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with the experimental observations in the EPI transport experiment.
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1. Introduction

As the trend of miniaturization of electronic devices contin-
ues, the molecular device has been explored in recent years [1].
In the molecular device, one of the particular interests in study-
ing the physics of these devices, is the coupling of the charge
states to the vibration or configurational modes of the molecule.
The electronic transport in the presence of electron-phonon
interaction (EPI transport) becomes an important topic in the
nano-mechanical device system and has been investigated exper-
imentally by a number of groups on a single molecular transistor
system [2-7] as well as on a semiconductor quantum dot system
[3,8]. Some of which were reported that single molecular transis-
tors are strongly influenced by a single vibrational mode. In Ref.
[2], Park et al. show that such mechanical device can be realized
by applying a Csp molecule against the gold surface, where a sin-
gle vibrational mode was associated with the oscillation of the Cg
in the confining well created by the van der Waals force, and the
motion of Cgg is excited by the tunneling electrons. Later a simi-
lar current step phenomena was observed by embedding a quan-
tum dot in a suspended GaAs/AlGaAs membrane [8]. Theoretically,
EPI induces satellite peaks of phonon sidebands (PSDs) to occur
in a spectral function and yields the corresponding phonon side-
band conductance (PSDC) [9]. The nth PSDC can be observed at
eVy = € £ eV, £ nwo, where € is the renormalized resonant
energy of the QD (or SMT) due to EPI, n is a positive number, V;
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is the gate voltage and V} is the applied bias (V, = (u;r — ugr)/e,
W is the chemical potential of lead «). Note that PSDC does not
emerge till the applied bias voltage (eV},) exceeds the energy of a
phonon. Hence e|V},| > wy is the necessary condition for the occur-
rence of PSDC [10] and the transport window is controlled by V.
We find that the bandwidth will increase with the bias voltage. As
a result, the conductance map, behaving as a function of the bias
voltage (V}) and gate voltage (V;), blurs at the larger bias region.
In the current-voltage measurement research, shot noise provides
additional and important information about the particle fluctua-
tion. According to Ref. [9], the shot noise can be calculated once the
tunneling coefficient is found out. Since the tunneling coefficient is
highly dependent on the jumping rate of the electron transporta-
tion, the explicit analysis of the tunneling rate (bandwidth) on the
noise becomes an important issue, and a few results are just begin-
ning to emerge [11]. Before that, in this work we illustrate how the
current and the tunneling rate can be performed correctly with the
nonequilibrium Green function approach.

2. Model and theoretical tools

In this paper, we consider the electron transport between
the leads and the central region, e.g. a single resonant QD or
SMT, in which the electron interacts with the phonon field. The
Hamiltonian of the system can be defined as [1]:

H = Heen + Hieag + Hr, (1)
Heen = (g9 — A)dTd + wob™b
= Tod"d + wob™h, (2)
Hiead = Z Eko Ch Chiy » (3)
ke sa€L,R


http://www.elsevier.com/locate/ssc
http://www.elsevier.com/locate/ssc
mailto:yingtsan.tang@gmail.com
mailto:kaochin.lin@gmail.com
http://dx.doi.org/10.1016/j.ssc.2010.01.007

800 Y.-T. Tang et al. / Solid State Communications 150 (2010) 799-803

> VichdX +he, (4)
ke, €L,R
where
A
X =exp |:—(bJr + b)] , (5)
o
= 1?/wo. (6)

The operators d*(d) and ck (ck,) are the creation (annihilation)
operators of electron in the QD (or SMT) and « lead, respec-
tively. The operator bT(b) is the creation (annihilation) operator
of the phonon. gy = (g9 — A) is the renormalized energy of the QD
(or SMT), &g is the bare dot level energy, A is the energy shift due to
the EPI, and ¢, is the energy of the electron in « lead. The coupling
strength of EPI is denoted by A and the tunneling matrix element
between the QD (SMT) and the « lead is defined as Vi, . In addi-
tion, we briefly outline the Keldysh Green'’s function and the Lan-
greth theorem. The Keldysh Green’s function is a useful and con-
venient tool for solving kinetic equation under non-equilibrium
condition, e.g. the finite bias system. Usually the contour-ordered
Green'’s function maintains the perturbation theory. The retarded
(advanced) Green’s function brings the information about spec-
tral structure, such as density of state or a scattering (decay) rate.
The lesser (greater) Green’s function (G<") is associated with the
occupation number or the current. For an interacting system, the
contour-ordered Green’s function can be expanded with a system-
atic perturbation method, e.g. Dyson expansion or the equation of
motion, whereas the time variables inside the kinetic equation are
with a complex argument. In order to obtain the physics quantities
(in terms of G"@ and G<*?) in a real time axis, it’s necessary to re-
place the contour integrals by real time integrals. This procedure
is called the analytic continuation or the Langreth theorem. A con-
venient table for the analytic continuation (the Langreth rules) is
listed in Table 4.1 of [12].

The technique of the Keldysh Green function on charge
transportation was developed by Jauho, Wingreen and Meir
(JWM’s transport formula) [13] and is widely used to calculate the
transport problem in nanostructure systems. In JWM'’s formula,
the system is divided into the lead region and the central region
(interacting region). The electronic current flowing from the lead
a(e L, R) into the central region (i.e. the incoming current J;,) is
directly proportional to the product of the Fermi function of the «
lead, f, (@), the in-tunneling rate, I, (w), and the spectral function
of the central region A(w)(= —2 Im G" (w)). The electronic current
flowing out of the central region into the « lead (i.e. the out-
going current J,,.) is directly proportional to the product of the
particle occupation in the central region and the out-tunneling
rate Iy, (w). Thus, the current can be calculated once the Keldysh
Green function of the central region is determined. Note that, the
out-tunneling rate should equal the decay rate of the particle in
the central region (i.e. the bandwidth of the spectral function) due
to the tunneling process (i.e. the imaginary part of the tunneling
self-energy). However, in the original JWM'’s formula, the out-
tunneling rate depends only on the properties of the tunneling
barrier and is independent of the interaction (such as EPI) that
occurs in the central area [9,13]. In addition, I, (w) is assumed
to be a constant under the wideband approximation. Therefore,
the out-going current resulting from the earlier JWM'’s formula
brings incomplete information about the system. That is, when one
associates the tunneling process with the interaction in the central
region, the out-tunneling rate needs to be recalculated. In Eq. (4), it
is obvious that the phonon participates in the tunneling processes
via X(X™), and the effect of the phonon field operator should be
applied into the tunneling self-energy of the central region. As
a result, the corresponding out-tunneling rate is affected by the
phonon field with EPI. Since EPI does not take place in the leads,
the decay rate of the electron there, i.e. the in-tunneling rate, will
not be affected.

3. Method

To apply JWM'’s formula to the transport problem, the Keldysh
Green function for the case of EPI must be evaluated first. At the
earlier stages, the interacting retarded Green function G (t) of the
electron in the QD (or SMT) was approximated with the product
of the dressed electronic retarded Green function Er(t) and the
expectation value of the phonon correlation function, which is
X(XT(0) = exp[—@(t)], i.e. G'(t) = Er(t) exp[—@(t)].
The phonon correlation function (X(t)X*(0)) was regarded as
a scalar value with the mean field approximation (MFA) [9,13].
This decoupling approximation, however, was aimed to work
only at high temperatures [14]. Besides, the results based on this
approximation also predict that PSDC occurs in the equilibrium
situation, i.e. the case of the zero bias voltage. This consequence
is clearly inconsistent with the experimental observations [2,3].
The main reason for these erroneous predictions comes from
the ill treatment of the phonon correlation function [14]. In
Ref. [14] a skillful improvement of MFA is suggested by Chen

et al. There, the EPI lesser (greater) Green function G (t) is
approximated as the product of the electronic lesser (greater)
Green function G>(t) and the phonon part quantity exp [F® (—t)],
ie. G () = G=®)(t) exp [F®(—t)]. Moreover, the tunneling
matrix elements Vj, are approximated as a scalar number,
i.e.Vku = Vi, (X) for calculating the tunneling rate [ 14]. As aresult,
the inconsistent PSDC disappears for V, = 0, in agreement with the
experiments [2]. Note that although the peak’s position of the PSDC
in Ref. [ 14] agrees with the observation in the lab, the bandwidth
of the PSDC in Ref. [14] is independent of bias voltage, which
disagrees with the blurred conductance pattern at the large bias
region. Besides, the above treatment for the phonon correlation
function (X(t)X*(0)) or the phonon operators X (or X™) as scalar
is inappropriate. Since X (t) and X*(t) are operators, the phonon
correlation (X(£)X™(0)) should be regarded as part of the Green
function and follow with the analytic continuation [13]. That is,
when the total Green function is in the form of the product of the
electronic Green function and the phonon correlation function, the
entire Keldysh Green function needs calculating by the Langreth
theorem (LT) [13]. The Keldysh EPI Green function with LT is then
explored as follows.

4. Green function formalism

Before calculating the tunneling current in the presence of EPI,
it should be noted that either the equation-of-motion or Dyson
equation is manipulated in terms of the contour order Green
function and the expectation value for phonon correlation function
(X)X (or (X(©)XT(t"))) should be regarded as the lesser (or
greater) phonon Green function first. According to Eq. (10) and Eq.
(11) in Ref.[13], the current flowing from the left lead to the central
region can be written by:

2 <
Ju(t) = Re D ViaGii (£, 1)

k,a€l

ze C c / b
FRe dl’1G(dd)(t, tl)zr,l_(tlv t) ler—t (7)
c

where, a useful contour order self-energy of the electron due to the
tunneling process can be defined as

’ 2
f ) =Y Vi [ FRe = g (e — ), 8)

ke

Free — t') = (TeXT(OX(t)) and g (t — t') = (Tccy, ()
c,:,; (t/)) represent the contour order phonon correlation function
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and the contour order Green function of the electron in « lead,
respectively. Note that the retarded self-energy in the presence
of EPI must be calculated in terms of lesser and greater Green
functions before the expectation value (X(£)XT(t')) is imported
from Ref. [6]. According to the Langreth theorem, the retarded self-
energy of the electron in QD(SMT) is:

Za(@) = ET{8(t =) [57, ¢ ) = Z5, = 0]}

=FT. 43 Vi, | 0 —1t)
ke

x [F*(t—thg, (t—t) —F =t —thgo(t—tH] . (9)

where F¥>(t — t') = (XT(t)X(t)) and F*=(t — t') = (X(t)
X +(t’)) represent the greater/lesser Green function of the phonons
respectively, and g,;<>) (t — t') is the lesser (greater) Green
function of the electron in the lead «. After Fourier transformation,
the retarded and the lesser self-energies of the electron can be
expressed as:

Vi Vi
X (w) = by e <(s
b () ;[pnwﬂwo_gkﬁwfa %

V,j; Vig
a)+na)0—8ka +18

5 (@) = Y Vi Vi, Pugi, (@ + nes)

+P-n f;(gka):l ) (10)

n,k
=1 palu(+ nwo)f; (@ + nw), (11)
where f~(ex,) = fu(ek,) is the Fermi function of the lead «

and f; (ex,) = 1 — fu(ek,). I, represents the tunneling rate of
the electron in the system without EPI Besides, the interacting
electronic retarded Green function can be derived as G'(w) =
[0 — (50— A) = ZL(@)]”" [13]. Note that the retarded self-
energy of the electron expressed in Eq. (10) is a similar form as
the one reported in Ref. [15]. The factor p, denotes the weighting
factor of the interaction between the electron and n phonons. At
a finite temperature, p, = e 8@NotDeneo/2ksT| (25, /Ny(Ng + 1)).
Ny is the Bose function, g = (A/wg)? and I,(z) denotes the Bessel
function with a complex argument.

Regarding the steady state lesser Green function, this can
be calculated by the continuous condition for the steady state,

i.e. <N> = —i(dG=/at) = 0. As aresult, the lesser (greater) Green
function is evaluated as [16]:
¢ (w)

+i Y panTa(@ + nwg)fs ™ (@ + nwp)
n,o

= : Aw). (12
Y [PnTw (@ + nwo)f< (@ + nwo) + p—nla (@ + nwo)fyy (@ + nwo) | @. (12)

na

5. EPI current formula

In Eq. (10), the imaginary part of the retarded self-energy
interprets the decay rate of the electron in central region, and
it depends on the energy, temperature, chemical potential of the
leads and the phonon field. The expected out-tunneling rate in the
presence of EPI is not a constant, so that the early JWM'’s transport
formula cannot be used directly. Following the deriving processes
from Ref. [13], we conclude that the transport formula for the
presence of EPI reads

d o0
=1 [ 52 Y TL@E @pAw - noo)

n=—oo
+i [ (@) + Ll (@)] 67 (@ = non) | (13)

with

ot (@) = pal*fo (@), (14)

o (@) = pn (1 = fo(w)), (15)

Iy () =T, (16)

and the calculation for the spectral function (A(w) = —2Im G" (w))

reads

Alw)

[Pl (@ + newo)f;" (@ + nwo) 4 p—nT"* (@ + nwo)f (@ + nay) |

na

lo — (g0 — A) — =7 ()|

The first term in the RHS in Eq. (13) represents the electron flux
in the « lead flowing into the nth PSD of the central region J,,. The
summation of each phonon sideband’s spectral function multiplied
by p, guarantees the integration with all energies equal to the
unity. F,ﬁfm(w) represents the decay rate for an electron jumping
out of the nth PSD of the system into the lead « via different
channels. Comparing Egs. (10), (11), (14) and (15), we find that
the out-tunneling rate I';;, (@) is equal to the imaginary part of the
retarded tunneling self-energy of the particle, i.e. the bandwidth
of the spectral function due to the tunneling process. This is an
important result, different from the one shown in Ref[14], in which
I’} (w) always characterizes with a constant tunneling rate po /"¢,
with py = e 8@No+D The second term on the RHS in Eq. (13)
describes the out-tunneling current J,,;, where the electron in the
central region tunnels out of the central region via two channels.
The first (second) term of the out-tunneling current, i.e. G=(w —
nwo) Iy e (@) (G (0 — nawo) 75, (w)) represents the electron
occupying the phonon sideband with absorbing n (n € positive) or
emitting n (n € negative) phonon tunnels into the lead «, in which
the energy is lower (higher) than the Fermi energy of the lead. Note
that the electron in the lead does not interact with the phonon field,
which results in the in-tunneling rate I} (w), behaving exactly the
same as the bare tunneling rate. Finally, with the retarded, lesser
Green functions and the EPI transport formula as derived above,
we find the current J(= J; = —Jg) satisfies the requirement of the
continuity equation. Therefore, the EPI transport formula Eq. (13)
is meaningful and available.

6. Results

In order to compare our spectral function (with LT method)
with the one discussed by Chen et al. [14] (with an improved MFA
method), we plot the total system’s spectral function A% (w) =
> . PnA(w — nawy) for three different energy levels. The spectral
function for the central region near V, = 0 is depicted in Fig. 1(a).
Clearly, the results obtained with the LT method (in blue curve)
are quite different from those obtained with the MFA method (in
red curve) [14]. According to the MFA technique in Ref. [14], the
satellite peaks’ position of spectral function are strongly dependent
on the difference between the resonant energy and chemical
potential of the leads. In the case of g > (<)ue, i.6. empty
(occupied) state of the QD (or SMT), only the |n|th (— |n|th) PSD
of the spectral function appears (see Fig. 1(a) Up/Down). When
€0 = [, a pair of mirror-symmetric PSDs occur in the position of
|n| th and — |n|th bosonic modes with respect to g, (see Fig. 1(a)
Medium) and no peaks can emerge within < e|V,]|. That is,
the PSDs provide channels for charge transportation only when
e|Vy| > wy. However, the PSDs do not depend on the relative
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Fig. 1. (a) The spectral function of the strong EPI system v.s. energy w for different
energy levels for Z;. The chemical potential in the leads are fixed at u; = —ug =
0.1wg. The parameters used are I; = Iy = 0.4wg, kgT = 0.05wp, 2 = 1.6wy.
(b) The conductance as a function of gate voltage for different bias voltages as
indicated. In addition to the parameters given above, we choose a Lorentzian cut-off
at Ec = 100 in the integral calculation [15]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

position between gy and i, in the results obtained with the LT
method. The operations of gy and u, only affect the magnitude
of the spectral function without changing the number of satellite
peaks. As a result, the charge transportation is irrespective of the
relative position between gy and . Note that the envelope of the
PSDs which are skewed toward the positive value of n results from
the weighting factor p,. Such an asymmetric scheme implies the
insignificance of the — |n|th PSDs at low temperatures [14].

Fig. 1(b), (c) and (d) show the calculated conductance versus
the gate voltage for various bias voltage V}, with the LT method
(blue curve) and with the MFA technique (red curve). We find
that a higher bias voltage yields a wider bandwidth of PSDC as
one utilizes the LT technique, but it remains unchanged for the
MFA calculation. The PSDC reproduces the same curve as depicted
with the MFA approach for V, = 0 (equilibrium case, Fig. 1(b)),
ie. Y (Ioe + Iiou) — pol’®, which implies the significance
of bias dependence in the out-tunneling rate of our calculation.
Although both methods result from different spectral function
when changing the bias voltage, they result in an symmetric shape
as a function of V. We can analyze branches of conductance from
the definition: Ginoury = 0Jin(our)/9Vp, Where G;, shows the con-
ductance corresponding to the in-tunneling current, and it implies
the profile of the spectral function in the central region. G, and
G, are the conductances corresponding to the out-tunneling cur-
rent with the out-tunneling rates Iy, (@) and I}, (w), respec-
tively. Note in the case of V;, = 0, the PSDC of G;, and G, eliminate
each other and the remaining PSDCs turn to zero for e |Vg] > wo
(Fig. 1(b)). For e |V,| > wy, the conductance also results from the
analogous cancellation of the G;, and G, and it further dominates
the symmetric behavior of the conductance (Fig. 1(c) and (d)). For
example, the spectral functions in Fig. 1(b) are asymmetric due to
the phonons, which yields the asymmetric type of G;,. However,
after the cancellation of G;, and G, the total conductance be-

out’
comes surprisingly symmetric about V; = 0, as the same sym-
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Fig. 2. (a) The out-tunneling rate I'y;,(w = V},/2) v.s bias voltage. (b) The maps
of differential conductance as a function of gate and bias voltage is calculated with
MFA'’s approach and (c) is worked with the Langreth theorem.

metric form as reported in Ref. [ 14]. In addition to explaining the
symmetric mechanism of the conductance, we next examine the
staircase change of broadening in the following section.

Since the conductance is defined by the change of current with
respect to the bias voltage, the bandwidth of the conductance is
thus related to the bandwidth of the spectral function near the
chemical potential of the leads. Fig. 2(a) shows the calculated
bandwidth I, (o = eV}/2) versus the bias voltage with the LT
method (blue curve) and the MFA method (red line). We can see
that the out-tunneling rate I';; (w = eV},/2) of the LT behaves like
a staircase, whereas the MFA method produces a flat line. In the LT
results, Iy, increases abruptly in the neighborhood of eV, = nawy
and the plateau is generated around eV, = (n + 1)wg/2. The
abrupt increment in the I';,(eV},/2) results from the opening of
an additional channel via the PSD when the bias voltage exceeds
a phonon energy. As a result, the increasing bias voltage yields a
quantized-incremental broadening of PSD in the spectral function
and the conductance gets blurred at the larger bias region (see also
Fig. 1(b) Medium, Right). Note that the LT result is exactly the same
as the MFA (I3, = I'“po) when eV}, < wy, This is because only
the state with n — 0 is allowed for charge transportation, and it
further brings about the identical bandwidth for the conductance
as mentioned above (see Fig. 1(b)). Fig. 2(b) and (c) illustrate the
plot of the conductance map as a function of V;, and V, with
the interacting Keldysh Green function calculated with the MFA
method [14] and with the LT method, separately. Fig. 2(b) and (c)
represent the same peaks’ position of PSDC and they both show
the only and oth PSDC at V}, = 0. However, Fig. 2(c) further depicts
that the conductance becomes blurred with a large bias voltage,
which differs from the majority of theoretical predictions [9,14]
but it agrees with the experimental observations [2-5,7].

7. Conclusion

We introduce an appropriate scheme based on the framework
of the Langreth theorem to calculate the electron-phonon
interaction (EPI) Keldysh Green function for EPI transport problem.
Since the process of the electron tunneling out of the central
regime is related with EPI, the out-tunneling rate is dependent
on the phonon field, energy and the chemical potential of the
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leads. Owing to this, a modified JWM'’s formula is presented for
calculating the transport problem in the presence of EPL In this
work, we found that the satellite peaks’ position of the conductance
(PSDC) agrees with the other theoretical study, e.g. MFA [14] and
the experimental observation. However, our results further show
that the out-tunneling rate can be increased in a staircase way
with the bias voltage. As a result, the larger the bias voltage,
the wider the bandwidth of the conductance becomes and this
conductance map gets blurred when it is displayed with a function
of gate voltage and the bias voltage. This is consistent with the
experimental results. Finally we bring up few issues raised by
this work, but not yet resolved. One important research is to
utilize the analytic continuation of the LT for calculating the noise
spectrum S(w), in particular to the case of a strong EPI. The second
is to explore the crossover condition of negative conductance and
investigate the influence of temperature on the conductance and
the noise, especially at low temperature. The third issue is to
bridge the connection between the broadening bandwidth of the
conductance with the LT Green function method and the never-
broadening bandwidth of the conductance in the standard Master
equation [17,18]. Work in the first direction is now in progress.
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M. F. Lin and Prof. H. C. Kan, and are thankful for the support of the
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