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A b s t r a c t - - T h e  goal of solving an algebraic Riccati equation is to find the stable invariant subspace 
corresponding to all the eigenvalues lying in the open left-half plane. The purpose of this paper is to 
propose a structure-preserving Lanczos-type algorithm incorporated with shift and invert techniques, 
named shift-inverted J-Lanczos algorithm, for computing the stable invariant subspace for large 
sparse Hamiltoniaa matrices. The algorithm is based on the J-tridiagonalization procedure of a 
Hamiltonian matrix using symplectic similarity transformations. We give a detailed analysis on the 
convergence behavior of the J-Lanczos algorithm and present error bound analysis and Palge-type 
theorem. Numerical results for the proposed algorithm applied to a practical example arising from 
the position and velocity control for a string of high-speed vehicles are reported. 

K e y w o r d s m R i c c a t i  equation, Hamiltonian matrix, J-Lanczos algorithm, J-tridiagonalization, 
Sympletic matrix, SR factorization. 

1. I N T R O D U C T I O N  

The problem of solving the algebraic Riccati equation 

- X N X  + X A  + A r  x + K = O, (I.I) 

where X,  N,  K ,  and A are real n x n matrices, K -- K T _> 0 (positive semidefinite) and N = 

N T ~ 0, frequently arises in optimal-control problems. I t  is assumed tha t  (A, B) is stabilizable 

and (C, A) is detectable, where B and C are full rank factorizations of N and K ,  respectively [1]. 
Under these assumptions, equation (1.1) has a unique symmetric positive semidefinite solution. 

A well-known procedure is to compute the n-dimensional invariant subspace t ] ~ ] corresponding 
J 
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to the stable eigenvalues of the Harniltonian matrix 

M =  K - A  T .  

The solution of equation (1.1) is then obtained by X = - Z Y  -1 [1]. 
Many structure-preserving numerical algorithms have been proposed for computing the invari- 

ant subspace of a Hamiltonian matrix, thus for solving the algebraic Riccati equation (1.1), see, 
e.g., [2-7]. One type of these methods, [2,3] are based on the symplectic QR-type transforma- 
tions in which the SR decomposition with symplectic similarity transformations is used to replace 
the usual QR decomposition. The other type of methods exploit the square of the Hamiltonian 
matrix (skew Hamiltonian) to compute the corresponding eigenvalues and use them to find the 
stable invariant subspaces. These algorithms are very efficient for problems of small or medium 
sizes, but they become inadequate for very large and sparse cases. 

Since there is also a wide class in control theory, such as position and velocity control [8] or 
circulant system analysis [9], which leads to solve large sparse Hamiltonian eigenvalue problems, 
it is not practical to perform algorithms that require the modifications of the underlined Hamil- 
tonian matrix for this type of applications. Hence, some Lanczos-type algorithms were proposed 
in [10-12] for computing large sparse Hamiltonian eigenvalue problems, in which the nonsym- 
metric look-ahead Lanczos algorithm is applied to reduce the Hamiltonian matrix to a block 
tridiagonal matrix without modifying the matrix itself. 

In this paper, we present a structure-preserving Lanczos-type algorithm, named J-Lanczos al- 
gorithm, for solving large sparse Hamiltonian eigenvalue problems. In this algorithm, the Hamil- 
tonian matrix M is partially reduced to a J-tridiagonal matrix using a sequence of symplectic 
similarity transformations. Just like the conventional Lanczos algorithm, information about M's 
extreme eigenvalues tends to emerge long before the J-tridiagonalization process is completed. 
The J-Ritz pairs (eigen-palrs of J-tridiagonal submatrices) computed by QR or symplectic QR- 
like algorithm [2] are used to approximate the extreme eigen-pairs of M. 

The goal of solving the algebraic Riccati equation (1.1) is to find the stable invariant subspace 
corresponding to all the eigenvalues lying in the open left-half plane. Since the J-Lanczos algo- 
rithm converges to the extreme eigenvalues fast, there are two important aspects in practice. One 
is to develop a shift strategy for determining a sequence of shifts so that the J-Lanczos algorithm 
can be sequentially applied to the new shifted and inverted Hamiltonian matrices. The other is 
to determine how many shifts with how many J-Lanczos steps should be used. In practice, w~. 
begin with the zero shift and then we use the distribution density of the computed eigenwdue,~ 
to predict the next shift and the number of the J-Lanczos steps. We name this approach the 
shift-inverted J-Lanczos algorithm. 

Although the proposed J-Lanczos algorithm is mathematically equivalent to the the Lanczos- 
type algorithms in [10-12], derivation of J-Lanczos algorithm starts from a different point of 
view. Furthermore, an error bound analysis based on [13] which demonstrates the convergence 
behavior of the J-Lanczos algorithm is analyzed in depth in this paper for the J-Ritz values. 
We also present a variant Paige-type theorem [14] for the J-Lanczos algorithm which shows that 
the constructed J-Lanczos vectors will lose the symplecticity when some J-Ritz values begin to 
converge. 

We organize this paper as follows. Some definitions that related to the so-called J-structure 
matrices are reviewed in the preliminary Section 2. In Section 3, we establish the existence 
theorem of the J-tridiagonalization of a Hamiltonian matrix and develop the J-Lanczos algo- 
rithm. The convergence analysis of the J-Ritz value and a variant Paige-type theorem for the J- 
Lanczos are presented in Section 4. Shift-invert strategies and numerical results for the proposed 
J-Lanczos method applied to a practical example arising from the position and velocity control 
for a string of high-speed vehicles [8] are discussed in Section 5. Concluding remarks are given 
in Section 6. 
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2. PRELIMINARIES 

Herein, we denote the n x n identity matrix by In and define 

Note that  J n  1 = Jn T = - J n .  Let l'In • R 2nx2n be the permutation matrix 

1-In = [el, e3 , . . . ,  e2n-1, e2, ea , . . . ,  e2n ], (2.1) 

where ej is the j th column of the identity matrix I2n. If confusion is unlikely, the subscript n 
will be omitted. 

A matrix S • R 2nx2m (n _> m) is symplectic if S T J n S  = Jm. A matrix M • R 2nx2n is 
Hamiltonian if and only if ( JM)  r = J M .  The definitions for the J-structure matrices [2], SR 
factorization, and Krylov matrices that  will be referred later in this paper are given as follows. 

DEFINITION 2.1. Let 
G = [ vll GI2] 

[ G21 G22 J 
be a 2n x 2n matrix with Gij • R "×n. 

(i) G is called a J-Hessenberg m a t r i x / f  Gll ,  Gg.I, and G22 are upper triangular and G12 is 
upper Hessenberg. In addition, G is called an unreduced J-Hessenberg matrix if G12 is 
unreduced and G21 is noasingular. 

(ii) G is called a J-upper triangular matrix fiG11, Gx2, and G~2 are upper triangular and G21 
is strictly upper triangular. In addition, G is J-strictly upper triangular if  Gll and G22 
are strictly upper triangular. 

(iii) G is called a J-tridiagonad matrix i f  Gll ,  G21, and G22 are diagonal and G12 is tridiagonal. 

DEFINITION 2.2. 
is symplectic and 

DEFINITION 2.3. 
integer j .  

(i) 

(ii) 

Suppose A • R 2"×2~ (n > m). The factorization A = SR,  where S • R 2n×~'~ 
R • R 2rnx2rn is Jm-triangular is called an SR-faetorization of A. 

Let M • R 2nx2n be a Hamiltonian matrix. Given x • R 2n and a positive 

The Krylov matrix of M with respect to x and j is defined by 

Kj  = K[M,x ,2 j]  = [x, M x , . . .  , M J - l x  I M J x , . . .  ,M2J-lx]  . 

The Krylov subspace spanned by the columns of K[M, x, 2j] is denoted by K ( M, x, 2j). 

3. J -TRIDIAGONALIZATION A N D  J-LANCZOS ALGORITHM 

In this section, we establish the existence theorem of the J-tridiagonalization of a Hamiltonian 
matrix and develop the related J-Lanczos algorithm. This algorithm is equivalent to the algo- 
rithms proposed in [10-12], however, the derivation starts from a completely different point of 
view. First, the results of [3, Theorem 3.4, (i),(ii)] is generalized to a more general form. 

THEOREM 3.1. Let M • R 2nx2n be a Hamiltonian matrix and for a given 2n-vector ql, Km = 
K[M, ql,2m], m < n, be a Krylov matrix with rank(Kin) = 2m. If  KmIIm = StoRm is an 
SR-factorization, then 

Hm = (JTmSTmJ) MSm (3.1) 

is an unreduced Jm-tridi~gonal matrix such that 

MSra = SmHm + zme~m (3.2) 

and (JTmSTmJ)Zm = O, for a suitable zm • R 2n. 
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PROOF• For any given ql, one can find a vector Ym .l. Range(Kin) and scalars a 0 , a l , . . . ,  
~ 2 r n - 1  E R s u c h  t h a t  M 2 m q l  : -  2.i___ 0 t~i~v~ ql + Yrn. H e r e  Ym c a n  be a z e r o  v e c t o r .  Let 

0 cq 

*•o " . •  • 

"• 0 

i OL2 - 1  

Then we have 
MK~n = KmCm + ymeTm . (3.3) 

Since KmHm = StoRm is an SR-factorization with Rrn, a 2m x 2m nonsingular Jm-triangular 
matrix equation (3.3) can be written as 

= s n n cmn n  1 + 6 y e m, 

where 6m eTmR~nte2m. Thus, by letting Ym T T = = 6m(J~nS~mJ)ym, we have 

T T ( J ~ S ~ J )  M S m  = RmHTCmHmRm 1 + ymeT2rn =- gin.  

Since Rm and R~ 1 are Jm-triangular and IITcmHm is Jm-Hessenberg, Hm is Jm-Hessenberg. 
But ( j T s T j ) M S m  is Hamiltonian, therefore Hm is Jm-tridiagonal. Since Rm is nonsingular 
and Cm is companion it follows that H,~ is unreduced. 

To prove (3.2), we use (3.3) 

M K m  = KmCm + ymeYm 

= K , ~  l[i ° ol/ • . .. + . . + ymeTm 

1 0 . . .  0 a2m-1 

-- KmZm + M2mqleT m. 

Since KmHm = StoRm, it follows that 

Let 

M S m  = S m  ( R m H m Z m H m R  m + 

T - 1  with 7m = e2mRm e2rn. Then it is easy to see that (JTSTJ)zrn  = O. | 

THEOREM 3.2. Let  M be a HamiltoaJan matrix and Sm E R 2n×2m, m < n, be a symplectic 
matrix with Smel = ql. I f  Sm satisfies 

M S m  = SmHm + zmeY2m, 

where Hm is unreduced Jm-tridiagonal and zm E R 2", then K[M,  ql, 2m]Hm has an SR-factoriza. 
tion and rank ( K[M,  ql , 2m]) = 2m. 

PROOF. Since 

Mql  = MSme l  = (SrnHrn + zmeTm) el = SmHmel ,  
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and  _V r . r i - l_  e2m~m ~1 = 0 for i = 1 , . . . ,  2m -- 1, it is easy to show by induction hypothesis that  

Mi ql i = SmH~e l .  

Hence, 

K [M, ql, 2m] = [ql, Mql . . . .  , M m - l q l  [ M m q , , . . . ,  M2m-lq l]  

-~ S m [el, g rue l , . .  . . . .  ,H:m-1 e l [  gmel,m , ~lrnr'r2m--I ̂~lj ] 

= SInK [Hm, el, 2m]. 

Let H'n = IImHmH T. Then it is easy to verify that  H,n is upper Hessenberg and K[Hm, el, 2m] = 
HTmK[Hm, el, 2m]. Therefore, 

K [ M ,  q l ,2m]I I~  = S , - , . , H ~ K  [Hrn,el, 2r/~] rim ~ Sm-~m, 

where Rm -- HTK[Hm,e l ,2m]Hm.  Since Hm is unreduced, using the same argument in the 
proof of [2, Theorem 3.4, (ii)], one can conclude that  Rm is J-triangular and nonsingular. II 

We comment that  the previous two theorems hold for an arbitrary 2n x 2n matrix M. The 
following existence and uniqueness theorems for J-tridiagonalization of a Hamiltonian matrix 
follow from the results in [2]. 

THEOREM 3.3. (EXISTENCE THEOREM). / [  a/1 leading principal minors of even dimension of 
K[M,  ql , 2n] r J K[M,  ql , 2n] are nonzero, then there exists a symplectic matrix S with Sel  = ql 

such that H = S - I  M S is an unreduced J-tridiagonal matrix. 

THEOREM 3.4 (IMPLICIT SYMPLECTIC THEOREM)• Suppose M is a Hamiltonian matrix. Let S 

and S be two symplectic matrices with Sel  = Sel.  f f  S - I M S  = H and S - 1 M S  = ~I, where H 
and ~I are unredueed J-tridiagonal matrices, then there exists a matrix 

[Co D =  C _  1 , 

where C and F are n x n diagonal matrices such that S = S D  and H = D - I ~ I D .  

With these theorems, we are able to derive a set of two-four-term recurrence formulae for 
J-tridiagonalization of Hamiltonian matrices• Suppose that, for a given Hamiltonian matrix M, 
there exists a symplectic matrix S such that  H : S - 1 M S  is unreduced J-tridiagonal. With 
column partitioning, we denote 

S = [ql , . . . ,  qn [ q , + l , . . - ,  q2n] (3.4) 

and 

H = 

0,1 

kl 

Cl 

bl 

an  

kn 

bl 

-- a l  

bn-1 

b n -  1 

Cn 

-- an. 

(3.5) 
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with k~ ¢ 0 f o r i  = 
M S  = S H ,  we obtain 

W. R. FERNG et al. 

1,...,n, and b~ ~ 0 for i = 1,...,n- 1. Upon comparing columns in 

Mqi  = aiqi + kiqn+~, (3.6) 

Mqn+i = bi - lq~- i  + caqi + biqi+l - a~qn+~, (3.7) 

for i = 1 , . . . ,  n with b0 -= 0. By the implicit symplectic Theorem 3.4 and the symplecticity of S, 
if we require the following conditions hold: 

Ilq ll  = 1, q, ± (3 .8)  

for i = 1 , . . . ,  n, then the coefficients a~, k~, ca, bi and the J-Lanczos vectors qn+~, qi+l can be 
uniquely determined at the ith step by the following identities. (Note that  bi-1, q~-l, and qi have 
been obtained in the previous steps.) 

a, = d Mq, ,  (= qY+iJMq, ,  later]), (3.9) 

k, = qT~ J M q i ,  (3.10) 

(Mq  - 
qn+~ = ki ' (3.11) 

ca = -q~+~J Mq,,+i, (3.12) 

r~ = Mqn+i - b~-lq~-i - caqi + a~qn+~, (3.13) 

b, = IIr, ll2, (= q~+,+lJMqn+,,  later!), (3.14) 

ri (3.15) qi+l = b~" 

By properly sequencing the formulae, we obtain the following J-tridiagonalization algorithm. 
Note that  there is no loss of generality in choosing b~ to be positive due to Theorem 3.4. The q~ 
and qn+i are called J-Lanczos vectors. 

ALGORITHM 3.1. (J-TRIDIAGONALIZATION). Suppose M E R 2nx2n is a Hamiltonian matrix. 
For a given nonzero vector ql with Hql[[2 -- 1, this algorithm computes the columns of the 
symplectic matrix S and entries of H = S - I M S  such that H is a J-tridiagonal matrix. 

S e t b 0 = 0 ,  q 0 = 0 ,  i = l .  
al = q~ M q l  
kl  = q~ J M q l  
whi le  ki ~ 0 

q,+~ = (Mqi  - aiq~)/k~ 

ca = - q ~ + J  Mqn+~ 

ri = Mqn+i - b~-lqi-1 - ciq~ + a~qn+~ 
b~ = [[r~l12 (= qT+~+lJMq,,+~ ) 
I f  b~ = O, stop. 
qi+l = r~/b~ 
i = i + l  
a~ q~ mq~ (= = q.T+,Mq,) 

ki = qT JMq~ 

e n d  whi le  

The iteration halts before complete J-tridiagonalization if the initial J-Lanczos vector ql is con- 
tained in a proper invariant subspace. This is a welcome event. However, the J-tridiagonalization 
procedure can also halts before the J-Lanczos vector, say, qn+j can be constructed. Such ter- 
mination does not guarantee an invariant subspace and is called a serious breakdown. The 
following theorem points out the conditions for these two situations and also proves that  the 
matrix Sj = [ql, . . .  ,qj [ qn+l , . . .  ,qn+j] constructed by Algorithm 3.1 (if it runs to the j t h  step) 
is symplectic. 



Numerica l  Solut ions  29 

THEOREM 3.5. Let M E R 2n×2~ be a Hamlltonian matr/x and ql be a given urdt vector. Let 

Aj = det ( K f  JKj)  , (3.16) 

where g j  ~- K[M, ql, 2j]. Then the following statements hold. 

(a) Aj  ~ O, j = 1,.. .  ,m, and rank([Km,MSmql]) = 2m for some 1 <_ m <_ n if  and only ff 
the J-tridiagonalization Algorithm 3.1 runs until j = m, i.e., bl ... bm- lk l . . ,  km ~ 0 and 
bm = O. Moreover, for j = 1 , . . . ,  m, we have 

MSj  = SjHj + rje~, (3.17) 

with 

Hj = 

al  

kl 

c1 

bl 

a~ 

- -  a l  

bl 

b j-1 
b j _  1 

cj 

- -  a j  

(3.18) 

T - qn+j  
JMSj  = Hi. (3.22) ( J ~ S I J ) M S j  = 

and Sj = [ql,. . . ,  qj [ qn+l,.. . ,  qn+j] is symplectic, i.e., S~JSj  = Jj, and Range (Sj) = 
K(M,  ql, 2j). 

(b) Aj ~ 0, j ---- 1 , . . . ,  m - 1, A m = 0, and rank ([Km-b M2m-2ql]) -- 2m - 1 for some 1 <_ 
m <_ n if and onlyiftheAlgorithm 3.1 runs untilj = m - l ~ 2 ,  i.e., b l . . .  bm-2kl . . ,  kin-1 
0, bin-1 ~ O, but krn = O. 

PROOF. Only if for part (a): since kl = qTjMql  ~ O, from (3.9) and (3.11) we have qn+ljqn+ 1 - r  ~- 
-1 .  By induction on j ,  suppose that  the J-tridiagonalization iterations have produced Sj --- 
[q l , . . . ,  qj [ qn+l,. . . ,  qn+j] for j < m, such that  

Range (Sj) = g (M, ql,2j) (3.19) 

and 
S f  JSj = J3. (3.20) 

It is easy to see from Algorithm 3.1 that  (3.17) holds. Thus, 

(Jr  S T J) MSj  = Hj + (Jr  S T J) rje~. (3.21) 

Multiplying (3.6) by qTn+~J and qT j  from the left and using qT+~jq~ = -1 ,  we have for i = 1 . . . . .  j ,  

ai = -qT+iJMqi and k~ = q[ JMqi, 

T as in (3.9) and (3.10), respectively. Also, multiplying (3.7) by qn+~+iJ from the left and using 
q,T+~+lJqi+l = --1, we have for i = 1 , . . .  , j  - 1, 

T bi = -qn+i+l JMqn+i, 

as in (3.14). Now from the J-tridiagonalization Algorithm 3.1 and S I J S j  = Jj, it follows that  
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Consequently, from (3.21) and (3.22), we have 

( J ~ S ~ J ) r  a =0. 

Since bl . . .  b ,n- lk l . . ,  km ~ O, from (3.23) and (3.15) we have 

q~+lJS a =0 .  

By induction hypothesis (3.19) and from (3.24), it follows that  

(3.23) 

(3.24) 

qa+l ± Range(JSj) = Range (JK[M, ql,2j]). 

Since qa+l e Range([ql, Mql , . . .  ,M2Jql]), from qf+lJqa+l = 0 and (3.25), we have 

qf+lJM2jql = O. 

From (3.13), (3.15), and (3.11), we derive 

1 
qa+l = ~ (Mqn+j - bj-lqj-1 - cjq a + ajqn+a) E K (M, ql, 2j + 1) 

and 
1 

qn+a+l -'- ~ (Mqj+l  - aa+lqj+l ) E K (M, ql, 2(j + 1)). 

From (3.25), (3.26), (3.28), and M T j  = - J M ,  it follows that 

T ~ 1 
qn+j+lJM ql = kj+--~ (Mqa+1 - aj+lqa+l)T JMiql = O, 

for i = 0, 1 , . . . ,  2j - 1. Thus, 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

From (3.24),(3.30), and qrn÷j+lJqj+l = -1 ,  we can show that 

Sj+l = [ql, . . .  ,qa+l I q~+l, . . .  ,q,+a+l] 

is symplectic, i.e., 
S~+IJSj+I = Ja+l, 

and from (3.27) and (3.28), we have Range (Sj+I) = K(M,  ql , j  + 1) with full column rank. 
Follow from Theorem 3.2 that  K a I I a  has an SR factorization K a H a  = SaRa , .  Hence, it 

implies that  all leading principal minors of even dimension of A n  are nonzero [15, Theorem 11]. 
Moreover, since ba  = 0, from (3.13) and (3.14), it follows that  rank ([Ka, M2'nql]) = 2m. 

If for part Ca): from assumptions and [15, Theorem 11], it follows that  KmIIm has a SR fac- 
torization K a H a  = S a R a .  From Theorem 3.1 there is an unreduced Ja-tridiagonal matrix H a  
such that  (3.2) holds. If we require the columns of S a  - [ q l , . . . , q a  [ qn+l,.. . ,q,~+m] satisfy 
HqiH2 = 1 and qi ± qn+~ for i = 1 , . . .  ,m, then the entries o H a  in (3.18) and the vectors q~, qn+i 
for i = 1 , . . . ,  m are uniquely determined by (3.9)-(3.15). Thus, we have h i . . .  b a - l k l . . ,  ka ~ O. 
Moreover, since rank ([Ka,  M2'nql]) = 2m from (3.13), it follows that  b,n = 0. 

(b) From the proof of (a), we have that A a ~ 0 for j = 1 , . . . ,  m - 1  and rank ( [Ka_ 1, M2a-2ql]) 
= 2 m - 1  if and only ifbl . . .  ba-2k l . . ,  ka - I  ~ 0, bm-1 ~ 0. Consequently, from [15, Theorem 11], 
Theorems 3.1 and 3.2, it follows that A m ~ 0 if and only if k a  ~ 0. | 

This theorem shows that under some mild condition for the initial vector ql, the J-tridiagonal- 
ization Algorithm 3.1 computes a symplectic matrix Sj which partially reduces the Hamiltonian 
matrix M to a J-tridiagonal matrix H a. The eigenvalues of H a are called the J-Ritz values 
and are used to approximate the eigenvalues of M. The following result provides a computable 
criteria to check the acceptance of an approximate J-Ritz pair. 

qrT+j+lJSj = O. (3.30) 
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THEOREM 3 .6 .  

and H i has no pure imaginary eigenvalue. Let 

81 

U / 1 H j U  j = 8j 
- 81 

Suppose that j steps of J-tridiagonalization Algorithm 3.1 have been performed 

= Aj (3.31) 

and 

Thus, 

MYj  = YiAi + rj (e~Ui)  . 

Myr = Oiyr + rj (e~Ujer) 

Myn+r = -Oryn+, + rj (e~Ujej+,)  , (3.35) 

for i = 1 , . . .  , j .  The results follow by taking 2-norm and recalling that  [[rj[[2 = Ibj[. | 

From (3.34) and (3.35), we have two residual vectors 

u2j,rrj = Myr - Oryr (3.36) 

and 
u2j,j+r ( Jrj  ) X = (yH+,j) M - Or ( Y ~ + j )  . (3.37) 

Applying the results in [16] to (3.36) and (3.37), it follows that (Or, Yr, YH+rJ) is an eigen-triplet 
of M - E. The norm of the perturbation E satisfies 

{ [u2j,i[ [u2j,j+,[ } 
I[E[[2 < [bi[ max , . (3.38) 

- ',J Ily, l12 IJy.+,lh 

Furthermore, from (3.38) and the results in [16], we can estimate the distance from 0r to an 
eigenvalue, say, A (i) of M by 

H?Jn+iH2HYrJ[2 L-~ I~ (') - e,l < ~ , ~ , ~  + o (IIEII~) 
I ~ n  + r - - Y i  I 

< Ibjl 
_ luT+,gju,  i m a x  {lu2j,d Ilyj+rll2, lu2j,j+d Ilydl2} + 0 (llEll 2) (3,39) 

< Ib~l IISjll2 
_ luH+~jju~l max {lu2j,d, lu2j,i+rl} + o ([[Ei[~). 

(3.34) 

that  is, 

he the J-diagonalization of  the J-tridiagonal matrix Hi,  where Uj = [u l , . . . ,  uj [ u j + l , . . . ,  u2j] 
issympleet ic  with [[Ui[]2 = [[Uj.I.¢[[2 ~-- 1 ,  i : 1 . . . .  , j .  I fY j  = [Yi,... ,Yj [Yn+l . . . . .  Yn+j] = SjUj, 
then the following identities hold: 

[[Myr - 0ryr[[2 = I~,,I (3.32) 

with flj,~ = bju2j,r, and 
[[Myn+i + 9rYn+r[[2 = [J3j,j+it (3.33) 

with ~i,i+r = byu2i,j+i for i = 1, . . .  , j ,  where U i = (ukj).  Note that Yr and Yn+r are called the 
J -Ri t z  vectors corresponding to the J-Ri tz  values Or and -Or, respectively. 

PROOf. Since M S  i = S i l l  j + r je~ ,  it follows that 

M S j U j  = S iUiU~"HiUj  + r j e ~ U  j, 
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We conclude this section by summarizing the J-Lanczos method in the following algorithm. 

ALGORITHM 3.2.  (J-LANCZOS). Given a Hamiltonian matrix M 6 R 2nxzn. For a given unit 
vector ql, this algorithm computes the columns of the symplectic matrix Sj and entries of the 
2j × 2j J-tridiagonal matrix Hj such that MSj = SjHj + rje~ using Algorithm 3.1. Then the 
algorithm computes the J-Ritz values and J-Ritz vectors to approximate the extreme eigen-palrs 
of M. Stop criterion is based on (3.32) and (3.33). 

Given ql # 0 with Ilql [12 = 1 and tolerance e > 0. 
S e t b _ l = 0 ,  q - l = 0 ,  j = l .  
while kj # 0 and bj # 0 

Compute aj, kj, q~+j, cj, bj, and qj+l by Algorithm 3.1. 
Compute UfxHjUj = Aj as in (3.31) by using symplectic QR like algorithm [2] or 
QR algorithm. 
for i = 1 , . . . , j ,  

if [~j,i[ _< e and [~,~+d -< e 
accept (8i, yi), (-0~, Yn+i) and their conjugate pairs as the desired eigen-pairs. 

end for 
if the desired eigen-pairs are satisfied, then stop 
else j = j + 1 

end  while 

In the next section, we present an error bound for the J-Ritz values obtained from the 
J -Lanczos algorithm and prove a variant Paige-type theorem showing that convergence of the 
J-Ritz pairs implies loss of symplecticity. 

4. E R R O R  B O U N D  A N A L Y S I S  A N D  P A I G E - T Y P E  T H E O R E M  

Let Ha be the J-tridiagonal matrix obtained from applying n iterations of the J-Lanczos 
algorithm to a Hamiltonian matrix M and Hm be a J-principal submatrix of Ha. Hereinafter, 
~k denotes the set of polynomials of degree less than or equal to k. The following lemma can be 
obtained immediately. 

LEMMA 4.1. Let ei denotes the i th column of identity matrix of suitable dimension. Then, for 
i = 1 , . . . ,  4m - 1, the following identities hold. 

(i) er Hine, T , = el H~nel. 
(ii) eTn+lHinen+l T i = em+lH~nem+ 1 . 

(iii) T i T i 
= em+lH~ne  1 e n + l H ~ e l  

For simplicity, we assume that both Ha and Hrn here are J-diagonalizable, that is, Ha = 
XH A y  and Hm = PHOQ, where 

[t 0] 
A = diag (Ax,..., An [ -Ax , . . . ,  --An) = - A ,  

and 

O = d i a g ( 0 1  . . . .  " 8m [--01''" ' ' --Sin) ---~-- [ ~01 --O10 ] . (4.2) 

Let En = [el,en+l] E R 2nxu and Em = [el,era+l] E R 2m×2. With the decompositions of Hn 
and Hm above and apply Lemma 4.1, one can verify that 

E~f(H.)Ea = E~/(H~)E~,  

for all f E ~o 4ra- 1. This implies 

[ pf ] • ~ ~JJ*'-%'" [q~ q~+~] .  (4.3) 
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[-i')l Here x~,y~,pi, and q~ are the ith column of X,Y,P, and Q, respectively. Denote xl  = ,~2)j, 

where  x~ l ) ,x~  2) E R n. Using the similar notations for Yl, Pl, ql, xn+l, Yn+I, Pn+l, and qn+l, 

equation (4.3) becomes 

(x~l)--  I- X~2') H ( f ( i l )  _}_ f ( _ i l )  ) (y~l, _{_ y~2)) 

(p~l) _~. p~2))H (f(O1) -~- f(--O1))(q~l) _{_ q~2,) , (4.4) 

for all f • p4m-i. By the property of f (Ax)+  f ( -A1) ,  there is an even polynomial g with degree 
<_ 4m - 2 such that  g(A1) = f(Ax) + f ( -A1) .  Hence, (4.4) can be rewritten as 

n f¢~ 
E g(Ai)(~:i,1 -}-Xn+i,1)(Yi,1-[-Yn+i,1) -~ E g(Oi)(Pi,1 "4-Pro+i,1)(qi,1 -}-qm+i,1). 
/=1 i=1 

(4.5) 

Now, let al  = {A2,...,  An} and 0"1 = {82,... , 8m}. Suppose al  U 6"1 = 81 U 82 with S 1 N S 2 = (~. 
Define 

{ 'X2--"2],2, } 
61($2) = max I x2 - o3l YI IA2 : x 6 0"1 U (~1 (4.6) 

~ES~ 

and 
E~k) (S1) = inf max Ip(xU)[ (4.7) 

With above definitions and notations, we establish an error bound for the J-Ritz values. 

THEOREM 4.2. Assume that [A, - 011 = minl<j_<m [A1 - Ojl. / / 's  = 1821 < m - 2 holds, then 

[A 1 -- 011 [A1 + 811 [X1,1 + Xn+l,ll [Y1,1 + Yn+l,l[ 

x [x/,1 + x.+i,l[ [Y/,1 + Yn+i,l[ + E [P/,1 + Pro+i,1[ Iqi,1 + qm+i,l[ • 
i=2 /=2 

(4.s) 

PROOF. Let 
g ( x )  = - o2) p (x2)  1 ]  - ;) ,  

/~ES2 

where p 6 to 2m-*-2 with p(A21) = 1. Substituting g(x) into (4.5), we obtain 

= - E  
Ai6S, 

÷E 
0~651 

H ( A2 -- .2) (Xl,1 -t- :~n+l,1) (Yl,1 -{- Yn+l,1) 
~ES~ 

( A2 --012)p(A2) r l  (A2- ,2)(:~/,1-~ xn-}-/,1)(Yi,1 '[-yn+z,1) 
~6s2 

( 02 -- 02) P (02) H ( 0/2 -- .2) (fiLl q- pm+/,1)(q/J + qm+/A). 
t~ES~ 

From (4.6), we have 

I~i - 6d <_ 1 
m a x  p (x 2) (~1(S2) 

]A1 + 8111X1,1 + Xn+1,1] ]Y1,1 + Yn+l,l[ XeSl 

× [Xi,1 -b Xn+i,l[ [Yi,1 -t- Yn+i,l[ -b E [Pi,1 + Pro+i,1[ [qi,1 + qm+i,l[ • 
i----2 i----2 



34 W . R .  FERNG et al. 

Since p E ~2m-s-2 with p(A 2) = 1 is arbitrary, from definition (4.7) we get the error 
bound (4.8). | 

We comment that (4.8) gives a new bound for [A1 -011 when compared with the bound in [13]. 
Further analysis of the magnitude of the right-hand side in (4.8) is referred to [13] for details. 

For the roundoff error analysis in the following, we prove a variant Paige-type theorem [14] 
which shows that the convergence of a J-Ritz pair implies loss of symplecticity and that duplicated 
J-Ritz pairs can occur. 

Suppose that by the end of the j th step, the J-Lanczos algorithm has produced Sj, the matrix of 
J-Lanczos vectors Hi, the J-tridiagonal matrix embodying the two-four-term recurrence formulae 
(3.9)-(3.15), and the residual vector rj. For convenience of discussion, we suppose that Hj has 
no pure imaginary eigenvalue. If the effects of roundoff errors are taken into account, then two 
fundamental relations can be formulated by 

M S j  - S j H j  = r je~  + Fj (4.9) 

and 
Jj - S I  J S  j = CT - Cj, (4.10) 

where Fj and Cj are the corresponding roundoff error matrices. 
Suppose that the coefficients ai, kj, and c~ determined by (3.9), (3.10), and (3.12), respectively, 

are locally arithmetic exact. In addition, we assume that the following conditions are maintained 
in the J-Lanczos algorithm. 

(A1) i = 1 , . . . , j .  
(A2) and qT qi = 1, i = 1 , . . .  , j .  
(A3) 
(A4) 

Let 

Local orthogonality: qS qn+i = O, 
J-unity and unity: qT+ijqi = --1 
Local symplecticity: qT+~jqi_l = 0 and qT+jq~+l = O, i = 1 , . . .  , j  - 1. 
The J-diagonalization of Hj is exact, namely there is a 2j x 2j symplectic matrix Uj such 
that U~IHjUj  = Oj = diag(01,... ,Sj I -01,.  .. , -0 j ) .  

the matrix Cj in (4.10) be partitioned by 

r,-,+ ,-.+ ] 
| "~11 v12  (4.11) 

where C g) R nxn, i,k E i, k = 1, 2, are upper triangular. From the skew symmetry of Jj - S j X J S j  

and Assumptions (A2) and (A3), it is easy to check that all C g), i, k = 1, 2, are strictly upper i ,k 

triangular. In addition, both C~  ) and ~21 f~g) have zero subdiagonals. Multiplying (3.7) by q T j  
from the left, for i = 1, . . .  , j ,  and using (A2), one has 

qT~ JMqn+i = b~-lqT jq~-i  + biqT jq~+l -a~ .  (4.12) 

Applying induction hypothesis that qirJq~_l = 0 to (4.12) and from (3.9), it follows that 

qX~Jqi+l = 0. We can conclude that r~(i) f~g) C~) v i i ,  v12, are strictly upper triangular with zero 
first subdiagonals and C(~ ) is strictly upper triangular. 

The Palge-type theorem is presented and proved in the following theorem. 

THEOREM 4.3. Suppose that Hi,  Si,  and r i constructed by the J-Lanczos a/gorithm satisfy (4.9) 
be a J-strictly upper and (4.10). Suppose Assumptions (A1)-(A4) hold. Let Kj 6 R 2j×2j 

triangular matrix such that 
S~ JFi  - FT  J'c Sj = Kj  - KT ,  

and let 

(4.13) 

r =uFKW . (4.14) 
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Then, for i = 1 , . . .  , j ,  the J-Ritz vector yi = Siui, and Ys+i = S~uj+~ satisfy 

q~'+~JY~ = 7~j+, 
bs(uui,S+~ ) - 7~,S+~//~3,j+i 

(4.15) 

and 
qT+IJYj+~ = 7S+~,~ 

bj(u2j,i) =- 73+~,~11~S,~ ' (4.16) 

for some ~ with 1 < ~ < j ,  where 7t,k and ut,k denote the (l, k) th entry o f f  s and US, respectively. 
Moreover, for i # k, i, k 6 Ii  ~ {i I Im(O~) > O, i = 1,. . .  , j} ,  the following identity hold: 

(Ok -- 0i) ~+iJyk = -TLS+k \ u2j,j÷ k \ u2j,i / (4.17) 

t'or some i, k with 1 < i, k < j ,  

PROOF. Premult iply (4.9) by S ~ J  to get 

S~ J M S j  = S~ JSsH + S~ Jr je~ + S~ JFj. (4.18) 

To eliminate S T J M S j  from (4.18), one can take transpose and then apply (4.10) and (4.13) to 
derive 

T e2~ (r T j T  S~) - (S-~ Jrs)  eg.~ 

= ( - J j q - S f J S s ) H j + H ] - ( J T - S ~ J T S j ) + S f J F j - F ; r J T S j  (4.19) 

= (Cs s + STC ) - (CT s + HTC ) + - KT. 

Since H s is J-tridiagonal and C s has the special form as discussed above, it is easily seen that  
each submatr ix of CjHj and H~.C s is strictly upper triangular according to the 4-block parti t ion 
shown in (4.11). Similarly, each submatrix of C f H  s and H f C f  is strictly lower triangular. 
Furthermore,  since Kj  is J-strictly upper triangular, we have 

(STJ rj) = CsH  + HTCj + gj. (4.20) 

From Assumption (A4), we have 

Hjui = Oiui, Hjuj+i = -Oius+~, i = 1, . . . , j. (4.21) 

For convenience, we denote fii, 0i, f~j+i, and -0 ,  by ui, 0i, us+i, and -0 i ,  respectively, for some 
with 1 < i < j and let 

y~ = Sjui, yj+~ = Sjuj+,, i = 1 , . . . , j .  (4.22) 

Premultiplying uH+~ and postmultiplying ui to equation (4.20), and from (3.15), (4.14), (4.21), 
and (4.22), one can derive 

(4.23) 

This proves (4.15). To prove (4.16), it is sufficient to consider by premultiplying fiH and post- 
multiplying uk to (4.20). 

Next, by premultiplying fi~+i and postmultiplying Uk to (4.18), for i ~ k, i, k 6 Ij  -- {i I 
Im(0~) _> 0, i  = 1 , . . .  , j} ,  one obtains 

~f+,ST JMSiuk  = Ok~f+,sT JSjuk + ~f+~ST jq j . l b j e~uk  + ~H+isT JFjuk. (4.24) 
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From Theorem 3.6 and (4.22), we have 

o~l+iJMyk = OkO~l+ijyk -H j + Yj+i qj+lN,k + O~I+~JFjuk. (4.25) 

Similarly, 
_-- - H j  O~k JMYj+, -o~oH jyj+~ + Yk qj+l/~j,j+i %0HJFjuj+,.  (4.26) 

But 
oHjMyj+i = T T T T T T T YkM J yj+~= (YlcM J YJ+O =O~+{JMyk. 

Subtracting (4.25) from (4.26), one has 

(Ok - Oi)O~I+ijyk = --qT+ l JYk]~jj+{ + qT+ I JYj+i]~j,k n u O H J Fjuj+i --  O~l+iJ Fjuk. 

From (4.13)-(4.15), we have 

(Ok -- Oi)oH+~jyk 7£j+k ~ . 7j+~,i = - ]~jj+k/"JJ+* +~pj,k~.,,, +fiI~ ( S T j F j _ F ? j T S j )  uj+ ' 

= --"[k , j+k k l l 2 j , j +  k \ ~12j,i / 

which proves (4.17). | 

REMARKS. To conclude this section, we summarize the following comments• 

(a) 

(b) 

Equation (4.15) and (4.16) shows that in the J-Lanczos algorithm, if for some i, Yi 
approximates a desired eigenvector, i.e., I~j,j+~l is sufficiently small, then the quantity 
qT+IJY~ = 7~+,,,/~,1+, ~ O(e)/O(e) ~ O(1). That is, qV+lJS#u, ~. O(1). This means 
that the symplecticity between qj+l and JSj is lost. Hence, a resymplectization process 
after the j th step should be performed• 
In view of equation (4.17), since the right-hand side is fairly small if 8k ~ 9~, the quantity 
o~l+ijyk, and consequently, y~+iJyk may not be small. Thus, yj+i ~ Yj+k can happen• 
This means that in the J-Lanczos algorithm, a duplicated production of convergent J-Ritz 
pair is possible• 

5. A P R A C T I C A L  E X A M P L E  A N D  N U M E R I C A L  R E S U L T S  

In this section, we discuss the numerical aspects on applying the proposed J-Lanczos algorithm 
to solving high-order Riccati equation arising from position and velocity control for a string of 
high-speed vehicles [8]. The matrices in the associated Riccati equation - X N X  + X A  + A T x  + 
K = 0 in this practical example are given by 

N = diag (1,0, 1,0,... ,0, 1), 

K = diag (0, I0, O, 10,..., 10, 0), 

and 

with 

A = 

"AlI  A12 
A22 A23 

and 

0 
Am.- l,rn.- 1 -1 

0 0 -1  

A,,+,=[ 
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Figure 1. Distribution of all eigenvalues of the associated Hamiltonian matrix on the 
complex plane in our test  problem. 

For a string of m = 501 vehicles, it is necessary to solve the Pdccati equation of order n = 
2m - 1 = 1001, and consequently, the associated Hamiltonian matrix is of order 2002 with 
eigenvalue distribution as shown in Figure 1. The J-Lanczos Algorithm 3.2 incorporated with 
shift and invert techniques is implemented in MATLAB to solve the problem on a Sun SPARC-10 
workstation with 32 MB of main memory. 

o 
Since all Lanczos-type algorithms converge fast for approximating some extreme eigenvalues, 

but  not all eigenvalues. For solving Riccati equations, one has to compute all eigen-pairs of the 
associated Hamiltonian matrix. Hence, some shift and invert technique has to be considered and 
incorporated into the J-Lanczos algorithm. 

An important  consideration is how to preserve the Hamiltonian structure of the shift-inverted 
transformed matrices. Since a transformation matrix can usually be represented by a rational 
function of matrix M, say, 

o o  

f (M)  = ~ cjM j, cj e C, for all j. (5.1) 
j ~ o o  

To preserve the Hamiltonian structure, we require that  (J f (M))  H = J f (M) .  Since M is Hamil- 
tonian (JMJ) H = (-1)J+I J M  i. Hence, 

J ~ c j ( - 1 )  j+ IM j = J ~ ci Mj. 
J J 

Write c i = aj + i~j, where i = vrZ1 and aj,~j  E R for all j .  By comparing the coefficients, 

a i ,  i f j i s o d d ,  

cj = i~j, if j is even. 

Since s Hamiltonian matrix is first reduced to a J-tridiagonai matrix by the J-Lanczos algo- 
r i thm using real symplectic similarity transformations, it requires that all even term coefficients 
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of the considered rational matrix function f (M)  to be zero. For practical implementation, the 
following three types of analytic matrix function are considered. 

1. Choose 
f (M) = M -1, 

whenever the desired eigenvalues are of the smallest modulus. 

2. Choose 

f(M)--- (M 4- 52M-1) -1  

-- (M 2 -{- ¢~2I) -1 M, 

where/5 E R and $ > 0. The choice of 4- sign depends on the desired eigenvalues whether 
are close to the numbers +6 or pure imaginary numbers 4-i~. 

3. Choose 

f (M) :- (M 3 + bM + cM -1)-1 

= (M 4 + bM 2 + cI)-I M, 

where b = 2(~ 2 - a 2) and c = (a2 + ~2)2 with a, j8 E R, c~, ~ > 0, whenever the desired 

eigenvalues are close to complex numbers =t:(a q- i~). 

Table 1. Summary of numerical results with real shift 6. 

J-Lanczos Total Number of Total Time Per 

Iteration Numbers Shifts Eigenvalues Time Eigenvalue 

j 6 A see. see. 

20 5 58 1706.0 29.4 

30 5 118 2499.2 21.6 

40 4 112 3429.5 30.6 

50 3 122 3623.0 29.7 

Table 2. Summary of numerical results with complex shifts 4-(a 4- ~i). 

J-Lanczos 

Iteration Numbers 

Total Number of Total 
Time Shifts Eigenvalues 

60 1276 

40 1560 

10 902 

Time Per 
Eigenvalue 

see. seE. 

30 77003.0 60.3 

50 65992.8 42.3 

80 19760.3 21.9 

In this test problem, it is easy to check that  (A, B) is stabilizable and (C, A) is detectable. 
Thus, the corresponding Hamiltonian matrix M has no pure imaginary eigenvalues. Therefore, 
the shifts considered are either real or complex only. In Table 1, we summarize the results of the 
J-Lanczos algorithm with real shift 6 and the Hamiltonian transformation matrix (M + 6 M - 1 ) - 1 .  
In Table 2, we summarize the results for complex shift 4-(c~ 4- iB) to (M 3 + bM + cM-1)  -1. In 
the implementation, complex shifts along a straight line on the complex plane with an argument 
angle -~ were actually performed. As one can see from the results that  the J-Lanczos algorithm is 
most efficient when 30 iterations ave taken with real shifts and 80 iterations with complex shifts. 
Besides, we observed that  the relation between the number of convergent eigenvalues v and the 
number of J-Lanczos iterations j is approximately v = 1.4 x j - 25. 
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Some observations and comments are in order. 

(a) The  dominant  computat ions of this shift-inverted J-Lanczos method is the LU-factoriza- 

tions of the shift matrices and the associated triangular solvers. In this particular test  
suite, the Hamiltonian matr ix  and all shift matrices are banded. Therefore, fast band 
factorization routine and storage format are easy to implement. 

(b) I t  requires more J-Lanczos iterations in the complex shift cases than  the real shift ones 

because the complex eigenvalues are more clustered than the real eigenvalues. 
(c) In the implementations, we use e = 10 - l °  (see Algorithm 3.2) as the stopping criteria 

and obtained the computed solution ) (  to the algebraic Riccati equation with residual 
II - . ~ g ) (  + ) ( A  + A T . ~  -{- gl12 = 1.6 × 10 -5. 

6. C O N C L U S I O N S  

In this paper,  we derived the J-Lanczos algorithm from the J-tridiagonalization procedure of a 
Hamiltonian matr ix  using symplectic similarity transformations. We also gave a detailed analysis 
on the convergence behavior of the J-Lanczos algorithm and presented error bound analysis and 
Paige-type theorem. 

For very large and sparse Hamiltonian matrices, the general QR method [1] or structure- 

preserving numerical methods proposed in [2,3,5-7] for computing the stable invariant subspaces 
become inadequate when storage and computational effort are big concern. For example, one 
would not be able to solve the position and velocity control problem discussed in this paper  
on a regular workstation with any symplectic QR-type algorithms because of the storage con- 

straint. Alternatively, the proposed structure-preserving J-Lanczos method can efficiently solve 

this problem with high accuracy. 

Finally, we would like to comment that,  unlike the serial oriented symplectic QR-type algo- 
rithms, parallel implementation of J-Lanczos algorithm with different shift-invert steps is straight- 

forward. 
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