Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

All-to-all personalized exchange in generalized shuffle-exchange networks^{*}

Well Y. Chou, Chiuyuan Chen*

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

ARTICLE INFO

Article history: Received 8 May 2009 Accepted 25 October 2009 Communicated by D.-Z. Du

Keywords: Multistage interconnection networks Shuffle-exchange networks Omega network Parallel and distributed computing All-to-all communication All-to-all personalized exchange

ABSTRACT

An all-to-all communication algorithm is said to be optimal if it has the smallest communication delay. Previous all-to-all personalized exchange algorithms are mainly for hypercube, mesh, and torus. In Yang and Wang (2000) [13], Yang and Wang proved that a multistage interconnection network (MIN) is a better choice for implementing all-to-all personalized exchange and they proposed optimal all-to-all personalized exchange algorithms for MINs. In Massini (2003) [9], Massini proposed a new optimal algorithm for MINs, which is independent of the network topology. Do notice that the algorithms in [9] and [13] work only for MINs with the unique path property (meaning that there is a unique path between each pair of source and destination) and satisfying $N = 2^n$, in which *N* is the number of processors, 2 means all the switches are of size 2×2 , and *n* is the number of stages. In Padmanabhan (1991) [10], Padmanabhan proposed the generalized shuffle-exchange network (GSEN), which is a generalization of the shuffle-exchange network. Since a GSEN does not have the unique path property, the algorithms in [9] and [13] cannot be used. The purpose of this paper is to consider the all-to-all personalized exchange problem in GSENs. An optimal algorithm and several bounds will be proposed.

© 2010 Published by Elsevier B.V.

1. Introduction

Processors in a parallel and distributed processing system often need to communicate with other processors. The communication among these processors could be *one-to-one*, *one-to-many*, or *all-to-all*. All-to-all communication can be further classified into *all-to-all broadcast* and *all-to-all personalized exchange*. In all-to-all broadcast, each processor sends the same message to all other processors; while in all-to-all personalized exchange, each processor sends a specific message to every other processor. All-to-all personalized exchange occurs in many important applications (for example, matrix transposition and fast Fourier transform (FFT)) in parallel and distributed computing. The all-to-all personalized exchange problem has been extensively studied for hypercubes, meshes, and tori; see [9,13] for details. Although the algorithm for a hypercube achieves optimal time complexity, a hypercube suffers from unbounded node degrees and therefore has poor scalability; on the other hand, although a mesh or torus has a constant node degree and better scalability, its algorithm has a higher time complexity. In [13], Yang and Wang had proven that a multistage interconnection network (MIN) is a better choice for implementing all-to-all personalized exchange due to its shorter communication delay and better scalability.

Given *N* processors $P_0, P_1, \ldots, P_{N-1}$, an $N \times N$ MIN can be used in communication among these processors as shown in Figs. 1 and 2, where $N \times N$ means this MIN has *N* inputs and *N* outputs. A column in a MIN is called a *stage* and the nodes stages of a MIN are called *switches* (or *switching elements* or *crossbars*). Throughout this paper, *N* denotes the number of

E-mail addresses: well.am94g@nctu.edu.tw (W.Y. Chou), cychen@mail.nctu.edu.tw, cychen@cc.nctu.edu.tw (C. Chen).

 ¹ This research was partially supported by the National Science Council of the Republic of China under grant NSC97-2628-M-009-006-MY3.
 * Corresponding author. Tel.: +886 3 5731767.

^{0304-3975/\$ –} see front matter ${\rm \textcircled{O}}$ 2010 Published by Elsevier B.V. doi:10.1016/j.tcs.2009.10.026

Fig. 1. Communications among processors using a MIN.

Fig. 3. (a) A 2 \times 2 switch and its subports. (b) The two possible states of a 2 \times 2 switch.

inputs (outputs) and *n* denotes the number of stages. Also, all the switches in a MIN are assumed to be of size 2×2 . It is well known that a 2×2 switch has only two possible states: *straight* and *cross*, as shown in Fig. 3. A shuffle-exchange network (SEN) is also called an omega network (see [7]) and has been proposed as a popular architecture for MINs; see [3,6,10,12]. Since a SEN must satisfy $N = 2^n$, in [10], Padmanabhan generalized it to allow $N \neq 2^n$. More precisely, let *N* be an even integer. An $N \times N$ generalized shuffle-exchange network (GSEN) is a $\lceil \log_2 N \rceil$ -stage $N \times N$ MIN such that each stage consists of the perfect shuffle on *N* terminals followed by N/2 switches. The *N* terminals in an $N \times N$ GSEN are numbered 0, $1, \ldots, N-1$ and the *perfect shuffle operation* on the *N* terminals is the permutation π defined by $\pi(i) = (2 \cdot i + \lfloor \frac{2 \cdot i}{N} \rfloor) \mod N$, $0 \le i < N$. See Fig. 2 for an example. In [1,2], bidirectional GSENs are considered.

In the remaining discussion, unless otherwise specified, a MIN means an $N \times N$ MIN and a GSEN means an $N \times N$ GSEN. Do notice that we will follow the convention used in [1,2,10] that a GSEN has exactly $\lceil \log_2 N \rceil$ stages; $\lceil \log_2 N \rceil$ is the minimum number of stages to ensure that each input can get to each output. Based on this convention and for convenience, we will define

 $n = \lceil \log_2 N \rceil.$

Clearly, for a GSEN, its *N* satisfies $2^{n-1} < N \leq 2^n$.

In this paper, an all-to-all communication algorithm is said to be *optimal* if it has the smallest communication delay. Now we review previous results. Yang and Wang [13] first considered the all-to-all personalized exchange problem for MINs. In particular, they proposed optimal all-to-all personalized exchange algorithms for a class of unique path, self-routable MINs; for example, baseline, omega, banyan networks, and the reverse networks of these networks. Note that a MIN is *unique path* if there is a unique path between each pair of source and destination and *self-routable* if the routing decision at a switch depends only on the addresses of the source and the destination. The algorithms in [13] can use the *stage control* technique (see [11]), which is a commonly used technique to reduce the cost of the network setting for all-to-all personalized exchange communication. Stage control means that the states of all the switches of a stage have to be identical. With stage control, a single control bit (0 for straight and 1 for cross), or in other words, one electronic driver circuit, can be used to control all the switches of a stage. Thus the number of expensive electronic driver circuits needed is significantly lower than that

of individual switch control. It was pointed out by Massini in [9] that the algorithms in [13] depend on network topologies and require pre-computation and memory allocation for Latin squares. In the same paper, Massini proposed a new optimal algorithm, which is independent on the network topology and does not require pre-computation or memory allocation for a Latin square. In [8], Liu et al. further generalized Massini's algorithm to MINs with $d \times d$ switches. See also [14].

When $N \neq 2^n$, it is possible to implement an $N \times N$ GSEN by using a $2^n \times 2^n$ SEN (recall that $2^{n-1} < N \le 2^n$). For example, it is possible to implement a 514 × 514 GSEN by using a 1024 × 1024 SEN. A 514 × 514 GSEN uses 2570 switches while its corresponding 1024 × 1024 SEN uses 5120 switches; the former saves about 50% switches than the latter. To compare the hardware costs of a GSEN and a SEN, we calculate the numbers of switches used by an $N \times N$ GSEN and by its corresponding $2^n \times 2^n$ SEN for N = 4, 6, 8, ..., 10002. Among these 5000 N's,

- for 4175 (about 84%) out of them, a GSEN saves at least 10% switches than its corresponding SEN;
- for 3356 (about 67%) out of them, a GSEN saves at least 20% switches than its corresponding SEN;
- for 2537 (about 51%) out of them, a GSEN saves at least 30% switches than its corresponding SEN;
- for 1632 (about 33%) out of them, a GSEN saves at least 40% switches than its corresponding SEN.

Therefore a GSEN outperforms a SEN in hardware cost.

Do notice that although the algorithms in [9] and [13] are optimal, they work only for MINs that have the unique path property and satisfy $N = 2^n$. Since a GSEN is not a unique path MIN, the algorithms in [9] and [13] cannot be used. To our knowledge, no one has studied the all-to-all personalized exchange problem for MINs which do not have the unique path property and do not satisfy $N = 2^n$. The purpose of this paper is to consider the all-to-all personalized exchange problem for GSENs. In particular, we propose an optimal all-to-all personalized exchange algorithm for GSENs. This algorithm works for all N with $N \equiv 2 \pmod{4}$. Let $\mathcal{R}(N)$ and $\mathcal{R}_{sc}(N)$ denote the minimum number of network configurations (defined in the next section) required to fulfill an all-to-all communication in a GSEN when the stage control technique is not assumed and assumed, respectively. Do notice that $\mathcal{R}(N)$ and $\mathcal{R}_{sc}(N)$ are closely related to the smallest communication delay. In particular, for a GSEN, the smallest communication delay of any all-to-all communication algorithm is $\theta(\mathcal{R}(N) + \log_2 N)$ and $\theta(\mathcal{R}_{sc}(N) + \log_2 N)$ when the stage control technique is not assumed and assumed, respectively. The optimal algorithms in [9] and [13] imply that $\mathcal{R}(2^n) = \mathcal{R}_{sc}(2^n) = 2^n$. In this paper, we will prove that, for $2^{n-1} < N \leq 2^n$, the followings hold:

- $N \leq \mathcal{R}(N) \leq \mathcal{R}_{sc}(N) \leq 2^n$;
- $\mathcal{R}_{sc}(N) = 2^{\overline{n}};$
- $\mathcal{R}(N) = N$ if $N \equiv 2 \pmod{4}$;
- $\mathcal{R}(N) = 2^n$ if $k \ge 2$, $N \equiv 0 \pmod{2^k}$, $N \not\equiv 0 \pmod{2^{k+1}}$, and $2^{n-1} + 2^{n-k} \le N \le 2^n$;
- $\Re(20) = 24.$

This paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we prove $N \leq \Re(N) \leq \Re_{sc}(N) = 2^n$. In Section 4, we propose an optimal all-to-all personalized exchange algorithm for GSENs with $N \equiv 2 \pmod{4}$ and prove that $\Re(N) = N$ if $N \equiv 2 \pmod{4}$. In Section 5, we focus on GSENs with $N \equiv 0 \pmod{4}$ and obtain several bounds. Some discussions and concluding remarks are given in the final section.

2. Preliminaries

In a GSEN, the switches are aligned in *n* stages: stage 0, stage 1, . . . , stage n - 1, with each stage consists of N/2 switches. The *network configuration* of a GSEN is defined by the states of its switches. Since a GSEN has $(N/2) \times n$ switches, its network configuration can be represented by an $(N/2) \times n$ matrix in which each entry is defined by the state of its corresponding switch. For example, the network configuration of the GSEN in Fig. 4(a) is shown in Fig. 4(b).

A *permutation* of a MIN is one-to-one mapping between the inputs and outputs. For a MIN, if there is a permutation that maps input *i* to output p(i), where $p(i) \in \{0, 1, ..., N - 1\}$ for i = 0, 1, ..., N - 1, then we will use

$$\begin{pmatrix} 0 & 1 & \cdots & N-1 \\ p(0) & p(1) & \cdots & p(N-1) \end{pmatrix}$$

or simply

 $p(0) p(1) \cdots p(N-1)$

to denote the permutation. Given the network configuration of a MIN, a permutation between the inputs and outputs can be obtained. For example, the network configuration shown in Fig. 4(a) maps input 0 to output 9, input 1 to output 7, input 2 to output 5, ..., and input 9 to output 0; thus this network configuration obtains the permutation 9 7 5 3 8 1 6 4 2 0.

The following conventions are used in the remaining part of this paper. Terminal i(j) is assumed on the left-hand (right-hand) side of the network and therefore is an input (output) processor. An (i, j)-request denotes a request for sending a message from i to j. An (i, j)-path denotes a path between i and j. Obviously, an (i, j)-request can be fulfilled by an (i, j)-path.

Consider an (i, j)-request and an (i, j)-path and see Fig. 5 for an illustration. An (i, j)-path *P* can be described by a sequence of labels that label the successive links on this path; a number whose binary representation corresponds to such a sequence is called a *control tag* or *tag* or *path descriptor* [1,2,4,10]. A control tag can be used as a header for routing a message: each successive switch uses the first element in the binary representation of the control tag to route the message, and then

Fig. 4. (a) A 10 \times 10 GSEN in which stage control is used. (b) The network configuration of the GSEN in (a).

Fig. 5. An (i, j)-path *P* and the subports on *P*.

discards it. Take Fig. 4(a) for an example. Then i = 2 can get to j = 5 by using $13 = (1101)_2$, which means that the (2, 5)-request can be fulfilled by the path via subport 1 at stage 0, subport 1 at stage 1, subport 0 at stage 2, and subport 1 at stage 3. A routing algorithm is called *tag-based* if it uses a control tag to route a message. Most of the routing algorithms for MINs are tag-based, including those for GSENs. The routing algorithms proposed in this paper are also tag-based. Therefore, whenever a message is sent out, a control tag will be equipped with it.

Again, see Fig. 5. When a message is sent from *i* to *j* along *P*, the message enters a switch at stage $n-1-\ell$ via subport b_{ℓ} and leaves the switch via subport f_{ℓ} . On the other hand, when a message is sent from *j* to *i* along *P*, then the message enters a switch at stage $n-1-\ell$ via subport f_{ℓ} and leaves the switch via subport b_{ℓ} . The control tag

$$F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \dots + f_02^0$$

is called a *forward control tag* for *i* to get to *j*. Most researchers simply called a forward control tag a control tag; here we add the word "forward" to specify that this control tag is used for sending a message in the forward direction, i.e., from the left-hand side of the GSEN to the right-hand side. Now let

 $B = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_02^0.$

B is called a *backward control tag* and it is used for sending a message in the backward direction (from *j* to *i*). Clearly, $0 \le F < 2^n$ and $0 \le B < 2^n$.

Suppose *F* is given. In this paper, P(i, F) denotes the path started from *i* and using the forward control tag *F*. Also, B(i, F) denotes the backward control tag obtained from the path P(i, F). Let

 $\mathcal{B}_F = \{B(i, F) \mid i = 0, 1, \dots, N-1\}.$

In the remaining discussion, \oplus denotes the bitwise XOR operation. As a reference,

 $0\oplus 0=0, \quad 0\oplus 1=1, \quad 1\oplus 0=1, \quad 1\oplus 1=0.$

If $U = (u_{n-1} u_{n-2} \cdots u_0)_2$ and $V = (v_{n-1} v_{n-2} \cdots v_0)_2$, then we define

 $U \oplus V = (u_{n-1} \oplus v_{n-1} \ u_{n-2} \oplus v_{n-2} \ \cdots \ u_0 \oplus v_0)_2.$

3. The proof of $N \leq \mathcal{R}(N) \leq \mathcal{R}_{sc}(N) = 2^n$

The purpose of this section is to prove that $N \leq \Re(N) \leq \Re_{sc}(N) = 2^n$. We first prove two lemmas.

Lemma 3.1. $N \leq \mathcal{R}(N) \leq \mathcal{R}_{sc}(N) \leq 2^n$.

Proof. Given a network configuration, a permutation can be obtained. Thus a network configuration can be used to send *N* (personalized) messages simultaneously. The inequality $N \leq \mathcal{R}(N)$ thus follows from that fact that N^2 messages have to be sent to fulfill all-to-all personalized exchange and each network configuration can send only *N* messages. The inequality $\mathcal{R}(N) \leq \mathcal{R}_{sc}(N)$ is obvious. The inequality $\mathcal{R}_{sc}(N) \leq 2^n$ follows from the fact that a GSEN has at most 2^n network configurations when the stage control technique is assumed. \Box

Fig. 6. Unique paths and multipaths.

In this paper, we call the process of transmitting all the messages to their next stage(s) a *round*. Thus in an *n*-stage MIN, it takes *n* rounds for a message to arrive its destination. In [13], Yang and Wang proved that the communication delay of all-to-all personalized exchange in a $(\log_2 N)$ -stage MIN is $\Omega(N + \log_2 N)$. This is due to the fact that each of the *N* processors (say, processor *j*) has to receive *N* messages and it takes $\log_2 N$ rounds for the first message to arrive *j* and N - 1 rounds for the remaining N - 1 messages to arrive *j*. By similar arguments, we have the following lemma and its proof is omitted.

Lemma 3.2. The communication delay of all-to-all communication in a GSEN is $\Omega(N + n)$, or equivalently, $\Omega(N + \log_2 N)$.

Do notice that although $\Omega(N + n) = \Omega(N)$, we will still write $\Omega(N + n)$ instead of $\Omega(N)$ to emphasize that it takes n rounds for the first message to arrive its destination. In [5], Lan et al. considered GSENs with switches of size $d \times d$. By setting d = 2, the following lemma can be obtained.

Lemma 3.3 ([5]). Given i and F, the destination j of the path P(i, F) is determined by

 $j = (i \cdot 2^n + F) \mod N.$

Moreover, the backward control tag B of the path P(i, F) is given by

$$B = \left\lfloor \frac{i \cdot 2^n + F}{N} \right\rfloor.$$

When the stage control technique is assumed, the network configuration of a GSEN can be represented by a number as follows. Let c_{ℓ} denote the state, 0 for straight and 1 for cross, of all the switches at stage $n - 1 - \ell$. Then the network configuration of the GSEN can be represented by the number

 $C = c_{n-1}2^{n-1} + c_{n-2}2^{n-2} + \dots + c_02^0$

or by the binary number $(c_{n-1} \ c_{n-2} \ \cdots \ c_0)_2$. For example, the network configuration of the GSEN in Fig. 4(a) can be represented by 9 or by $(1001)_2$. Clearly, $0 \le C < 2^n$. Now we give the relation between *F* (a forward control tag), *B* (its corresponding backward control tag) and *C* (the network configuration).

Lemma 3.4. When the stage control technique is assumed, F and B together uniquely determine the network configuration C and

$$C = B \oplus F$$
.

Proof. Consider stage $n-1-\ell$. Since the stage control technique is assumed, all switches in stage $n-1-\ell$ are of the same state. Let $C = c_{n-1}2^{n-1} + c_{n-2}2^{n-2} + \cdots + c_02^0$ be the network configuration and see Fig. 5. At stage $n-1-\ell$, a message enters subport b_ℓ and leaves subport f_ℓ . If $b_\ell = f_\ell$, then the state of the switch is straight; hence $c_\ell = 0 = b_\ell \oplus f_\ell$. If b_ℓ differs from f_ℓ (in this case, (b_ℓ, f_ℓ) is (0, 1) or (1, 0)), then the state of the switch is cross; hence $c_\ell = 1 = b_\ell \oplus f_\ell$. From the above, $C = B \oplus F$. \Box

We call a path a unique path if it is the unique path between its source and destination. The following lemma is important.

Lemma 3.5. For all $0 \le i < N$, path P(i, F) is a unique path if and only if $2^n - N \le F < N$; in particular, $P(i, 2^{n-1})$ and $P(i, 2^{n-1} + 1)$ are unique paths. (See Fig. 6 for illustration.)

Proof. Let *i* and *j* be the source and destination of a message. Suppose there are two distinct paths $P(i, F_1)$, $P(i, F_2)$ from *i* to *j*. Then, by Lemma 3.3, the difference between F_1 and F_2 is *N*. Without loss of generality, assume that $F_2 - F_1 = N$. Since $F_1 \ge 0$, $F_2 \ge N$ must hold. Since $F_2 < 2^n$, it follows that $F_1 < 2^n - N$. Thus P(i, F) is a unique path if and only if $2^n - N \le F < N$. Since $2^n - N \le 2^{n-1} < N$, $P(i, 2^{n-1})$ is a unique path. Constant $P(i, F) = 2^{n-1} + 1 < N$, $P(i, 2^{n-1} + 1)$ is also a unique path. \Box

Lemma 3.6.
$$\mathcal{B}_{2^{n-1}} = \mathcal{B}_{2^{n-1}+1}$$
.

Proof. Let $0 \le i < N$. Let $b_{n-1}f_{n-1}b_{n-2}f_{n-2}\cdots b_0f_0$ be the sequence of subports passed by path $P(i, 2^{n-1})$; see Fig. 5. Similarly, let $b'_{n-1}f'_{n-1}b'_{n-2}f'_{n-2}\cdots b'_0f'_0$ be the sequence of subports passed by path $P(i, 2^{n-1} + 1)$. Since the binary representations of 2^{n-1} and $2^{n-1} + 1$ differ only at their rightmost bits, $b_{n-1}f_{n-1}b_{n-2}f_{n-2}\cdots b_0f_0$ and $b'_{n-1}f'_{n-1}b'_{n-2}f'_{n-2}\cdots b'_0f'_0$ are identical except that $f_0 \ne f'_0$. Hence $B(i, 2^{n-1}) = b_{n-1}b_{n-2}\cdots b_0 = b'_{n-1}b'_{n-2}\cdots b'_0 = B(i, 2^{n-1} + 1)$. Since $\mathcal{B}_{2^{n-1}} = \{B(i, 2^{n-1}) \mid i = 0, 1, \dots, N-1\}$ and $\mathcal{B}_{2^{n-1}+1} = \{B(i, 2^{n-1} + 1) \mid i = 0, 1, \dots, N-1\}$, we have this lemma. \Box

Fig. 7. Applying alternating stage control on a 10×10 GSEN; the shown network configuration is $A = 9 = (1001)_2$.

For convenience, if a number is in $\{0, 1, 2, ..., 2^n - 1\}$ but not in \mathcal{B}_F , then we call it a *hole* of \mathcal{B}_F . The following lemma shows that the elements of \mathcal{B}_F are distributed *very uniformly* in $\{0, 1, 2, ..., 2^n - 1\}$.

Lemma 3.7. For all $F \in \{0, 1, 2, ..., 2^n - 1\}$, \mathcal{B}_F has no two consecutive holes.

Proof. We will prove this lemma by showing that $B(0, F) \le 1$, $B(N - 1, F) \ge 2^n - 2$, and

 $B(i-1, F) + 1 \le B(i, F) \le B(i-1, F) + 2$ for i = 1, 2, ..., N - 1.

Recall that
$$2^{n-1} < N \le 2^n$$
 and $0 \le F < 2^n$. By Lemma 3.3, $B(0, F) = \lfloor \frac{F}{N} \rfloor \le 1$. Also, $B(N - 1, F) = \lfloor \frac{(N-1)\cdot 2^n + F}{N} \rfloor \ge \lfloor \frac{(N-1)\cdot 2^n}{N} \rfloor \ge 2^n - 2$. Finally, consider *i*, where $1 \le i \le N - 1$. By Lemma 3.3, $B(i - 1, F) + 1 = \lfloor \frac{(i-1)\cdot 2^n + F}{N} \rfloor + 1 = \lfloor \frac{i\cdot 2^n + F}{N} \rfloor + 1 \le \lfloor \frac{i\cdot 2^n + F}{N} \rfloor = B(i, F) = \lfloor \frac{(i-1)\cdot 2^n + F}{N} \rfloor \le \lfloor \frac{(i-1)\cdot 2^n + F}{N} \rfloor + 2 = B(i - 1, F) + 2$. \Box

Now we are ready to prove the main result of this section.

Theorem 3.8.
$$N \leq \mathcal{R}(N) \leq \mathcal{R}_{sc}(N) = 2^n$$

Proof. By Lemma 3.1, it suffices to prove that $\mathcal{R}_{sc}(N) \ge 2^n$. When the stage control technique is assumed, there are only 2^n possible network configurations: $0, 1, \ldots, 2^n - 1$. Thus to prove that $\mathcal{R}_{sc}(N) \ge 2^n$, it suffices to prove that each of the 2^n possible network configurations is required for every processor to receive N messages.

When the stage control technique is assumed, the network configuration *C* can be determined by an arbitrary path *P* set up by *C*. Moreover, if *F* and *B* are the forward and backward control tags used by *P*, then Lemma 3.4 tells us that $C = B \oplus F$. In the following, we will prove that for each *C* in {0, 1, ..., $2^n - 1$ }, at least one of the paths set up by *C* is a unique path and therefore *C* must be used in all-to-all personalized exchange. Suppose to the contrary there is a \hat{C} in {0, 1, ..., $2^n - 1$ } such that none of the paths set up by \hat{C} is a unique path. Then consider $2^{n-1} \oplus \hat{C}$ and let $\hat{B} = 2^{n-1} \oplus \hat{C}$; consider $(2^{n-1} + 1) \oplus \hat{C}$ and let $\hat{B}' = (2^{n-1} + 1) \oplus \hat{C}$. We claim that $\hat{B} \notin \mathcal{B}_{2^{n-1}}$ and $\hat{B}' \notin \mathcal{B}_{2^{n-1}+1}$. Suppose this clam is not true. Then either $\hat{B} \in \mathcal{B}_{2^{n-1}}$ or $\hat{B}' \in \mathcal{B}_{2^{n-1}+1}$ or both. Suppose $\hat{B} \in \mathcal{B}_{2^{n-1}}$. Since $\hat{C} = \hat{B} \oplus 2^{n-1}$, by Lemma 3.5, \hat{C} conducts a unique path, which contradicts with the assumption that none of the paths set up by \hat{C} is a unique path. The case that $\hat{B}' \in \mathcal{B}_{2^{n-1}+1}$ can be proven similarly. Now we have the claim that $\hat{B} \notin \mathcal{B}_{2^{n-1}}$ and $\hat{B}' \notin \mathcal{B}_{2^{n-1}+1}$. By Lemma 3.6, $\mathcal{B}_{2^{n-1}} = \mathcal{B}_{2^{n-1}+1}$. Since \hat{B} and \hat{B}' differ by 1, they are two consecutive holes in $\mathcal{B}_{2^{n-1}}$; this contradicts with Lemma 3.7. Thus for each *C* in {0, 1, ..., $2^n - 1$ }, at least one of the paths set up by *C* is a unique path and therefore *C* must be used in all-to-all personalized exchange. So $\mathcal{R}_{sc}(N) \geq 2^n$. \Box

4. All-to-all personalized exchange of GSENs with $N \equiv 2 \pmod{4}$

Throughout this section, unless other specified, subports 0 and 1 are the subports 0 and 1 on the right-hand side of a switch. We will propose an optimal all-to-all personalized exchange algorithm for GSENs with $N \equiv 2 \pmod{4}$ and prove that $N = \Re(N) < \Re_{sc}(N) = 2^n$ if $N \equiv 2 \pmod{4}$. We first introduce a variation of the stage control technique and we call it *alternating stage control*, meaning that the states of the switches of a stage *alternate between straight and cross*. See Fig. 7 for an illustration.

When alternating stage control is used, the network configuration of a GSEN can be represented by a number as follows. Let a_{ℓ} denote the states of the switches at stage $n-1-\ell$ such that

- $a_{\ell} = 0$ means the states are 0, 1, 0, 1, and so on;
- $a_{\ell} = 1$ means the states are 1, 0, 1, 0, and so on.

Fig. 8. (a) and (b): a stage in a 10 × 10 GSEN when $a_{\ell} = 0$. (c) and (d): a stage in a 10 × 10 GSEN when $a_{\ell} = 1$. (e) An illustration for the proof of Property (*).

The network configuration of the GSEN can be represented by the number

$$A = a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + \dots + a_02^n$$

or $(a_{n-1} a_{n-2} \dots a_1 a_0)_2$ in the binary form. Clearly, $0 \le A < 2^n$. We will call *A* an *alternating configuration*. When $N \equiv 2 \pmod{4}$ and alternating stage control is used, the *N* input terminals and *N* output terminals of stage $n - 1 - \ell$ have the following property.

Property (*) (see Fig. 8 (*a*)–(d) for an illustration).

- 1. If $a_{\ell} = 0$, then Even $\xrightarrow{0}$ Even, Odd $\xrightarrow{1}$ Odd. That is, every even-numbered input terminal is connected to an evennumbered output terminal via subport 0, and every odd-numbered input terminal is connected to an odd-numbered output terminal via subport 1.
- 2. If $a_{\ell} = 1$, then $Even \xrightarrow{1} Odd$, $Odd \xrightarrow{0} Even$. That is, every even-numbered input terminal is connected to an odd-numbered output terminal via subport 1, and every odd-numbered input terminal is connected to an even-numbered output terminal via subport 0.

Proof. Consider an arbitrary stage of a GSEN and an arbitrary switch *y* of this stage; see Fig. 8(e) for an illustration. Suppose input terminals x_0 and x_1 are connected to subports 0 and 1 of switch *y*, respectively. By the definition of a GSEN, $x_0 = y$ and $x_1 = y + \frac{N}{2}$ hold. Note that $\frac{N}{2}$ is an odd number since $N \equiv 2 \pmod{4}$. Since $\frac{N}{2}$ is odd, one of x_0 and x_1 is even and the other one is odd. Now consider the output terminals z_0 and z_1 of switch *y*. Then z_0 is even and z_1 is odd.

Suppose $a_{\ell} = 0$ and y is even. Then x_0 is even (by the fact that $x_0 = y$) and x_0 is connected to z_0 (due to the setting of a_{ℓ}). Thus every even-numbered input terminal is connected to an even-numbered output terminal via subport 0. Now suppose $a_{\ell} = 0$ and y is odd. Then x_0 is odd (by the fact that $x_0 = y$) and x_0 is connected to z_1 (due to the setting of a_{ℓ}). Thus every odd-numbered input terminal is connected to an odd-numbered output terminal via subport 1. The case of $a_{\ell} = 1$ can be proven similarly. \Box

Do notice that Property (*) holds only when $N \equiv 2 \pmod{4}$ holds. Now we give other properties of alternating stage control.

Lemma 4.1. Suppose $N \equiv 2 \pmod{4}$ and alternating stage control is used. Then the following statements hold:

- 1. The forward control tags of even-numbered inputs are identical.
- 2. The forward control tags of odd-numbered inputs are identical.

Proof. Let $A = (a_{n-1} \ a_{n-2} \ \cdots \ a_0)_2$ be the alternating configuration used. By Property (*), all the messages sent out from inputs 0, 2, 4, ..., N - 2 are via subports 0 of switches at stage $n - 1 - \ell$ if $a_\ell = 0$ and via subports 1 of switches at stage $n - 1 - \ell$ if $a_\ell = 1$. Thus statement 1 holds. By Property (*), all the messages sent out from inputs 1, 3, 5, ..., N - 1 are via subports 1 of switches at stage $n - 1 - \ell$ if $a_\ell = 1$. Thus we have statement 2. \Box

Theorem 4.2. Suppose $N \equiv 2 \pmod{4}$ and alternating stage control is used. Let *A* be a given alternating configuration, *F* be the forward control tag of any even-numbered input, and *F* be the forward control tag of any odd-numbered input. Then:

(i) $F \oplus \overline{F} = (11 \cdots 1)_2;$ (ii) $A = F \oplus \lfloor \frac{F}{2} \rfloor;$ (iii) $F = A \oplus \lfloor \frac{A}{2} \rfloor \oplus \lfloor \frac{A}{2^2} \rfloor \oplus \cdots \oplus \lfloor \frac{A}{2^{n-1}} \rfloor.$ **Proof.** First consider (i). Let $F = (f_{n-1} f_{n-2} \cdots f_0)_2$ and $A = (a_{n-1} a_{n-2} \cdots a_0)_2$. By Property (*), if messages from evennumbered inputs are via subport f_{ℓ} at stage $n-1-\ell$, then messages from inputs odd are via subport $1-f_{\ell}$ at stage $n-1-\ell$, $(\ell = n-1, n-2, \dots, 0)$. Thus $F \oplus \overline{F} = (11\cdots 1)_2$. Now consider (ii). Clearly, $a_{n-1} = f_{n-1}$. For $\ell = n-2, n-3, \dots, 0$, by Property (*), we have:

- If $a_{\ell} = 0$, then $f_{\ell} = 0$ whenever $f_{\ell+1} = 0$ and $f_{\ell} = 1$ whenever $f_{\ell+1} = 1$. If $a_{\ell} = 1$, then $f_{\ell} = 0$ whenever $f_{\ell+1} = 1$ and $f_{\ell} = 1$ whenever $f_{\ell+1} = 0$.

Thus $a_{\ell} = f_{\ell} \oplus f_{\ell+1}$ for $\ell = n - 2, n - 3, ..., 0$. Therefore

$$A = (a_{n-1} a_{n-2} \dots a_1 a_0)_2 = (f_{n-1} f_{n-2} \oplus f_{n-1} f_{n-3} \oplus f_{n-2} \dots f_0 \oplus f_1)_2$$

= $(f_{n-1} \oplus 0 f_{n-2} \oplus f_{n-1} f_{n-3} \oplus f_{n-2} \dots f_0 \oplus f_1)_2$
= $(f_{n-1} f_{n-2} f_{n-3} \dots f_0)_2 \oplus (0 f_{n-1} f_{n-2} \dots f_1)_2 = F \oplus \left\lfloor \frac{F}{2} \right\rfloor$

Finally, consider (iii). Then $f_{\ell} = a_{\ell} \oplus a_{\ell+1} \oplus \cdots \oplus a_{n-1}$ for $\ell = n-2, n-3, \dots, 0$. Thus $F = A \oplus \lfloor \frac{A}{2} \rfloor \oplus \lfloor \frac{A}{2^2} \rfloor \oplus \lfloor \frac{A}{2^{n-1}} \rfloor$. \Box

Theorem 4.2(ii) gives a one-to-one correspondence between A and F; for convenience, let A_F denote the alternating configuration corresponding to *F*. When F = k,

$$A_k = k \oplus \left\lfloor \frac{k}{2} \right\rfloor.$$

Lemma 4.3. If $N \equiv 2 \pmod{4}$ and the given GSEN is set by alternating configuration A_k , then the forward control tags of even-numbered inputs are k and the forward control tags of odd-numbered inputs are $2^n - 1 - k$.

Proof. This lemma follows from Lemma 4.1, $A_k = k \oplus \left\lfloor \frac{k}{2} \right\rfloor$, and Theorem 4.2(i).

Now we prove a theorem, which is the foundation of our algorithms.

Theorem 4.4. Suppose $N \equiv 2 \pmod{4}$. Then the N alternating configurations $A_0, A_1, \ldots, A_{N-1}$ ensure that every input i can get to every output j; in other words, $A_0, A_1, \ldots, A_{N-1}$ can fulfill an all-to-all communication in a GSEN.

Proof. Let *i* be an arbitrary input. For k = 0, 1, ..., N - 1, let j_k be the destination of *i* when the network configuration is set according to A_k . First consider the case that *i* is even. By Lemmas 3.3 and 4.3, $j_k = (i \cdot 2^n + k) \mod N$. Since $A_0, A_1, \ldots, A_{N-1}$ ensure that k varies from 0 to N - 1 and $j_k = (i \cdot 2^n + k) \mod N$, it follows that i can get to every output. Now consider the case that i is odd. By Lemmas 3.3 and 4.3, $j_k = (i \cdot 2^n + 2^n - 1 - k) \mod N$. Since $A_0, A_1, \ldots, A_{N-1}$ ensure that k varies from 0 to N-1 and $j_k = (i \cdot 2^n + 2^n - 1 - k) \mod N$, it follows that *i* can get to every output. \Box

For example, the 10 alternating configurations $A_0 = 0$, $A_1 = 1$, $A_2 = 3$, $A_3 = 2$, $A_4 = 6$, $A_5 = 7$, $A_6 = 5$, $A_7 = 4$, $A_8 = 6$ 12, $A_9 = 13$ can fulfill an all-to-all communication in a 10 × 10 GSEN. Note that $A_0, A_1, \ldots, A_{N-1}$ are not the only way to fulfill an all-to-all communication in a GSEN. In fact, any N consecutive integers in $0, 1, \ldots, 2^n - 1$ can fulfill an all-to-all communication.

The purpose of this paper is to propose an optimal all-to-all personalized exchange algorithm for GSENs. However, since there is no all-to-all broadcast algorithm for GSENs, we will also propose one. Therefore, in the following, three algorithms will be proposed. The first algorithm fulfills all-to-all broadcast in GSENs. The second algorithm gives a preprocessing of the third algorithm. And the third algorithm fulfills all-to-all personalized exchange in GSENs.

Algorithm 1 : an algorithm to fulfill all-to-all broadcast in a GSEN with $N \equiv 2 \pmod{4}$

- 1: **for** each processor i (0 < i < N) **do in parallel**
- Processor *i* prepares a broadcast message: 2.
- for k = 0 to N 1 do in sequential 3:
- Equip the broadcast message of processor *i* with the forward control tag k if *i* is even and $2^n 1 k$ if *i* is odd; 4:
- Transmit the message; 5.
- endfor 6:
- 7: endfor

The correctness of Algorithm 1 follows from Lemma 4.3 and Theorem 4.4. The communication delay of Algorithm 1 is O(N + n) since each of the N processors can receive its first message in n rounds and receive the remaining N - 1 messages in N - 1 rounds. By Lemma 3.2, Algorithm 1 is optimal.

All-to-all personalized exchange is much more complicated than all-to-all broadcast. In all-to-all personalized exchange, a source has to prepare a personalized message for each of its N destinations. Therefore, before a message is sent out, the source of the message has to know which output will be its current destination so that a personalized message can be prepared. Algorithm 2 is designed to overcome this difficulty. This algorithm constructs a matrix called destination matrix $D = (d_{i,k})$ so that $d_{i,k} = j$ if and only if the message sent out from processor i at round k arrives processor j.

The following theorem proves the correctness and gives the time complexity of Algorithm 2.

Algorithm 2 : an algorithm to construct the destination matrix $D = (d_{i,k})$ for a GSEN with $N \equiv 2 \pmod{4}$

1: $n \leftarrow \lceil \log_2 N \rceil$; 2: $power \leftarrow 2^n$; 3: for each processor $i \ (0 \le i < N)$ do in sequential 4: if i is even then $m \leftarrow (i \cdot power) \mod N$; else $m \leftarrow ((i + 1) \cdot power - 1) \mod N$; endif 5: for k = 0 to N - 1 do in sequential 6: if i is even then $d_{i,k} \leftarrow (m + k) \mod N$; else $d_{i,k} \leftarrow (m - k) \mod N$; endif 7: endfor 8: endfor

Theorem 4.5. Algorithm 2 constructs a matrix $D = (d_{i,k})$ so that $d_{i,k} = j$ if and only if the message sent out from processor i at round k arrives processor j. Moreover, it takes $O(N^2)$ time.

Proof. To prove the correctness of Algorithm 2, it suffices to show that the message sent out from processor i at round k (see Algorithm 3 for round k) arrives processor $(m + k) \mod N$ if i is even and arrive processor $(m - k) \mod N$ if i is odd. Note that in Algorithm 3, we will use $A_0, A_1, \ldots, A_{N-1}$ to fulfill all-to-all personalized exchange. By Lemma 4.3, A_k contributes an even-numbered processor i the forward control tag k and it contributes an odd-numbered processor i the forward control tag $2^n - 1 - k$. Suppose i is even. Then at round k, the message sent out from processor i will be equipped with the forward control tag k; by Lemma 3.3, the destination is

 $j = (i \cdot 2^n + k) \mod N = (i \cdot power + k) \mod N = (m + k) \mod N$.

Now suppose *i* is odd. By Lemma 4.3, the message sent out from processor *i* will be equipped with the forward control tag $2^n - 1 - k$; by Lemma 3.3, the destination is

 $j = (i \cdot 2^n + 2^n - 1 - k) \mod N = ((i + 1) \cdot power - 1 - k) \mod N = (m - k) \mod N.$

It is not difficult to see that Algorithm 2 takes $O(N^2)$ time. We have this theorem. \Box

Consider the GSEN in Fig. 2 for an example of Algorithm 2. Then the matrix *D* constructed is:

	г0	1	2	3	4	5	6	7	8	ר9	
D =	1	0	9	8	7	6	5	4	3	2	
	2	3	4	5	6	7	8	9	0	1	
	3	2	1	0	9	8	7	6	5	4	
	4	5	6	7	8	9	0	1	2	3	
	5	4	3	2	1	0	9	8	7	6	
	6	7	8	9	0	1	2	3	4	5	
	7	6	5	4	3	2	1	0	9	8	
	8	9	0	1	2	3	4	5	6	7	
	9	8	7	6	5	4	3	2	1	0	

Note that the matrix *D* needs to be constructed only once and therefore can be viewed as one of the system parameters. Thus the time complexity of Algorithm 2 is *not* included in the communication delay. Now we are ready to propose our all-to-all personalized exchange algorithm; see Algorithm 3.

Algorithm 3 : an algorithm to fulfill all-to-all personalized exchange in a GSEN with $N \equiv 2 \pmod{4}$

1: **for** each processor i ($0 \le i < N$) **do in parallel**

- 2: **for** k = 0 to N 1 **do in sequential** //comment: round k
- 3: Processor *i* prepares a personalized message for processor $d_{i,k}$;
- 4: Equip the personalized message with the forward control tag k if i is even and $2^n 1 k$ if i is odd;
- 5: Transmit the message;
- 6: endfor
- 7: endfor

The following theorem proves the correctness and gives the time complexity of Algorithm 3.

Theorem 4.6. Algorithm 3 fulfills all-to-all personalized exchange in a GSEN with $N \equiv 2 \pmod{4}$. Moreover, it takes O(N + n) time.

Proof. Algorithm 3 prepares a personalized message according to the matrix *D*, which is constructed by Algorithm 2. Thus, by Theorems 4.4 and 4.5, Algorithm 3 fulfills all-to-all personalized exchange for GSENs with $N \equiv 2 \pmod{4}$. This algorithm takes O(N + n) time since each of the *N* processors can receive its first personalized message in *n* rounds and receive the remaining N - 1 personalized messages in N - 1 rounds. \Box

Fig. 9. An example of Algorithm 3.

Corollary 4.7. Algorithm 3 is optimal.

Fig. 9 shows how Algorithm 3 fulfills all-to-all personalized exchange for the GSEN in Fig. 2. Take round 2 in Fig. 9 for an example. The 0-1 bits 0011 above stages 0, 1, 2, 3 denote the alternating configuration for round 2, which is $(0011)_2 = 3 = A_2$. The numbers on the left-hand side denote the destinations of personalized messages. Thus, at round 2, processor 0 sends a personalized message to processor 2, processor 1 sends a personalized message to processor 9, processor 2 sends a personalized message to processor 4, ..., and processor 9 sends a personalized message to processor 7. Recall that $A_0 = 0, A_1 = 1, A_2 = 3, A_3 = 2, A_4 = 6, A_5 = 7, A_6 = 5, A_7 = 4, A_8 = 12, A_9 = 13$ can fulfill an all-to-all communication in a 10 × 10 GSEN. The 10 alternating configurations and the destinations of the messages are shown on the left-hand side of the GSEN for rounds 0, 1, ..., 9 in Fig. 9.

Note that it is possible to combine Algorithms 2 and 3 and to avoid the construction of matrix *D*. See Algorithm 4 below. Now we end this section by proving the following theorem.

Theorem 4.8. $N = \mathcal{R}(N) < \mathcal{R}_{sc}(N) = 2^n$ if $N \equiv 2 \pmod{4}$.

Proof. Since Algorithm 3 can fulfill all-to-all personalized exchange by using *N* network configurations, namely, $A_0, A_1, \ldots, A_{N-1}$, we have $\mathcal{R}(N) \leq N$. By Theorem 3.8 and by the fact that $\mathcal{R}(N) \leq N$ for $N \equiv 2 \pmod{4}$, we have this theorem. \Box

Algorithm 4 : yet another algorithm to fulfill all-to-all personalized exchange in a GSEN with $N \equiv 2 \pmod{4}$

1: **for** each processor i (0 < i < N) **do in parallel**

2: $n \leftarrow \lceil \log_2 N \rceil$;

3: power $\leftarrow 2^n$;

- 4: **if** *i* is even then $m \leftarrow (i \cdot power) \mod N$; **else** $m \leftarrow ((i + 1) \cdot power 1) \mod N$; **endif**
- 5: **for** k = 0 to N 1 **do in sequential** //comment: round k
- 6: **if** *i* is even **then** $j \leftarrow (m + k) \mod N$; **else** $j \leftarrow (m k) \mod N$; **endif**
- 7: Processor *i* prepares a personalized message for processor *j*;
- 8: Equip the personalized message with the forward control tag k if i is even and $2^n 1 k$ if i is odd;
- 9: Transmit the message;
- 10: endfor

11: endfor

Fig. 10. A 12 × 12 GSEN, switches s_0 and s_1 , terminals t_0 and t_1 , and $\mathcal{Q} = \{Q_0, Q_1, Q_2\}$.

5. The value of $\mathcal{R}(N)$ when $N \equiv 0 \pmod{4}$

The purpose of this section is to obtain $\mathcal{R}(N)$ for all $N \equiv 0 \pmod{4}$. Recall that each stage of a GSEN consists of the perfect shuffle on N terminals followed by N/2 switches, the N terminals are numbered 0, 1, ..., N - 1, and the perfect shuffle operation on the N terminals is the permutation π defined by $\pi(i) = (2 \cdot i + \lfloor \frac{2 \cdot i}{N} \rfloor) \mod N$, $0 \le i < N$. We first have a lemma.

Lemma 5.1. Suppose $k \ge 2$, $N \equiv 0 \pmod{2^k}$, and $N \ne 0 \pmod{2^{k+1}}$. Let *i* be an arbitrary input of a given $N \times N$ GSEN. If the forward control tag $F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \cdots + f_02^0$ used by *i* starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \ldots, k$), then the terminal reached by *i* immediately after stage k-1 is $(i2^k + 2^{k-1} - 1) \mod N$.

Proof. Each stage of a GSEN has N/2 switches; we suppose these N/2 switches are labeled 0, 1, ..., N/2 - 1. Consider the path P(i, F) and the switches and terminals on the path. Let s_{ℓ} be the label of the switch at stage ℓ reached by P(i, F). Let t_{ℓ} be the terminal immediately after stages ℓ that is reached by P(i, F). See Fig. 10 for an illustration of the N = 12 and k = 2 case. By the perfect shuffle operation, $s_0 = i \mod N/2$. Since $f_{n-1} = 0$, we have $t_0 = 2s_0 = (2i) \mod N$. Again, by the perfect shuffle operation, $s_1 = t_0 \mod N/2 = (2i) \mod N/2$. Since $f_{n-2} = 1$, we have $t_1 = 2s_1 + 1 = (4i + 1) \mod N = (i2^2 + 2^1 - 1) \mod N$. In general, we assume $\ell \ge 1$. Then we have $s_{\ell} = t_{\ell-1} \mod N/2$ and $t_{\ell} = 2s_{\ell} + f_{n-1-\ell}$. Continuing in this way, we have

$$t_{k-1} = (i2^k + f_{n-1}2^{k-1} + \dots + f_{n-k}2^0) \mod N = (i2^k + 2^{k-2} + \dots + 2^0) \mod N = (i2^k + 2^{k-1} - 1) \mod N$$

Hence this lemma holds. \Box

For $r = 0, 1, ..., \frac{N}{2^k} - 1$, let Q_r denote the terminal $r2^k + 2^{k-1} - 1$ immediately after stage k-1 and see Fig. 10 for an illustration of the N = 12 and k = 2 case. Let $Q = \{Q_r \mid r = 0, 1, ..., \frac{N}{2^k} - 1\}$. We say a routing path *passes through* Q if it passes through one of the terminals in Q.

Lemma 5.2. Suppose $k \ge 2$, $N \equiv 0 \pmod{2^k}$, $N \ne 0 \pmod{2^{k+1}}$, and consider an $N \times N$ GSEN. A routing path passes through \mathcal{Q} if and only if the forward control tag $F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \cdots + f_02^0$ used by this path starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \ldots, k$).

Proof. Assume that the given routing path is from input *i*. Then this routing path is the path P(i, F). (Necessity) First suppose P(i, F) passes through the terminal Q_r in Q. Then by the perfect shuffle operation, we have

 $(i2^{k} + f_{n-1}2^{k-1} + \dots + f_{n-k}) \mod N = r2^{k} + 2^{k-1} - 1.$

Since $2^k | N$, we can take modulo 2^k for both sides of the above equation and obtain

$$(i2^{k} + f_{n-1}2^{k-1} + \dots + f_{n-k} \mod N) \mod 2^{k} = (r2^{k} + 2^{k-1} - 1) \mod 2^{k} = 2^{k-1} - 1,$$

which implies $f_{n-1}2^{k-1} + f_{n-2}2^{k-2} + \cdots + f_{n-k} = 2^{k-1} - 1$, i.e., $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \ldots, k$). (Sufficiency) Suppose the forward control tag F starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \ldots, k$). Then by Lemma 5.1, the terminal reached by i immediately after stage k - 1 will be $(i2^k + 2^{k-1} - 1) \mod N$, which is $Q_{i \mod \frac{N}{2k}}$.

Therefore P(i, F) passes through Q.

Recall that $2^{n-1} < N < 2^n$. The following lemma requires N to satisfy $2^{n-1} + 2^{n-k} < N < 2^n$.

Lemma 5.3. Suppose $k \ge 2$, $N \equiv 0 \pmod{2^k}$, $N \ne 0 \pmod{2^{k+1}}$, and consider an $N \times N$ GSEN. If $2^{n-1} + 2^{n-k} \le N \le 2^n$ and the forward control tag $F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \cdots + f_02^0$ used by a path starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \ldots, k$), then this path is a unique path.

Proof. Note that if *F* starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for t = 2, 3, ..., k), then $2^{n-1} - 2^{n-k} \le F < 2^{n-1}$. Assume that the given routing path is from input *i*. Then this routing path is the path P(i, F). By Lemma 3.5, P(i, F) is a unique path if and only if $2^n - N \le F < N$. Since

$$2^{n} - N \leq 2^{n} - 2^{n-1} - 2^{n-k} = 2^{n-1} - 2^{n-k} \leq F < 2^{n-1} < N,$$

P(i, F) is a unique path for each $2^{n-1} - 2^{n-k} < F < 2^{n-1}$. Hence this lemma holds.

Now we are ready to propose our result for $\mathcal{R}(N)$ with $N \equiv 0 \pmod{4}$.

Theorem 5.4. $\mathcal{R}(N) = \mathcal{R}_{sc}(N) = 2^n$ if $k \ge 2$, $N \equiv 0 \pmod{2^k}$, $N \neq 0 \pmod{2^{k+1}}$, and $2^{n-1} + 2^{n-k} \le N \le 2^n$.

Proof. Assume $k \ge 2$, $N \equiv 0 \pmod{2^k}$, $N \ne 0 \pmod{2^{k+1}}$, and $2^{n-1} + 2^{n-k} \le N \le 2^n$. By Theorem 3.8, it suffices to prove that $\mathcal{R}(N) \ge 2^n$. In any all-to-all communication of a GSEN, a total of N^2 routing paths have to be established. Let *i* be an arbitrary input and let $F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \dots + f_02^0$ be an arbitrary forward control tag such that F starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \dots, k$). Since F starts with $f_{n-1} = 0$ and $f_{n-t} = 1$ (for $t = 2, 3, \dots, k$), we have $2^{n-1} - 2^{n-k} \le F < 2^{n-1}$ and there are a total of 2^{n-k} such F's. By Lemma 5.3, P(i, F) is a unique path. Since $2^{n-1} - 2^{n-k} \le F < 2^{n-1}$, the number of such unique paths P(i, F) is $N \cdot 2^{n-k}$. Let \mathcal{U} denote the set of these $N \cdot 2^{n-k}$ unique paths. Then, in any all-to-all communication, all of the paths in \mathcal{U} must appear. By Lemma 5.2, all of the paths in \mathcal{U} will pass through *Q*. Recall that given a network configuration, a permutation between the inputs and outputs can be obtained. Therefore, given a network configuration, *N* routing paths can be established. By Lemma 5.1, any network configuration can establish only $N/2^k$ routing paths in \mathcal{U} . Therefore $\mathcal{R}(N) \geq \frac{N \cdot 2^{n-k}}{N/2^k} = 2^n$. \Box

By Theorem 5.4, $\Re(12) = 16$, $\Re(24) = 32$, $\Re(28) = 32$, $\Re(40) = 64$, $\Re(80) = 128$, and $\Re(144) = 256$. The first $\mathcal{R}(N)$ that cannot be determined by Theorems 4.8 and 5.4 is $\mathcal{R}(20)$; we will determine it after introducing a variation of the alternating stage control technique; we call it doubly alternating stage control, meaning that the states of the switches of a stage alternate between two straight states and two cross states. The network configuration obtained by doubly alternating stage control is called a *doubly alternating configuration* and it can be represented by the number

 $A' = a'_{n-1}2^{n-1} + a'_{n-2}2^{n-2} + \dots + a'_{0}2^{0}$

as follows. Let a'_{ℓ} denote the states of the switches at stage $n - 1 - \ell$ such that

- $a'_{\ell} = 0$ means the states are 0, 0, 1, 1, 0, 0, 1, 1, and so on. $a'_{\ell} = 1$ means the states are 1, 1, 0, 0, 1, 1, 0, 0, and so on.

Obviously, $0 < A' < 2^n$. Now we are ready to determine $\Re(20)$.

Theorem 5.5. $\Re(20) = 24$.

Proof. We first prove that $\Re(20) \ge 24$. In any all-to-all communication of a 20 \times 20 GSEN, a total of $20^2 = 400$ routing paths have to be established. To prove $\Re(20) \ge 24$, we claim that 400 routing paths are not sufficient to fulfill an all-to-all communication in a 20 \times 20 GSEN and at least 400 + 80 = 480 routing paths have to be established in order to fulfill an all-to-all communication. If this claim is true, then since a network configuration can establish only 20 routing paths, we have $\Re(20) \ge \frac{480}{20} = 24$. Now we prove this claim.

Let *i* be an arbitrary input and let $F = f_{n-1}2^{n-1} + f_{n-2}2^{n-2} + \cdots + f_02^0$ be an arbitrary forward control tag. By Lemma 3.5, P(i, F) is a unique path if and only if $12 \le F \le 19$. Hence each input *i* contributes 8 unique paths P(i, 12), $P(i, 13), \ldots, P(i, 19)$. Thus there are a total of 160 unique paths; we illustrate all of these 160 unique paths in Fig. 11. In this proof, states of switches at stage 2 play an important role. Denote the 10 switches at stage 2 by S_0, S_1, \ldots, S_9 . Now we

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669-1684

Fig. 11. The 160 unique paths in a 20 \times 20 GSEN; each input *i* contributes 8 unique paths.

define types 00, 01, 10, and 11, according to the connection inside a switch at stage 2 as follows. A path is said to be *of type* xy, where $x, y \in \{0,1\}$, if the connection inside the switch (passed by the path) at stage 2 is from subport x to subport y. The following two facts can be observed from Fig. 11.

Fact 1: All of the unique paths passing through S_0 , S_4 , and S_8 are of type 10, through S_1 , S_5 , and S_9 are of type 01, through S_2 and S_6 are of type 00, and through S_3 and S_7 are of type 11. (See Fig. 12(a).)

Fact 2: Each switch at stage 2 has exactly 16 unique paths passing through it. More precisely, let U_i denote the set of all 16 unique paths passing through S_i . Then

 $\begin{array}{l} \mathcal{U}_{0} = \{P(i,F) \mid i = 2, 7, 12, 17 \text{ and } F = 16, 17, 18, 19\}, \ \mathcal{U}_{1} = \{P(i,F) \mid i = 0, 5, 10, 15 \text{ and } F = 12, 13, 14, 15\}, \\ \mathcal{U}_{2} = \{P(i,F) \mid i = 0, 5, 10, 15 \text{ and } F = 16, 17, 18, 19\}, \ \mathcal{U}_{3} = \{P(i,F) \mid i = 3, 8, 13, 18 \text{ and } F = 12, 13, 14, 15\}, \\ \mathcal{U}_{4} = \{P(i,F) \mid i = 3, 8, 13, 18 \text{ and } F = 16, 17, 18, 19\}, \ \mathcal{U}_{5} = \{P(i,F) \mid i = 1, 6, 11, 16 \text{ and } F = 12, 13, 14, 15\}, \\ \mathcal{U}_{6} = \{P(i,F) \mid i = 1, 6, 11, 16 \text{ and } F = 16, 17, 18, 19\}, \ \mathcal{U}_{7} = \{P(i,F) \mid i = 4, 9, 14, 19 \text{ and } F = 12, 13, 14, 15\}, \\ \mathcal{U}_{8} = \{P(i,F) \mid i = 4, 9, 14, 19 \text{ and } F = 16, 17, 18, 19\}, \ \mathcal{U}_{9} = \{P(i,F) \mid i = 2, 7, 12, 17 \text{ and } F = 12, 13, 14, 15\}. \end{array}$

By Fact 1, in a network configuration, switch S_0 has to be set to cross to let a unique path in \mathcal{U}_0 passing through it. Let \mathcal{N}_0 denote the set of paths of passing through S_0 which are of type 01; see Fig. 12(b). Also by Fact 1, in a network configuration, switch S_3 has to be set to straight to let a unique path in \mathcal{U}_3 passing through it. Let \mathcal{N}_3 denote the set of paths passing through S_3 which are of type 00; see Fig. 12(c). Let $I \times J$ -requests denote the set of all (i, j)-requests with $i \in I$ and $j \in J$. It

1681

Fig. 12. (a) The setting of switches at stage 2 when unique paths pass through them. (b) The set of paths in \mathcal{N}_0 . These paths fulfill {0, 5, 10, 15} × {4, 5, 6, 7}-requests. (c) The set of paths in \mathcal{N}_3 . These paths also fulfill {0, 5, 10, 15} × {4, 5, 6, 7}-requests.

can be observed from Fig. 12(b)(c) that \mathcal{N}_0 and \mathcal{N}_3 both fulfill {0, 5, 10, 15} × {4, 5, 6, 7}-requests. Thus when the 32 unique paths in $\mathcal{U}_0 \cup \mathcal{U}_3$ are fulfilled, the 32 paths in $\mathcal{N}_0 \cup \mathcal{N}_3$ are also established; however, $\mathcal{N}_0 \cup \mathcal{N}_3$ fulfills at most 16 routing requests and at least 16 routing requests are repeated. The same situation also occurs when the 32 unique paths in $\mathcal{U}_1 \cup \mathcal{U}_3$, in $\mathcal{U}_2 \cup \mathcal{U}_5$, in $\mathcal{U}_4 \cup \mathcal{U}_7$, and in $\mathcal{U}_6 \cup \mathcal{U}_9$ are established. From the above, a total of $16 \cdot 5 = 80$ routing requests are repeated. Hence to fulfill an all-to-all communication in a 20 × 20 GSEN, at least 400 + 80 = 480 routing requests have to be fulfilled, i.e., 480 routing paths have to be established.

Now we prove $\Re(20) \le 24$ by showing that an all-to-all communication in a 20 × 20 GSEN can be fulfilled in 24 network configuration. A 20 × 20 GSEN has 32 doubly alternating configurations. Consider these 32 doubly alternating configurations. It is not difficult to check that A' = 0 and A' = 17 obtain the same permutation and hence only one of them is needed in an all-to-all communication. Each of the following pairs of doubly alternating configurations also obtain the same permutation and hence only one in each pair is needed in an all-to-all communication: A' = 1 and A' = 16, A' = 2 and A' = 19, A' = 3 and A' = 18, A' = 8 and A' = 25, A' = 9 and A' = 24, A' = 10 and A' = 27, and A' = 11 and A' = 26. By removing one doubly alternating configuration from each of the above eight pairs, we have a set A' containing 24 doubly alternating configurations; in particular, we can choose $A' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31\}$. In Fig. 13, we show all the permutations obtained by applying the network configurations in A'. It is not difficult to see that A' fulfills an all-to-all communication in a 20 × 20 GSEN. Hence $\Re(20) \le 24$. \Box

6. Concluding remarks

The shuffle-exchange network has been proposed as a popular architecture for MINs. The generalized shuffle-exchange networks (GSEN) is a generalization of the shuffle-exchange network. We follow the convention used in [1,2,10] that an $N \times N$ GSEN has exactly $\lceil \log_2 N \rceil$ stages. Based on this convention, we define $n = \lceil \log_2 N \rceil$ and we have $2^{n-1} < N \le 2^n$.

In this paper we consider the all-to-all personalized exchange problem in GSENs. Since a GSEN does not have the unique path property, previous algorithms [9,13] cannot be used. To our knowledge, no one has studied all-to-all personalized exchange in MINs which do not have the unique path property and do not satisfy $N = 2^n$. An optimal algorithm and several bounds on $\mathcal{R}(N)$ and $\mathcal{R}_{sc}(N)$ have been proposed in this paper; recall that $\mathcal{R}(N)$ is the minimum number of network configurations required to fulfill all-to-all communication in an $N \times N$ GSEN and $\mathcal{R}_{sc}(N)$ is the minimum number of network configurations required to fulfill all-to-all communication in an $N \times N$ GSEN when the stage control technique is assumed. In Theorem 3.8, we have proven $N \leq \mathcal{R}(N) \leq \mathcal{R}_{sc}(N) = 2^n$. In Theorem 4.8, we have proven $N = \mathcal{R}(N) < \mathcal{R}_{sc}(N) = 2^n$ if $N \equiv 2 \pmod{4}$. In Theorem 5.4, we have proven $\mathcal{R}(N) = \mathcal{R}_{sc}(N) = 2^n$ if $k \geq 2$, $N \equiv 0 \pmod{2^k}$, $N \neq 0 \pmod{2^{k+1}}$, and $2^{n-1} + 2^{n-k} \leq N \leq 2^n$. In Theorem 5.5, we have proven $\mathcal{R}(20) = 24$.

Before closing this paper, we list $\Re(N)$ and $\Re_{sc}(N)$ for N = 4, 6, ..., 128 in Fig. 14. We conjecture that when $N \equiv 4$ (mod 8), the best way to reduce the number of network configurations used in an all-to-all communication in a GSEN is to use doubly alternating stage control. One can examine $\Re(36) \le 40$ and $\Re(44) \le 48$ by the aid of a computer. We also conjecture that when $N \equiv 8 \pmod{16}$, the best way to reduce the number of network configurations used in an all-to-all communication in a GSEN is to use *quadruply alternating stage control*, meaning that the states of the switches of a stage *alternate between four straight states and four cross states*. The network configuration obtained by quadruply alternating stage control is called a *quadruply alternating configuration* and it can be represented by the number

$$A'' = a''_{n-1}2^{n-1} + a''_{n-2}2^{n-2} + \dots + a''_02^0$$

as follows. Let a''_{ℓ} denote the states of the switches at stage $n-1-\ell$ such that

- $a_{\ell}^{\prime\prime} = 0$ means the states are 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, and so on.
- $a_{\ell}^{\prime\prime} = 1$ means the states are 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, and so on.

Obviously, $0 \le A'' < 2^n$.

W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669-1684

1683

Fig. 13. Fulfill an all-to-all communication in a 20 × 20 GSEN by using the 24 network configurations in $\mathcal{A}' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31\}$. The destinations of the messages for each network configuration are shown on the left-hand side of the GSEN.

Let A' denote a set of doubly alternating configurations and let A'' denote a set of quadruply alternating configurations. The following results are obtained by the aid of a computer.

- $\mathcal{R}(36) \le 40$; by using $\mathcal{A}' = \{0 \sim 3, 8 \sim 19, 24 \sim 35, 40 \sim 43, 48 \sim 51, 56 \sim 59\}.$
- $\mathcal{R}(44) \le 48$; by using $\mathcal{A}' = \{0 \sim 3, 8 \sim 19, 24 \sim 35, 40 \sim 51, 56 \sim 63\}.$
- $\Re(68) \le 72$; by using $\mathcal{A}' = \{0 \sim 11, 16 \sim 43, 48 \sim 63, 68 \sim 71, 80 \sim 83, 100 \sim 104, 112 \sim 115\}$.
- $\mathcal{R}(72) \leq 96$; by using $\mathcal{A}'' = \{0 \sim 63, 72 \sim 79, 88 \sim 95, 104 \sim 111, 120 \sim 127\}.$
- $\mathcal{R}(76) \le 88$; by using $\mathcal{A}' = \{0 \sim 7, 12 \sim 39, 44 \sim 67, 80 \sim 91, 96 \sim 99, 112 \sim 123\}.$
- $\Re(84) \le 96$; by using $A' = \{0 \sim 11, 16 \sim 43, 48 \sim 63, 68 \sim 71, 80 \sim 95, 100 \sim 103, 112 \sim 127\}$.
- $\mathcal{R}(92) \leq 112$; by using $\mathcal{A}' = \{0 \sim 7, 12 \sim 39, 44 \sim 71, 76 \sim 103, 108 \sim 127\}.$

N	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44
R(N)	4	6	8	10	16	14	16	18	24	22	32	26	32	30	32	34	≤ 40	38	64	42	≤ 48
Rsc(N)	4	8	8	16	16	16	16	32	32	32	32	32	32	32	32	64	64	64	64	64	64
N	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86
R(N)	46	64	50	64	54	64	58	64	62	64	66	≤ 72	70	≤ 96	74	≤ 88	78	128	82	≤96	86
Rsc(N)	64	64	64	64	64	64	64	64	64	64	128	128	128	128	128	128	128	128	128	128	128
N	88	90	92	94	96	98	100	102	104	106	108	110	112	114	116	118	120	122	124	126	128
R(N)	128	90	≤112	94	128	98	128	102	128	106	128	110	128	114	128	118	128	122	128	126	128
Rsc(N)	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128	128

Fig. 14. Known results of $\mathcal{R}(N)$ and $\mathcal{R}_{sc}(N)$ for $N = 4, 6, \dots, 128$.

Although we know that $\Re(36) \le 40$, we are unable to prove that $\Re(36) \ge 40$. Several open problems can be found in Fig. 14. In particular, we conjecture $\Re(36) = 40$, $\Re(44) = 48$. Determining $\Re(N)$ for all N such that $N \equiv 0 \pmod{4}$ is still an open problem.

References

- [1] Z. Chen, Z. Liu, Z. Qiu, Bidirectional shuffle-exchange network and tag-based routing algorithm, IEEE Commun. Lett. 7 (3) (2003) 121–123.
- [2] C. Chen, J.K. Lou, An efficient tag-based routing algorithm for the backward network of a bidirectional general shuffle-exchange network, IEEE Commun. Lett. 10 (4) (2006) 296–298.
- [3] M. Gerla, E. Leonardi, F. Neri, P. Palnati, Routing in the bidirectional shufflenet, IEEE/ACM Trans. Netw. 9 (1) (2001) 91–103.
- [4] C.P. Kuruskal, A unified theory of interconnection network structure, Theoret. Comput. Sci. 48 (1986) 75–94.
- [5] J.K. Lan, W.Y. Chou, C. Chen, Efficient routing algorithms for the bidirectional general shuffle-exchange network, Discrete Math. Algorithms Appl. 1 (2) (2009) 267–281.
- [6] D.H. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C- 24 (12) (1975) 1145-1155.
- [7] S.C. Liew, On the stability if shuffle-exchange and bidirectional shuffle-exchange deflection networkA, IEEE/ACM Trans. Netw. 5 (1) (1997) 87–94.
 [8] V.W. Liu, C. Chen, R.B. Chen, Optimal all-to-all personalized exchange in *d*-nary banyan multistage interconnection networks, J. Comb. Optim. 14
 - (2007) 131–142.
- [9] A. Maśsini, All-to-all personalized communication on multistage interconnection networks, Discrete Appl. Math. 128 (2) (2003) 435–446.
 [10] K. Padmanabhan, Design and analysis of even-sized binary shuffle-exchange networks for multiprocessors, IEEE Trans. Parallel Distrib. Syst. 2 (4) (1991) 385–397.
- [11] C. Qiao, L. Zhou, Scheduling switch disjoint connections in stage-controlled photonic banyans, IEEE Trans. Commun. 47 (1) (1999) 139-148.
- [12] R. Ramaswami, Multi-wavelength lightwave networks for computer communication, IEEE Commun. Mag. 31 (2) (1993) 78–88.
- [13] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in self-routable multistage networks, IEEE Trans. Parallel Distrib. Syst. 11 (3) (2000)
- 261–274.
- [14] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in a class of optical multistage networks, IEEE Trans. Parallel Distrib. Syst. 12 (9) (2001) 567–582.