Information Processing Letters 110 (2010) 345-350

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

w
Information
Processing Letters

An improved algorithm for sorting by block-interchanges based

on permutation groups

Yen-Lin Huang?, Cheng-Chen HuangP?<, Chuan Yi Tang?, Chin Lung LuP:¢*

2 Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan

b Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu 300, Taiwan
¢ Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan

ARTICLE INFO

ABSTRACT

Article history:

Received 13 July 2009

Received in revised form 28 February 2010
Accepted 3 March 2010

Available online 4 March 2010
Communicated by EY.L. Chin

Given a chromosome represented by a permutation of genes, a block-interchange is
proposed as a generalized transposition that affects the chromosome by swapping two
non-intersecting segments of genes. The problem of sorting by block-interchanges is to
find a minimum series of block-interchanges for sorting one chromosome into another. In
this paper, we present an O(n + §logé) time algorithm for solving the problem of sorting

by block-interchanges, which improves a previous algorithm of O(sn) time proposed by

Keywords:

Algorithm

Data structure

Genome rearrangement
Permutation group
Block-interchange
Generalized transposition
Permutation tree

Lin et al. (2005) [14], where n is the number of genes and § is the minimum number of
block-interchanges required to sort a chromosome.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Genome rearrangement studies based on genome-wide
analysis of gene orders play an important role in the phylo-
genetic tree reconstruction [20,11,12,19,3]. In these studies,
the homologous genes of two genomes are usually iden-
tified with the integers 1,2,...,n, with a plus or minus
sign to indicate their direction. Then a chromosome can
be represented by a signed permutation of {1,2,...,n}.
To evaluate the evolutionary distance between two related
genomes in gene order, various rearrangement events act-
ing on genes within or among chromosomes have been
proposed, such as reversals [12,13,1,21], transpositions [2,7,
8], block-interchanges [6,14,8], translocations [11,10,4,18],

* Corresponding author at: Institute of Bioinformatics and System Bi-
ology, National Chiao Tung University, Hsinchu 300, Taiwan. Tel.: +886 3
5712121x56949; fax: +886 3 5729288.

E-mail addresses: slippers.bi92g@nctu.edu.tw (Y.-L. Huang),
sosorovo@yahoo.com.tw (C.-C. Huang), cytang@cs.nthu.edu.tw (C.Y. Tang),
cllu@mail.nctu.edu.tw (C.L. Lu).

0020-0190/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.03.003

fusions [11,17,15] and fissions [11,17,15]. Reversals, also
called inversions, affect a block of consecutive integers
on a chromosome by reversing the order of the integers
and flipping their signs; transpositions affect two adjacent
blocks of consecutive integers on a chromosome by ex-
changing their positions; block-interchanges are generalized
transpositions by allowing the exchanged blocks not be-
ing adjacent on a chromosome. In genomes with multiple
chromosomes, translocations exchange the end segments
between two chromosomes; fusions join two chromosomes
into a bigger one; fissions break a chromosome into two
smaller ones.

Recently, the study on the genome rearrangement us-
ing block-interchanges has increasingly drawn great atten-
tion, since the block-interchange event is a generalization
of transposition and, currently, its computational models
measuring the genetic distance are more tractable than
those modeled by transposition. Christie [6] first intro-
duced the concept of block-interchange and also proposed
an O(n?) time algorithm using the breakpoint graph ap-
proach, where n is the number of genes, to solve the so-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:slippers.bi92g@nctu.edu.tw
mailto:sosorovo@yahoo.com.tw
mailto:cytang@cs.nthu.edu.tw
mailto:cllu@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.ipl.2010.03.003

346 Y.-L. Huang et al. / Information Processing Letters 110 (2010) 345-350

called problem of sorting by block-interchanges that is to find
a minimum series of block-interchanges for sorting one
chromosome into another. However, the chromosomes he
considered were restricted to linear chromosomes. Later,
by making use of permutation groups in algebra, Lin et al.
[14] designed a simpler algorithm for solving the same
problem on both linear and circular chromosomes with
time complexity of O(§n), where § is the minimum num-
ber of block-interchanges required to sort a chromosome
and can be calculated in O(n) time in advance. Recently,
Feng and Zhu [8] proposed a new data structure called
permutation tree to improve the Christie’s algorithm by re-
ducing the time complexity from O(n?) to O(nlogn). In
this paper, we derive a new property that helps us to im-
prove Lin et al.’s algorithm by using the data structure of
permutation tree such that the overall time complexity can
be further reduced down to O(n+4logé). Notice that Bona
and Flynn [5] have shown recently that § is close to 5 on
average.

The rest of this paper is organized as follows. Some ba-
sic concept and properties of the permutation groups in
algebra are introduced in Section 2. In Section 3, we intro-
duce the idea of algorithm proposed by Lin et al. [14] and
present an improved algorithm. Finally, we make a conclu-
sion in Section 4.

2. Preliminaries

In group theory, a permutation is defined to be a one-
to-one mapping from a set E into itself. For example, we
may define a permutation « of the set {1,2,3,4,5} by
specifying (1) =4, «(2) =1, «(3) =2, a(4) =5 and
o (5) = 3. In the study of genome rearrangement, it is con-
venient to express the permutation « in cycle form as
o =(1,4,5,3,2), in which for each x € E, a(x) is placed
directly right to x. A cycle of length k, say (a1, ay,...,a),
is simply called k-cycle and it can also be rewritten as
(@i, @j+1,...,0, a1, -..,a;i—1) (ie, indices are cyclic), where
2 <i<k. Any two cycles are said to be disjoint if they
have no element in common. In fact, any permutation, say
o, can be written in a unique way as the product of dis-
joint cycles, which is called the cycle decomposition of «,
if we ignore the order of the cycles in the product. Usu-
ally, a cycle of length one in « is not explicitly written and
its element, say x, is said to be fixed by « since a(x) = x.
Especially, the permutation whose elements are all fixed
is called an identity permutation and is denoted by 1, i.e.,
1=1)2)---(n) if E=(1,2,...,n}.

Given two permutations « and B of E, the composition
(or product) of o and B, denoted by «f, is defined to be
a permutation of E with aB(x) = a(B(x)) for all x € E. For
instance, if we let E={1,2,3,4,5,6}, « =(2,3) and 8 =
(2,1,5,3,6,4), then B =(2,1,5)(3,6,4). If ¢ and B are
disjoint cycles, then o8 = Ba. The inverse of « is defined
to be a permutation, denoted by «~!, such that e~ =
a~'a =1. If a permutation is expressed by the product
of disjoint cycles, then its inverse can be obtained by just
reversing the order of the elements in each cycle. For ex-
ample, if o = (2,1,5)(3,6,4), then ™! = (5,1,2)(4, 6, 3).
Clearly, ! =« if o is a 2-cycle. Furthermore, it is well
known that every permutation can be written as a prod-

7N
_

3=—5

Fig. 1. The illustration of a permutation @ = (1, 4, 5, 3, 2), where a(1) =4,
a)=1,a(3)=2,a(4)=5 and a(5) =3.

uct of 2-cycles. For example, (1,2, 3,4) = (1,4)(1,3)(1, 2).
However, there are many ways of expressing a permuta-
tion as a product of 2-cycles [9]. Given a permutation «,
let f(r) denote the number of the disjoint cycles in the
cycle decomposition of «. Notice that f(«) counts also
the non-expressed cycles of length one. For example, if
o = (1,5)(2,4) is a permutation of E ={1,2,...,5}, then
f(a) =3, instead of f(o) =2, since ¢ =(1,5)(2,4)(3).

3. Sorting a permutation by block-interchanges

Recall that the problem of sorting by block-interchanges
is to find a minimum series of block-interchanges for
sorting a source chromosome into a target chromosome.
By convention, the target chromosome is usually de-
noted by I = (1,2,...,n). Meidanis and Dias [16,17]
first noted that each cycle of a permutation may rep-
resent a circular chromosome of a genome with each
element of the cycle corresponding to a gene and the
order of the cycle corresponding to the gene order of
the chromosome. Fig. 1, for example, shows a circu-
lar chromosome, which is represented by (1,4,5,3,2).
Moreover, they observed that rearrangements, such as
fusions and fissions (respectively, transpositions), corre-
spond to the composition of a 2-cycle (respectively, 3-
cycle) and the permutation representing a chromosome.
For instance, let o be any permutation whose cycle de-
composition is ajoz -0, If p = (x,y) is a 2-cycle and
x and y are in the different cycles of «, say ap = (a1 =x,

az,...,a)) and ag=(by=y,ba,...,bj) where 1< p,q<r,
then in the composition po, ap and oy are joined into
a cycle (ay,ap,...,ai,b1,ba,...,bj), ie, p is a fusion

event affecting on o (and also called a join operation of
o here). If p = (x,y) is a 2-cycle and x and y are in
the same cycle of o, say o) = (a1 = x,a2,...,0; = Y,
Gj41,...,a;) where 1 < p <r, then in the composi-
tion pa, this cycle «p is broken into two disjoint cy-
cles (ar,az,...,ai—1) and (aj,@jt1,...,q;), ie, p is a
fission event affecting on o (and also called a split op-
eration of o here). If p = (x,y,2) is a 3-cycle and X,y
and z are in the same cycle of «, say ap = (a1 = x,

az,....a;,by =y.,ba,....bj,c1 =2,¢2,...,¢) where 1<
p <, then in the composition pc, the cycle a), becomes
(ai,az,...,0;,€1,C2,...,Ck, b1, b2, ..., bj), i.e, p is a trans-

position event affecting on «. In [14], Lin et al. further ob-
served that a block-interchange affecting on « corresponds
to two 2-cycles, say p1 and py, such that p1 is a split oper-
ation of o and p, is a join operation of pic. More clearly,
let ap = (a1, az,...,aq,) be a cycle of «, p1 = (ay,a;) and
p2=(ap,a;), where 1 <i<k, 1<h<i—Tandi<j<k.

Y.-L. Huang et al. / Information Processing Letters 110 (2010) 345-350 347

Algorithm SortBI
Input: A permutation o = (a1, az,...,ay) of E={1,2,...,n};
Output: A minimum series of block-interchange operations o1, 03, ..., o}

for sorting « into I;
. _ n—fde™).
1: Let 6 ==
2: fori=1to s do

21: Arbitrarily choose two adjacent elements x and y in Ia™!;
/* Note that (x, y) is a split operation of «. */

2.2: Circularly shift (aj,az,...,a,) such that a; = x and assume
Y =a;

2.3: for j=1ton do

index(aj) = j;

end for

24: Find two adjacent elements u and v in Ia~'(x, y) such that

index(u) < k —1 and index(v) > k;
[* Note that (u, v) is a join operation of (x, y)x. */
2.5: o= (U, vV)(x, y);

2.6: Compute (u, v)(x, y)o and denote it by « again;

2.7 Compute I~ (x, y)(u, v) and denote it by Ia~" again;
end for

3: Output 01,07,...,05;

Then ppp1a is the permutation obtained from « by ex-
changing the blocks [ay,a;_1] and [aj,ar] of ap. That
is, p2p1 is a block-interchange event that affects on «
by swapping [an,a;—1] and [a},a], two non-intersecting
blocks in «.

As discussed above, any series of block-interchanges re-
quired to sort one chromosome « into another I can be
expressed by a product of 2-cycles, say pxok_1 ... p1, such
that pypok—_1...p10¢ = 1. Hence, pxpx—1...p1 = (i sug-
gesting that Io~! contains all information, which can be
utilized to derive p1, 02, ..., pi for sorting « into I.

Based on the above idea, Lin et al. [14] used per-
mutation groups to design an (O(Sn) time algorithm to
sort a permutation by block-interchanges, where § is the
minimum number of block-interchanges required to sort
the permutation. In [14], Lin et al. first showed that § =

%""71), which can be calculated in O(n) time in ad-
vance. They then used a greedy method to derive an opti-
mal series of 8 block-interchanges from Ia~!. Recall that a
block-interchange can be modeled by a split operation fol-
lowed by a join operation. Indeed, in each iteration of the
greedy method, they showed that the block-interchange
can be obtained by first arbitrarily choosing two adjacent
elements from Io~! that serve as a split operation of «
and then finding the corresponding join operation in O(n)
time, where two different elements x and y are said to
be adjacent in a permutation g if B(x) =y or B(y) = x.
The details of this algorithm are described in Algorithm
SortBI in this paper. It is not hard to see, the bottleneck of
computation in the above algorithm is to find the join op-
erations. Here, we observe the following property that can
help us find the join operations in a more efficient way, so
that the overall time complexity of Algorithm SortBI can
be further improved.

Lemma 1. Let o’ be a permutation of E={1,2,...,n}and z €
E. Suppose that z and 1(z) are in different cycles of «’. Then
o’(z) and 1(z) are adjacent in I’ ~1, and (&’ (2), I(2)) is a join
operation of o’.

Proof. It is not hard to see that Io’ ~1(a/(2)) = I(z), which
means that o/ (z) and I(z) are adjacent in I’ ~!. Moreover,

Algorithm FastSortBI
Input: A permutation @ = (aj,az,...,a,) of E={1,2,...,n};
Output: A minimum series of block-interchange operations o1, 03, ..., o5

for sorting « into I;
. _ n=fda™h.
1: Let 5 ===
2: fori=1to s do

21: Arbitrarily choose two adjacent elements x and y in o™ !;
[* Note that (x, y) is a split operation of «. */

2.2: o =X, y)a;
/* Note that «’ has two cycles, say C; and Cy. */

2.3: Find the maximum elements my in C; and my in Cy;

Let z=min(my, my);
Let u=a/(2) and v =1(2);
/* Note that (u, v) are adjacent in [«
operation of «'. */
24: o= U, V)X, Y);
2.5: Compute (u, v)a’ and denote it by « again;
2.6: Compute Iae~'(x, y)(u, v) and denote it by Iar™
end for
3: Output 01,02,...,05;

'~V and (u, v) is a join

1 again;

since z and «’(z) are in the same cycle of o/, &’(z) and
1(2) are in different cycles of «’. Therefore, (a’(2), I(2)) is
a join operation of &’. O

Lemma 2. Let o’ be a permutation of E = {1,2,...,n}, C be
a cycle of o/, and z be the maximum element in C. Suppose
that z # n. Then o'(z) and 1(z) are adjacent in I’ =1, and
(¢/(2), 1(2)) is a join operation of o’.

Proof. Since z #n, I(z) =z + 1. Moreover, since z is the
maximum element in C, I(z) is not in C. That is, z and
1(z) are in different cycles of «’. Clearly, this lemma holds
according to Lemma 1. O

By Lemma 2, we have the following observation imme-
diately.

Observation 1. Let «’ be a permutation of E ={1,2,...,n}
with two cycles C1 and Cy. Let m; and m;, be the max-
imum elements in C1; and C,, respectively. Suppose that
mi1 < my. Then my =n, «’(mq) and I(m7) are adjacent in
Io’~1, and (’(m1), I(my)) is a join operation of «’.

Based on the above observation, step 2.4 of Algorithm
SortBI can be done through finding the maximum ele-
ments of the two cycles in the permutation. The details
are described in Algorithm FastSortBl. The maximum ele-
ment in a cycle of n different elements can be found in
O(n) time. Actually, we observe that this job can be done
more efficiently by using a data structure called permuta-
tion tree, which was first proposed by Feng and Zhu [8].

Given a permutation « = (ay,4az,...,a,) of E={1,2,
..., N}, a permutation tree corresponding to « is defined to
be a balanced binary tree with n leaves, whose nodes are
labeled according to the following two rules. (1) The leaves
are labeled by aq,ay,...,a, respectively, and in this or-
der. (2) Each of other nodes is labeled by the maximum
of its children. By definition, the root r of a permutation
tree has a label that is the maximum element in «. As
an example, Fig. 2 is a permutation tree corresponding
to « = (2,5,3,1,4,6,7,8). Basically, there are following
three operations that can be applied to a permutation tree.

348 Y.-L. Huang et al. / Information Processing Letters 110 (2010) 345-350

Fig. 2. A permutation tree corresponding to o = (2,5,3,1,4,6,7, 8).

They are: (1) BUILD, which is to build a permutation tree
corresponding to a permutation, (2) JOIN, which is to join
two permutation trees into a bigger one, and (3) SPLIT,
which is to split a permutation tree into two smaller ones.
The explicit definitions of the three operations are given in
Definitions 1, 2 and 3, respectively. Feng and Zhu [8] have
shown that the costs of the BUILD, JOIN and SPLIT oper-
ations are O(n), O(logn) and O(logn), respectively.

Definition 1. (See Feng and Zhu [8].) BUILD(«) creates a
permutation tree, which corresponds to a given permuta-
tion «.

Definition 2. (See Feng and Zhu [8].) SPLIT(T, m) separates
a permutation tree T corresponding to o = (aq, ..., am-1,
am,...,0ay) into two trees such that one corresponds to
o) = (ai,az,...,am—1), and the other to o = (am, am+1,
..., 0p).

Definition 3. (See Feng and Zhu [8].) JOIN(T,, T;) merges
two permutation trees T; corresponding to o; = (ay,dz, ...,
am—1) and T; corresponding to o = (am, Gm+1, - - -,) INtO
a bigger permutation tree, which corresponds to (ay, ...,
am—1,0m, - .., dn).

Below, we describe how to apply the data structure of
permutation tree to Algorithm FastSortBI. Initially, we build
a permutation tree corresponding to the source genome .
In step 2.2 of FastSortBI algorithm, (x, y) splits @ into o’
and hence the permutation tree corresponding to « is sep-
arated into two smaller trees corresponding to two cycles
of o, say C; and C,, respectively. Then, it takes con-
stant time to obtain the maximum elements of C; and Cy
from the roots of their corresponding permutation trees. In
step 2.5, (u, v) joins ¢ into o and the permutation trees
corresponding to C; and C», respectively, are then merged
into a bigger tree corresponding to «.

It should be noted that because a permutation is repre-
sented in cycle form, there is no difference for this permu-
tation to take which of its elements as the first one in a cy-
cle of the permutation. For example, (2,5,3,1,4,6,7,8) =
(3,1,4,6,7,8,2,5). However, for a permutation tree, its
leaves are labeled according to a linear order of the ele-
ments in the corresponding permutation. Hence in step 2.2
of FastSortBI algorithm, although a 2-cycle splits « into
o’ = C1C, with two cycles, we may not obtain the two
smaller permutation trees corresponding to C; and Cs,
respectively, by using one SPLIT operation. For example,
(3,6) is a split operation to @ = (2,5,3,1,4,6,7,8) and
(3,6) = (3,1,4)(6,7,8,2,5). However, we cannot use a

SPLIT operation to transform the permutation tree cor-
responding to (2,5,3,1,4,6,7,8) into two permutation
trees corresponding to (3,1,4) and (6, 7,8, 2,5), respec-
tively. In this case, two SPLIT and one JOIN operations
are needed for its correct transformation (see Lemma 3 for
details). A similar argument is applicable to the join oper-
ation of step 2.5.

Lemma 3. Let a permutation « = (a1, 0, ...,0a,) and p1 be
a split operation that separates « into two cycles, say C1 and
Cy, that is p1x = C1C,. Then, by using at most two SPLIT and
one JOIN operations, we transform a permutation tree T corre-
sponding to « into two smaller permutation trees corresponding
to C1 and Co, respectively.

Proof. Let p1 = (a;,aj), where 1 <i< j<n If g =a,
we can use SPLIT(T,j) to split T into two permuta-
tion trees that correspond to C; = (a1, az,...,aj—1) and
C2 = (aj,ajy1,...,ay), respectively. On the other hand,
if a; # aq, SPLIT(T,i) leads to two permutation trees,
T; and T.. Then, JOIN(T,, T;) merges the two permuta-
tion trees into a new one corresponding to the permuta-
tion (a;,...,aj,...,0dn, a1, ...,ai—1). We reassign the new
tree as T, which still corresponds to «, but the first ele-
ment in the cycle of « is changed from a; to a;. Finally,
SPLIT(T, j —i 4+ 1) operates on T to produce two per-
mutation trees that correspond to C; = (a;,...,aj—1) and
C2 =(aj,...,an,ai,...,ai_1), respectively. O

Lemma 4. Let ' = C1C; be a permutation with two cycles Cq
and Cy, and p; be a join operation of ', that is o« = pya’. Then,
by using at most two SPLIT and three JOIN operations, we
transform the two permutation trees corresponding to C1 and
C,, respectively, into a permutation tree corresponding to .

Proof. Let C; = (ay,az,...,ay) and Cy = (by,ba, ..., bp).
Let T; and T, be permutation trees corresponding to Cq
and C,, respectively, and p» = (a;, bj), where i <m and
j < p. If a; # ay, then, as was discussed in Lemma 3,
we can use one SPLIT followed by one JOIN to ob-
tain a new permutation tree T; that corresponds to
@i, ...,am, a1, ...,ai—1). Similarly, if bj # by, one SPLIT
and one JOIN can be used to obtain T, corresponding to
(bj,....,bp,b1,...,bj_1). Finally, JOIN(T1, Tz) merges the
two trees T and T, into a bigger permutation tree corre-
sponding to «. O

Theorem 1. The problem of sorting by block-interchanges can
be solved by Algorithm FastSortBl in O(n + & logn) time.

Proof. As discussed previously, Algorithm FastSortBI sorts
o into [using a minimum number of block-interchange
operations. Now, we analyze its time complexity as fol-
lows. In step 1, we build a permutation tree correspond-
ing to o in O(n) time. As to step 2, there are § iter-
ations. In step 2.2, by Lemma 3, we obtain the permu-
tation trees corresponding to C; and C,, respectively, by
at most two SPLIT and one JOIN operations, which to-
tally take only O(logn) time. In step 2.3, the maximum
elements of the two cycles are obtained in constant time

Y.-L. Huang et al. / Information Processing Letters 110 (2010) 345-350 349

from the roots of their corresponding permutation trees.
In step 2.5, by Lemma 4, it takes O(logn) time to obtain
a new permutation tree corresponding to «. As a result,
step 2 costs O(logn) time in each of § iterations. There-
fore, the total time complexity of Algorithm FastSortBI is
Om+8logn). O

In the following, we furthermore improve the cost of
step 2 in Algorithm FastSortBI from O(logn) to O(logs).
Hence, the overall time complexity of Algorithm FastSortBI
can be further reduced down to O(n + §logs).

Definition 4. Let « be the input permutation of Algorithm
FastSortBL. Then, let @ = {I~1(x) | I« ~"(x) # x, that is, x is
a non-fixed element of Io~1}.

Observation 2. Once an element is fixed in Ia~! or Jo/~!
in the process of Algorithm FastSortBI, it is always fixed
in I«~" and Io’~! during the subsequence process of the
algorithm.

Theorem 2. The problem of sorting by block-interchanges can
be solved by Algorithm FastSortBl in O(n + 8 log d) time.

Proof. In step 2.3, the u and v are adjacent in Io’~! by
Lemma 2. This implies that at that moment, v is a non-
fixed element of I’ ~!. According to Observation 2, v is a
non-fixed element before running step 2 in Algorithm Fast-
SortBI and, therefore, z € @ since v =I(z) (i.e., z=1"1(v)).
This suggests that before running step 2, we can use only
those elements that are in @ U {n} to build a permuta-
tion tree T for more simply corresponding to o and those
elements that are not in @ U {n} can be skipped. The rea-
son for including n in the construction of T above is that
max{my,my} =n in step 2.3 and hence n must be in T
even though it may not be in @. It is not hard to see that
there are at most () elements in & U {n}. In this case,
however, the x and y in step 2.2 may not be in & U {n}
and hence they may not be in T, resulting in that T cannot
be separated into two permutation trees using SPLIT(T, x)
and/or SPLIT(T, y), as was discussed in Lemma 3. To fix
this problem, we first define ®(w) = a*(w), where k is
the smallest positive integer such that a*(w) € @ U {n}.
Then we can use SPLIT(T, ®(x)) and/or SPLIT(T, ®@(y))
to correctly divide T into two permutation trees. Again, it
is not hard to see that the computation of ®(w) for all
w ¢ @ U {n} can be done in advance in O(n) time. There-
fore, the total time complexity of Algorithm FastSortBI is
O(m+dlogd). O

Let us take o = (7,8,6,5,2,3,1,4) for an example.
We note that Ia~! = (1,4,2,6)(5,7)(3)(8) and n = 8.
According to Algorithm FastSortBI, we understand that
the block-interchange distance between « and I is § =
<82;4> = 2, which means that « can be sorted into I us-
ing two block-interchange operations. Below, we show how
to find these two block-interchange operations, say o1 =
p12011 and o2 = p22021. Initially, we build a permutation
tree T for corresponding to o by just using those ele-
ments in @ U {n}. In this case, ® U {n} = {1, 3,4,5,6, 8}

and hence we build a permutation tree that corresponds
to (8,6,5,3,1,4). By definition, we have ®(2) =3 and
©(7) = 8. Then, we let p11 = (4, 2) since 4 and 2 are ad-
jacent in Iae~!. After applying p1; to o, we obtain o’ =
o1 =(4,2)(7,8,6,5,2,3,1,4) = (4,7,8,6,5)(2,3,1). In
this case, two SPLIT and one JOIN operations are needed
to obtain the two permutation trees. First, SPLIT(T,4)
divides T into T; and T, corresponding to (8,6,5,3,1)
and (4), respectively. Next, JOIN(T;, T;) merges T, and
T; into a new T corresponding to (4,8,6,5,3,1). Finally,
SPLIT(T, ®(2)) = SPLIT(T, 3) further divides T into two
permutation trees that correspond to (4,8, 6,5) and (3, 1),
respectively. Next, in step 2.3, we find z =3 and hence
p12 = (@'(3),1(3)) = (1,4) is a join operation of «’. In this
case, one SPLIT and two JOIN operations are required to
merge the two permutation trees into a bigger one corre-
sponding to (1,3,4,8,6,5). After the above iteration, we
have ¢ =(1,2,3,4,7,8,6,5) and Iae~! = (1, 6)(5, 7). Sim-
ilarly, in the second iteration, we can find that p; = (1, 6)
and p2 = (@'(6),1(6)) = (5,7).

4. Conclusions

In this paper, we studied the problem of sorting by
block-interchanges that is to find a minimum series of
block-interchanges to sort the permutation of the given
chromosome. Here, we proposed an improved algorithm
of O(n + 5logés) time based on permutation groups and
permutation trees. It will be interesting to study whether
the permutation groups and permutation trees can be fur-
ther applied to other problems of genome rearrangement
involved with other rearrangements, such as reversals and
translocations.

References

[1] D.A. Bader, B.M.E. Moret, M. Yan, A linear-time algorithm for com-
puting inversion distance between signed permutations with an ex-
perimental study, Journal of Computational Biology 8 (2001) 483-
491.

[2] V. Bafna, PA. Pevzner, Sorting by transpositions, SIAM Journal on
Discrete Mathematics 11 (1998) 224-240.

[3] E. Belda, A. Moya, FJ. Silva, Genome rearrangement distances and
gene order phylogeny in y-Proteobacteria, Molecular Biology and
Evolution 22 (2005) 1456-1467.

[4] A. Bergeron, J. Mixtacki, J. Stoye, On sorting by translocations, Journal
of Computational Biology 13 (2006) 567-578.

[5] M. Béna, R. Flynn, The average number of block interchanges needed
to sort a permutation and a recent result of Stanley, Information
Processing Letters 109 (2009) 927-931.

[6] D.A. Christie, Sorting permutations by block-interchanges, Informa-
tion Processing Letters 60 (1996) 165-169.

[7] L. Elias, T. Hartman, A 1.375-approximation algorithm for sorting by
transpositions, IEEE/ACM Transactions on Computational Biology and
Bioinformatics 3 (2006) 369-379.

[8] J. Feng, D. Zhu, Faster algorithms for sorting by transpositions and
sorting by block interchanges, ACM Transactions on Algorithms 3
(2007) 25.

[9] J.B. Fraleigh, A First Course in Abstract Algebra, 7th ed., Addison-
Wesley, Boston, 2003.

[10] S. Hannenhalli, Polynomial-time algorithm for computing transloca-
tion distance between genomes, Discrete Applied Mathematics 71
(1996) 137-151.

[11] S. Hannenhalli, PA. Pevzner, Transforming men into mice (polyno-
mial algorithm for genomic distance problem), in: Proceedings of the

350 Y.-L. Huang et al. / Information Processing Letters 110 (2010) 345-350

36th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 581-592.

[12] S. Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip (poly-
nomial algorithm for sorting signed permutations by reversals),
Journal of the ACM 46 (1999) 1-27.

[13] H. Kaplan, R. Shamir, RE. Tarjan, Faster and simpler algorithm
for sorting signed permutations by reversals, SIAM Journal on
Computing 29 (1999) 880-892.

[14] Y.C. Lin, C.L. Lu, H.-Y. Chang, C.Y. Tang, An efficient algorithm for
sorting by block-interchanges and its application to the evolution of
vibrio species, Journal of Computational Biology 12 (2005) 102-112.

[15] CL. Lu, Y.-L. Huang, T.C. Wang, H.-T. Chiu, Analysis of circular
genome rearrangement by fusions, fissions and block-interchanges,
BMC Bioinformatics 7 (2006) 295.

[16]]J. Meidanis, Z. Dias, An alternative algebraic formalism for genome
rearrangements, in: D. Sankoff, J.H. Nadeau (Eds.), Comparative
Genomics: Empirical and Analytical Approaches to Gene Order Dy-

namics, Map Alignment and Evolution of Gene Families, Kluwer
Academic Publisher, New York, 2000, pp. 213-223.

[17]]J. Meidanis, Z. Dias, Genome rearrangements distance by fusion, fis-
sion, and transposition is easy, in: G. Navarro (Ed.), Proceedings of
String Processing and Information Retrieval, IEEE Computer Society,
Los Alamitos, CA, 2001, pp. 250-253.

[18] M. Ozery-Flato, R. Shamir, An @ (n32,/logn) algorithm for sorting
by reciprocal translocations, in: Lecture Notes in Computer Science,
vol. 4009, 2006, pp. 258-269.

[19] PA. Pevzner, G. Tesler, Genome rearrangements in mammalian
evolution: Lessons from human and mouse genomes, Genome
Research 13 (2003) 37-45.

[20] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B.F. Lang, R. Cedergren,
Gene order comparisons for phylogenetic inference: Evolution of
the mitochondrial genome, Proceedings of the National Academy of
Sciences 89 (1992) 6575-6579.

[21] E. Tannier, A. Bergeron, M.E. Sagot, Advances on sorting by reversals,
Discrete Applied Mathematics 155 (2007) 881-888.

	An improved algorithm for sorting by block-interchanges based on permutation groups
	Introduction
	Preliminaries
	Sorting a permutation by block-interchanges
	Conclusions
	References

