
Theoretical Computer Science 411 (2010) 1669–1684

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

All-to-all personalized exchange in generalized
shuffle-exchange networksI

Well Y. Chou, Chiuyuan Chen ∗
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o

Article history:
Received 8 May 2009
Accepted 25 October 2009
Communicated by D.-Z. Du

Keywords:
Multistage interconnection networks
Shuffle-exchange networks
Omega network
Parallel and distributed computing
All-to-all communication
All-to-all personalized exchange

a b s t r a c t

An all-to-all communication algorithm is said to be optimal if it has the smallest
communication delay. Previous all-to-all personalized exchange algorithms are mainly
for hypercube, mesh, and torus. In Yang and Wang (2000) [13], Yang and Wang proved
that a multistage interconnection network (MIN) is a better choice for implementing all-
to-all personalized exchange and they proposed optimal all-to-all personalized exchange
algorithms for MINs. In Massini (2003) [9], Massini proposed a new optimal algorithm for
MINs, which is independent of the network topology. Do notice that the algorithms in [9]
and [13] work only forMINswith the unique path property (meaning that there is a unique
path between each pair of source and destination) and satisfying N = 2n, in which N is the
number of processors, 2 means all the switches are of size 2 × 2, and n is the number
of stages. In Padmanabhan (1991) [10], Padmanabhan proposed the generalized shuffle-
exchangenetwork (GSEN),which is a generalization of the shuffle-exchangenetwork. Since
a GSEN does not have the unique path property, the algorithms in [9] and [13] cannot be
used. The purpose of this paper is to consider the all-to-all personalized exchange problem
in GSENs. An optimal algorithm and several bounds will be proposed.

© 2010 Published by Elsevier B.V.

1. Introduction

Processors in a parallel and distributed processing system often need to communicate with other processors. The
communication among these processors could be one-to-one, one-to-many, or all-to-all. All-to-all communication can be
further classified into all-to-all broadcast and all-to-all personalized exchange. In all-to-all broadcast, each processor sends
the samemessage to all other processors; while in all-to-all personalized exchange, each processor sends a specific message
to every other processor. All-to-all personalized exchange occurs in many important applications (for example, matrix
transposition and fast Fourier transform (FFT)) in parallel and distributed computing. The all-to-all personalized exchange
problem has been extensively studied for hypercubes, meshes, and tori; see [9,13] for details. Although the algorithm for
a hypercube achieves optimal time complexity, a hypercube suffers from unbounded node degrees and therefore has poor
scalability; on the other hand, although a mesh or torus has a constant node degree and better scalability, its algorithm has
a higher time complexity. In [13], Yang and Wang had proven that a multistage interconnection network (MIN) is a better
choice for implementing all-to-all personalized exchange due to its shorter communication delay and better scalability.
Given N processors P0, P1, . . . , PN−1, an N × N MIN can be used in communication among these processors as shown in

Figs. 1 and 2, where N × N means this MIN has N inputs and N outputs. A column in a MIN is called a stage and the nodes
stages of a MIN are called switches (or switching elements or crossbars). Throughout this paper, N denotes the number of

I This research was partially supported by the National Science Council of the Republic of China under grant NSC97-2628-M-009-006-MY3.
∗ Corresponding author. Tel.: +886 3 5731767.
E-mail addresses:well.am94g@nctu.edu.tw (W.Y. Chou), cychen@mail.nctu.edu.tw, cychen@cc.nctu.edu.tw (C. Chen).

0304-3975/$ – see front matter© 2010 Published by Elsevier B.V.
doi:10.1016/j.tcs.2009.10.026

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:well.am94g@nctu.edu.tw
mailto:cychen@mail.nctu.edu.tw
mailto:cychen@cc.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2009.10.026

1670 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 1. Communications among processors using a MIN.

Fig. 2. A 10× 10 MIN which is also a 10× 10 GSEN.

a b
Fig. 3. (a) A 2× 2 switch and its subports. (b) The two possible states of a 2× 2 switch.

inputs (outputs) and n denotes the number of stages. Also, all the switches in a MIN are assumed to be of size 2×2. It is well
known that a 2 × 2 switch has only two possible states: straight and cross, as shown in Fig. 3. A shuffle-exchange network
(SEN) is also called an omega network (see [7]) and has been proposed as a popular architecture for MINs; see [3,6,10,12].
Since a SEN must satisfy N = 2n, in [10], Padmanabhan generalized it to allow N 6= 2n. More precisely, let N be an even
integer. AnN×N generalized shuffle-exchange network (GSEN) is a dlog2 Ne-stageN×N MIN such that each stage consists of
the perfect shuffle onN terminals followed byN/2 switches. TheN terminals in anN×N GSEN are numbered 0, 1, . . . ,N−1
and the perfect shuffle operation on theN terminals is the permutationπ defined byπ(i) = (2 · i+

⌊ 2·i
N

⌋
)modN, 0 ≤ i < N.

See Fig. 2 for an example. In [1,2], bidirectional GSENs are considered.
In the remaining discussion, unless otherwise specified, aMINmeans anN×N MIN and a GSENmeans anN×N GSEN. Do

notice that we will follow the convention used in [1,2,10] that a GSEN has exactly dlog2 Ne stages; dlog2 Ne is the minimum
number of stages to ensure that each input can get to each output. Based on this convention and for convenience, we will
define

n = dlog2 Ne.

Clearly, for a GSEN, its N satisfies 2n−1 < N ≤ 2n.
In this paper, an all-to-all communication algorithm is said to be optimal if it has the smallest communication delay. Now

we review previous results. Yang and Wang [13] first considered the all-to-all personalized exchange problem for MINs. In
particular, they proposed optimal all-to-all personalized exchange algorithms for a class of unique path, self-routable MINs;
for example, baseline, omega, banyan networks, and the reverse networks of these networks. Note that a MIN is unique path
if there is a unique path between each pair of source and destination and self-routable if the routing decision at a switch
depends only on the addresses of the source and the destination. The algorithms in [13] can use the stage control technique
(see [11]), which is a commonly used technique to reduce the cost of the network setting for all-to-all personalized exchange
communication. Stage control means that the states of all the switches of a stage have to be identical. With stage control,
a single control bit (0 for straight and 1 for cross), or in other words, one electronic driver circuit, can be used to control
all the switches of a stage. Thus the number of expensive electronic driver circuits needed is significantly lower than that

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1671

of individual switch control. It was pointed out by Massini in [9] that the algorithms in [13] depend on network topologies
and require pre-computation and memory allocation for Latin squares. In the same paper, Massini proposed a new optimal
algorithm, which is independent on the network topology and does not require pre-computation or memory allocation for
a Latin square. In [8], Liu et al. further generalized Massini’s algorithm to MINs with d× d switches. See also [14].
WhenN 6= 2n, it is possible to implement anN×N GSEN by using a 2n×2n SEN (recall that 2n−1 < N ≤ 2n). For example,

it is possible to implement a 514× 514 GSEN by using a 1024× 1024 SEN. A 514× 514 GSEN uses 2570 switches while its
corresponding 1024× 1024 SEN uses 5120 switches; the former saves about 50% switches than the latter. To compare the
hardware costs of a GSEN and a SEN, we calculate the numbers of switches used by an N×N GSEN and by its corresponding
2n × 2n SEN for N = 4, 6, 8, . . . , 10002. Among these 5000 N ’s,

• for 4175 (about 84%) out of them, a GSEN saves at least 10% switches than its corresponding SEN;
• for 3356 (about 67%) out of them, a GSEN saves at least 20% switches than its corresponding SEN;
• for 2537 (about 51%) out of them, a GSEN saves at least 30% switches than its corresponding SEN;
• for 1632 (about 33%) out of them, a GSEN saves at least 40% switches than its corresponding SEN.

Therefore a GSEN outperforms a SEN in hardware cost.
Do notice that although the algorithms in [9] and [13] are optimal, they work only for MINs that have the unique path

property and satisfy N = 2n. Since a GSEN is not a unique path MIN, the algorithms in [9] and [13] cannot be used. To our
knowledge, no one has studied the all-to-all personalized exchange problem for MINs which do not have the unique path
property and do not satisfy N = 2n. The purpose of this paper is to consider the all-to-all personalized exchange problem
for GSENs. In particular, we propose an optimal all-to-all personalized exchange algorithm for GSENs. This algorithmworks
for all N with N ≡ 2 (mod 4). Let R(N) and Rsc(N) denote the minimum number of network configurations (defined in
the next section) required to fulfill an all-to-all communication in a GSEN when the stage control technique is not assumed
and assumed, respectively. Do notice that R(N) and Rsc(N) are closely related to the smallest communication delay. In
particular, for a GSEN, the smallest communication delay of any all-to-all communication algorithm is θ(R(N) + log2 N)
and θ(Rsc(N)+ log2 N)when the stage control technique is not assumed and assumed, respectively. The optimal algorithms
in [9] and [13] imply thatR(2n) = Rsc(2n) = 2n. In this paper, we will prove that, for 2n−1 < N ≤ 2n, the followings hold:

• N ≤ R(N) ≤ Rsc(N) ≤ 2n;
• Rsc(N) = 2n;
• R(N) = N if N ≡ 2 (mod 4);
• R(N) = 2n if k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n;
• R(20) = 24.

This paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we prove N ≤ R(N) ≤
Rsc(N) = 2n. In Section 4,we propose an optimal all-to-all personalized exchange algorithm for GSENswithN ≡ 2 (mod 4)
and prove that R(N) = N if N ≡ 2 (mod 4). In Section 5, we focus on GSENs with N ≡ 0 (mod 4) and obtain several
bounds. Some discussions and concluding remarks are given in the final section.

2. Preliminaries

In a GSEN, the switches are aligned in n stages: stage 0, stage 1, . . . , stage n−1, with each stage consists of N/2 switches.
The network configuration of a GSEN is defined by the states of its switches. Since a GSEN has (N/2)×n switches, its network
configuration can be represented by an (N/2) × n matrix in which each entry is defined by the state of its corresponding
switch. For example, the network configuration of the GSEN in Fig. 4(a) is shown in Fig. 4(b).
A permutation of a MIN is one-to-one mapping between the inputs and outputs. For a MIN, if there is a permutation that

maps input i to output p(i), where p(i) ∈ {0, 1, . . . ,N − 1} for i = 0, 1, . . . ,N − 1, then we will use(
0 1 · · · N − 1
p(0) p(1) · · · p(N − 1)

)
or simply

p(0) p(1) · · · p(N − 1)

to denote the permutation. Given the network configuration of a MIN, a permutation between the inputs and outputs can
be obtained. For example, the network configuration shown in Fig. 4(a) maps input 0 to output 9, input 1 to output 7, input
2 to output 5, . . . , and input 9 to output 0; thus this network configuration obtains the permutation 9 7 5 3 8 1 6 4 2 0.
The following conventions are used in the remaining part of this paper. Terminal i (j) is assumed on the left-hand (right-

hand) side of the network and therefore is an input (output) processor. An (i, j)-request denotes a request for sending a
message from i to j. An (i, j)-path denotes a path between i and j. Obviously, an (i, j)-request can be fulfilled by an (i, j)-path.
Consider an (i, j)-request and an (i, j)-path and see Fig. 5 for an illustration. An (i, j)-path P can be described by a sequence

of labels that label the successive links on this path; a number whose binary representation corresponds to such a sequence
is called a control tag or tag or path descriptor [1,2,4,10]. A control tag can be used as a header for routing a message: each
successive switch uses the first element in the binary representation of the control tag to route the message, and then

1672 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

a b
Fig. 4. (a) A 10× 10 GSEN in which stage control is used. (b) The network configuration of the GSEN in (a).

Fig. 5. An (i, j)-path P and the subports on P .

discards it. Take Fig. 4(a) for an example. Then i = 2 can get to j = 5 by using 13 = (1101)2, which means that the (2, 5)-
request can be fulfilled by the path via subport 1 at stage 0, subport 1 at stage 1, subport 0 at stage 2, and subport 1 at
stage 3. A routing algorithm is called tag-based if it uses a control tag to route a message. Most of the routing algorithms for
MINs are tag-based, including those for GSENs. The routing algorithms proposed in this paper are also tag-based. Therefore,
whenever a message is sent out, a control tag will be equipped with it.
Again, see Fig. 5. When a message is sent from i to j along P , the message enters a switch at stage n−1−` via subport b`

and leaves the switch via subport f`. On the other hand, when a message is sent from j to i along P , then the message enters
a switch at stage n−1−` via subport f` and leaves the switch via subport b`. The control tag

F = fn−12n−1 + fn−22n−2 + · · · + f020

is called a forward control tag for i to get to j. Most researchers simply called a forward control tag a control tag; here we
add the word ‘‘forward’’ to specify that this control tag is used for sending a message in the forward direction, i.e., from the
left-hand side of the GSEN to the right-hand side. Now let

B = bn−12n−1 + bn−22n−2 + · · · + b020.

B is called a backward control tag and it is used for sending a message in the backward direction (from j to i). Clearly,
0 ≤ F < 2n and 0 ≤ B < 2n.
Suppose F is given. In this paper, P(i, F) denotes the path started from i and using the forward control tag F . Also, B(i, F)

denotes the backward control tag obtained from the path P(i, F). Let

BF = {B(i, F) | i = 0, 1, . . . ,N − 1}.

In the remaining discussion,⊕ denotes the bitwise XOR operation. As a reference,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0.

If U = (un−1 un−2 · · · u0)2 and V = (vn−1 vn−2 · · · v0)2, then we define

U ⊕ V = (un−1 ⊕ vn−1 un−2 ⊕ vn−2 · · · u0 ⊕ v0)2.

3. The proof of N ≤ R(N) ≤ Rsc(N) = 2n

The purpose of this section is to prove that N ≤ R(N) ≤ Rsc(N) = 2n. We first prove two lemmas.

Lemma 3.1. N ≤ R(N) ≤ Rsc(N) ≤ 2n.

Proof. Given a network configuration, a permutation can be obtained. Thus a network configuration can be used to send N
(personalized) messages simultaneously. The inequality N ≤ R(N) thus follows from that fact that N2 messages have to be
sent to fulfill all-to-all personalized exchange and each network configuration can send only N messages. The inequality
R(N) ≤ Rsc(N) is obvious. The inequality Rsc(N) ≤ 2n follows from the fact that a GSEN has at most 2n network
configurations when the stage control technique is assumed. �

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1673

Fig. 6. Unique paths and multipaths.

In this paper, we call the process of transmitting all the messages to their next stage(s) a round. Thus in an n-stage MIN,
it takes n rounds for a message to arrive its destination. In [13], Yang and Wang proved that the communication delay of
all-to-all personalized exchange in a (log2 N)-stageMIN isΩ(N+log2 N). This is due to the fact that each of theN processors
(say, processor j) has to receive N messages and it takes log2 N rounds for the first message to arrive j and N − 1 rounds for
the remaining N − 1 messages to arrive j. By similar arguments, we have the following lemma and its proof is omitted.

Lemma 3.2. The communication delay of all-to-all communication in a GSEN isΩ(N + n), or equivalently,Ω(N + log2 N).

Do notice that although Ω(N + n) = Ω(N), we will still write Ω(N + n) instead of Ω(N) to emphasize that it takes n
rounds for the first message to arrive its destination. In [5], Lan et al. considered GSENswith switches of size d×d. By setting
d = 2, the following lemma can be obtained.

Lemma 3.3 ([5]). Given i and F , the destination j of the path P(i, F) is determined by

j = (i · 2n + F) mod N.

Moreover, the backward control tag B of the path P(i, F) is given by

B =
⌊
i · 2n + F
N

⌋
.

When the stage control technique is assumed, the network configuration of a GSEN can be represented by a number
as follows. Let c` denote the state, 0 for straight and 1 for cross, of all the switches at stage n−1−`. Then the network
configuration of the GSEN can be represented by the number

C = cn−12n−1 + cn−22n−2 + · · · + c020

or by the binary number (cn−1 cn−2 · · · c0)2. For example, the network configuration of the GSEN in Fig. 4(a) can be
represented by 9 or by (1001)2. Clearly, 0 ≤ C < 2n. Now we give the relation between F (a forward control tag), B
(its corresponding backward control tag) and C (the network configuration) .

Lemma 3.4. When the stage control technique is assumed, F and B together uniquely determine the network configuration C and

C = B⊕ F .

Proof. Consider stage n−1−`. Since the stage control technique is assumed, all switches in stage n−1−` are of the same
state. Let C = cn−12n−1 + cn−22n−2 + · · · + c020 be the network configuration and see Fig. 5. At stage n−1−`, a message
enters subport b` and leaves subport f`. If b` = f`, then the state of the switch is straight; hence c` = 0 = b`⊕ f`. If b` differs
from f` (in this case, (b`, f`) is (0, 1) or (1, 0)), then the state of the switch is cross; hence c` = 1 = b`⊕ f`. From the above,
C = B⊕ F . �

We call a path a unique path if it is the unique path between its source and destination. The following lemma is important.

Lemma 3.5. For all 0 ≤ i < N, path P(i, F) is a unique path if and only if 2n − N ≤ F < N; in particular, P(i, 2n−1) and
P(i, 2n−1 + 1) are unique paths. (See Fig. 6 for illustration.)

Proof. Let i and j be the source and destination of amessage. Suppose there are two distinct paths P(i, F1), P(i, F2) from i to j.
Then, by Lemma 3.3, the difference between F1 and F2 isN . Without loss of generality, assume that F2−F1 = N . Since F1 ≥ 0,
F2 ≥ N must hold. Since F2 < 2n, it follows that F1 < 2n − N . Thus P(i, F) is a unique path if and only if 2n − N ≤ F < N .
Since 2n−N ≤ 2n−1 < N , P(i, 2n−1) is a unique path. Since 2n−N ≤ 2n−1+ 1 < N , P(i, 2n−1+ 1) is also a unique path. �

Lemma 3.6. B2n−1 = B2n−1+1.

Proof. Let 0 ≤ i < N . Let bn−1fn−1bn−2fn−2 · · · b0f0 be the sequence of subports passed bypath P(i, 2n−1); see Fig. 5. Similarly,
let b′n−1f

′

n−1b
′

n−2f
′

n−2 · · · b
′

0f
′

0 be the sequence of subports passed by path P(i, 2
n−1
+ 1). Since the binary representations of

2n−1 and 2n−1 + 1 differ only at their rightmost bits, bn−1fn−1bn−2fn−2 · · · b0f0 and b′n−1f
′

n−1b
′

n−2f
′

n−2 · · · b
′

0f
′

0 are identical
except that f0 6= f ′0 . Hence B(i, 2

n−1) = bn−1bn−2 · · · b0 = b′n−1b
′

n−2 · · · b
′

0 = B(i, 2
n−1
+ 1). Since B2n−1 = {B(i, 2

n−1) | i =
0, 1, . . . ,N − 1} andB2n−1+1 = {B(i, 2

n−1
+ 1) | i = 0, 1, . . . ,N − 1}, we have this lemma. �

1674 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 7. Applying alternating stage control on a 10× 10 GSEN; the shown network configuration is A = 9 = (1001)2 .

For convenience, if a number is in {0, 1, 2, . . . , 2n − 1} but not in BF , then we call it a hole of BF . The following lemma
shows that the elements ofBF are distributed very uniformly in {0, 1, 2, . . . , 2n − 1}.

Lemma 3.7. For all F ∈ {0, 1, 2, . . . , 2n − 1},BF has no two consecutive holes.

Proof. We will prove this lemma by showing that B(0, F) ≤ 1, B(N − 1, F) ≥ 2n − 2, and

B(i− 1, F)+ 1 ≤ B(i, F) ≤ B(i− 1, F)+ 2 for i = 1, 2, . . . ,N − 1.

Recall that 2n−1 < N ≤ 2n and 0 ≤ F < 2n. By Lemma 3.3, B(0, F) =
⌊ F
N

⌋
≤ 1. Also, B(N − 1, F) =

⌊
(N−1)·2n+F

N

⌋
≥⌊

(N−1)·2n

N

⌋
≥ 2n − 2. Finally, consider i, where 1 ≤ i ≤ N − 1. By Lemma 3.3, B(i − 1, F) + 1 =

⌊
(i−1)·2n+F

N

⌋
+ 1 =⌊

i·2n+F
N −

2n
N

⌋
+ 1 ≤

⌊
i·2n+F
N

⌋
= B(i, F) =

⌊
(i−1)·2n+F

N +
2n
N

⌋
≤

⌊
(i−1)·2n+F

N

⌋
+ 2 = B(i− 1, F)+ 2. �

Now we are ready to prove the main result of this section.

Theorem 3.8. N ≤ R(N) ≤ Rsc(N) = 2n.

Proof. By Lemma 3.1, it suffices to prove thatRsc(N) ≥ 2n. When the stage control technique is assumed, there are only 2n
possible network configurations: 0, 1, . . . , 2n − 1. Thus to prove thatRsc(N) ≥ 2n, it suffices to prove that each of the 2n
possible network configurations is required for every processor to receive N messages.
When the stage control technique is assumed, the network configuration C can be determined by an arbitrary path P set

up by C . Moreover, if F and B are the forward and backward control tags used by P , then Lemma 3.4 tells us that C = B⊕ F .
In the following, we will prove that for each C in {0, 1, . . . , 2n− 1}, at least one of the paths set up by C is a unique path and
therefore C must be used in all-to-all personalized exchange. Suppose to the contrary there is a Ĉ in {0, 1, . . . , 2n− 1} such
that none of the paths set up by Ĉ is a unique path. Then consider 2n−1 ⊕ Ĉ and let B̂ = 2n−1 ⊕ Ĉ; consider (2n−1 + 1)⊕ Ĉ
and let B̂′ = (2n−1+1)⊕ Ĉ . We claim that B̂ 6∈ B2n−1 and B̂′ 6∈ B2n−1+1. Suppose this clam is not true. Then either B̂ ∈ B2n−1

or B̂′ ∈ B2n−1+1 or both. Suppose B̂ ∈ B2n−1 . Since Ĉ = B̂⊕2
n−1, by Lemma 3.5, Ĉ conducts a unique path, which contradicts

with the assumption that none of the paths set up by Ĉ is a unique path. The case that B̂′ ∈ B2n−1+1 can be proven similarly.
Now we have the claim that B̂ 6∈ B2n−1 and B̂′ 6∈ B2n−1+1. By Lemma 3.6, B2n−1 =B2n−1+1. Thus B̂′ 6∈ B2n−1 . Since B̂ and B̂′
differ by 1, they are two consecutive holes inB2n−1 ; this contradicts with Lemma 3.7. Thus for each C in {0, 1, . . . , 2

n
− 1},

at least one of the paths set up by C is a unique path and therefore C must be used in all-to-all personalized exchange. So
Rsc(N) ≥ 2n. �

4. All-to-all personalized exchange of GSENs with N ≡ 2 (mod 4)

Throughout this section, unless other specified, subports 0 and 1 are the subports 0 and 1 on the right-hand side of a
switch. We will propose an optimal all-to-all personalized exchange algorithm for GSENs with N ≡ 2 (mod 4) and prove
that N = R(N) < Rsc(N) = 2n if N ≡ 2 (mod 4). We first introduce a variation of the stage control technique and we call
it alternating stage control, meaning that the states of the switches of a stage alternate between straight and cross. See Fig. 7
for an illustration.
When alternating stage control is used, the network configuration of a GSEN can be represented by a number as follows.

Let a` denote the states of the switches at stage n−1−` such that

• a` = 0 means the states are 0, 1, 0, 1, and so on;
• a` = 1 means the states are 1, 0, 1, 0, and so on.

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1675

a b c d e

Fig. 8. (a) and (b): a stage in a 10×10 GSENwhen a` = 0. (c) and (d): a stage in a 10×10 GSENwhen a` = 1. (e) An illustration for the proof of Property (∗).

The network configuration of the GSEN can be represented by the number

A = an−12n−1 + an−22n−2 + · · · + a020

or (an−1 an−2 . . . a1 a0)2 in the binary form. Clearly, 0 ≤ A < 2n.We will call A an alternating configuration. When N ≡ 2
(mod 4) and alternating stage control is used, the N input terminals and N output terminals of stage n−1−` have the
following property.

Property (∗) (see Fig. 8 (a)–(d) for an illustration).

1. If a` = 0, then Even
0
−→ Even, Odd

1
−→ Odd. That is, every even-numbered input terminal is connected to an even-

numbered output terminal via subport 0, and every odd-numbered input terminal is connected to an odd-numbered output
terminal via subport 1.

2. If a` = 1, then Even
1
−→ Odd, Odd

0
−→ Even. That is, every even-numbered input terminal is connected to an odd-numbered

output terminal via subport 1, and every odd-numbered input terminal is connected to an even-numbered output terminal via
subport 0.

Proof. Consider an arbitrary stage of a GSEN and an arbitrary switch y of this stage; see Fig. 8(e) for an illustration. Suppose
input terminals x0 and x1 are connected to subports 0 and 1 of switch y, respectively. By the definition of a GSEN, x0 = y and
x1 = y+ N

2 hold. Note that
N
2 is an odd number since N ≡ 2 (mod 4). Since

N
2 is odd, one of x0 and x1 is even and the other

one is odd. Now consider the output terminals z0 and z1 of switch y. Then z0 is even and z1 is odd.
Suppose a` = 0 and y is even. Then x0 is even (by the fact that x0 = y) and x0 is connected to z0 (due to the setting of a`).

Thus every even-numbered input terminal is connected to an even-numbered output terminal via subport 0. Now suppose
a` = 0 and y is odd. Then x0 is odd (by the fact that x0 = y) and x0 is connected to z1 (due to the setting of a`). Thus every
odd-numbered input terminal is connected to an odd-numbered output terminal via subport 1. The case of a` = 1 can be
proven similarly. �

Do notice that Property (∗) holds only when N ≡ 2 (mod 4) holds. Now we give other properties of alternating stage
control.

Lemma 4.1. Suppose N ≡ 2 (mod 4) and alternating stage control is used. Then the following statements hold:
1. The forward control tags of even-numbered inputs are identical.
2. The forward control tags of odd-numbered inputs are identical.

Proof. Let A = (an−1 an−2 · · · a0)2 be the alternating configuration used. By Property (∗), all the messages sent out from
inputs 0, 2, 4, . . . , N − 2 are via subports 0 of switches at stage n−1−` if a` = 0 and via subports 1 of switches at stage
n−1−` if a` = 1. Thus statement 1 holds. By Property (∗), all the messages sent out from inputs 1, 3, 5, . . . , N − 1 are via
subports 1 of switches at stage n−1−` if a` = 0 and via subports 0 of switches at stage n−1−` if a` = 1. Thus we have
statement 2. �

Theorem 4.2. Suppose N ≡ 2 (mod 4) and alternating stage control is used. Let A be a given alternating configuration, F be the
forward control tag of any even-numbered input, and F be the forward control tag of any odd-numbered input. Then:
(i) F ⊕ F = (11 · · · 1)2;
(ii) A = F ⊕

⌊ F
2

⌋
;

(iii) F = A⊕
⌊ A
2

⌋
⊕

⌊
A
22

⌋
⊕ · · · ⊕

⌊
A
2n−1

⌋
.

1676 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Proof. First consider (i). Let F = (fn−1 fn−2 · · · f0)2 and A = (an−1 an−2 · · · a0)2. By Property (∗), if messages from even-
numbered inputs are via subport f` at stage n−1−`, then messages from inputs odd are via subport 1−f` at stage n−1−`,
(` = n− 1, n− 2, . . . , 0). Thus F ⊕ F = (11 · · · 1)2. Now consider (ii). Clearly, an−1 = fn−1. For ` = n− 2, n− 3, . . . , 0, by
Property (∗), we have:

• If a` = 0, then f` = 0 whenever f`+1 = 0 and f` = 1 whenever f`+1 = 1.
• If a` = 1, then f` = 0 whenever f`+1 = 1 and f` = 1 whenever f`+1 = 0.

Thus a` = f` ⊕ f`+1 for ` = n− 2, n− 3, . . . , 0. Therefore

A = (an−1 an−2 . . . a1 a0)2 = (fn−1 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2
= (fn−1⊕0 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2

= (fn−1 fn−2 fn−3 . . . f0)2⊕(0 fn−1 fn−2 . . . f1)2 = F ⊕
⌊
F
2

⌋
.

Finally, consider (iii). Then f` = a`⊕a`+1⊕· · ·⊕an−1 for ` = n−2, n−3, . . . , 0. Thus F = A⊕
⌊ A
2

⌋
⊕

⌊
A
22

⌋
⊕· · ·⊕

⌊
A
2n−1

⌋
. �

Theorem 4.2(ii) gives a one-to-one correspondence between A and F ; for convenience, let AF denote the alternating
configuration corresponding to F . When F = k,

Ak = k⊕
⌊
k
2

⌋
.

Lemma 4.3. If N ≡ 2 (mod 4) and the given GSEN is set by alternating configuration Ak, then the forward control tags of
even-numbered inputs are k and the forward control tags of odd-numbered inputs are 2n − 1− k.
Proof. This lemma follows from Lemma 4.1, Ak = k⊕

⌊ k
2

⌋
, and Theorem 4.2(i). �

Now we prove a theorem, which is the foundation of our algorithms.
Theorem 4.4. Suppose N ≡ 2 (mod 4). Then the N alternating configurations A0, A1, . . . , AN−1 ensure that every input i can
get to every output j; in other words, A0, A1, . . . , AN−1 can fulfill an all-to-all communication in a GSEN.
Proof. Let i be an arbitrary input. For k = 0, 1, . . . ,N−1, let jk be the destination of iwhen the network configuration is set
according to Ak. First consider the case that i is even. By Lemmas 3.3 and 4.3, jk = (i · 2n+ k) mod N . Since A0, A1, . . . , AN−1
ensure that k varies from 0 to N − 1 and jk = (i · 2n + k) mod N , it follows that i can get to every output. Now consider the
case that i is odd. By Lemmas 3.3 and 4.3, jk = (i · 2n+ 2n− 1− k) mod N . Since A0, A1, . . . , AN−1 ensure that k varies from
0 to N − 1 and jk = (i · 2n + 2n − 1− k) mod N , it follows that i can get to every output. �

For example, the 10 alternating configurations A0 = 0, A1 = 1, A2 = 3, A3 = 2, A4 = 6, A5 = 7, A6 = 5, A7 = 4, A8 =
12, A9 = 13 can fulfill an all-to-all communication in a 10 × 10 GSEN. Note that A0, A1, . . . , AN−1 are not the only way to
fulfill an all-to-all communication in a GSEN. In fact, any N consecutive integers in 0, 1, . . . , 2n − 1 can fulfill an all-to-all
communication.
The purpose of this paper is to propose an optimal all-to-all personalized exchange algorithm for GSENs. However, since

there is no all-to-all broadcast algorithm for GSENs, we will also propose one. Therefore, in the following, three algorithms
will be proposed. The first algorithm fulfills all-to-all broadcast in GSENs. The second algorithm gives a preprocessing of the
third algorithm. And the third algorithm fulfills all-to-all personalized exchange in GSENs.

Algorithm 1 : an algorithm to fulfill all-to-all broadcast in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: Processor i prepares a broadcast message;
3: for k = 0 to N − 1 do in sequential
4: Equip the broadcast message of processor iwith the forward control tag k if i is even and 2n − 1− k if i is odd;
5: Transmit the message;
6: endfor
7: endfor

The correctness of Algorithm 1 follows from Lemma 4.3 and Theorem 4.4. The communication delay of Algorithm 1 is
O(N + n) since each of the N processors can receive its first message in n rounds and receive the remaining N − 1 messages
in N − 1 rounds. By Lemma 3.2, Algorithm 1 is optimal.
All-to-all personalized exchange is muchmore complicated than all-to-all broadcast. In all-to-all personalized exchange,

a source has to prepare a personalized message for each of its N destinations. Therefore, before a message is sent out, the
source of the message has to know which output will be its current destination so that a personalized message can be
prepared. Algorithm 2 is designed to overcome this difficulty. This algorithm constructs a matrix called destination matrix
D = (di,k) so that di,k = j if and only if the message sent out from processor i at round k arrives processor j.
The following theorem proves the correctness and gives the time complexity of Algorithm 2.

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1677

Algorithm 2 : an algorithm to construct the destination matrix D = (di,k) for a GSEN with N ≡ 2 (mod 4)
1: n← dlog2 Ne;
2: power ← 2n;
3: for each processor i (0 ≤ i < N) do in sequential
4: if i is even then m← (i · power) mod N; else m← ((i+ 1) · power − 1) mod N; endif
5: for k = 0 to N − 1 do in sequential
6: if i is even then di,k ← (m+ k) mod N; else di,k ← (m− k) mod N; endif
7: endfor
8: endfor

Theorem 4.5. Algorithm 2 constructs a matrix D = (di,k) so that di,k = j if and only if the message sent out from processor i at
round k arrives processor j. Moreover, it takes O(N2) time.

Proof. To prove the correctness of Algorithm 2, it suffices to show that themessage sent out from processor i at round k (see
Algorithm 3 for round k) arrives processor (m + k) mod N if i is even and arrive processor (m − k) mod N if i is odd. Note
that in Algorithm 3, we will use A0, A1, . . . , AN−1 to fulfill all-to-all personalized exchange. By Lemma 4.3, Ak contributes an
even-numbered processor i the forward control tag k and it contributes an odd-numbered processor i the forward control
tag 2n − 1− k. Suppose i is even. Then at round k, the message sent out from processor iwill be equipped with the forward
control tag k; by Lemma 3.3, the destination is

j = (i · 2n + k) mod N = (i · power+ k) mod N = (m+ k) mod N.

Now suppose i is odd. By Lemma 4.3, the message sent out from processor i will be equipped with the forward control tag
2n − 1− k; by Lemma 3.3, the destination is

j = (i · 2n + 2n − 1− k) mod N = ((i+ 1) · power− 1− k) mod N = (m− k) mod N.

It is not difficult to see that Algorithm 2 takes O(N2) time. We have this theorem. �

Consider the GSEN in Fig. 2 for an example of Algorithm 2. Then the matrix D constructed is:

D =



0 1 2 3 4 5 6 7 8 9
1 0 9 8 7 6 5 4 3 2
2 3 4 5 6 7 8 9 0 1
3 2 1 0 9 8 7 6 5 4
4 5 6 7 8 9 0 1 2 3
5 4 3 2 1 0 9 8 7 6
6 7 8 9 0 1 2 3 4 5
7 6 5 4 3 2 1 0 9 8
8 9 0 1 2 3 4 5 6 7
9 8 7 6 5 4 3 2 1 0


.

Note that the matrix D needs to be constructed only once and therefore can be viewed as one of the system parameters.
Thus the time complexity of Algorithm 2 is not included in the communication delay. Now we are ready to propose our
all-to-all personalized exchange algorithm; see Algorithm 3.

Algorithm 3 : an algorithm to fulfill all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: for k = 0 to N − 1 do in sequential //comment: round k
3: Processor i prepares a personalized message for processor di,k;
4: Equip the personalized message with the forward control tag k if i is even and 2n − 1− k if i is odd;
5: Transmit the message;
6: endfor
7: endfor

The following theorem proves the correctness and gives the time complexity of Algorithm 3.

Theorem 4.6. Algorithm 3 fulfills all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4). Moreover, it takes O(N + n)
time.

Proof. Algorithm 3 prepares a personalized message according to the matrix D, which is constructed by Algorithm 2. Thus,
by Theorems 4.4 and 4.5, Algorithm3 fulfills all-to-all personalized exchange for GSENswithN ≡ 2 (mod 4). This algorithm
takes O(N + n) time since each of the N processors can receive its first personalized message in n rounds and receive the
remaining N − 1 personalized messages in N − 1 rounds. �

1678 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 9. An example of Algorithm 3.

By Lemma 3.2 and Theorem 4.6, we have the following corollary.

Corollary 4.7. Algorithm 3 is optimal.

Fig. 9 shows how Algorithm 3 fulfills all-to-all personalized exchange for the GSEN in Fig. 2. Take round 2 in Fig. 9
for an example. The 0-1 bits 0011 above stages 0, 1, 2, 3 denote the alternating configuration for round 2, which is
(0011)2 = 3 = A2. The numbers on the left-hand side denote the destinations of personalized messages. Thus, at round 2,
processor 0 sends a personalizedmessage to processor 2, processor 1 sends a personalizedmessage to processor 9, processor
2 sends a personalizedmessage to processor 4, . . . , and processor 9 sends a personalizedmessage to processor 7. Recall that
A0 = 0, A1 = 1, A2 = 3, A3 = 2, A4 = 6, A5 = 7, A6 = 5, A7 = 4, A8 = 12, A9 = 13 can fulfill an all-to-all communication
in a 10× 10 GSEN. The 10 alternating configurations and the destinations of the messages are shown on the left-hand side
of the GSEN for rounds 0, 1, . . . , 9 in Fig. 9.
Note that it is possible to combine Algorithms 2 and 3 and to avoid the construction of matrix D. See Algorithm 4 below.

Now we end this section by proving the following theorem.

Theorem 4.8. N = R(N) < Rsc(N) = 2n if N ≡ 2 (mod 4).

Proof. Since Algorithm 3 can fulfill all-to-all personalized exchange by using N network configurations, namely,
A0, A1, . . . , AN−1, we have R(N) ≤ N . By Theorem 3.8 and by the fact that R(N) ≤ N for N ≡ 2 (mod 4), we have
this theorem. �

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1679

Algorithm 4 : yet another algorithm to fulfill all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: n← dlog2 Ne;
3: power ← 2n;
4: if i is even then m← (i · power) mod N; else m← ((i+ 1) · power − 1) mod N; endif
5: for k = 0 to N − 1 do in sequential //comment: round k
6: if i is even then j← (m+ k) mod N; else j← (m− k) mod N; endif
7: Processor i prepares a personalized message for processor j;
8: Equip the personalized message with the forward control tag k if i is even and 2n − 1− k if i is odd;
9: Transmit the message;
10: endfor
11: endfor

Fig. 10. A 12× 12 GSEN, switches s0 and s1 , terminals t0 and t1 , andQ = {Q0,Q1,Q2}.

5. The value of R(N) when N ≡ 0 (mod 4)

The purpose of this section is to obtain R(N) for all N ≡ 0 (mod 4). Recall that each stage of a GSEN consists of the
perfect shuffle on N terminals followed by N/2 switches, the N terminals are numbered 0, 1, . . . , N − 1, and the perfect
shuffle operation on the N terminals is the permutation π defined by π(i) = (2 · i +

⌊ 2·i
N

⌋
) mod N, 0 ≤ i < N.We first

have a lemma.

Lemma 5.1. Suppose k ≥ 2, N ≡ 0 (mod 2k), and N 6≡ 0 (mod 2k+1). Let i be an arbitrary input of a given N × N GSEN. If
the forward control tag F = fn−12n−1 + fn−22n−2 + · · · + f020 used by i starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k),
then the terminal reached by i immediately after stage k−1 is (i2k + 2k−1 − 1) mod N.

Proof. Each stage of a GSEN has N/2 switches; we suppose these N/2 switches are labeled 0, 1, . . . ,N/2− 1. Consider the
path P(i, F) and the switches and terminals on the path. Let s` be the label of the switch at stage ` reached by P(i, F). Let
t` be the terminal immediately after stages ` that is reached by P(i, F). See Fig. 10 for an illustration of the N = 12 and
k = 2 case. By the perfect shuffle operation, s0 = i mod N/2. Since fn−1 = 0, we have t0 = 2s0 = (2i) mod N. Again, by the
perfect shuffle operation, s1 = t0 mod N/2 = (2i) mod N/2. Since fn−2 = 1, we have t1 = 2s1 + 1 = (4i + 1) mod N =
(i22 + 21 − 1) mod N. In general, we assume ` ≥ 1. Then we have s` = t`−1 mod N/2 and t` = 2s` + fn−1−`. Continuing in
this way, we have

tk−1 = (i2k + fn−12k−1 + · · · + fn−k20) mod N = (i2k + 2k−2 + · · · + 20) mod N = (i2k + 2k−1 − 1) mod N.

Hence this lemma holds. �

For r = 0, 1, . . . , N
2k
− 1, let Qr denote the terminal r2k + 2k−1 − 1 immediately after stage k−1 and see Fig. 10 for an

illustration of the N = 12 and k = 2 case. LetQ = {Qr | r = 0, 1, . . . , N2k − 1}. We say a routing path passes throughQ if it
passes through one of the terminals inQ.

Lemma 5.2. Suppose k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and consider an N×N GSEN. A routing path passes through
Q if and only if the forward control tag F = fn−12n−1+ fn−22n−2+· · ·+ f020 used by this path starts with fn−1 = 0 and fn−t = 1
(for t = 2, 3, . . . , k).

1680 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Proof. Assume that the given routing path is from input i. Then this routing path is the path P(i, F).
(Necessity) First suppose P(i, F) passes through the terminal Qr inQ. Then by the perfect shuffle operation, we have

(i2k + fn−12k−1 + · · · + fn−k) mod N = r2k + 2k−1 − 1.

Since 2k|N , we can take modulo 2k for both sides of the above equation and obtain

(i2k + fn−12k−1 + · · · + fn−k mod N) mod 2k = (r2k + 2k−1 − 1) mod 2k = 2k−1 − 1,

which implies fn−12k−1 + fn−22k−2 + · · · + fn−k = 2k−1 − 1, i.e., fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k).
(Sufficiency) Suppose the forward control tag F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k). Then by

Lemma 5.1, the terminal reached by i immediately after stage k−1 will be (i2k + 2k−1 − 1) mod N , which is Qi mod N
2k
.

Therefore P(i, F) passes throughQ. �

Recall that 2n−1 < N ≤ 2n. The following lemma requires N to satisfy 2n−1 + 2n−k ≤ N ≤ 2n.

Lemma 5.3. Suppose k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and consider an N × N GSEN. If 2n−1 + 2n−k ≤ N ≤ 2n
and the forward control tag F = fn−12n−1 + fn−22n−2 + · · · + f020 used by a path starts with fn−1 = 0 and fn−t = 1 (for
t = 2, 3, . . . , k), then this path is a unique path.

Proof. Note that if F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k), then 2n−1 − 2n−k ≤ F < 2n−1. Assume that the
given routing path is from input i. Then this routing path is the path P(i, F). By Lemma 3.5, P(i, F) is a unique path if and
only if 2n − N ≤ F < N . Since

2n − N ≤ 2n − 2n−1 − 2n−k = 2n−1 − 2n−k ≤ F < 2n−1 < N,

P(i, F) is a unique path for each 2n−1 − 2n−k ≤ F < 2n−1. Hence this lemma holds. �

Now we are ready to propose our result forR(N)with N ≡ 0 (mod 4).

Theorem 5.4. R(N) = Rsc(N) = 2n if k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n.

Proof. Assume k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n. By Theorem 3.8, it suffices
to prove that R(N) ≥ 2n. In any all-to-all communication of a GSEN, a total of N2 routing paths have to be established.
Let i be an arbitrary input and let F = fn−12n−1 + fn−22n−2 + · · · + f020 be an arbitrary forward control tag such that F
starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k). Since F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k),
we have 2n−1 − 2n−k ≤ F < 2n−1 and there are a total of 2n−k such F ’s. By Lemma 5.3, P(i, F) is a unique path. Since
2n−1 − 2n−k ≤ F < 2n−1, the number of such unique paths P(i, F) is N · 2n−k. LetU denote the set of these N · 2n−k unique
paths. Then, in any all-to-all communication, all of the paths in U must appear. By Lemma 5.2, all of the paths in U will
pass throughQ. Recall that given a network configuration, a permutation between the inputs and outputs can be obtained.
Therefore, given a network configuration, N routing paths can be established. By Lemma 5.1, any network configuration can
establish only N/2k routing paths inU. ThereforeR(N) ≥ N·2n−k

N/2k
= 2n. �

By Theorem 5.4, R(12) = 16, R(24) = 32, R(28) = 32, R(40) = 64, R(80) = 128, and R(144) = 256. The first
R(N) that cannot be determined by Theorems 4.8 and 5.4 is R(20); we will determine it after introducing a variation of
the alternating stage control technique; we call it doubly alternating stage control, meaning that the states of the switches of
a stage alternate between two straight states and two cross states. The network configuration obtained by doubly alternating
stage control is called a doubly alternating configuration and it can be represented by the number

A′ = a′n−12
n−1
+ a′n−22

n−2
+ · · · + a′02

0

as follows. Let a′` denote the states of the switches at stage n−1−` such that

• a′` = 0 means the states are 0, 0, 1, 1, 0, 0, 1, 1, and so on.
• a′` = 1 means the states are 1, 1, 0, 0, 1, 1, 0, 0, and so on.

Obviously, 0 ≤ A′ < 2n. Now we are ready to determineR(20).

Theorem 5.5. R(20) = 24.

Proof. We first prove that R(20) ≥ 24. In any all-to-all communication of a 20 × 20 GSEN, a total of 202 = 400 routing
paths have to be established. To proveR(20) ≥ 24, we claim that 400 routing paths are not sufficient to fulfill an all-to-all
communication in a 20 × 20 GSEN and at least 400 + 80 = 480 routing paths have to be established in order to fulfill an
all-to-all communication. If this claim is true, then since a network configuration can establish only 20 routing paths, we
haveR(20) ≥ 480

20 = 24. Now we prove this claim.
Let i be an arbitrary input and let F = fn−12n−1 + fn−22n−2 + · · · + f020 be an arbitrary forward control tag. By

Lemma 3.5, P(i, F) is a unique path if and only if 12 ≤ F ≤ 19. Hence each input i contributes 8 unique paths P(i, 12),
P(i, 13), . . . , P(i, 19). Thus there are a total of 160 unique paths; we illustrate all of these 160 unique paths in Fig. 11. In
this proof, states of switches at stage 2 play an important role. Denote the 10 switches at stage 2 by S0, S1, . . . , S9. Now we

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1681

Fig. 11. The 160 unique paths in a 20× 20 GSEN; each input i contributes 8 unique paths.

define types 00, 01, 10, and 11, according to the connection inside a switch at stage 2 as follows. A path is said to be of type
xy, where x,y ∈ {0,1}, if the connection inside the switch (passed by the path) at stage 2 is from subport x to subport y. The
following two facts can be observed from Fig. 11.
Fact 1: All of the unique paths passing through S0, S4, and S8 are of type 10, through S1, S5, and S9 are of type 01, through S2
and S6 are of type 00, and through S3 and S7 are of type 11. (See Fig. 12(a).)
Fact 2: Each switch at stage 2 has exactly 16 unique paths passing through it. More precisely, letUi denote the set of all 16
unique paths passing through Si. Then

U0 = {P(i, F) | i = 2, 7, 12, 17 and F = 16, 17, 18, 19}, U1 = {P(i, F) | i = 0, 5, 10, 15 and F = 12, 13, 14, 15},
U2 = {P(i, F) | i = 0, 5, 10, 15 and F = 16, 17, 18, 19}, U3 = {P(i, F) | i = 3, 8, 13, 18 and F = 12, 13, 14, 15},
U4 = {P(i, F) | i = 3, 8, 13, 18 and F = 16, 17, 18, 19}, U5 = {P(i, F) | i = 1, 6, 11, 16 and F = 12, 13, 14, 15},
U6 = {P(i, F) | i = 1, 6, 11, 16 and F = 16, 17, 18, 19}, U7 = {P(i, F) | i = 4, 9, 14, 19 and F = 12, 13, 14, 15},
U8 = {P(i, F) | i = 4, 9, 14, 19 and F = 16, 17, 18, 19}, U9 = {P(i, F) | i = 2, 7, 12, 17 and F = 12, 13, 14, 15}.

By Fact 1, in a network configuration, switch S0 has to be set to cross to let a unique path inU0 passing through it. LetN0
denote the set of paths of passing through S0 which are of type 01; see Fig. 12(b). Also by Fact 1, in a network configuration,
switch S3 has to be set to straight to let a unique path in U3 passing through it. Let N3 denote the set of paths passing
through S3 which are of type 00; see Fig. 12(c). Let I × J-requests denote the set of all (i, j)-requests with i ∈ I and j ∈ J . It

1682 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

a b c

Fig. 12. (a) The setting of switches at stage 2when unique paths pass through them. (b) The set of paths inN0 . These paths fulfill {0, 5, 10, 15}×{4, 5, 6, 7}-
requests. (c) The set of paths inN3 . These paths also fulfill {0, 5, 10, 15} × {4, 5, 6, 7}-requests.

can be observed from Fig. 12(b)(c) thatN0 andN3 both fulfill {0, 5, 10, 15}×{4, 5, 6, 7}-requests. Thus when the 32 unique
paths inU0 ∪U3 are fulfilled, the 32 paths in N0 ∪ N3 are also established; however, N0 ∪ N3 fulfills at most 16 routing
requests and at least 16 routing requests are repeated. The same situation also occurs when the 32 unique paths inU1∪U8,
inU2∪U5, inU4∪U7, and inU6∪U9 are established. From the above, a total of 16 ·5 = 80 routing requests are repeated.
Hence to fulfill an all-to-all communication in a 20×20 GSEN, at least 400+80 = 480 routing requests have to be fulfilled,
i.e., 480 routing paths have to be established.
Nowwe proveR(20) ≤ 24 by showing that an all-to-all communication in a 20×20 GSEN can be fulfilled in 24 network

configuration. A 20×20GSENhas 32 doubly alternating configurations. Consider these 32 doubly alternating configurations.
It is not difficult to check that A′ = 0 and A′ = 17 obtain the same permutation and hence only one of them is needed in an
all-to-all communication. Each of the following pairs of doubly alternating configurations also obtain the same permutation
and hence only one in each pair is needed in an all-to-all communication: A′ = 1 and A′ = 16, A′ = 2 and A′ = 19, A′ = 3
and A′ = 18, A′ = 8 and A′ = 25, A′ = 9 and A′ = 24, A′ = 10 and A′ = 27, and A′ = 11 and A′ = 26. By removing
one doubly alternating configuration from each of the above eight pairs, we have a setA′ containing 24 doubly alternating
configurations; in particular, we can choose A′ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29,
30, 31}. In Fig. 13, we show all the permutations obtained by applying the network configurations inA′. It is not difficult to
see thatA′ fulfills an all-to-all communication in a 20× 20 GSEN. HenceR(20) ≤ 24. �

6. Concluding remarks

The shuffle-exchange network has been proposed as a popular architecture for MINs. The generalized shuffle-exchange
networks (GSEN) is a generalization of the shuffle-exchange network. We follow the convention used in [1,2,10] that an
N × N GSEN has exactly dlog2 Ne stages. Based on this convention, we define n = dlog2 Ne and we have 2n−1 < N ≤ 2n.
In this paper we consider the all-to-all personalized exchange problem in GSENs. Since a GSEN does not have the unique

path property, previous algorithms [9,13] cannot be used. To our knowledge, no one has studied all-to-all personalized
exchange in MINs which do not have the unique path property and do not satisfy N = 2n. An optimal algorithm and
several bounds onR(N) andRsc(N) have been proposed in this paper; recall thatR(N) is theminimumnumber of network
configurations required to fulfill all-to-all communication in anN×N GSEN andRsc(N) is theminimumnumber of network
configurations required to fulfill all-to-all communication in an N × N GSEN when the stage control technique is assumed.
In Theorem 3.8, we have proven N ≤ R(N) ≤ Rsc(N) = 2n. In Theorem 4.8, we have proven N = R(N) < Rsc(N) =
2n if N ≡ 2 (mod 4). In Theorem 5.4, we have provenR(N) = Rsc(N) = 2n if k ≥ 2,N ≡ 0 (mod 2k),N 6≡ 0 (mod 2k+1),
and 2n−1 + 2n−k ≤ N ≤ 2n. In Theorem 5.5, we have provenR(20) = 24.
Before closing this paper, we list R(N) and Rsc(N) for N = 4, 6, . . . , 128 in Fig. 14. We conjecture that when N ≡ 4

(mod 8), the best way to reduce the number of network configurations used in an all-to-all communication in a GSEN is
to use doubly alternating stage control. One can examineR(36) ≤ 40 andR(44) ≤ 48 by the aid of a computer. We also
conjecture that when N ≡ 8 (mod 16), the best way to reduce the number of network configurations used in an all-to-
all communication in a GSEN is to use quadruply alternating stage control, meaning that the states of the switches of a stage
alternate between four straight states and four cross states. The network configuration obtained by quadruply alternating stage
control is called a quadruply alternating configuration and it can be represented by the number

A′′ = a′′n−12
n−1
+ a′′n−22

n−2
+ · · · + a′′02

0

as follows. Let a′′` denote the states of the switches at stage n−1−` such that

• a′′` = 0 means the states are 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, and so on.
• a′′` = 1 means the states are 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, and so on.

Obviously, 0 ≤ A′′ < 2n.

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1683

Fig. 13. Fulfill an all-to-all communication in a 20 × 20 GSEN by using the 24 network configurations in A′ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 20, 21, 22, 23, 28, 29, 30, 31}. The destinations of the messages for each network configuration are shown on the left-hand side of the GSEN.

LetA′ denote a set of doubly alternating configurations and letA′′ denote a set of quadruply alternating configurations.
The following results are obtained by the aid of a computer.

• R(36) ≤ 40; by usingA′ = {0 ∼ 3, 8 ∼ 19, 24 ∼ 35, 40 ∼ 43, 48 ∼ 51, 56 ∼ 59}.
• R(44) ≤ 48; by usingA′ = {0 ∼ 3, 8 ∼ 19, 24 ∼ 35, 40 ∼ 51, 56 ∼ 63}.
• R(68) ≤ 72; by usingA′ = {0 ∼ 11, 16 ∼ 43, 48 ∼ 63, 68 ∼ 71, 80 ∼ 83, 100 ∼ 104, 112 ∼ 115}.
• R(72) ≤ 96; by usingA′′ = {0 ∼ 63, 72 ∼ 79, 88 ∼ 95, 104 ∼ 111, 120 ∼ 127}.
• R(76) ≤ 88; by usingA′ = {0 ∼ 7, 12 ∼ 39, 44 ∼ 67, 80 ∼ 91, 96 ∼ 99, 112 ∼ 123}.
• R(84) ≤ 96; by usingA′ = {0 ∼ 11, 16 ∼ 43, 48 ∼ 63, 68 ∼ 71, 80 ∼ 95, 100 ∼ 103, 112 ∼ 127}.
• R(92) ≤ 112; by usingA′ = {0 ∼ 7, 12 ∼ 39, 44 ∼ 71, 76 ∼ 103, 108 ∼ 127}.

1684 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 14. Known results ofR(N) andRsc(N) for N = 4, 6, . . . , 128.

Although we know that R(36) ≤ 40, we are unable to prove that R(36) ≥ 40. Several open problems can be found in
Fig. 14. In particular, we conjectureR(36) = 40,R(44) = 48. DeterminingR(N) for all N such that N ≡ 0 (mod 4) is still
an open problem.

References

[1] Z. Chen, Z. Liu, Z. Qiu, Bidirectional shuffle-exchange network and tag-based routing algorithm, IEEE Commun. Lett. 7 (3) (2003) 121–123.
[2] C. Chen, J.K. Lou, An efficient tag-based routing algorithm for the backward network of a bidirectional general shuffle-exchange network, IEEE
Commun. Lett. 10 (4) (2006) 296–298.

[3] M. Gerla, E. Leonardi, F. Neri, P. Palnati, Routing in the bidirectional shufflenet, IEEE/ACM Trans. Netw. 9 (1) (2001) 91–103.
[4] C.P. Kuruskal, A unified theory of interconnection network structure, Theoret. Comput. Sci. 48 (1986) 75–94.
[5] J.K. Lan, W.Y. Chou, C. Chen, Efficient routing algorithms for the bidirectional general shuffle-exchange network, Discrete Math. Algorithms Appl. 1
(2) (2009) 267–281.

[6] D.H. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C- 24 (12) (1975) 1145–1155.
[7] S.C. Liew, On the stability if shuffle-exchange and bidirectional shuffle-exchange deflection networkA, IEEE/ACM Trans. Netw. 5 (1) (1997) 87–94.
[8] V.W. Liu, C. Chen, R.B. Chen, Optimal all-to-all personalized exchange in d-nary banyan multistage interconnection networks, J. Comb. Optim. 14
(2007) 131–142.

[9] A. Massini, All-to-all personalized communication on multistage interconnection networks, Discrete Appl. Math. 128 (2) (2003) 435–446.
[10] K. Padmanabhan, Design and analysis of even-sized binary shuffle-exchange networks for multiprocessors, IEEE Trans. Parallel Distrib. Syst. 2 (4)

(1991) 385–397.
[11] C. Qiao, L. Zhou, Scheduling switch disjoint connections in stage-controlled photonic banyans, IEEE Trans. Commun. 47 (1) (1999) 139–148.
[12] R. Ramaswami, Multi-wavelength lightwave networks for computer communication, IEEE Commun. Mag. 31 (2) (1993) 78–88.
[13] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in self-routable multistage networks, IEEE Trans. Parallel Distrib. Syst. 11 (3) (2000)

261–274.
[14] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in a class of optical multistage networks, IEEE Trans. Parallel Distrib. Syst. 12 (9) (2001)

567–582.

	All-to-all personalized exchange in generalized shuffle-exchange networks
	Introduction
	Preliminaries
	The proof of N R(N) Rsc(N) = 2n
	All-to-all personalized exchange of GSENs with Nequiv 28mu(mod6mu4)
	The value of R(N) when Nequiv 08mu(mod6mu4)
	Concluding remarks
	References

