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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 72, Number 3, December 1978

THE HYPERINVARIANT SUBSPACE LATTICE OF
A CONTRACTION OF CLASS C,,

PEI YUAN WU'

ABSTRACT. It is shown that if T is a C., contraction with finite defect
indices, then Hyperlat T is (lattice) generated by those subspaces which are
either ker y(T) or ran §(7), where ¢ and £ are scalar-valued inner
functions.

For a bounded linear operator T on a complex Hilbert space H, Hyper-
lat T denotes the lattice of all hyperinvariant subspaces for 7, that is, the
lattice of those subspaces which are invariant for all operators commuting
with 7. Recently, Fillmore, Herrero and Longstaff [1] showed that on a
finite-dimensional space H, Hyperlat T is (lattice) generated by those
subspaces which are either ker p(T) or ran ¢(T), where p and g are
polynomials. In this note we generalize this to the following

THEOREM. Let T be a contraction of class C., with finite defect indices acting
on a separable Hilbert space. Then Hyperlat T is (lattice) generated by those
subspaces which are either ker {(T) or ran §(T), where { and § are scalar-
valued inner functions.

Recall that a contraction T (|| T|| < 1) is of class C., if 7*"x — 0 for all x.
The defect indices of T are, by definition, d = rank(l1 — T*T)'/? and dj» =
rank(l — TT*)"/2. If T is of class C.o, then dr < dr.. For operators T, T"
acting on H, H’, respectively, T << T’ means that there exists a family of
operators {X,} from H to H' such that (i) for each a, X, is one-to-one, (ii)

c1 C1
V X.H = H’, and (iii) for each a, X, T=T'X, U T< T  and T' < T,
then T, T’ are said to be completely injection-similar, and this is denoted by
T < T. For contractions of class Coand with d. = m < 0, dpn = n < o0,
there has been developed a Jordan model which is, in a certain sense,
analogous to the Jordan model for finite matrices. More specifically, if T is

such a contraction then it is completely injection-similar to a uniquely
determined Jordan operator of the form

S(@)@ - O S(p) D Sms
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528 P. Y. WU

where ¢,’s are nonconstant inner functions satisfying ¢;_,|¢;, S(g;) denotes
the operator on H*Sq, H* which is the compression of the multiplication by
z to the space H*O@,H? i =1,...,k, and S,_,, denotes the unilateral shift
operator on H?2_, . For more details, the readers are referred to [3].

We first prove our theorem for the case when T is a Jordan operator.

Lemma 1. Let T= S(p)® - - ® S(p,) be a Jordan operator. Then
Hyperlat T is (lattice) generated by those subspaces which are either ker (T)
or ran &(T), where  and £ are scalar-valued inner functions.

ProOOF. Let K € Hyperlat T and for i=1,...,k, let T, = S(¢).
Uchiyama [4] showed that K corresponds to a regular factorization

¢ 0 & O0gly, O

0 o 0 & 0 Y

of the characteristic function

0 o
of T, where &, y; satisfy &_,|&, ¢;_1|¢ i =2, ..., k. Also
k
K=3 @ (HOpH?).
i=1
We claim that K = \/%_ [ker ¢;(T) N ran & (T)).

Since for each i, &H*O¢,H? = ker y;(T;) =ran & (T;), one inclusion is
trivial. To prove the other, fix j, 1 < j < k, and let x = Z%_, @ x; be an
element in ker y,(T) N ran §,(T). Let {y, = Z%_, @ y,,} be a sequence of
vectors such that §(T)y, — x in norm. Thus for each i, we have {(T))y;, —
x;. For i < j, §[, and therefore there is an inner p; such that § = §p,. Hence
§(T)p(T)yin = §(T))y;, — X;, which implies x; € ran §,(T;)= §H O, H.
On the other hand, forj < i, y;|y;, and therefore there is an inner ; such that
¥ = wy;. Hence 4,(T)x; = w,(T)Y;(T;)x; = 0, which implies x; € ker ,(T)
= £ H*O,H? It follows x € K, completing the proof.

We remark that in the preceding proof we actually showed that

k-1
K =kery,(T) V i\=/2 (ker y(T) Nnran &(T)) | Vran §(T),

since for j =1, k, we only used the assumptions x € ker ¢,(T) and
x € ran & (T) to prove the assertion.

LEMMA 2. Let T= S(¢;))®D - - - © S(p) @ S,_,, be a Jordan operator.
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Then Hyperlat T is (lattice) generated by those subspaces which are either
ker Y(T) or ran &(T'), where  and & are scalar-valued inner functions.

PrROOF. Let S = S(p) D - - ® S(¢) and H = (HOp,HH)D - - - D
(H*Og¢, H?). Uchiyama showed in [5] that the hyperinvariant subspaces of T
must be of the form K, ® K,, where K, C H, K, C H? ,, are hyperinvariant
for S, S,_,,, respectively, such that either K, = 0 or there exists an inner
function ¢ such that K, = pH?2 ,, and K; D ¢(S)H. Note that for any inner
function ¢, ker @(S,_,,) = 0 and ran ¢(S,_,,)= @H?_,,. Thus by Lemma 1
we can easily check that if X, = 0 then

K®K,=K 0= \:/1 [ker ;(T) N ran §(7) |,

otherwise
_— k ——
K, ® K,=rang(T) M(ker Y(T)Nnran & (T))|.

1l

This proves our assertion.

PrOOF OF THEOREM. Let T be completely injection-similar to its Jordan
model 77 = S(p)) D - - - ® S(p) @ S,_,,» and suppose that T and T are
acting on the spaces H and H’, respectively. Note that the complete
injection-similarity can be implemented by two suitably chosen operators
{X,, X,} from H to H' and two operators {Y,, ¥,} from H’ to H (cf. [2] and
[3]). Uchiyama [5] showed that in this case the induced mappings a: K —
X, KV X,K and B: K'—» Y,K"\/ Y,K’ are (lattice) isomorphisms between
Hyperlat T and Hyperlat 7', which are inverses to each other. Thus in view
of Lemmas 1 and 2 to complete the proof we have only to show that (i)
B (ker Y(T")) = ker Y(T) and (ii) B(ran £(T’)) =ran §(T') hold for arbitrary
Y, §in H®,

To prove (i), let x = Y, y, where y € ker ¢(T"). Since Y(T)x = y(T)Y,y
=Y Y(T)y =0, we have x € ker ¢(T). This shows that Y ker ¢(7") C
ker ¢(T). Similarly, Y,ker ¢(7T”) C ker ¢(T), and hence B (ker y(T")) C
ker y(T). In a similar fashion, we have a(ker (7)) C ker ¢(7’). Thus
ker y(T) = B(a(ker y(T))) C B(ker y(T’)), which proves (i). (ii) can be
proved analogously. This finishes the proof of the Theorem.

Fillmore, Herrero and Longstaff’s result [1] follows as a corollary.

COROLLARY. Let T be a linear transformation on a finite-dimensional space
H. Then Hyperlat T is (lattice) generated by those subspaces which are either
ker p(T) or ran q(T), where p and q are polynomials.

Proor. For 0 < a < 1/||T]||, S = aT is a strict contraction, hence a
contraction of class C.,. The Theorem implies that Hyperlat S = Hyperlat T
is (lattice) generated by those subspaces which are either ker U or ran V,
where U, V are operators in {S}” = {T}”, the double commutants of S and
T. Our assertion follows from the fact that { T}” consists of polynomials in 7.
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