqle;mR;,l)
+ (1= Sn (I Smdm) ") MPmqre] RS2,

Let
T
Zm = (I - Sm (JTSme) ) Mzmql'Ym’
with vm = e Ry .leam. Then it is easy to see that (JT ST J)zp, = 0. ]
THEOREM 3.2. Let M be a Hamiltonian matrix and Sy, € R?"*2™ m < n, be a symplectic
matrix with Sy,e; = q1. If S,, satisfies

MSp = SpHm + Zmeim,

where H,, is unreduced J,-tridiagonal and z,, € R?*, then K [M, g1,2m|I1,, has an SR-factoriza-
tion and rank (K[M, ¢1,2m]) = 2m.
PROOF. Since

Mgy = MSme; = (SmHm + Zmedn) &1 = SmHmpey,
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and e], Hi-le; =0 fori=1,...,2m — 1, it is easy to show by induction hypothesis that
Miq = SpHie;.
Hence,

K[M,q,2m] = [q1,Mq,...,M™ g1 | M™qy,..., M*>™ 1q)]
S e o e | e e
= SmK [Hm,61,2m] .

Let H, = I, H,IIT. Then it is easy to verify that Hpis upper Hessenberg and K [Hp,,e;,2m] =
1} K[Hpn, e1,2m)]. Therefore,

K [M,q1,2m] M, = SplIT K [ﬁm,e1,2m] T = SR,

where R, = ITK [ﬁm,el,Zm]Hm. Since H,, is unreduced, using the same argument in the
proof of [2, Theorem 3.4, (ii)], one can conclude that Ry, is J-triangular and nonsingular. ]
We comment that the previous two theorems hold for an arbitrary 2n x 2n matrix M. The

following existence and uniqueness theorems for J-tridiagonalization of a Hamiltonian matrix
follow from the results in [2].

THEOREM 3.3. (EXISTENCE THEOREM). If all leading principal minors of even dimension of
K[M,q,2n)T JK[M, q1,2n] are nonzero, then there exists a symplectic matrix S with Se; = q
such that H = S~'MS is an unreduced J-tridiagonal matrix.

THEOREM 3.4 (IMPLICIT SYMPLECTIC THEOREM). Suppose M is a Hamiltonian matrix. Let S
and S be two symplectic matrices with Se; = Se;. If S"IMS = H and §~'MS = H, where H
and H are unreduced J-tridiagonal matrices, then there exists a matrix

cC F
D=[0 C’“]’

where C and F are n x n diagonal matrices such that S = SD and H = D~'HD.

With these theorems, we are able to derive a set of two-four-term recurrence formulae for
J-tridiagonalization of Hamiltonian matrices. Suppose that, for a given Hamiltonian matrix M,
there exists a symplectic matrix S such that H = S™'MS is unreduced J-tridiagonal. With
column partitioning, we denote

S=[QI,"‘,Qn|Qn+1v---yq2n] (34)
and
[ a1 (4} bl ]
b
bn—l
Qn bn-1 Cn

H=|"m T : (3.5)

kn - Qan
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with k; #0fori =1,...,n, and b; # 0 for i = 1,...,n — 1. Upon comparing columns in
MS = SH, we obtain

Mgq; = a:q; + kignyi, (3.6)
Mgnyi = bi_1gi—1 + ¢igi + bigigy1 — aignyi, (3.7

for i =1,...,n with bp = 0. By the implicit symplectic Theorem 3.4 and the symplecticity of S,
if we require the following conditions hold:

lallz =1, ¢ L gn+s, (3.8)

for i = 1,...,n, then the coeflicients a;, k;, ¢;, b; and the J-Lanczos vectors g,+i, ¢;+1 can be
uniquely determined at the i step by the following identities. (Note that b;_, g;—1, and g; have
been obtained in the previous steps.)

a; = q] Mg;, (= gp I Mg, later!), (3.9)
ki = ¢f TMg;, (3.10)
M pyp— a. .
Int+i = (—'g'—k'_——'q—z), (3.11)
1

¢ = —Gniid Mnri, (3.12)

T¢ = Mgnii — bi-1Gi-1 — Cigi + Qiqni; (3.13)

b = ||I7ille, (= qu+i+1Jqu+i’ later!) , (3.14)
iy

Gi+1 = al (3.15)
1

By properly sequencing the formulae, we obtain the following J-tridiagonalization algorithm.
Note that there is no loss of generality in choosing b; to be positive due to Theorem 3.4. The ¢;
and gn4: are called J-Lanczos vectors.

ALGORITHM 3.1. (J-TRIDIAGONALIZATION). Suppose M € R?**?" is 3 Hamiltonian matrix.
For a given nonzero vector ¢; with ||g1]|]2 = 1, this algorithm computes the columns of the
symplectic matrix S and entries of H = S"1M S such that H is a J-tridiagonal matrix.
Set bp =0, g=0,i=1.
a1 = QirM qQ
ki =qf JMq
while k; #£0
Ui = (Mq; — a;q:) /k;
¢ = -QIHJ Magnys
T = Mgnti — bi—1Gi—1 — Cigi + Qign+i
b = |I7ill2 (= Gnyis1I Mants)
If b; = 0, stop.
Giy1 =Ti/b;
i=1+1
a; = ¢ Mq; (= g, Maq;)
ki = q;r JMy;
end while

The iteration halts before complete J-tridiagonalization if the initial J-Lanczos vector q; is con-
tained in a proper invariant subspace. This is a welcome event. However, the J-tridiagonalization
procedure can also halts before the J-Lanczos vector, say, gn4+; can be constructed. Such ter-
mination does not guarantee an invariant subspace and is called a serious breakdown. The
following theorem points out the conditions for these two situations and also proves that the
matrix Sj = [g1,...,4j | gn+1,- . .,gn+j] constructed by Algorithm 3.1 (if it runs to the ;" step)
is symplectic.
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THEOREM 3.5. Let M € R?"*?" be a Hamiltonian matrix and q; be a given unit vector. Let
Aj =det (KJTJKJ) , (3.16)
where K; = K[M,q1,2j]. Then the following statements hold.

(a) A; #£0, j =1,...,m, and rank (K, M?>™g;]) = 2m for some 1 < m < n if and only if
the J-tridiagonalization Algorithm 3.1 runs until j = m, i.e., by...bym—1k1 ...k, # 0 and

bm = 0. Moreover, for j =1,...,m, we have
MSj = SjHj +rjer2,-j, (3.17)
with
[ a) c1 b1 1
b
bj-1
aj bj—1 cj
Hj = (318)
k1 - a
L k;j -a; |

and Sj = [q1,.-+,45 | Gn+1,- - -, qn+j] Is symplectic, i.e., S]TJSj = J;, and Range (S;) =
K(M’quzj)'

(b) A;j #0,j=1,...,m—1, Ay, =0, and rank ([Kpm—1, M>™2¢;]) = 2m — 1 for some 1 <
m < n if and only if the Algorithm 3.1 runs until j = m—1/2,ie,by ... byp—2ky ... k1 #
0, byp—1 # 0, but k,, = 0.

PROOF. Only if for part (a): since k; = gf JMgq; # 0, from (3.9) and (3.11) we have g1, Jgn41 =
—1. By induction on j, suppose that the J-tridiagonalization iterations have produced §; =
[@1,---,G5 | Gnt1s-- -+ Gntj] for j < m, such that

Range (S;) = K (M, q1,27) (3.19)
and
S]JS; =J;. (3.20)
It is easy to see from Algorithm 3.1 that (3.17) holds. Thus,
(J] S T) MS; = H; + (J] 8] J) rjeg;. (3.21)

Multiplying (3.6) by g1 ,;J and ¢, J from the left and using g1, ;Jgi = —1, we have fori = 1,..., 7,
a; = —qp, JMg; and ki =q JMg;,
as in (3.9) and (3.10), respectively. Also, multiplying (3.7) by g, ,,,,J from the left and using
gnriv1Jgie1 = —1, wehavefori=1,...,j -1,
by = —q,T;+,~+1 JMgnii,
as in (3.14). Now from the J-tridiagonalization Algorithm 3.1 and S'JT JS; = J;, it follows that

T
= Gn41

T
~Qn+j

(J7STI)MS; = | ———| JMS; = H;. (3.22)
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Consequently, from (3.21) and (3.22), we have
(J7s;I)ri=0. (3.23)
Since by ...bpm—1k1...km # 0, from (3.23) and (3.15) we have
g}41JS; = 0. (3.24)
By induction hypothesis (3.19) and from (3.24), it follows that
gj+1 L Range(JS;) = Range (JK [M,q,27]). (3.25)

Since gj4+1 € Range([g1, Mqy,..., M%), from q;,,Jg;+1 = 0 and (3.25), we have

41 IM¥g =0. (3.26)
From (3.13), (3.15), and (3.11), we derive
1 .
2i+1 = 7 (Mny; — bj-1j-1 — ¢;¢; + @jqn+;) € K (M, q1,25 +1) (3:27)
b;
and )
Gn+i+1 = 7 (Mgj41 — a541054+1) € K (M, q1,2(5 +1)). (3.28)
kj+1

From (3.25), (3.26), (3.28), and MTJ = —JM, it follows that
. 1 .
Qi1 IMiq = T (Mgj11 ~ j410541)" IMiqy =0, (3.29)
7

fori=0,1,...,25 — 1. Thus,
nyi+17S; = 0. (3.30)

From (3.24),(3.30), and qu+j+1qu+1 = ~1, we can show that

Sitv1=la1 - 141 | @1+ oy npjiti]

is symplectic, i.e.,

Si+178i41 = Jjs1,

and from (3.27) and (3.28), we have Range (S;4+1) = K(M, g1, + 1) with full column rank.

Follow from Theorem 3.2 that K,,Il,, has an SR factorization K,,II,, = S, R,,. Hence, it
implies that all leading principal minors of even dimension of A, are nonzero [15, Theorem 11].
Moreover, since by, = 0, from (3.13) and (3.14), it follows that rank ((Km, M2™¢q;]) = 2m.

If for part (a): from assumptions and [15, Theorem 11], it follows that K,,II,, has a SR fac-
torization Kyl = S Ryn. From Theorem 3.1 there is an unreduced Jy,-tridiagonal matrix H,,
such that (3.2) holds. If we require the columns of Sp, = [g1,...,9m | Gne1,.-- »dn+m) satisfy
llgill2 = 1 and ¢; L gnqi fori =1,...,m, then the entries o Hy, in (3.18) and the vectors gi, ¢+
for i = 1,...,m are uniquely determined by (3.9)-(3.15). Thus, we have by ...bpn—1k1...kn #0.
Moreover, since rank ([Km, M?™q]) = 2m from (3.13), it follows that by, = 0.

(b) From the proof of (a), we have that A; # 0 for j =1,...,m—1 and rank ([Kyy—1, M2™~2¢])
=2m-—1lifandonlyifd;...bm—2k1...km-1 # 0, bn—1 # 0. Consequently, from [15, Theorem 11],
Theorems 3.1 and 3.2, it follows that A, # 0 if and only if k,,, # 0. ]

This theorem shows that under some mild condition for the initial vector q;, the J -tridiagonal-
ization Algorithm 3.1 computes a symplectic matrix S; which partially reduces the Hamiltonian
matrix M to a J-tridiagonal matrix H;. The eigenvalues of H; are called the J-Ritz values
and are used to approximate the eigenvalues of M. The following result provides a computable
criteria to check the acceptance of an approximate J-Ritz pair.
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THEOREM 3.6. Suppose that j steps of J-tridiagonalization Algorithm 3.1 have been performed
and H; has no pure imaginary eigenvalue. Let

- -

6,
—1 9.1'
-6
i —0; |
be the J-diagonalization of the J-tridiagonal matrix H;, where U; = [uy,...,u; | ujq1,...,ug;)

is symplectic with |uill2 = luj4illz =1, 35=1,...,5. FY; = [y1,..., % | Yn+1,- . ., Unss] = S;U;,
then the following identities hold:
My — biyill2 = |Bj.s (3.32)
with ﬂj,i = bj’LL2J',i, and
IMynti + Oiyniill2 = 165,544 (3.33)

with B; j4i = bjugj i fori =1,...,7, where U; = (uy,). Note that y; and yn4; are called the
J-Ritz vectors corresponding to the J-Ritz values 8; and —6;, respectively.

PROOF. Since MS; = S;H; +rjeg;, it follows that

MS;U; = S;U;U; H;U,; + rieg; U,

that is,
MY; =Y;A; +; (e;U;) -
Thus,
My; = 6iy; +1; (eg;Uje:) (3.34)
and
Mynyi = —0:ynyi + 15 (eg;Uje444) , (3.35)
for i =1,...,7. The results follow by taking 2-norm and recalling that |r;|2 = |b;|. 1
From (3.34) and (3.35), we have two residual vectors
u2;,iT5 = My; — Oiy (3.36)
and
uzjgi (Jrs) " = (Ygad) M = 6 (yihad) (3.37)

Applying the results in [16] to (3.36) and (3.37), it follows that (6;,y:,yf,,J) is an eigen-triplet
of M — E. The norm of the perturbation E satisfies

|ugjil |u2; j+i!}
El; < |b; max{———’—,—’—— . 3.38

S W el e (339
Furthermore, from (3.38) and the results in [16], we can estimate the distance from 6; to an
eigenvalue, say, A} of M by

NGO — g, < ”_yﬁiﬂh"L”?”E”z +0 (||E||§)

|y1’1{+i']yi|
1] mex {Jug; | l|yj+illz, [uzsjvil lwill2} + O (1EI3) 3.39
= luiedyul 25,4l 1Ys+ill2y 12,5+ | ¥ill2 2 (3:39)
bjl |IS;ll2
< |Iu;f|‘“JJ.L.| mex {|uz;sl, |uzj 441} + O (IEN3) -
il
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We conclude this section by summarizing the J-Lanczos method in the following algorithm.
ALGORITHM 3.2. (J-LANCZOS). Given a Hamiltonian matrix M € R?"X2", For a given unit
vector qp, this algorithm computes the columns of the symplectic matrix S; and entries of the
2j x 2j J-tridiagonal matrix H; such that MS; = S;H; + rje;rj using Algorithm 3.1. Then the
algorithm computes the J-Ritz values and J-Ritz vectors to approximate the extreme eigen-pairs
of M. Stop criterion is based on (3.32) and (3.33).

Given ¢; # 0 with ||¢1]]2 = 1 and tolerance € > 0.
Set b1 =0,¢-1=0,5=1.
while k; # 0 and b; #0
Compute aj, kj, gn+5, Cj, bj, and g1 by Algorithm 3.1.
Compute Uj'lH ;Uj = A; as in (3.31) by using symplectic QR like algorithm [2] or
QR algorithm.
fori=1,...,7,
if B4l < € and |B;,;44] < €
accept (8;,y;), (—0s,yn+i) and their conjugate pairs as the desired eigen-pairs.
end for
if the desired eigen-pairs are satisfied, then stop
else j=j+1
end while
In the next section, we present an error bound for the J-Ritz values obtained from the
J -Lanczos algorithm and prove a variant Paige-type theorem showing that convergence of the
J-Ritz pairs implies loss of symplecticity.

4. ERROR BOUND ANALYSIS AND PAIGE-TYPE THEOREM

Let H, be the J-tridiagonal matrix obtained from applying n iterations of the J-Lanczos
algorithm to a Hamiltonian matrix M and H,, be a J-principal submatrix of H,. Hereinafter,
©* denotes the set of polynomials of degree less than or equal to k. The following lemma can be
obtained immediately.

LEMMA 4.1. Let e; denotes the i** column of identity matrix of suitable dimension. Then, for
i=1,...,4m — 1, the following identities hold.
(i) ef Hie; = e Hie;.
(ii) eqr1Hpens1 = eq i1 Hhemir.
(iii) eI+1H:131 = ems1Hier.
For simplicity, we assume that both H,, and H,, here are J-diagonalizable, that is, H,, =
XHAY and H,, = P7OQ, where

. Ay O
A=dlag(/\1,...,/\n|—,\1,...,—)\,,)5 [ 01 —Al] (4.1)

and 6 0
9=dia.g(01,...,0m|—01,...,—-0m)'=-[01 _91]. (4.2)

Let E, = [e1,en+1) € R?*2 and E,, = [e1,em+1] € R?™*2, With the decompositions of Hy,
and H,, above and apply Lemma 4.1, one can verify that

E; f(Hn)En = Eq,f(Hm)Em,
for all f € p*™—1. This implies

[2{' Hf((?l) f(_OAl)][yl yn+11=[§{’ Hf(gn fooy|la amal. (@)

Tnt1 Pm+1
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)
Here z;, i, pi, and ¢; are the i*" column of X,Y, P, and Q, respectively. Denote z; = [ = ]

@
where xﬁ",x?’ € R™. Using the similar notations for y1, p1, 1, Tn+1y Yn+1s Pn+1, a0d gn41,

equation (4.3) becomes

(= +2)" (£A) + £(-40)) (517 + )
= (o +2®)" (100 + £(-01) (o + 47}, (44)

for all f € p*™~1. By the property of f(A;)+ f(—A;), there is an even polynomial g with degree
< 4m — 2 such that g(A;) = f(A1) + f(—A1). Hence, (4.4) can be rewritten as

3 9) @it + Enist) @it + Ynin) = D, 9(6:) (Pist + Pmi)) (@it + Gmei) - (4.5)
1

n m
i=1 =

Now, let 07 = {Ag,...,Mn} and 61 = {62,...,0m}. Suppose o1 UGy = S1 U S, with §1 NSy = ¢.
Define

51(S2) = ma.x{|x -3 I] l“” ‘“‘ xealual} (4.6)
HES2
and
e(9)) = inf max |p (z%)|. (4.7)

pEp*, p(A})=1 €5
With above definitions and notations, we establish an error bound for the J-Ritz values.

THEOREM 4.2. Assume that |A\1 — 61| = mini<j<m |A\1 — 0;]. If s = |S3| < m — 2 holds, then

"™ "D (51)61(S2)

A -0 L
A1 =6 A1+ 611211 + Tarr,1] Y11 + Yns1,1]
n m (4.8)
X (Z 26,1 + Tnti | 1gi1 + Ynsinl + Z Piy + Pminllgin + Qm+i.1l) .
=2 =2
PROOF. Let

9(@) = (& -6} p(=*) [[ -7,

HES,

where p € p?™~2~2 with p(\?) = 1. Substituting g(z) into (4.5), we obtain

(A -6 p(A}) H (A - #%) (Z1,1 + Ent1,1) W11 + Ynt11)

HES?2
=- Z (M-8 p(A}) H (A2 — 1) (Zig + Fnpi) (i1 + Ynaa1)
A€ES KES?
+ > (62 -61)p(6}) [T (62 = %) i + Pmti1) (@it + gmtin) -
8;€5, BES3

From (4.6), we have

! ax p (z2) 61(S2)

AL — B < m
d -0l < M+ 61] 71,1 + Zng1,1] Y11 + Yns1,1] 2€51

n m
x (Z |01 + Tnti ] [95,1 + Yngial + Y 1Pi1 + Pria| i1 + Qm+i,1]) .
=2 im2
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Since p € p®™*~% with p(A\}) = 1 is arbitrary, from definition (4.7) we get the error

bound (4.8). |
We comment that (4.8) gives a new bound for |A; — 6| when compared with the bound in [13].

Further analysis of the magnitude of the right-hand side in (4.8) is referred to [13] for details.

For the roundoff error analysis in the following, we prove a variant Paige-type theorem [14]
which shows that the convergence of a J-Ritz pair implies loss of symplecticity and that duplicated
J-Ritz pairs can occur.

Suppose that by the end of the j ! step, the J-Lanczos algorithm has produced S;, the matrix of
J-Lanczos vectors H;, the J-tridiagonal matrix embodying the two-four-term recurrence formulae
(3.9)-(3.15), and the residual vector r;. For convenience of discussion, we suppose that H; has
no pure imaginary eigenvalue. If the effects of roundoff errors are taken into account, then two
fundamental relations can be formulated by

MS; ~ S;H; =rje; + F; (4.9)

and
Ji—-8]JS;=C] - ¢, (4.10)

where F; and C; are the corresponding roundoff error matrices.

Suppose that the coefficients a;, k;, and ¢; determined by (3.9), (3.10), and (3.12), respectively,
are locally arithmetic exact. In addition, we assume that the following conditions are maintained
in the J-Lanczos algorithm.

(A1) Local orthogonality: ¢ gnt+i =0,i=1,...,].

(A2) J-unity and unity: ¢, Jgi=~-land ¢l gi=1,i=1,...,].

(A3) Local symplecticity: g, ;Jgi-1 =0and ¢} ;Jgi41 =0,i=1,...,5 - 1.

(A4) The J-diagonalization of H; is exact, namely there is a 25 x 2j symplectic matrix U; such
that Uj_lHjUj = Gj = diag(6y,... ,0_1' | —64,.-., —9]').

Let the matrix Cj in (4.10) be partitioned by

_ [CH’ 08’} Ll
oy o .
where C,("k) € R™", i,k = 1,2, are upper triangular. From the skew symmetry of J; — S5 JS;
and Assumptions (A2) and (A3), it is easy to check that all ijk), i,k = 1,2, are strictly upper
triangular. In addition, both Cf’z') and Cé{) have zero subdiagonals. Multiplying (3.7) by ¢ J
from the left, for i = 1,..., 4, and using (A2), one has

q] IMgnyi = bi_1q] Jgi1 + big] Jgip1 — as. (4.12)

Applying induction hypothesis that ¢ Jg;-y = 0 to (4.12) and from (3.9), it follows that
¢ Jgi+1 = 0. We can conclude that CH),C{';),C%{) are strictly upper triangular with zero
first subdiagonals and Cg) is strictly upper triangular.

The Paige-type theorem is presented and proved in the following theorem.

THEOREM 4.3. Suppose that H;, S;, and r; constructed by the J-Lanczos algorithm satisfy (4.9)
and (4.10). Suppose Assumptions (Al1)-(A4) hold. Let K; € R%*% be a J-strictly upper
triangular matrix such that

STJF;~FJJ'S; =K; - K], (4.13)

and let
T; = UM K;U;. (4.14)
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Then, fori=1,...,j, the J-Ritz vector y; = Sju;, and y;4; = Sju;4; satisfy

4 1Y = i i
bi(u2j,5+i) = Yi,j+i/Bjg+i

(4.15)

and T
Qp1JYi+i = Vitii
bj(uzji) = YitiilBii’

(4.16)

for some § with 1 <1 < j, where 5 and ux denote the (I, k)™ entry of T; and Uj;, respectively.
Moreover, fori # k, i,k € I; = {i | Im(6;) 2 0,i =1,...,5}, the following identity hold:

R = —y; Y2j,i+i e [ Y2k ) "
Ok — 6:) Tisa Uk = ~ Vi j 44 (u%Hk) + Vi (u%,) + Vi jai = Vitiks (4.17)
for some 1, k with1 < 1, k <j,

PROOF. Premultiply (4.9) by SJT J to get

8] IMS; = ST JS;H + S] Jrjej; + S] JF;. (4.18)

To eliminate SjT JMS; from (4.18), one can take transpose and then apply (4.10) and (4.13) to

derive T T T
ez; (rj J78;) — (S] Jr;) eg;

= (=J; + 8] JS;) H; + H] (J] - 5] J[S;) +S]JF; - FJJ7s; (4.19)
= (C;H; + H] C;) - (C] H; + H{ C]) + K; - K.

Since Hj is J-tridiagonal and C; has the special form as discussed above, it is easily seen that
each submatrix of C; H; and H JT C; is strictly upper triangular according to the 4-block partition
shown in (4.11). Similarly, each submatrix of CJT Hj and H]T C’;r is strictly lower triangular.
Furthermore, since K is J-strictly upper triangular, we have

(8] J7r;) el; = C;H; + H C; + K;. (4.20)
From Assumption (A4), we have
Hju,- = Giu,-, Hj'u,j.;.,' = —inj.;.i, 1= 1, [N ,j. (4.21)

For convenience, we denote @;, 8, @44, and —0; by uz, 6;, Uj+i, and ~6;, respectively, for some
twith1 <i<j and let

¥i = Sjui,  Yj+i = Sjujp, =1, (4.22)

Premultiplying uﬁ_i and postmultiplying u; to equation (4.20), and from (3.15), (4.14), (4.21),
and (4.22), one can derive

01T 4iB50 = OiushiCiug — Oiuft . Ciuy + ufl  Kjui = Yjgaa. (4.23)
This proves (4.15). To prove (4.16), it is sufficient to consider by premultiplying ﬁﬁ_i and post-
multiplying u to (4.20).
Next, by premultiplying ﬁj’ii and postmultiplying u, to (4.18), for i # k, i,k € I; = {i |
Im(4;) > 0,i = 1,...,5}, one obtains

all ST IMSjur = Ol ST IS uk + 68y, ST Jaj11bseq un + 65, S] J Fyus. (4.24)
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From Theorem 3.6 and (4.22), we have
Tiid Myi = O3 Tyk + §f4i T a54105.k + G744 Fjup. (4.25)

Similarly,
T IMyjei = =08 Jyies + 9 Jqj4185,54i + Tk JFiuji- (4.26)

But
T  _
GHIMyjpi = yd M T yji= (i M 7T Tyjps) = G I My

Subtracting (4.25) from (4.26), one has
6k — 0T8Ty =~ 11Tk B j+i + G4 1Y 4iBik + T8 JFjujqs — G J Fyug.

From (4.13)—(4.15), we have

Ok — 0.5, s Jyk = — ﬁ’”“‘ﬂ,,ﬁ, 7;;“ﬁ +afl (S]IF; = FJ J7S;) ujus
3+ Jst

= 'Yk,j+k (U2j,j+k> + Vit (UQj,t) + 7k,J+1 Yi+i,ks
which proves (4.17). [ |
REMARKS. To conclude this section, we summarize the following comments.

(a) Equation (4.15) and (4.16) shows that in the J-Lanczos algorithm, if for some i, y;
approximates a desired eigenvector, i.e., |8; +i| is sufficiently small, then the quantity
074199 = Vits,4/Bij+i = O(€)/O(€) ~ O(1). That is, ¢fy,JSju; ~ O(1). This means
that the symplectlclty between g;, and JS; is lost. Hence, a resymplectlzatxon process
after the j* step should be performed.

(b) In view of equation (4.17), since the right-hand side is fairly small if 6, ~ 6;, the quantity
y‘j’i,-Jyk, and consequently, yj”+,-Jy;c may not be small. Thus, y;;i =~ y;+x can happen.
This means that in the J-Lanczos algorithm, a duplicated production of convergent J-Ritz
pair is possible.

5. A PRACTICAL EXAMPLE AND NUMERICAL RESULTS

In this section, we discuss the numerical aspects on applying the proposed J-Lanczos algorithm
to solving high-order Riccati equation arising from position and velocity control for a string of
high-speed vehicles [8]. The matrices in the associated Riccati equation —XNX + XA+ ATX +
K = 0 in this practical example are given by

N = diag(1,0,1,0,...,0,1),
K = diag (0, 10,0, 10, .. .,10,0),

and _ i
Al A
Axp  Aga
A= ,
0
An-1m-1 -1
] 00 -1
with L o 0 o
Ay = [ 1 0] and Ay = [__1 0]
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All Eigenvalues of Hamiltonian Matrix M

Figure 1. Distribution of all eigenvalues of the associated Hamiltonian matrix on the
complex plane in our test problem.

For a string of m = 501 vehicles, it is necessary to solve the Riccati equation of order n =
2m — 1 = 1001, and consequently, the associated Hamiltonian matrix is of order 2002 with
eigenvalue distribution as shown in Figure 1. The J-Lanczos Algorithm 3.2 incorporated with
shift and invert techniques is implemented in MATLAB to solve the problem on a Sun SPARC-10
workstation with 32 MB of main memory.

Since all Lanczos-type alg&rithms converge fast for approximating some extreme eigenvalues,
but not all eigenvalues. For solving Riccati equations, one has to compute all eigen-pairs of the
associated Hamiltonian matrix. Hence, some shift and invert technique has to be considered and
incorporated into the J-Lanczos algorithm.

An important consideration is how to preserve the Hamiltonian structure of the shift-inverted
transformed matrices. Since a transformation matrix can usually be represented by a rational
function of matrix M, say,

f(M)= Z M7, ¢; € C, for all j. (5.1)

J=-00

To preserve the Hamiltonian structure, we require that (Jf(M))¥ = Jf(M). Since M is Hamil-
tonian (JMJI)H = (=1)7+1JM7. Hence,

Y &(-1) M =T oM.
J J

Write ¢; = a; + if;, where i = v/—1 and a;,3; € R for all j. By comparing the coefficients,

{ aj, if j is odd,
Ci; =
! i8;, if j is even.

Since a Hamiltonian matrix is first reduced to a J-tridiagonal matrix by the J-Lanczos algo-
rithm using real symplectic similarity transformations, it requires that all even term coefficients
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of the considered rational matrix function f(M) to be zero. For practical implementation, the
following three types of analytic matrix function are considered.

1. Choose
f(M) = M_l’

whenever the desired eigenvalues are of the smallest modulus.
2. Choose

f(M) = (M £62M~1)7!
= (M*+81) 7' M,

where § € R and § > 0. The choice of * sign depends on the desired eigenvalues whether
are close to the numbers +6 or pure imaginary numbers +ié.
3. Choose

F(M) = (M3 +bM + cM~) ™}
= (M*+bM% +cI) ' M,

where b = 2(8% — o?) and ¢ = (a® + #?)? with o, 8 € R, @, > 0, whenever the desired
eigenvalues are close to complex numbers +(a + if).

Table 1. Summary of numerical results with real shift 6.

J-Lanczos Total Number of Total Time Per
Iteration Numbers | Shifts | Eigenvalues Time Eigenvalue
j é A sec. sec.
20 5 58 1706.0 29.4
30 5 118 2499.2 21.6
40 4 112 3429.5 30.6
50 3 122 3623.0 29.7

Table 2. Summary of numerical results with complex shifts +{« + 5i).

J-Lanczos Total Number of Total Time Per
Iteration Numbers Shifts Eigenvalues Time Eigenvalue
7 +(a £ Bi) A sec. sec.
30 60 1276 77003.0 60.3
50 40 1560 65992.8 423
80 10 902 19760.3 21.9

In this test problem, it is easy to check that (A, B) is stabilizable and (C, A) is detectable.
Thus, the corresponding Hamiltonian matrix M has no pure imaginary eigenvalues. Therefore,
the shifts considered are either real or complex only. In Table 1, we summarize the results of the
J-Lanczos algorithm with real shift 6 and the Hamiltonian transformation matrix (M +6M~1)~1.
In Table 2, we summarize the results for complex shift +(a + i8) to (M3 +dM +cM~1)~L. In
the implementation, complex shifts along a straight line on the complex plane with an argument
angle £ were actually performed. As one can see from the results that the J-Lanczos algorithm is
most efficient when 30 iterations are taken with real shifts and 80 iterations with complex shifts.
Besides, we observed that the relation between the number of convergent eigenvalues v and the
number of J-Lanczos iterations j is approximately v = 1.4 x j — 25.
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Some observations and comments are in order.

(a) The dominant computations of this shift-inverted J-Lanczos method is the LU-factoriza-
tions of the shift matrices and the associated triangular solvers. In this particular test
suite, the Hamiltonian matrix and all shift matrices are banded. Therefore, fast band
factorization routine and storage format are easy to implement.

(b) It requires more J-Lanczos iterations in the complex shift cases than the real shift ones
because the complex eigenvalues are more clustered than the real eigenvalues.

(c) In the implementations, we use ¢ = 10~1% (see Algorithm 3.2) as the stopping criteria
and obtained the computed solution X to the algebraic Riccati equation with residual
|-XNX+XA+ATX + K|l =1.6x 1075,

6. CONCLUSIONS

In this paper, we derived the J-Lanczos algorithm from the J-tridiagonalization procedure of a
Hamiltonian matrix using symplectic similarity transformations. We also gave a detailed analysis
on the convergence behavior of the J-Lanczos algorithm and presented error bound analysis and
Paige-type theorem.

For very large and sparse Hamiltonian matrices, the general QR method [1] or structure-
preserving numerical methods proposed in [2,3,5-7] for computing the stable invariant subspaces
become inadequate when storage and computational effort are big concern. For example, one
would not be able to solve the position and velocity control problem discussed in this paper
on a regular workstation with any symplectic QR-type algorithms because of the storage con-
straint. Alternatively, the proposed structure-preserving J-Lanczos method can efficiently solve
this problem with high accuracy.

Finally, we would like to comment that, unlike the serial oriented symplectic QR-type algo-
rithms, parallel implementation of J-Lanczos algorithm with different shift-invert steps is straight-
forward.
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