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All-to-all personalized exchange

An all-to-all communication algorithm is said to be optimal if it has the smallest
communication delay. Previous all-to-all personalized exchange algorithms are mainly
for hypercube, mesh, and torus. In Yang and Wang (2000) [13], Yang and Wang proved
that a multistage interconnection network (MIN) is a better choice for implementing all-
to-all personalized exchange and they proposed optimal all-to-all personalized exchange
algorithms for MINs. In Massini (2003) [9], Massini proposed a new optimal algorithm for
MINs, which is independent of the network topology. Do notice that the algorithms in [9]
and [13] work only for MINs with the unique path property (meaning that there is a unique
path between each pair of source and destination) and satisfying N = 2", in which N is the
number of processors, 2 means all the switches are of size 2 x 2, and n is the number
of stages. In Padmanabhan (1991) [10], Padmanabhan proposed the generalized shuffle-

exchange network (GSEN), which is a generalization of the shuffle-exchange network. Since
a GSEN does not have the unique path property, the algorithms in [9] and [13] cannot be
used. The purpose of this paper is to consider the all-to-all personalized exchange problem
in GSENs. An optimal algorithm and several bounds will be proposed.

© 2010 Published by Elsevier B.V.

1. Introduction

Processors in a parallel and distributed processing system often need to communicate with other processors. The
communication among these processors could be one-to-one, one-to-many, or all-to-all. All-to-all communication can be
further classified into all-to-all broadcast and all-to-all personalized exchange. In all-to-all broadcast, each processor sends
the same message to all other processors; while in all-to-all personalized exchange, each processor sends a specific message
to every other processor. All-to-all personalized exchange occurs in many important applications (for example, matrix
transposition and fast Fourier transform (FFT)) in parallel and distributed computing. The all-to-all personalized exchange
problem has been extensively studied for hypercubes, meshes, and tori; see [9,13] for details. Although the algorithm for
a hypercube achieves optimal time complexity, a hypercube suffers from unbounded node degrees and therefore has poor
scalability; on the other hand, although a mesh or torus has a constant node degree and better scalability, its algorithm has
a higher time complexity. In [13], Yang and Wang had proven that a multistage interconnection network (MIN) is a better
choice for implementing all-to-all personalized exchange due to its shorter communication delay and better scalability.

Given N processors Py, Py, ..., Py_1,an N x N MIN can be used in communication among these processors as shown in
Figs. 1 and 2, where N x N means this MIN has N inputs and N outputs. A column in a MIN is called a stage and the nodes
stages of a MIN are called switches (or switching elements or crosshars). Throughout this paper, N denotes the number of
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Fig. 1. Communications among processors using a MIN.

stage 0 stage 1 stage 2 stage 3
0 -0
1 1
2 —2
3 3
4 —4
5 —5
6 —6
7 —7
8 —8
9 —9

Fig. 2. A 10 x 10 MIN which is also a 10 x 10 GSEN.

switch straight cross

subport 0 — — subport 0 —e i R
subport 1 — (— subport 1 —fe- i S

a b

Fig. 3. (a) A2 x 2 switch and its subports. (b) The two possible states of a 2 x 2 switch.

inputs (outputs) and n denotes the number of stages. Also, all the switches in a MIN are assumed to be of size 2 x 2. It is well
known that a 2 x 2 switch has only two possible states: straight and cross, as shown in Fig. 3. A shuffle-exchange network
(SEN) is also called an omega network (see [7]) and has been proposed as a popular architecture for MINs; see [3,6,10,12].
Since a SEN must satisfy N = 2", in [10], Padmanabhan generalized it to allow N # 2". More precisely, let N be an even
integer. An N x N generalized shuffle-exchange network (GSEN) is a [log, N-stage N x N MIN such that each stage consists of
the perfect shuffle on N terminals followed by N /2 switches. The N terminalsinan N x N GSEN are numbered 0, 1, ..., N—1
and the perfect shuffle operation on the N terminals is the permutation ;v defined by 7 (i) = (2-i+ L%J) modN, 0 <i<N.
See Fig. 2 for an example. In [1,2], bidirectional GSENSs are considered.

In the remaining discussion, unless otherwise specified, a MIN means an N x N MIN and a GSEN means an N x N GSEN. Do
notice that we will follow the convention used in [1,2,10] that a GSEN has exactly [log, N stages; [log, N is the minimum
number of stages to ensure that each input can get to each output. Based on this convention and for convenience, we will
define

n = [log, N1.

Clearly, for a GSEN, its N satisfies 2" 1 < N < 2",

In this paper, an all-to-all communication algorithm is said to be optimal if it has the smallest communication delay. Now
we review previous results. Yang and Wang [13] first considered the all-to-all personalized exchange problem for MINs. In
particular, they proposed optimal all-to-all personalized exchange algorithms for a class of unique path, self-routable MINs;
for example, baseline, omega, banyan networks, and the reverse networks of these networks. Note that a MIN is unique path
if there is a unique path between each pair of source and destination and self-routable if the routing decision at a switch
depends only on the addresses of the source and the destination. The algorithms in [13] can use the stage control technique
(see[11]), which is a commonly used technique to reduce the cost of the network setting for all-to-all personalized exchange
communication. Stage control means that the states of all the switches of a stage have to be identical. With stage control,
a single control bit (0 for straight and 1 for cross), or in other words, one electronic driver circuit, can be used to control
all the switches of a stage. Thus the number of expensive electronic driver circuits needed is significantly lower than that
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of individual switch control. It was pointed out by Massini in [9] that the algorithms in [13] depend on network topologies
and require pre-computation and memory allocation for Latin squares. In the same paper, Massini proposed a new optimal
algorithm, which is independent on the network topology and does not require pre-computation or memory allocation for
a Latin square. In [8], Liu et al. further generalized Massini’s algorithm to MINs with d x d switches. See also [14].

When N = 27, itis possible to implement an N x N GSEN by using a 2" x 2" SEN (recall that2"~! < N < 2"). For example,
it is possible to implement a 514 x 514 GSEN by using a 1024 x 1024 SEN. A 514 x 514 GSEN uses 2570 switches while its
corresponding 1024 x 1024 SEN uses 5120 switches; the former saves about 50% switches than the latter. To compare the
hardware costs of a GSEN and a SEN, we calculate the numbers of switches used by an N x N GSEN and by its corresponding
2" x 2"SENfor N = 4, 6, 8, ..., 10002. Among these 5000 N's,

e for 4175 (about 84%) out of them, a GSEN saves at least 10% switches than its corresponding SEN;
o for 3356 (about 67%) out of them, a GSEN saves at least 20% switches than its corresponding SEN;
o for 2537 (about 51%) out of them, a GSEN saves at least 30% switches than its corresponding SEN;
o for 1632 (about 33%) out of them, a GSEN saves at least 40% switches than its corresponding SEN.

Therefore a GSEN outperforms a SEN in hardware cost.

Do notice that although the algorithms in [9] and [13] are optimal, they work only for MINs that have the unique path
property and satisfy N = 2". Since a GSEN is not a unique path MIN, the algorithms in [9] and [13] cannot be used. To our
knowledge, no one has studied the all-to-all personalized exchange problem for MINs which do not have the unique path
property and do not satisfy N = 2". The purpose of this paper is to consider the all-to-all personalized exchange problem
for GSENSs. In particular, we propose an optimal all-to-all personalized exchange algorithm for GSENSs. This algorithm works
for all N with N = 2 (mod 4). Let R(N) and R (N) denote the minimum number of network configurations (defined in
the next section) required to fulfill an all-to-all communication in a GSEN when the stage control technique is not assumed
and assumed, respectively. Do notice that R(N) and R (N) are closely related to the smallest communication delay. In
particular, for a GSEN, the smallest communication delay of any all-to-all communication algorithm is 8 (R(N) + log, N)
and 6 (R, (N)+log, N) when the stage control technique is not assumed and assumed, respectively. The optimal algorithms
in [9] and [13] imply that R(2") = R (2") = 2". In this paper, we will prove that, for 2"~' < N < 2", the followings hold:

N < R(N) < Rec(N) < 2",

=‘RSC(N) =21

R(N) =N if N =2 (mod 4);

R(N) =2" ifk > 2,N =0 (mod 2¥),N £ 0 (mod 2*t"),and 2" +2"* <N < 2";
R(20) = 24.

This paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we prove N < R(N) <
Rsc(N) = 2".In Section 4, we propose an optimal all-to-all personalized exchange algorithm for GSENswithN = 2 (mod 4)
and prove that R(N) = N if N = 2 (mod 4). In Section 5, we focus on GSENs with N = 0 (mod 4) and obtain several
bounds. Some discussions and concluding remarks are given in the final section.

2. Preliminaries

In a GSEN, the switches are aligned in n stages: stage 0, stage 1, . . ., stage n — 1, with each stage consists of N /2 switches.
The network configuration of a GSEN is defined by the states of its switches. Since a GSEN has (N /2) x n switches, its network
configuration can be represented by an (N/2) x n matrix in which each entry is defined by the state of its corresponding
switch. For example, the network configuration of the GSEN in Fig. 4(a) is shown in Fig. 4(b).

A permutation of a MIN is one-to-one mapping between the inputs and outputs. For a MIN, if there is a permutation that

maps input i to output p(i), where p(i) € {0,1,...,N — 1} fori =0, 1, ..., N — 1, then we will use
0 1 -~ N-—-1
p©) p(1) --- p(N—-1)
or simply

p0) p(1) --- p(N—1)

to denote the permutation. Given the network configuration of a MIN, a permutation between the inputs and outputs can
be obtained. For example, the network configuration shown in Fig. 4(a) maps input 0 to output 9, input 1 to output 7, input
2 tooutput 5, ..., and input 9 to output O; thus this network configuration obtains the permutation97538 1642 0.
The following conventions are used in the remaining part of this paper. Terminal i (j) is assumed on the left-hand (right-
hand) side of the network and therefore is an input (output) processor. An (i, j)-request denotes a request for sending a
message from i to j. An (i, j)-path denotes a path between i and j. Obviously, an (i, j)-request can be fulfilled by an (i, j)-path.
Consider an (i, j)-request and an (i, j)-path and see Fig. 5 for an illustration. An (i, j)-path P can be described by a sequence
of labels that label the successive links on this path; a number whose binary representation corresponds to such a sequence
is called a control tag or tag or path descriptor [1,2,4,10]. A control tag can be used as a header for routing a message: each
successive switch uses the first element in the binary representation of the control tag to route the message, and then
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Fig. 4. (a) A 10 x 10 GSEN in which stage control is used. (b) The network configuration of the GSEN in (a).
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Fig. 5. An (i, j)-path P and the subports on P.

discards it. Take Fig. 4(a) for an example. Theni = 2 can get toj = 5 by using 13 = (1101),, which means that the (2, 5)-
request can be fulfilled by the path via subport 1 at stage 0, subport 1 at stage 1, subport 0 at stage 2, and subport 1 at
stage 3. A routing algorithm is called tag-based if it uses a control tag to route a message. Most of the routing algorithms for
MINs are tag-based, including those for GSENs. The routing algorithms proposed in this paper are also tag-based. Therefore,
whenever a message is sent out, a control tag will be equipped with it.

Again, see Fig. 5. When a message is sent from i to j along P, the message enters a switch at stage n—1—¢ via subport b,
and leaves the switch via subport f;. On the other hand, when a message is sent from j to i along P, then the message enters
a switch at stage n— 1—£ via subport f; and leaves the switch via subport b,. The control tag

F=fu12" 4 fi02" 2+ fo2°

is called a forward control tag for i to get to j. Most researchers simply called a forward control tag a control tag; here we
add the word “forward” to specify that this control tag is used for sending a message in the forward direction, i.e., from the
left-hand side of the GSEN to the right-hand side. Now let

B=by_ 12" 4+ bp2"% 4+ .- 4+ by2°.

B is called a backward control tag and it is used for sending a message in the backward direction (from j to i). Clearly,
0<F<2"and0 < B < 2".

Suppose F is given. In this paper, P(i, F) denotes the path started from i and using the forward control tag F. Also, B(i, F)
denotes the backward control tag obtained from the path P(i, F). Let

Br ={B(i,F)|i=0,1,...,N — 1}.
In the remaining discussion, @ denotes the bitwise XOR operation. As a reference,
0p0=0, 0p1=1, 160=1, 11=0.
IfU = (Up_1 Up—3 --- Ug)zand V = (vp_1 vy --- Vg)2, then we define
UBV = (Up—1 D vpq Up—2 D Vp—2 --- Up D vp)a.

3. The proof of N < R(N) < Rs(N) = 2"

The purpose of this section is to prove that N < R(N) < Ry (N) = 2™. We first prove two lemmas.
Lemma3.1. N < R(N) < Ry (N) < 2".

Proof. Given a network configuration, a permutation can be obtained. Thus a network configuration can be used to send N
(personalized) messages simultaneously. The inequality N < R (N) thus follows from that fact that N> messages have to be
sent to fulfill all-to-all personalized exchange and each network configuration can send only N messages. The inequality
R(N) < Rs(N) is obvious. The inequality R, (N) < 2" follows from the fact that a GSEN has at most 2" network
configurations when the stage control technique is assumed. O
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Fig. 6. Unique paths and multipaths.

In this paper, we call the process of transmitting all the messages to their next stage(s) a round. Thus in an n-stage MIN,
it takes n rounds for a message to arrive its destination. In [13], Yang and Wang proved that the communication delay of
all-to-all personalized exchange in a (log, N)-stage MIN is £2(N +1log, N). This is due to the fact that each of the N processors
(say, processor j) has to receive N messages and it takes log, N rounds for the first message to arrive j and N — 1 rounds for
the remaining N — 1 messages to arrive j. By similar arguments, we have the following lemma and its proof is omitted.

Lemma 3.2. The communication delay of all-to-all communication in a GSEN is 2 (N + n), or equivalently, 2 (N + log, N).

Do notice that although 2 (N + n) = 2 (N), we will still write 2 (N + n) instead of £2(N) to emphasize that it takes n
rounds for the first message to arrive its destination. In [5], Lan et al. considered GSENs with switches of size d x d. By setting
d = 2, the following lemma can be obtained.

Lemma 3.3 ([5]). Giveniand F, the destination j of the path P(i, F) is determined by
j=(@{-2"+F) modN.
Moreover, the backward control tag B of the path P(i, F) is given by

- 2"+ F
B=II+I'
N

When the stage control technique is assumed, the network configuration of a GSEN can be represented by a number
as follows. Let ¢, denote the state, O for straight and 1 for cross, of all the switches at stage n — 1 — £. Then the network
configuration of the GSEN can be represented by the number

C=cpr 12" ' 422" 2 4+ - 4 2°

or by the binary number (c,_; cp_2 --- Cg)2. For example, the network configuration of the GSEN in Fig. 4(a) can be
represented by 9 or by (1001),. Clearly, 0 < C < 2". Now we give the relation between F (a forward control tag), B
(its corresponding backward control tag) and C (the network configuration) .

Lemma 3.4. When the stage control technique is assumed, F and B together uniquely determine the network configuration C and
C=B&F.

Proof. Consider stage n—1—¢. Since the stage control technique is assumed, all switches in stage n—1—¢ are of the same
state. Let C = ¢,_12" 1 4 ¢,_22"%2 + - - - 4+ ¢92° be the network configuration and see Fig. 5. At stage n— 1—¢, a message
enters subport b, and leaves subport f;. If b, = f, then the state of the switch is straight; hence ¢, = 0 = b, & f,. If b, differs
from f; (in this case, (b, f) is (0, 1) or (1, 0)), then the state of the switch is cross; hence ¢, = 1 = b, @ f,. From the above,
C=B®F. O

We call a path a unique path if it is the unique path between its source and destination. The following lemma is important.

Lemma 3.5. For all 0 < i < N, path P(i, F) is a unique path if and only if 2" — N < F < N; in particular, P(i, 2*~') and
P(i, 2"~ 4 1) are unique paths. (See Fig. 6 for illustration.)

Proof. Letiandjbe the source and destination of a message. Suppose there are two distinct paths P(i, F;), P(i, F») fromi toj.
Then, by Lemma 3.3, the difference between F; and F, is N. Without loss of generality, assume that F, —F; = N.Since F; > 0,
F, > N must hold. Since F, < 2%, it follows that F; < 2" — N. Thus P(i, F) is a unique path if and only if 2" — N < F < N.
Since 2" —N < 2" ! < N, P(i, 2" ') is a unique path. Since 2" —N < 2"~'4+1 < N, P(i, 2"~ 4+ 1) is also a unique path. O

Lemma 3.6. B;n-1 = Byn-1,4.

Proof. Let0 < i < N.Letb,_1fu_1bn_2fa—z - - - bofy be the sequence of subports passed by path P(i, 2"~ 1); see Fig. 5. Similarly,
let b}, _,fi_,b,_,f._, - byfy be the sequence of subports passed by path P(i, 2"~! + 1). Since the binary representations of
2" and 2""! + 1 differ only at their rightmost bits, by—1fa—1bn—2fa—2 - - - bofo and b,,_,f!_,bl, ,f! - -bf; are identical
except that fo # fj. Hence B(i, 2"~!) = bp_1by_3---bg = b, _ b, _,---by = B(i, 2"~ + 1). Since Byn-1 = {B(i, 2" ") |i =
0,1,...,N—1}and 81,4 = {B(#,2" '+ 1) |i=0,1,...,N — 1}, we have this lemma. O



1674 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669-1684

1 0 0 1
0 . . — o
1 e S il A [ |
2— ) - - P N —2
3—-\/ ,---- - TN\ - -3
4 TV Y STV Y ST e —4
5 A N AN N\ A -5
6= /\ 1 >>< ST /N 6
77—\ Tt~ - S AN —7
8 ST T T >>< 8
9 - -- -- - T9

Fig. 7. Applying alternating stage control on a 10 x 10 GSEN; the shown network configuration isA = 9 = (1001),.

For convenience, if a number is in {0, 1, 2, ..., 2" — 1} but not in Bf, then we call it a hole of 8. The following lemma
shows that the elements of By are distributed very uniformly in {0, 1, 2, ..., 2" — 1}.
Lemma 3.7. ForallF € {0, 1, 2, ..., 2" — 1}, BF has no two consecutive holes.

Proof. We will prove this lemma by showing that B(0, F) < 1,B(N — 1,F) > 2" — 2, and
Bi—1,F)+1<B(i,F)<B(i—1,F)+2fori=1,2,...,N—1.
Recall that2"™' < N < 2"and0 < F < 2". By Lemma 3.3, B(0,F) = | £| < 1. Also, BN — 1,F) = {WJ >
W > 2™ — 2. Finally, consider i, where 1 < i < N — 1.By Lemma 3.3,B(i — 1,F) + 1 = L%J +1 =
LmT+F B %\THJ 1< L#J — B(i.F) = L(H){f”# T %J < L(Fl)};}Z”+FJ +2=B(i-1,F)+2 0O
Now we are ready to prove the main result of this section.
Theorem 3.8. N < R(N) < R, (N) = 2".

Proof. By Lemma 3.1, it suffices to prove that R, (N) > 2". When the stage control technique is assumed, there are only 2"
possible network configurations: 0, 1, ..., 2" — 1. Thus to prove that R, (N) > 2", it suffices to prove that each of the 2"
possible network configurations is required for every processor to receive N messages.

When the stage control technique is assumed, the network configuration C can be determined by an arbitrary path P set
up by C. Moreover, if F and B are the forward and backward control tags used by P, then Lemma 3.4 tells us that C = B@F.
In the following, we will prove that for each Cin {0, 1, ..., 2" — 1}, at least one of the paths set up by C is a unique path and
therefore C must be used in all-to-all personalized exchange. Suppose to the contrary thereisaC in {0,1,...,2" — 1} such
that none of the paths set up by Cisa umque path. Then consider 2"~ ' @ C and let B = 2" @ C: consider '+ ¢
andlet B’ = (2" +1) @ C. We claim that B ¢ :an vand B ¢ Byn-1,4. Suppose this clam is not true. Then either B € Byn—1
orB € Byn-1,1 or both. Suppose Be Byn—1. Since C= BQB 2"1 by Lemma 3.5, C conducts a unique path, which contradicts
with the assumption that none of the paths set up by Cisa unique path. The case that B e 8B,n-1,1 can be proven similarly.
Now we have the claim that B & Byn-1 and B & Byn-1,1. By Lemma 3.6, Byn-1 = Byn-1,4. Thus B & B,n-1. Since Band B
differ by 1, they are two consecutive holes in B,n-1; this contradicts with Lemma 3.7. Thus foreach Cin {0, 1, ...,2" — 1},
at least one of the paths set up by C is a unique path and therefore C must be used in all-to-all personalized exchange. So
Rse(N) = 2" O

4. All-to-all personalized exchange of GSENs with N = 2 (mod 4)

Throughout this section, unless other specified, subports 0 and 1 are the subports 0 and 1 on the right-hand side of a
switch. We will propose an optimal all-to-all personalized exchange algorithm for GSENs with N = 2 (mod 4) and prove
that N = R(N) < Rs(N) = 2" if N = 2 (mod 4). We first introduce a variation of the stage control technique and we call
it alternating stage control, meaning that the states of the switches of a stage alternate between straight and cross. See Fig. 7
for an illustration.

When alternating stage control is used, the network configuration of a GSEN can be represented by a number as follows.
Let a, denote the states of the switches at stage n—1—£ such that

e a, = 0 means the statesare 0, 1, 0, 1, and so on;
e a, = 1 means the statesare 1, 0, 1, 0, and so on.
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Fig. 8. (a)and (b): a stage ina 10 x 10 GSEN when a, = 0.(c)and (d): a stage ina 10 x 10 GSEN when a, = 1.(e) Anillustration for the proof of Property ().

The network configuration of the GSEN can be represented by the number
A=a, 12" "4+ a,_ 2" % 4 - 4 ag2°

or (a,_1 a,_» ... Ay dg); in the binary form. Clearly, 0 < A < 2". We will call A an alternating configuration. When N = 2
(mod 4) and alternating stage control is used, the N input terminals and N output terminals of stage n— 1 — £ have the
following property.

Property (x) (see Fig. 8 (a)-(d) for an illustration).

0 1 . . . .
1. Ifa; = 0, then Even —> Even, Odd — 0dd. That is, every even-numbered input terminal is connected to an even-
numbered output terminal via subport 0, and every odd-numbered input terminal is connected to an odd-numbered output
terminal via subport 1.

1 0 . . Lo

2. Ifa; = 1,then Even — 0dd, Odd — Ewven. Thatis, every even-numbered input terminal is connected to an odd-numbered
output terminal via subport 1, and every odd-numbered input terminal is connected to an even-numbered output terminal via
subport 0.

Proof. Consider an arbitrary stage of a GSEN and an arbitrary switch y of this stage; see Fig. 8(e) for an illustration. Suppose
input terminals X and x; are connected to subports 0 and 1 of switch y, respectively. By the definition of a GSEN, xo = y and
Xx1=y+ % hold. Note that % is an odd number since N = 2 (mod 4). Since % is odd, one of xg and x; is even and the other
one is odd. Now consider the output terminals zo and z; of switch y. Then z; is even and z; is odd.

Suppose a; = 0 and y is even. Then xg is even (by the fact that x, = y) and X is connected to z, (due to the setting of a,).
Thus every even-numbered input terminal is connected to an even-numbered output terminal via subport 0. Now suppose
a, = 0 and y is odd. Then x is odd (by the fact that X, = y) and xg is connected to z; (due to the setting of a,). Thus every
odd-numbered input terminal is connected to an odd-numbered output terminal via subport 1. The case of a; = 1 can be
proven similarly. O

Do notice that Property (x) holds only when N = 2 (mod 4) holds. Now we give other properties of alternating stage
control.

Lemma 4.1. Suppose N = 2 (mod 4) and alternating stage control is used. Then the following statements hold:

1. The forward control tags of even-numbered inputs are identical.
2. The forward control tags of odd-numbered inputs are identical.

Proof. Let A = (a,_1 a,_» --- dg), be the alternating configuration used. By Property (x), all the messages sent out from
inputs 0, 2, 4, ..., N — 2 are via subports 0 of switches at stage n—1—¢ if a, = 0 and via subports 1 of switches at stage
n—1—£ if a, = 1. Thus statement 1 holds. By Property (), all the messages sent out from inputs 1, 3, 5, ..., N — 1 are via

subports 1 of switches at stage n—1—¢ if a, = 0 and via subports 0 of switches at stage n—1—¢ if a, = 1. Thus we have
statement 2. O

Theorem 4.2. Suppose N = 2 (mod 4) and alternating stage control is used. Let A be a given alternating configuration, F be the
forward control tag of any even-numbered input, and F be the forward control tag of any odd-numbered input. Then:

(i) FOF = (11---1)y;
(i)A=Fe|5];

(i) F=4o|3]0|4|0 0|
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Proof. First consider (i). Let F = (fy_1 fu_2 - fo)o and A = (a,_1 a,_» --- ap),. By Property (x), if messages from even-
numbered inputs are via subport f; at stage n—1—¢, then messages from inputs odd are via subport 1—f, at stage n—1—¢,
=n—1,n—2,...,0).ThusF®F = (11--- 1),. Now consider (ii). Clearly, a,—; = fo_1.For =n—2,n—3,...,0,by
Property (x), we have:

e Ifay = 0, then f; = 0 whenever f;,1 = 0 and f;, = 1 whenever f;; = 1.
e Ifay = 1, then f; = 0 whenever f;, 1 = 1and f;, = 1 whenever f;,; = 0.

Thusay = f; @ feyq ford =n—2,n—3,...,0.Therefore

A= (a1 p—2 ... A1 Gp)2 = (fam1 fu—2®fu1 fu3®faz ... foBf1)2
= (fim190 fi2a®fu1 fu3®fuz ... foBf1)2
F
2

= (fac1 o2 famz --. J0)2@O fumti faz .. fi)2 =F O { J

Finally, consider (iii). Thenf, = a;®a,41®- - -®an_1for{ =n—2,n—3,...,0.ThusF = A@L%‘J@L%Jey . ‘EBL A J O

on—1

Theorem 4.2(ii) gives a one-to-one correspondence between A and F; for convenience, let Ar denote the alternating
configuration corresponding to F. When F = k,

k
Ak =k® \‘ZJ .

Lemma4.3. If N = 2 (mod 4) and the given GSEN is set by alternating configuration Ay, then the forward control tags of
even-numbered inputs are k and the forward control tags of odd-numbered inputs are 2" — 1 — k.

Proof. This lemma follows from Lemma 4.1, A, = k & | ¥ |, and Theorem 4.2(i). O
Now we prove a theorem, which is the foundation of our algorithms.

Theorem 4.4. Suppose N = 2 (mod 4). Then the N alternating configurations Ag, A1, ..., Ay_1 ensure that every input i can
get to every output j; in other words, Ag, A1, . . ., Ay_1 can fulfill an all-to-all communication in a GSEN.

Proof. Letibe an arbitrary input. Fork = 0, 1, ..., N — 1, let j, be the destination of i when the network configuration is set
according to Ay. First consider the case that i is even. By Lemmas 3.3 and 4.3, jy = (i-2" 4+ k) mod N. Since Ag, A1, ..., An_1
ensure that k varies from 0 to N — 1and j, = (i-2" + k) mod N, it follows that i can get to every output. Now consider the
case thatiis odd. By Lemmas 3.3 and 4.3,j, = (i-2" 4+ 2" — 1 —k) mod N. Since Ag, A1, ..., Ay_1 ensure that k varies from
OtoN —landjy = (i-2" 4+ 2" — 1 — k) mod N, it follows that i can get to every output. O

For example, the 10 alternating configurations Ag = 0,A; = 1,A;, = 3,A3 = 2,A4, = 6,As = 7,As = 5,A; = 4,As =
12, Ay = 13 can fulfill an all-to-all communication in a 10 x 10 GSEN. Note that Ag, A1, ..., Ay_1 are not the only way to
fulfill an all-to-all communication in a GSEN. In fact, any N consecutive integers in 0, 1, ..., 2" — 1 can fulfill an all-to-all
communication.

The purpose of this paper is to propose an optimal all-to-all personalized exchange algorithm for GSENs. However, since
there is no all-to-all broadcast algorithm for GSENs, we will also propose one. Therefore, in the following, three algorithms
will be proposed. The first algorithm fulfills all-to-all broadcast in GSENs. The second algorithm gives a preprocessing of the
third algorithm. And the third algorithm fulfills all-to-all personalized exchange in GSENs.

Algorithm 1 : an algorithm to fulfill all-to-all broadcast in a GSEN with N = 2 (mod 4)

1: for each processori (0 < i < N) do in parallel

2: Processor i prepares a broadcast message;

3: fork =0toN — 1do in sequential

4: Equip the broadcast message of processor i with the forward control tag k if i is even and 2" — 1 — k if i is odd;
5

6

7

Transmit the message;
endfor
: endfor

The correctness of Algorithm 1 follows from Lemma 4.3 and Theorem 4.4. The communication delay of Algorithm 1 is
O(N + n) since each of the N processors can receive its first message in n rounds and receive the remaining N — 1 messages
in N — 1rounds. By Lemma 3.2, Algorithm 1 is optimal.

All-to-all personalized exchange is much more complicated than all-to-all broadcast. In all-to-all personalized exchange,
a source has to prepare a personalized message for each of its N destinations. Therefore, before a message is sent out, the
source of the message has to know which output will be its current destination so that a personalized message can be
prepared. Algorithm 2 is designed to overcome this difficulty. This algorithm constructs a matrix called destination matrix
D = (d; ) so that d; , = j if and only if the message sent out from processor i at round k arrives processor j.

The following theorem proves the correctness and gives the time complexity of Algorithm 2.
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Algorithm 2 : an algorithm to construct the destination matrix D = (d; ;) for a GSEN with N = 2 (mod 4)

1: n < [log, N7;

2: power < 2™;

3: for each processori (0 < i < N) do in sequential

4: if iiseven then m < (i - power) mod N; else m < ((i+ 1) - power — 1) mod N; endif
5: fork = 0to N — 1do in sequential

6: if iiseven then d;; <— (m+ k) mod N; else d; < (m — k) mod N; endif

7: endfor

8: endfor

Theorem 4.5. Algorithm 2 constructs a matrix D = (d; ) so that d; , = j if and only if the message sent out from processor i at
round k arrives processor j. Moreover, it takes O(N?) time.

Proof. To prove the correctness of Algorithm 2, it suffices to show that the message sent out from processor i at round k (see
Algorithm 3 for round k) arrives processor (m + k) mod N if i is even and arrive processor (m — k) mod N if i is odd. Note
that in Algorithm 3, we will use Ag, Ay, . .., Ay_1 to fulfill all-to-all personalized exchange. By Lemma 4.3, Ay contributes an
even-numbered processor i the forward control tag k and it contributes an odd-numbered processor i the forward control
tag 2" — 1 — k. Suppose i is even. Then at round k, the message sent out from processor i will be equipped with the forward
control tag k; by Lemma 3.3, the destination is

j=({-2"+k modN = (i - power + k) mod N = (m + k) mod N.

Now suppose i is odd. By Lemma 4.3, the message sent out from processor i will be equipped with the forward control tag
2" — 1 — k; by Lemma 3.3, the destination is

j=@G-2"+2"—1—k) modN = ((i+ 1) - power — 1 — k) mod N = (m — k) mod N.
It is not difficult to see that Algorithm 2 takes O(N?) time. We have this theorem. O

Consider the GSEN in Fig. 2 for an example of Algorithm 2. Then the matrix D constructed is:

0 1 2 3 4 5 6 7 8 97
1 0 9 8 7 6 5 4 3 2
2 3 45 6 7 8 9 01
32 109 8 7 6 5 4
D— 4 5 6 7 8 9 01 2 3
~ !5 4 3 2 10 9 8 7 6
6 7 8 9 0 1 2 3 4 5
7 6 54 3 2 10 9 8
8§ 9 01 2 3 45 6 7
L9 8 7 6 5 4 3 2 1 0d

Note that the matrix D needs to be constructed only once and therefore can be viewed as one of the system parameters.
Thus the time complexity of Algorithm 2 is not included in the communication delay. Now we are ready to propose our
all-to-all personalized exchange algorithm; see Algorithm 3.

Algorithm 3 : an algorithm to fulfill all-to-all personalized exchange in a GSEN with N = 2 (mod 4)

1: for each processori (0 < i < N) do in parallel
for k = 0to N — 1do in sequential //comment: round k
Processor i prepares a personalized message for processor d; k;
Equip the personalized message with the forward control tag k if i is even and 2" — 1 — k if i is odd;
Transmit the message;
endfor
endfor

R

The following theorem proves the correctness and gives the time complexity of Algorithm 3.

Theorem 4.6. Algorithm 3 fulfills all-to-all personalized exchange in a GSEN with N = 2 (mod 4). Moreover, it takes O(N + n)
time.

Proof. Algorithm 3 prepares a personalized message according to the matrix D, which is constructed by Algorithm 2. Thus,
by Theorems 4.4 and 4.5, Algorithm 3 fulfills all-to-all personalized exchange for GSENs with N = 2 (mod 4). This algorithm
takes O(N + n) time since each of the N processors can receive its first personalized message in n rounds and receive the
remaining N — 1 personalized messages in N — 1 rounds. O
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Fig. 9. An example of Algorithm 3.

By Lemma 3.2 and Theorem 4.6, we have the following corollary.
Corollary 4.7. Algorithm 3 is optimal.

Fig. 9 shows how Algorithm 3 fulfills all-to-all personalized exchange for the GSEN in Fig. 2. Take round 2 in Fig. 9
for an example. The 0-1 bits 0011 above stages 0, 1, 2, 3 denote the alternating configuration for round 2, which is
(0011); = 3 = A;. The numbers on the left-hand side denote the destinations of personalized messages. Thus, at round 2,
processor 0 sends a personalized message to processor 2, processor 1 sends a personalized message to processor 9, processor
2 sends a personalized message to processor 4, . . ., and processor 9 sends a personalized message to processor 7. Recall that
Ao=0,A1=1,A,=3,A3=2,A,=06,As =7,As =5,A; = 4, A3 = 12, Ag = 13 can fulfill an all-to-all communication
ina 10 x 10 GSEN. The 10 alternating configurations and the destinations of the messages are shown on the left-hand side
of the GSEN for rounds 0, 1, ..., 9in Fig. 9.

Note that it is possible to combine Algorithms 2 and 3 and to avoid the construction of matrix D. See Algorithm 4 below.
Now we end this section by proving the following theorem.

Theorem4.8. N = R(N) < Rsc(N) = 2" if N =2 (mod 4).
Proof. Since Algorithm 3 can fulfill all-to-all personalized exchange by using N network configurations, namely,

Ao, A1, ...,Ax_1, we have R(N) < N. By Theorem 3.8 and by the fact that R(N) < N for N = 2 (mod 4), we have
this theorem. O
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Algorithm 4 : yet another algorithm to fulfill all-to-all personalized exchange in a GSEN with N = 2 (mod 4)

1: for each processori (0 <i < N) do in parallel
2: n <« [log,NT;
3:  power < 2m;
4: if iiseven then m <« (i - power) mod N; else m < ((i+ 1) - power — 1) mod N; endif
5: fork =0toN — 1do in sequential //comment: round k
6: if iiseven then j < (m + k) mod N; else j < (m — k) mod N; endif
7: Processor i prepares a personalized message for processor j;
8: Equip the personalized message with the forward control tag k if i is even and 2" — 1 — k if i is odd;
9: Transmit the message;
10: endfor
11: endfor
stage 0 stage 1 stage 2 stage 3
0 5,=0 —0

= 3

N

2
>~ 3

-4
5

(LN

~N o
\

—8
—9

10 —10
11 11

Fig. 10. A 12 x 12 GSEN, switches sy and sy, terminals ¢y and t1, and @ = {Qp, Q1, Q2}.
5. The value of R(N) when N = 0 (mod 4)

The purpose of this section is to obtain K(N) for all N = 0 (mod 4). Recall that each stage of a GSEN consists of the
perfect shuffle on N terminals followed by N/2 switches, the N terminals are numbered 0, 1, ..., N — 1, and the perfect
shuffle operation on the N terminals is the permutation  defined by (i) = (2-i+ |3 |) mod N, 0 <i < N. We first
have a lemma.

Lemma 5.1. Suppose k > 2, N = 0 (mod 2¥), and N = 0 (mod 2¥*1). Let i be an arbitrary input of a given N x N GSEN. If
the forward control tag F = f_12" '+ f_22" 2 + - - - 4+ f2% used by i starts with f,_1 = O and f,_, = 1 (fort =2, 3, ..., k),
then the terminal reached by i immediately after stage k— 1 is (i2X + 2¥~1 — 1) mod N.

Proof. Each stage of a GSEN has N /2 switches; we suppose these N /2 switches are labeled 0, 1, ..., N/2 — 1. Consider the
path P(i, F) and the switches and terminals on the path. Let s, be the label of the switch at stage ¢ reached by P(i, F). Let
t, be the terminal immediately after stages ¢ that is reached by P(i, F). See Fig. 10 for an illustration of the N = 12 and
k = 2 case. By the perfect shuffle operation, sy = i mod N/2. Since f;,_; = 0, we have t; = 25y = (2i) mod N. Again, by the
perfect shuffle operation, s; = t; mod N/2 = (2i) mod N/2. Since f,_, = 1, we havet; =25+ 1= (4i+ 1) mod N =
(i22 4+ 2' — 1) mod N. In general, we assume £ > 1. Then we have s; = t,_; mod N/2 and t; = 2s; + f,_1_,. Continuing in
this way, we have

e = @2+ fro 2+ 4+ £ 29 mod N = (12K + 22 + .- + 2% mod N = (i2¥ + 2" — 1) mod N.
Hence this lemma holds. O

Forr=0,1,..., zN—k — 1, let Q, denote the terminal r2¥ 4+ 2~ — 1 immediately after stage k— 1 and see Fig. 10 for an

illustration of the N = 12 and k = 2 case.Let @ = {Q, |[r =0, 1, ..., 2N7 — 1}. We say a routing path passes through @ if it
passes through one of the terminals in @.

Lemma 5.2. Supposek > 2,N = 0 (mod 2¥), N = 0 (mod 2**1), and consider an N x N GSEN. A routing path passes through
@ if and only if the forward control tag F = f_12" 1 4 f_22" 2 4 . . 4 2% used by this path starts withf,_; = O and f,_; = 1
(fort =2,3,...,k)
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Proof. Assume that the given routing path is from input i. Then this routing path is the path P(i, F).
(Necessity) First suppose P(i, F) passes through the terminal Q; in @. Then by the perfect shuffle operation, we have

@25+ froi2X 4+ o+ fim) mod N = 12K + 281 — 1.
Since 2¥|N, we can take modulo 2* for both sides of the above equation and obtain
(2" + f-12° " + -+ + fu_g mod N) mod 2 = (r2 + 21 — 1) mod 2* = 2" — 1,

which implies f,_ 1281 + f_p2% 2 4+ - + fip =21 — 1,ie, fi_; =0andf,_, = 1 (fort = 2,3, ..., k).
(Sufficiency) Suppose the forward control tag F starts with f,_; = O and f,_, = 1(fort = 2,3,...,k). Then by
Lemma 5.1, the terminal reached by i immediately after stage k — 1 will be (i2¥ + 2~ — 1) mod N, which is Qi mod N
2!

Therefore P(i, F) passes through @. O
Recall that 2"~! < N < 2" The following lemma requires N to satisfy 2"~! 4+ 2" < N < 27,

Lemma 5.3. Suppose k > 2, N = 0 (mod 2%), N = 0 (mod 2¥*1), and consider an N x N GSEN. If 2"~ 4+ 2"k < N < 2"
and the forward control tag F = f,_12"' + f,_22""% + - .. + f,2° used by a path starts with f,_; = 0 and f,_, = 1 (for
t =2,3,...,k) then this path is a unique path.

Proof. Note that if F starts withf,_; = 0Oand f,_, = 1(fort = 2, 3, ..., k), then 2"~ — 2% < F < 2"~1 Assume that the
given routing path is from input i. Then this routing path is the path P(i, F). By Lemma 3.5, P(i, F) is a unique path if and
only if 2" — N < F < N. Since

2" N <2l _gnk —on=1 _onk o p - on-1 N
P(i, F) is a unique path for each 2"~! — 2" % < F < 2", Hence this lemma holds. O
Now we are ready to propose our result for R(N) with N = 0 (mod 4).
Theorem 5.4. R(N) = Ry(N) =2"ifk > 2,N =0 (mod 2¥), N £ 0 (mod 2¢t1), and 2"~ 1 4 2"k < N < 2",

Proof. Assume k > 2, N = 0 (mod 2¥), N = 0 (mod 2*t!), and 2"~! 4+ 2"* < N < 2" By Theorem 3.8, it suffices
to prove that R(N) > 2" In any all-to-all communication of a GSEN, a total of N2 routing paths have to be established.
Let i be an arbitrary input and let F = f,_12""! + f,_52"2 + - .. + f52° be an arbitrary forward control tag such that F
starts with f,_ 1 = Oand f,_, = 1 (fort = 2,3, ..., k). Since F starts withf, 1 = O0and f,_; = 1(fort = 2,3,...,k),
we have 2! — 2" % < F < 271 and there are a total of 2" such F’s. By Lemma 5.3, P(i, F) is a unique path. Since
2n=1 _2n=k < F < 2"=1 the number of such unique paths P(i, F) is N - 2"~ Let U denote the set of these N - 2"~ unique
paths. Then, in any all-to-all communication, all of the paths in U must appear. By Lemma 5.2, all of the paths in U will
pass through Q. Recall that given a network configuration, a permutation between the inputs and outputs can be obtained.
Therefore, given a network configuration, N routing paths can be established. By Lemma 5.1, any network configuration can

establish only N /2 routing paths in U. Therefore R(N) > NNz/’;k =2" O

By Theorem 5.4, R(12) = 16, R(24) = 32, R(28) = 32, R(40) = 64, R(80) = 128, and R(144) = 256. The first
R(N) that cannot be determined by Theorems 4.8 and 5.4 is R(20); we will determine it after introducing a variation of
the alternating stage control technique; we call it doubly alternating stage control, meaning that the states of the switches of
a stage alternate between two straight states and two cross states. The network configuration obtained by doubly alternating
stage control is called a doubly alternating configuration and it can be represented by the number

A=d_2""+d, 2"+ +ay2°

as follows. Let a, denote the states of the switches at stage n—1—¢ such that

e a, = 0 means the statesare 0,0, 1, 1,0, 0, 1, 1, and so on.
e a, = 1 means the statesare 1, 1,0, 0, 1, 1, 0, 0, and so on.

Obviously, 0 < A" < 2" Now we are ready to determine R (20).
Theorem 5.5. R(20) = 24.

Proof. We first prove that R(20) > 24. In any all-to-all communication of a 20 x 20 GSEN, a total of 20> = 400 routing
paths have to be established. To prove R(20) > 24, we claim that 400 routing paths are not sufficient to fulfill an all-to-all
communication in a 20 x 20 GSEN and at least 400 4+ 80 = 480 routing paths have to be established in order to fulfill an
all-to-all communication. If this claim is true, then since a network configuration can establish only 20 routing paths, we
have R(20) > % = 24. Now we prove this claim.

Let i be an arbitrary input and let F = f,_12""! + f,_,2"2 4+ ... 4 f,2° be an arbitrary forward control tag. By
Lemma 3.5, P(i, F) is a unique path if and only if 12 < F < 19. Hence each input i contributes 8 unique paths P(i, 12),
P(i, 13), ..., P(i, 19). Thus there are a total of 160 unique paths; we illustrate all of these 160 unique paths in Fig. 11. In

this proof, states of switches at stage 2 play an important role. Denote the 10 switches at stage 2 by Sg, Sy, . . ., So. Now we
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Fig. 11. The 160 unique paths in a 20 x 20 GSEN; each input i contributes 8 unique paths.

define types 00, 01, 10, and 11, according to the connection inside a switch at stage 2 as follows. A path is said to be of type
xy, where x,y € {0,1}, if the connection inside the switch (passed by the path) at stage 2 is from subport x to subport y. The
following two facts can be observed from Fig. 11.

Fact 1: All of the unique paths passing through Sy, S4, and Sg are of type 10, through Sy, Ss, and Sg are of type 01, through S,
and Sg are of type 00, and through S3 and S; are of type 11. (See Fig. 12(a).)

Fact 2: Each switch at stage 2 has exactly 16 unique paths passing through it. More precisely, let U; denote the set of all 16
unique paths passing through S;. Then

Uo ={P(i,F)| i=2,7,12,17and F = 16, 17,18, 19}, U, = {P(i,F) | i=0,5,10,15and F = 12, 13, 14, 15},

U, ={P(i,F)| i=0,5,10,15and F = 16, 17, 18,19}, U3 = {P(i,F) | i =3,8,13,18and F = 12, 13, 14, 15},

Uy ={P(i,F)| i=3,8,13,18and F = 16, 17,18, 19}, Us = {P(i,F) | i=1,6,11,16and F = 12, 13, 14, 15},

Us = {P(i,F)| i=1,6,11,16and F = 16, 17, 18,19}, U; = {P(i,F) | i=4,9, 14,19 and F = 12, 13, 14, 15},

Us = {P(,F)| i=4,9,14,19andF = 16, 17, 18, 19}, Us = {(P(i,F) | i=2,7,12, 17 and F = 12, 13, 14, 15}.
By Fact 1, in a network configuration, switch Sy has to be set to cross to let a unique path in Ug passing through it. Let N
denote the set of paths of passing through Sy which are of type 01; see Fig. 12(b). Also by Fact 1, in a network configuration,

switch S3 has to be set to straight to let a unique path in U3 passing through it. Let A3 denote the set of paths passing
through S3; which are of type 00; see Fig. 12(c). Let I x J-requests denote the set of all (i, j)-requests withi € I andj € J. It
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Fig. 12. (a) The setting of switches at stage 2 when unique paths pass through them. (b) The set of paths in ;. These paths fulfill {0, 5, 10, 15} x {4, 5, 6, 7}-
requests. (c) The set of paths in 3. These paths also fulfill {0, 5, 10, 15} x {4, 5, 6, 7}-requests.

can be observed from Fig. 12(b)(c) that A, and 3 both fulfill {0, 5, 10, 15} x {4, 5, 6, 7}-requests. Thus when the 32 unique
paths in U U U3 are fulfilled, the 32 paths in My U 3 are also established; however, &y U 3 fulfills at most 16 routing
requests and at least 16 routing requests are repeated. The same situation also occurs when the 32 unique pathsin U; U Usg,
in Uy U Us, in Uq U U7, and in Ug U Ug are established. From the above, a total of 16 -5 = 80 routing requests are repeated.
Hence to fulfill an all-to-all communication in a 20 x 20 GSEN, at least 400 + 80 = 480 routing requests have to be fulfilled,
i.e., 480 routing paths have to be established.

Now we prove R(20) < 24 by showing that an all-to-all communication in a 20 x 20 GSEN can be fulfilled in 24 network
configuration. A 20 x 20 GSEN has 32 doubly alternating configurations. Consider these 32 doubly alternating configurations.
It is not difficult to check that A" = 0 and A’ = 17 obtain the same permutation and hence only one of them is needed in an
all-to-all communication. Each of the following pairs of doubly alternating configurations also obtain the same permutation
and hence only one in each pair is needed in an all-to-all communication: A” = 1and A’ = 16,A' = 2and A’ = 19,A' = 3
andA’ = 18,A’ = 8and A’ = 25,A' = 9and A’ = 24,A = 10and A’ = 27,and A’ = 11 and A’ = 26. By removing
one doubly alternating configuration from each of the above eight pairs, we have a set »4’ containing 24 doubly alternating
configurations; in particular, we can choose A’ = {0, 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29,
30, 31}. In Fig. 13, we show all the permutations obtained by applying the network configurations in +’. It is not difficult to
see that «’ fulfills an all-to-all communication in a 20 x 20 GSEN. Hence R(20) < 24. O

6. Concluding remarks

The shuffle-exchange network has been proposed as a popular architecture for MINs. The generalized shuffle-exchange
networks (GSEN) is a generalization of the shuffle-exchange network. We follow the convention used in [1,2,10] that an
N x N GSEN has exactly [log, N7 stages. Based on this convention, we define n = [log, N] and we have 2"~! < N < 2",

In this paper we consider the all-to-all personalized exchange problem in GSENSs. Since a GSEN does not have the unique
path property, previous algorithms [9,13] cannot be used. To our knowledge, no one has studied all-to-all personalized
exchange in MINs which do not have the unique path property and do not satisfy N = 2". An optimal algorithm and
several bounds on R (N) and R (N) have been proposed in this paper; recall that R(N) is the minimum number of network
configurations required to fulfill all-to-all communication in an N x N GSEN and R (N) is the minimum number of network
configurations required to fulfill all-to-all communication in an N x N GSEN when the stage control technique is assumed.
In Theorem 3.8, we have proven N < R(N) < R, (N) = 2". In Theorem 4.8, we have proven N = R(N) < Ry (N) =
2" if N = 2 (mod 4).In Theorem 5.4, we have proven R(N) = Rs(N) = 2"ifk > 2,N = 0 (mod 2¥),N = 0 (mod 2¢+1),
and 2"~' 4 2" % < N < 2". In Theorem 5.5, we have proven R(20) = 24.

Before closing this paper, we list R(N) and R (N) for N = 4,6, ..., 128 in Fig. 14. We conjecture that when N = 4
(mod 8), the best way to reduce the number of network configurations used in an all-to-all communication in a GSEN is
to use doubly alternating stage control. One can examine R(36) < 40 and R(44) < 48 by the aid of a computer. We also
conjecture that when N = 8 (mod 16), the best way to reduce the number of network configurations used in an all-to-
all communication in a GSEN is to use quadruply alternating stage control, meaning that the states of the switches of a stage
alternate between four straight states and four cross states. The network configuration obtained by quadruply alternating stage
control is called a quadruply alternating configuration and it can be represented by the number

" " -1 " -2 1140
Al=a,_ 2" 4a, 2"+ 4 a;2
as follows. Let a; denote the states of the switches at stage n—1—¢ such that

e a, = 0 means the states are 0,0,0,0,1,1,1,1,0,0,0,0, 1, 1, 1, 1, and so on.
e a; = 1means the statesare 1,1,1,1,0,0,0,0,1,1,1,1,0, 0, 0, 0, and so on.

Obviously,0 < A” < 2",
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Fig. 13. Fulfill an all-to-all communication in a 20 x 20 GSEN by using the 24 network configurations in 4’ = {0, 1, 2, 3,4, 5,6,7, 8,9, 10, 11, 12, 13,
14, 15, 20, 21, 22, 23, 28, 29, 30, 31}. The destinations of the messages for each network configuration are shown on the left-hand side of the GSEN.

Let 4’ denote a set of doubly alternating configurations and let 4” denote a set of quadruply alternating configurations.
The following results are obtained by the aid of a computer.

R(36) < 40; by using A’ = {0 ~ 3, 8 ~ 19, 24 ~ 35, 40 ~ 43, 48 ~ 51,56 ~ 59)}.
R(44) < 48; by using A’ = {0 ~ 3, 8 ~ 19, 24 ~ 35, 40 ~ 51, 56 ~ 63}.
R(68) < 72; by using A’ = {0 ~ 11, 16 ~ 43, 48 ~ 63, 68 ~ 71, 80 ~ 83, 100 ~ 104, 112 ~ 115}.

R(72) < 96; by using A"

{0 ~63, 72 ~79, 88 ~ 95,

104 ~ 111, 120 ~ 127}.

R(76) < 88; by using A" = {0 ~ 7, 12 ~ 39, 44 ~ 67, 80 ~ 91, 96 ~ 99, 112 ~ 123}.
R(84) < 96; by using A" = {0 ~ 11, 16 ~ 43, 48 ~ 63, 68 ~ 71, 80 ~ 95, 100 ~ 103, 112 ~ 127}.
R(92) < 112; by using A’ = {0 ~ 7, 12 ~ 39, 44 ~ 71, 76 ~ 103, 108 ~ 127}.
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N 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
RN) 4 6 8 10 16 14 16 18 24 22 32 26 32 30 32 34 =40 38 64 42 =48
Rsc(N) 4 8 16 16 16 16 32 32 32 32 32 32 32 32 64 64 64 64 64 064

[e%S]

N 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86
RWN) 46 64 50 64 54 64 58 64 62 64 66 =72 70 <96 74 =88 78 128 82 =96 86
Rsc(N) 64 64 64 064 64 64 64 64 64 64 128 128 128 128 128 128 128 128 128 128 128

N 8 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128
RV) 128 90 =112 94 128 98 128 102 128 106 128 110 128 114 128 118 128 122 128 126 128
Rsc(N) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

Fig. 14. Known results of R(N) and R, (N) for N = 4,6, ..., 128.

Although we know that R(36) < 40, we are unable to prove that R(36) > 40. Several open problems can be found in
Fig. 14. In particular, we conjecture R (36) = 40, R(44) = 48. Determining R (N) for all N such that N = 0 (mod 4) is still
an open problem.
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