

The Hyperinvariant Subspace Lattice of a Contraction of Class \$C._0\$

Author(s): Pei Yuan Wu

Source: Proceedings of the American Mathematical Society, Vol. 72, No. 3 (Dec., 1978), pp. 527-

530

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2042465

Accessed: 28/04/2014 17:11

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

THE HYPERINVARIANT SUBSPACE LATTICE OF A CONTRACTION OF CLASS $C_{\cdot 0}$

PEI YUAN WU¹

ABSTRACT. It is shown that if T is a $C_{\cdot 0}$ contraction with finite defect indices, then Hyperlat T is (lattice) generated by those subspaces which are either $\ker \psi(T)$ or $\operatorname{ran} \xi(T)$, where ψ and ξ are scalar-valued inner functions.

For a bounded linear operator T on a complex Hilbert space H, Hyperlat T denotes the lattice of all hyperinvariant subspaces for T, that is, the lattice of those subspaces which are invariant for all operators commuting with T. Recently, Fillmore, Herrero and Longstaff [1] showed that on a finite-dimensional space H, Hyperlat T is (lattice) generated by those subspaces which are either $\ker p(T)$ or $\operatorname{ran} q(T)$, where p and q are polynomials. In this note we generalize this to the following

THEOREM. Let T be a contraction of class $C_{\cdot 0}$ with finite defect indices acting on a separable Hilbert space. Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker \psi(T)$ or $\overline{\tan \xi(T)}$, where ψ and ξ are scalar-valued inner functions.

Recall that a contraction $T(||T|| \le 1)$ is of class $C_{\cdot 0}$ if $T^{*n}x \to 0$ for all x. The defect indices of T are, by definition, $d_T = \operatorname{rank}(1 - T^*T)^{1/2}$ and $d_{T^*} = \operatorname{rank}(1 - TT^*)^{1/2}$. If T is of class $C_{\cdot 0}$, then $d_T \le d_{T^*}$. For operators T, T' acting on H, H', respectively, $T \prec T'$ means that there exists a family of operators $\{X_\alpha\}$ from H to H' such that (i) for each α , X_α is one-to-one, (ii) $\bigvee_\alpha X_\alpha H = H'$, and (iii) for each α , $X_\alpha T = T'X_\alpha$. If $T \prec T'$ and $T' \prec T$, then T, T' are said to be completely injection-similar, and this is denoted by $T \overset{\text{ci}}{\sim} T$. For contractions of class $C_{\cdot 0}$ and with $d_T = m < \infty$, $d_{T^*} = n < \infty$, there has been developed a Jordan model which is, in a certain sense, analogous to the Jordan model for finite matrices. More specifically, if T is such a contraction then it is completely injection-similar to a uniquely determined Jordan operator of the form

$$S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \oplus S_{n-m}$$

© American Mathematical Society 1978

Received by the editors July 19, 1977 and, in revised form, January 25, 1978.

AMS (MOS) subject classifications (1970). Primary 47B99; Secondary 47A15.

Key words and phrases. C.0 contraction, hyperinvariant subspace.

¹This research was partially supported by the National Science Council of Taiwan, Republic of China.

528 P. Y. WU

where φ_i 's are nonconstant inner functions satisfying $\varphi_{i-1}|\varphi_i$, $S(\varphi_i)$ denotes the operator on $H^2 \ominus \varphi_i H^2$ which is the compression of the multiplication by z to the space $H^2 \ominus \varphi_i H^2$, $i = 1, \ldots, k$, and S_{n-m} denotes the unilateral shift operator on H^2_{n-m} . For more details, the readers are referred to [3].

We first prove our theorem for the case when T is a Jordan operator.

LEMMA 1. Let $T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k)$ be a Jordan operator. Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker \psi(T)$ or $\overline{\tan \xi(T)}$, where ψ and ξ are scalar-valued inner functions.

PROOF. Let $K \in \text{Hyperlat } T$ and for $i = 1, \ldots, k$, let $T_i = S(\varphi_i)$. Uchiyama [4] showed that K corresponds to a regular factorization

$$\begin{bmatrix} \varphi_1 & 0 \\ \vdots \\ 0 & \varphi_k \end{bmatrix} = \begin{bmatrix} \xi_1 & 0 \\ \vdots \\ 0 & \xi_k \end{bmatrix} \begin{bmatrix} \psi_1 & 0 \\ \vdots \\ 0 & \psi_k \end{bmatrix}$$

of the characteristic function

$$\left[egin{array}{ccc} arphi_1 & 0 \ & \ddots \ 0 & arphi_k \end{array}
ight]$$

of T, where ξ_i , ψ_i satisfy $\xi_{i-1}|\xi_i$, $\psi_{i-1}|\psi_i$, $i=2,\ldots,k$. Also

$$K = \sum_{i=1}^{k} \bigoplus (\xi_i H^2 \bigoplus \varphi_i H^2).$$

We claim that $K = \bigvee_{i=1}^{k} [\ker \psi_i(T) \cap \overline{\operatorname{ran} \xi_i(T)}].$

Since for each i, $\xi_i H^2 \bigoplus \varphi_i H^2 = \ker \psi_i(T_i) = \overline{\operatorname{ran} \xi_i(T_i)}$, one inclusion is trivial. To prove the other, fix j, $1 \le j \le k$, and let $x = \sum_{i=1}^k \bigoplus x_i$ be an element in $\ker \psi_j(T) \cap \overline{\operatorname{ran} \xi_j(T)}$. Let $\{y_n = \sum_{i=1}^k \bigoplus y_{in}\}$ be a sequence of vectors such that $\xi_j(T)y_n \to x$ in norm. Thus for each i, we have $\xi_j(T_i)y_{in} \to x_i$. For $i \le j$, $\xi_i | \xi_j$, and therefore there is an inner ρ_i such that $\xi_j = \xi_i \rho_i$. Hence $\xi_i(T_i)\rho_i(T_i)y_{in} = \xi_j(T_i)y_{in} \to x_i$, which implies $x_i \in \overline{\operatorname{ran} \xi_i(T_i)} = \xi_i H^2 \bigoplus \varphi_i H^2$. On the other hand, for $j \le i$, $\psi_j | \psi_i$, and therefore there is an inner ω_i such that $\psi_i = \omega_i \psi_j$. Hence $\psi_i(T_i)x_i = \omega_i(T_i)\psi_j(T_i)x_i = 0$, which implies $x_i \in \ker \psi_i(T_i) = \xi_i H^2 \bigoplus \varphi_i H^2$. It follows $x \in K$, completing the proof.

We remark that in the preceding proof we actually showed that

$$K = \ker \psi_1(T) \vee \left[\bigvee_{i=2}^{k-1} \left(\ker \psi_i(T) \cap \overline{\operatorname{ran} \xi_i(T)} \right) \right] \vee \overline{\operatorname{ran} \xi_k(T)},$$

since for j = 1, k, we only used the assumptions $x \in \ker \psi_1(T)$ and $x \in \overline{\operatorname{ran} \xi_k(T)}$ to prove the assertion.

LEMMA 2. Let $T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \oplus S_{n-m}$ be a Jordan operator.

Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker \psi(T)$ or $\overline{\tan \xi(T)}$, where ψ and ξ are scalar-valued inner functions.

PROOF. Let $S = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k)$ and $H = (H^2 \ominus \varphi_1 H^2) \oplus \cdots \oplus (H^2 \ominus \varphi_k H^2)$. Uchiyama showed in [5] that the hyperinvariant subspaces of T must be of the form $K_1 \oplus K_2$, where $K_1 \subseteq H$, $K_2 \subseteq H_{n-m}^2$ are hyperinvariant for S, S_{n-m} , respectively, such that either $K_2 = 0$ or there exists an inner function φ such that $K_2 = \varphi H_{n-m}^2$ and $K_1 \supseteq \varphi(S)H$. Note that for any inner function φ , ker $\varphi(S_{n-m}) = 0$ and $\overline{\operatorname{ran} \varphi(S_{n-m})} = \varphi H_{n-m}^2$. Thus by Lemma 1 we can easily check that if $K_2 = 0$ then

$$K_1 \oplus K_2 = K_1 \oplus 0 = \bigvee_{i=1}^k \left[\ker \psi_i(T) \cap \overline{\operatorname{ran} \xi_i(T)} \right],$$

otherwise

$$K_1 \oplus K_2 = \overline{\operatorname{ran} \varphi(T)} \vee \left[\bigvee_{i=1}^k \left(\ker \psi_i(T) \cap \overline{\operatorname{ran} \xi_i(T)} \right) \right].$$

This proves our assertion.

PROOF OF THEOREM. Let T be completely injection-similar to its Jordan model $T' = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \oplus S_{n-m}$, and suppose that T and T' are acting on the spaces H and H', respectively. Note that the complete injection-similarity can be implemented by two suitably chosen operators $\{X_1, X_2\}$ from H to H' and two operators $\{Y_1, Y_2\}$ from H' to H (cf. [2] and [3]). Uchiyama [5] showed that in this case the induced mappings $\alpha \colon K \to X_1K \vee X_2K$ and $\beta \colon K' \to Y_1K' \vee Y_2K'$ are (lattice) isomorphisms between Hyperlat T and Hyperlat T', which are inverses to each other. Thus in view of Lemmas 1 and 2 to complete the proof we have only to show that (i) β (ker $\psi(T')$) = ker $\psi(T)$ and (ii) β (ran $\xi(T')$) = ran $\xi(T)$ hold for arbitrary ψ , ξ in H^{∞} .

To prove (i), let $x = Y_1 y$, where $y \in \ker \psi(T')$. Since $\psi(T)x = \psi(T)Y_1 y$ = $Y_1 \psi(T') y = 0$, we have $x \in \ker \psi(T)$. This shows that $Y_1 \ker \psi(T') \subseteq \ker \psi(T)$. Similarly, $Y_2 \ker \psi(T') \subseteq \ker \psi(T)$, and hence $\beta(\ker \psi(T')) \subseteq \ker \psi(T)$. In a similar fashion, we have $\alpha(\ker \psi(T)) \subseteq \ker \psi(T')$. Thus $\ker \psi(T) = \beta(\alpha(\ker \psi(T))) \subseteq \beta(\ker \psi(T'))$, which proves (i). (ii) can be proved analogously. This finishes the proof of the Theorem.

Fillmore, Herrero and Longstaff's result [1] follows as a corollary.

COROLLARY. Let T be a linear transformation on a finite-dimensional space H. Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker p(T)$ or $\tan q(T)$, where p and q are polynomials.

PROOF. For $0 < \alpha < 1/||T||$, $S \equiv \alpha T$ is a strict contraction, hence a contraction of class $C_{\cdot 0}$. The Theorem implies that Hyperlat S = Hyperlat T is (lattice) generated by those subspaces which are either ker U or ran V, where U, V are operators in $\{S\}'' = \{T\}''$, the double commutants of S and T. Our assertion follows from the fact that $\{T\}''$ consists of polynomials in T.

530 P. Y. WU

REFERENCES

- 1. P. A. Fillmore, D. A. Herrero and W. E. Longstaff, *The hyperinvariant subspace lattice of a linear transformation*, Linear Algebra and Appl. 17 (1977), 125-132.
- 2. E. A. Nordgren, On quasi-equivalence of matrices over H^{∞} , Acta Sci. Math. 34 (1973), 301-310.
- 3. B. Sz.-Nagy and C. Foias, Jordan model for contractions of class $C_{\cdot 0}$, Acta Sci. Math. 36 (1974), 305–322.
- 4. M. Uchiyama, Hyperinvariant subspaces of operators of class $C_0(N)$, Acta Sci. Math. 39 (1977), 179–184.
- 5. _____, Hyperinvariant subspaces for contractions of class C.₀, Hokkaido Math. J. 6 (1977), 260-272.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA