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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 69, Number 2, May 1978 

QUASI-SIMILARITY OF WEAK CONTRACTIONS 

PEI YUAN WUI 

ABSTRACT. Let T be a completely nonunitary (c.n.u.) weak contraction (in 
the sense of Sz.-Nagy and Foias). We show that T is quasi-similar to the 
direct sum of its CO part and C11 part. As a corollary, two c.n.u. weak 
contractions are quasi-similar to each other if and only if their CO parts and 
C11 parts are quasi-similar to each other, respectively. We also completely 
determine when c.n.u. weak contractions and CO contractions are quasi-simi- 
lar to normal operators. 

Recall that a contraction T on the Hilbert space H is called a weak 
contraction if its spectrum a(T) does not fill the open unit disc D and 
1 - T* T is of finite trace. Contained in this class are all contractions T with 
finite defect index dT- dim rank(1 - T* T)'/2 and with a(T) =# D (cf. [9, p. 
323]). 

Assume that T is a weak contraction which is also completely nonunitary 
(c.n.u.), that is, T has no nontrivial reducing subspace on which T is a unitary 
operator. For such a contraction, Sz.-Nagy and Foias obtained a C0-Cl1 
decomposition and then found a variety of invariant subspaces which furnish 
its spectral decomposition (cf. [9, Chapter VIII]). In this note we are going to 
supplement other interesting properties of such contractions. We show that a 
c.n.u. weak contraction is quasi-similar to the direct sum of its C0 part and 
Cl part. Although the proof is not difficult, some of its interesting applica- 
tions justify the elaboration here. An immediate corollary is that two such 
contractions are quasi-similar to each other if and only if their C0 parts are 
quasi-similar and their Cl parts are quasi-similar to each other. This is, in 
turn, used to show that two quasi-similar weak contractions have equal 
spectra. Another interesting consequence is that a c.n.u. weak contraction is 
quasi-similar to a normal operator if and only if its C0 part is. The latter can 
be shown to be equivalent to the condition that its minimal function is a 
Blaschke product with simple zeros, thus completely settling the question 
when a c.n.u. weak contraction is quasi-similar to a normal operator. 

Before we start to prove our main theorem, we provide some background 
work for our notations and terminology. The main reference is [9]. 
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278 P. Y. VU 

Let T be an arbitrary contraction on H. Let Ho = {h E H: Tnh -* 0), 
Ho h {h E H: T*nh -}0), H' = HeHo and H = H E Ho. Note that Ho 
and Ho are invariant for T and T*, respectively. Consider the triangulations 
of T with respect to the orthogonal decompositions H = Ho f H' and 
H = H1 f Ho: 

T=[0 T: ] and T=[ = T] 

The triangulations are of type 

[C? C ] and [C. , 

respectively (cf. [9, p. 73]). Recall that a contraction T is of class C0. (resp. 
C.0) if Tnh 0 (resp. T*nh -*0) as n -* x for all h and T is of class C,. (resp. 
C.1) if Tnh ?0 (resp. T*nh -k*0) as n - o for all h 0. Tis of class CO if 
T E Co. n C.0 and of class C,, if T C C,. n C.,. A c.n.u. contraction T is 
said to be of class C0 if there exists a nonzero function u C H?? such that 
u(T) = 0. In this case we can choose u to be a minimal inner function in the 
sense that u is an inner function such that u(T) = 0 and u divides (in H??) 
every other function v E H?? for which v(T) = 0. Such a function is called a 
minimal function for T and is denoted by mT. If T is a c.n.u. weak 
contraction, then in the previous triangulations To is of class C0 and T1 is of 
class C11, called the C0 part and the C11 part of T (cf. [9, p. 331]). Note that in 
this case we have Ho V H1 = H and Ho n H1 = {0) (cf. [9, p. 332]). For 
arbitrary operators TI, T2 on H1, H2, respectively, T1 -< T2 denotes that T1 is 
a quasi-affine transform of T2, that is, there exists a linear one-to-one and 
continuous transformation S from H1 onto a dense linear manifold in H2 
(called quasi-affinity) such that ST1 = T2S. T1 and T2 are quasi-similar if 
T1 -< T2 and T2 -< T1. 

Our main theorem is the following: 

THEOREM 1. Let T be a c.n.u. weak contraction on H. Let To and T1 be the 
CO part and C11 part of T. Then T is quasi-similar to To ED T1. 

PROOF. Let S: Ho D H1 -* H be defined by S(ho ED h1) = ho + h1. Cer- 
tainly T is a continuous linear transformation. Since Ho V H1 = H and 
Ho n H1 = {o0) it is easily seen that S is a quasi-affinity such that S (To ED 
T1) = TS. Thus To ED T1 -< T. Note that T* is also a c.n.u. weak contraction 
and To* and T'* are the C0 and C11 parts of T* (cf. [9, p. 332]). As above, we 
have To' E T'* -< T*. Hence T -< To' E T', and T0o T, -< T -< To' E T. 
Let V be the quasi-affinity from Ho f H1 to Ho 

' H' such that V(To f T1) 
= (To f T,) V. Since To and T' are of class C0. and C1., respectively, it is 
easily seen that VHo C Ho. Say, 

V [VO ZI 
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is the corresponding triangulation. An easy calculation shows that ZT1 = 

TOZ. Since T1 is of class Cl and To is of class Coo, we must have Z = 0 (cf. 
[4, Lemma 4.41). Thus VO and V1 are quasi-affinities satisfying VOTO = TOVo 
and V1 T' = T V1. Hence To -< To and T, -< T1. It follows from the unique- 
ness of the Jordan model for CO contractions that To and To are quasi-similar 
to each other (cf. [2]). To show that T, is quasi-similar to T', note that T, and 
T1', being C1l contractions, are quasi-similar to unitary operators, say U1 and 
U1, respectively. We have U1 -< U'. By a theorem of Douglas [51, U1 and U' 
are unitarily equivalent. Hence T, is quasi-similar to T', and T is quasi-simi- 
lar to To E TI. 

An immediate corollary of Theorem 1 is 

COROLLARY 1. Let T1 and T2 be c.n.u. weak contractions. Then T1 and T2 

are quasi-similar to each other if and only if their CO parts are quasi-similar and 
their Cl1 parts are quasi-similar to each other. 

PROOF. The sufficiency follows immediately from Theorem 1. The necessity 
can be proved by a similar argument as in Theorem 1. 

In particular, for c.n.u. contractions with scalar-valued characteristic func- 
tions, we have 

COROLLARY 2. Forj = 1, 2, let Tj be a c.n.u. contraction with the scalar-val- 
ued characteristic function 4' R 0. Let 41j = 4iji4je be the canonical factorization 
into the product of its inner part 4i, and outer part 41je, and let Ej= {e": 
Ilb(eit)1 < 1). Let 

Tj VOT j2 

be the triangulation of type 

[OC. [C 

]. j=1l,2. 

Then the following are equivalent: 
(i) T1 is quasi-similar to T2; 

(ii) T11 is quasi-similar to T21 and T12 is unitarily equivalent to T22; 

(iii) ilj = 42i and E1 and E2 differ by a set of zero Lebesgue measure. 

PROOF. Since T1 and T2 are c.n.u. weak contractions, the equivalence of (i) 
and (ii) follows from Corollary 1. Note that Tjl is quasi-similar to the 
multiplication by ei' on the space L2(Ej) and Tj2 is unitarily equivalent to the 
compression of the shift S(14>i) on H2 e 4jj H2, j = 1, 2. Thus the equivalence 
of (ii) and (iii) follows immediately. 

The equivalence of (i) and (iii) in Corollary 2 is compatible with the result 
of Kriete [7] that T1 is similar to T2 if and only if 41/4129 4'2/4P1 E HX and El 
and E2 differ by a set of zero Lebesgue measure. 

COROLLARY 3. Let T1 and T2 be c.n.u. weak contractions. If T1 and T2 are 
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280 P. Y. WU 

quasi-similar to each other, then a( T1) = a( T2). 

PROOF. For j = 1, 2, let T1o and Tjl be the CO part and Cl part of Tj. By 
Corollary 1, TIo and TI, are quasi-similar to T20 and T21, respectively. Since 
the spectrum of a CO contraction is completely determined by its minimal 
function [9, p. 126], and T1o and T20 have the same minimal function, we have 
ar(TIO)= ea(T20)- 

To show that a(Tll)= a(T2,), let Uj be the residual part of the minimal 
unitary dilation of TjI,j = 1, 2 (cf. [9, p. 61]). Note that Tjl is quasi-similar to 
Ui and a(Tjl) lies entirely on the unit circle (cf. [9, pp. 75, 3281). It follows that 
a(Tjl) = a(Uj) (cf. [9, pp. 311-312]). By Douglas' theorem [5], U1 and U2 are 
quasi-similar implies they are unitarily equivalent. Thus a(Tl) = a(UI) = 

a(U2) = a(T2,). Since a(Tj) = a(Tjo) U a(Tjl) [9, p. 332], we have a(TI) = 
a(T2), completing the proof. 

We remark that the proof can be modified to show that quasi-similar weak 
contractions (not necessarily c.n.u.) have equal spectra. This result is not new. 
It also follows from the facts that weak contractions are decomposable [6] 
and quasi-similar decomposable operators have equal spectra [3]. However, 
our proof seems more direct. 

In the remaining part of this note we are concerned with the question when 
a c.n.u. weak contraction is quasi-similar to a normal operator. The next 
theorem reduces the problem to the CO part of the c.n.u. weak contraction. 

THEOREM 2. Let T be a c.n.u. weak contraction on H. Let 

T ,[To X 
T[0 X] 

be the triangulation of type 

[CO. *] 

on the (orthogonal) decomposition H = Ho (D H'. Then T is quasi-similar to a 
normal operator if and only if To is. 

PROOF. The sufficiency follows trivially from Theorem 1. To prove the 
necessity, we may assume that T is quasi-similar to a normal operator N on 
the space K with JNJI < I j Tjj I 1 (cf. [1, Proof of the sufficiency part of 
Theorem]). Let K= K1 D K2 be the direct sum of reducing subspaces for N 
such that N1 NIKK is c.n.u. and N2= NIK2 is unitary. Let S be the 
quasi-affinity from H to K such that ST = NS. Since To is of class CO. and N2 
is of class C 1, it is easily seen that SHo C K1. Note that SHo is an invariant 
subspace for NI. Let N' = N1ISHO. Then SI SIHO is a quasi-affinity from 
Ho to SHo satisfying SI To = N' S1. Since To is of class CO, so is N' (cf. [9, p. 
125]). By the uniqueness of the Jordan model for CO contractions, we have To 
is quasi-similar to N' (cf. [2]). Since N' is subnormal and u(N') has planar 
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area zero (cf. [9, p. 126]), it follows from Putnam's theorem [8] that N1' is 
normal. This completes the proof. 

Notice that Theorem 2 is compatible with the result that T is similar to a 
normal operator if and only if To is similar to a normal operator and T' is 
similar to a unitary operator. This is true even for an arbitrary c.n.u. 
contraction (cf. [10, Theorem 3]). 

Since the CO part of a c.n.u. weak contraction is a CO contraction, the next 
theorem furnishes the complete solution to the previously posed question. 

THEOREM 3. Let T be a CO contraction on the space H with the minimal 
function mT. Then T is quasi-similar to a normal operator if and only if mT is a 
Blaschke product with simple zeros. 

PROOF. Necessity. Let T be quasi-similar to the normal operator N on the 
space K and let S be the quasi-affinity from H to K such that ST = NS. As 
before we may assume that I N II < ? T I I 1 (cf. [1]). Now we show that N 
must be c.n.u. Indeed, for any k E K and - > 0, let h E H be such that 
I k - ShII < E. Since STnh = N'Sh -* as n -* x, we have IINSh II < - for 
all n > No. Hence 

INnkIl < INnk -NnShlI + lINnShl < llNII Ilk - ShlI + liNnShil 
< - + E=2 for all n > No. 

This shows that Nnk 0 for all k E K and hence N is c.n.u. Since N is 
quasi-similar to a CO contraction, N is also a CO contraction with the same 
minimal function mN = mT (cf. [9, p. 125]). Let mT = Bs, where 

B (X) = i ( 

is a Blaschke product and s is a singular function. Note that X. is a 
characteristic value of N with index ni (cf. [9, p. 135]). Since N is a normal 
operator, ni = 1 for all i. Let Ki be the corresponding eigenspace. Then ViK1 
reduces N and the normal operator N1 _ Nl(VjKj)' has no eigenvalue. 
Hence the minimal function of the CO contraction N1 must be s (cf. [9. p. 
129]). It follows that a(NI) is contained in the unit circle, and thus N1 is a 
unitary operator. Since N is c.n.u., we must have (ViKi)' = {O) and K = 

ViKi. Hence mT = B is a Blaschke product with simple zeros (cf. [9, p. 135]). 
Sufficiency. Assume that mT is a Blaschke product with simple zeros, say, 

MA(X)ll 
_ _ 

i 1& 1 -xix 

where the distinct X1.'s satisfy IXil < 1 and Ei(l 1Xil)< Kx. For each i let 
HI = {h E H: (T- A,)h = 0). Then TIHi is a normal operator and the 
system { Hi)' = of invariant subspaces satisfies 

H= Hi +V H. foreachi, and n (VH) ={} 
i#i ~ ~ ~ ~ ~~j> 
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282 P. Y. VVU 

(cf. [9, pp. 135, 131]). That is, { Hi) 7i I is a basic system of invariant subspaces 
for T. By a result of Apostol [1], T is quasi-similar to a normal operator, 
completing the proof. 
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