

Quasi-Similarity of Weak Contractions

Author(s): Pei Yuan Wu

Source: Proceedings of the American Mathematical Society, Vol. 69, No. 2 (May, 1978), pp.

277-282

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2042611

Accessed: 28/04/2014 17:10

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

QUASI-SIMILARITY OF WEAK CONTRACTIONS

PEI YUAN WU¹

ABSTRACT. Let T be a completely nonunitary (c.n.u.) weak contraction (in the sense of Sz.-Nagy and Foias). We show that T is quasi-similar to the direct sum of its C_0 part and C_{11} part. As a corollary, two c.n.u. weak contractions are quasi-similar to each other if and only if their C_0 parts and C_{11} parts are quasi-similar to each other, respectively. We also completely determine when c.n.u. weak contractions and C_0 contractions are quasi-similar to normal operators.

Recall that a contraction T on the Hilbert space H is called a weak contraction if its spectrum $\sigma(T)$ does not fill the open unit disc D and $1 - T^*T$ is of finite trace. Contained in this class are all contractions T with finite defect index $d_T \equiv \dim \operatorname{rank}(1 - T^*T)^{1/2}$ and with $\sigma(T) \neq \overline{D}$ (cf. [9, p. 323]).

Assume that T is a weak contraction which is also completely nonunitary (c.n.u.), that is, T has no nontrivial reducing subspace on which T is a unitary operator. For such a contraction, Sz.-Nagy and Foias obtained a C_0 - C_{11} decomposition and then found a variety of invariant subspaces which furnish its spectral decomposition (cf. [9, Chapter VIII]). In this note we are going to supplement other interesting properties of such contractions. We show that a c.n.u. weak contraction is quasi-similar to the direct sum of its C_0 part and C_{11} part. Although the proof is not difficult, some of its interesting applications justify the elaboration here. An immediate corollary is that two such contractions are quasi-similar to each other if and only if their C_0 parts are quasi-similar and their C_{11} parts are quasi-similar to each other. This is, in turn, used to show that two quasi-similar weak contractions have equal spectra. Another interesting consequence is that a c.n.u. weak contraction is quasi-similar to a normal operator if and only if its C_0 part is. The latter can be shown to be equivalent to the condition that its minimal function is a Blaschke product with simple zeros, thus completely settling the question when a c.n.u. weak contraction is quasi-similar to a normal operator.

Before we start to prove our main theorem, we provide some background work for our notations and terminology. The main reference is [9].

© American Mathematical Society 1978

Presented to the Society September 9, 1976; received by the editors October 1, 1976. AMS (MOS) subject classifications (1970). Primary 47A45.

Key words and phrases. Completely nonunitary weak contractions, quasi-similarity, C_0 parts, C_{11} parts, normal operators.

¹This research was done while the author was visiting Indiana University during the summer of 1976.

278 P. Y. WU

Let T be an arbitrary contraction on H. Let $H_0 = \{h \in H: T^nh \to 0\}$, $H'_0 = \{h \in H: T^*nh \to 0\}$, $H'_1 = H \ominus H_0$ and $H_1 = H \ominus H'_0$. Note that H_0 and H'_0 are invariant for T and T^* , respectively. Consider the triangulations of T with respect to the orthogonal decompositions $H = H_0 \oplus H'_1$ and $H = H_1 \oplus H'_0$:

$$T = \begin{bmatrix} T_0 & X \\ 0 & T_1' \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} T_1 & Y \\ 0 & T_0' \end{bmatrix}.$$

The triangulations are of type

$$\begin{bmatrix} C_{0} & * \\ 0 & C_{1} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} C_{\cdot 1} & * \\ 0 & C_{\cdot 0} \end{bmatrix},$$

respectively (cf. [9, p. 73]). Recall that a contraction T is of class C_0 (resp. $C_{\cdot 0}$) if $T^n h \to 0$ (resp. $T^{*n} h \to 0$) as $n \to \infty$ for all h and T is of class C_1 . (resp. $C_{\cdot 1}$) if $T^n h \to 0$ (resp. $T^{*n} h \to 0$) as $n \to \infty$ for all $h \neq 0$. T is of class C_{00} if $T \in C_0 \cap C_0$ and of class C_{11} if $T \in C_1 \cap C_1$. A c.n.u. contraction T is said to be of class C_0 if there exists a nonzero function $u \in H^{\infty}$ such that u(T) = 0. In this case we can choose u to be a minimal inner function in the sense that u is an inner function such that u(T) = 0 and u divides (in H^{∞}) every other function $v \in H^{\infty}$ for which v(T) = 0. Such a function is called a minimal function for T and is denoted by m_T . If T is a c.n.u. weak contraction, then in the previous triangulations T_0 is of class C_0 and T_1 is of class C_{11} , called the C_0 part and the C_{11} part of T (cf. [9, p. 331]). Note that in this case we have $H_0 \vee H_1 = H$ and $H_0 \cap H_1 = \{0\}$ (cf. [9, p. 332]). For arbitrary operators T_1 , T_2 on H_1 , H_2 , respectively, $T_1 < T_2$ denotes that T_1 is a quasi-affine transform of T_2 , that is, there exists a linear one-to-one and continuous transformation S from H_1 onto a dense linear manifold in H_2 (called quasi-affinity) such that $ST_1 = T_2S$. T_1 and T_2 are quasi-similar if $T_1 < T_2$ and $T_2 < T_1$.

Our main theorem is the following:

THEOREM 1. Let T be a c.n.u. weak contraction on H. Let T_0 and T_1 be the C_0 part and C_{11} part of T. Then T is quasi-similar to $T_0 \oplus T_1$.

PROOF. Let $S: H_0 \oplus H_1 \to H$ be defined by $S(h_0 \oplus h_1) = h_0 + h_1$. Certainly T is a continuous linear transformation. Since $H_0 \vee H_1 = H$ and $H_0 \cap H_1 = \{0\}$, it is easily seen that S is a quasi-affinity such that $S(T_0 \oplus T_1) = TS$. Thus $T_0 \oplus T_1 \prec T$. Note that T^* is also a c.n.u. weak contraction and $T_0^{\prime *}$ and $T_1^{\prime *}$ are the C_0 and C_{11} parts of T^* (cf. [9, p. 332]). As above, we have $T_0^{\prime *} \oplus T_1^{\prime *} \prec T^*$. Hence $T \prec T_0^{\prime} \oplus T_1^{\prime}$, and $T_0 \oplus T_1 \prec T \prec T_0^{\prime} \oplus T_1^{\prime}$. Let V be the quasi-affinity from $H_0 \oplus H_1$ to $H_0^{\prime} \oplus H_1^{\prime}$ such that $V(T_0 \oplus T_1) = (T_0^{\prime} \oplus T_1^{\prime})V$. Since T_0 and T_1^{\prime} are of class T_0 and $T_0^{\prime *}$, respectively, it is easily seen that $VH_0 \subseteq H_0^{\prime *}$. Say,

$$V = \begin{bmatrix} V_0 & Z \\ 0 & V_1 \end{bmatrix}$$

is the corresponding triangulation. An easy calculation shows that $ZT_1 = T_0'Z$. Since T_1 is of class C_{11} and T_0' is of class C_{00} , we must have Z = 0 (cf. [4, Lemma 4.4]). Thus V_0 and V_1 are quasi-affinities satisfying $V_0T_0 = T_0'V_0$ and $V_1T_1 = T_1'V_1$. Hence $T_0 < T_0'$ and $T_1 < T_1'$. It follows from the uniqueness of the Jordan model for C_0 contractions that T_0 and T_0' are quasi-similar to each other (cf. [2]). To show that T_1 is quasi-similar to T_1' , note that T_1 and T_1' , being T_1' contractions, are quasi-similar to unitary operators, say T_1' and T_1' are unitarily equivalent. Hence T_1' is quasi-similar to T_1' , and T_1' is quasi-similar to T_1' , and T_1' is quasi-similar to T_1' .

An immediate corollary of Theorem 1 is

COROLLARY 1. Let T_1 and T_2 be c.n.u. weak contractions. Then T_1 and T_2 are quasi-similar to each other if and only if their C_0 parts are quasi-similar and their C_{11} parts are quasi-similar to each other.

PROOF. The sufficiency follows immediately from Theorem 1. The necessity can be proved by a similar argument as in Theorem 1.

In particular, for c.n.u. contractions with scalar-valued characteristic functions, we have

COROLLARY 2. For j = 1, 2, let T_j be a c.n.u. contraction with the scalar-valued characteristic function $\psi_j \neq 0$. Let $\psi_j = \psi_{ji}\psi_{je}$ be the canonical factorization into the product of its inner part ψ_{ji} and outer part ψ_{je} , and let $E_j = \{e^{it}: |\psi_i(e^{it})| < 1\}$. Let

$$T_j = \begin{pmatrix} T_{j1} & X_j \\ 0 & T_{j2} \end{pmatrix}$$

be the triangulation of type

$$\begin{bmatrix} C_{.1} & * \\ 0 & C_{.0} \end{bmatrix}, \quad j = 1, 2.$$

Then the following are equivalent:

- (i) T_1 is quasi-similar to T_2 ;
- (ii) T_{11} is quasi-similar to T_{21} and T_{12} is unitarily equivalent to T_{22} ;
- (iii) $\psi_{1i} = \psi_{2i}$ and E_1 and E_2 differ by a set of zero Lebesgue measure.

PROOF. Since T_1 and T_2 are c.n.u. weak contractions, the equivalence of (i) and (ii) follows from Corollary 1. Note that T_{j1} is quasi-similar to the multiplication by e^{it} on the space $L^2(E_j)$ and T_{j2} is unitarily equivalent to the compression of the shift $S(\psi_{ji})$ on $H^2 \ominus \psi_{ji}H^2$, j=1, 2. Thus the equivalence of (ii) and (iii) follows immediately.

The equivalence of (i) and (iii) in Corollary 2 is compatible with the result of Kriete [7] that T_1 is similar to T_2 if and only if $\psi_1/\psi_2, \psi_2/\psi_1 \in H^{\infty}$ and E_1 and E_2 differ by a set of zero Lebesgue measure.

COROLLARY 3. Let T_1 and T_2 be c.n.u. weak contractions. If T_1 and T_2 are

280 P. Y. WU

quasi-similar to each other, then $\sigma(T_1) = \sigma(T_2)$.

PROOF. For j=1, 2, let T_{j0} and T_{j1} be the C_0 part and C_{11} part of T_j . By Corollary 1, T_{10} and T_{11} are quasi-similar to T_{20} and T_{21} , respectively. Since the spectrum of a C_0 contraction is completely determined by its minimal function [9, p. 126], and T_{10} and T_{20} have the same minimal function, we have $\sigma(T_{10}) = \sigma(T_{20})$.

To show that $\sigma(T_{11}) = \sigma(T_{21})$, let U_j be the residual part of the minimal unitary dilation of T_{j1} , j = 1, 2 (cf. [9, p. 61]). Note that T_{j1} is quasi-similar to U_j and $\sigma(T_{j1})$ lies entirely on the unit circle (cf. [9, pp. 75, 328]). It follows that $\sigma(T_{j1}) = \sigma(U_j)$ (cf. [9, pp. 311–312]). By Douglas' theorem [5], U_1 and U_2 are quasi-similar implies they are unitarily equivalent. Thus $\sigma(T_{11}) = \sigma(U_1) = \sigma(U_2) = \sigma(T_{21})$. Since $\sigma(T_j) = \sigma(T_{j0}) \cup \sigma(T_{j1})$ [9, p. 332], we have $\sigma(T_1) = \sigma(T_2)$, completing the proof.

We remark that the proof can be modified to show that quasi-similar weak contractions (not necessarily c.n.u.) have equal spectra. This result is not new. It also follows from the facts that weak contractions are decomposable [6] and quasi-similar decomposable operators have equal spectra [3]. However, our proof seems more direct.

In the remaining part of this note we are concerned with the question when a c.n.u. weak contraction is quasi-similar to a normal operator. The next theorem reduces the problem to the C_0 part of the c.n.u. weak contraction.

THEOREM 2. Let T be a c.n.u. weak contraction on H. Let

$$T = \left[\begin{array}{cc} T_0 & X \\ 0 & T_1' \end{array} \right]$$

be the triangulation of type

$$\begin{bmatrix} C_{0} & * \\ 0 & C_{1} \end{bmatrix}$$

on the (orthogonal) decomposition $H = H_0 \oplus H_1'$. Then T is quasi-similar to a normal operator if and only if T_0 is.

PROOF. The sufficiency follows trivially from Theorem 1. To prove the necessity, we may assume that T is quasi-similar to a normal operator N on the space K with $||N|| \le ||T|| \le 1$ (cf. [1, Proof of the sufficiency part of Theorem]). Let $K = K_1 \oplus K_2$ be the direct sum of reducing subspaces for N such that $N_1 \equiv N|K_1$ is c.n.u. and $N_2 \equiv N|K_2$ is unitary. Let S be the quasi-affinity from H to K such that ST = NS. Since T_0 is of class C_0 and N_2 is of class C_{11} , it is easily seen that $SH_0 \subseteq K_1$. Note that $\overline{SH_0}$ is an invariant subspace for N_1 . Let $N_1' = N_1|\overline{SH_0}$. Then $S_1 \equiv S|H_0$ is a quasi-affinity from H_0 to $\overline{SH_0}$ satisfying $S_1T_0 = N_1'S_1$. Since T_0 is of class C_0 , so is N_1' (cf. [9, p. 125]). By the uniqueness of the Jordan model for C_0 contractions, we have T_0 is quasi-similar to N_1' (cf. [2]). Since N_1' is subnormal and $\sigma(N_1')$ has planar

area zero (cf. [9, p. 126]), it follows from Putnam's theorem [8] that N'_1 is normal. This completes the proof.

Notice that Theorem 2 is compatible with the result that T is similar to a normal operator if and only if T_0 is similar to a normal operator and T'_1 is similar to a unitary operator. This is true even for an arbitrary c.n.u. contraction (cf. [10, Theorem 3]).

Since the C_0 part of a c.n.u. weak contraction is a C_0 contraction, the next theorem furnishes the complete solution to the previously posed question.

THEOREM 3. Let T be a C_0 contraction on the space H with the minimal function m_T . Then T is quasi-similar to a normal operator if and only if m_T is a Blaschke product with simple zeros.

PROOF. Necessity. Let T be quasi-similar to the normal operator N on the space K and let S be the quasi-affinity from H to K such that ST = NS. As before we may assume that $||N|| \le ||T|| \le 1$ (cf. [1]). Now we show that N must be c.n.u. Indeed, for any $k \in K$ and $\varepsilon > 0$, let $h \in H$ be such that $||k - Sh|| < \varepsilon$. Since $ST^nh = N^nSh \to 0$ as $n \to \infty$, we have $||N^nSh|| < \varepsilon$ for all $n \ge N_0$. Hence

$$||N^nk|| \le ||N^nk - N^nSh|| + ||N^nSh|| \le ||N||^n ||k - Sh|| + ||N^nSh||$$

$$< \varepsilon + \varepsilon = 2\varepsilon \quad \text{for all } n \ge N_0.$$

This shows that $N^n k \to 0$ for all $k \in K$ and hence N is c.n.u. Since N is quasi-similar to a C_0 contraction, N is also a C_0 contraction with the same minimal function $m_N = m_T$ (cf. [9, p. 125]). Let $m_T = Bs$, where

$$B(\lambda) = \prod_{i} \frac{\bar{\lambda}_{i}}{|\lambda_{i}|} \left(\frac{\lambda_{i} - \lambda}{1 - \bar{\lambda}_{i} \lambda} \right)^{n_{i}}$$

is a Blaschke product and s is a singular function. Note that λ_i is a characteristic value of N with index n_i (cf. [9, p. 135]). Since N is a normal operator, $n_i = 1$ for all i. Let K_i be the corresponding eigenspace. Then $\bigvee_i K_i$ reduces N and the normal operator $N_1 \equiv N | (\bigvee_i K_i)^{\perp}$ has no eigenvalue. Hence the minimal function of the C_0 contraction N_1 must be s (cf. [9, p. 129]). It follows that $\sigma(N_1)$ is contained in the unit circle, and thus N_1 is a unitary operator. Since N is c.n.u., we must have $(\bigvee_i K_i)^{\perp} = \{0\}$ and $K = \bigvee_i K_i$. Hence $m_T = B$ is a Blaschke product with simple zeros (cf. [9, p. 135]). Sufficiency. Assume that m_T is a Blaschke product with simple zeros, say,

$$m_T(\lambda) = \prod_i \frac{\overline{\lambda}_i}{|\lambda_i|} \frac{\lambda_i - \lambda}{1 - \overline{\lambda}_i \lambda}$$

where the distinct λ_i 's satisfy $|\lambda_i| < 1$ and $\sum_i (1 - |\lambda_i|) < \infty$. For each i let $H_i = \{h \in H: (T - \lambda_i)h = 0\}$. Then $T|H_i$ is a normal operator and the system $\{H_i\}_{i=1}^{\infty}$ of invariant subspaces satisfies

$$H = H_i \dotplus \bigvee_{j \neq i} H_j$$
 for each i , and $\bigcap_i \left(\bigvee_{j > i} H_j \right) = \{0\}$

282 P. Y. WU

(cf. [9, pp. 135, 131]). That is, $\{H_i\}_{i=1}^{\infty}$ is a basic system of invariant subspaces for T. By a result of Apostol [1], T is quasi-similar to a normal operator, completing the proof.

REFERENCES

- 1. C. Apostol, Operators quasi-similar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104-106.
- 2. H. Bercovici, C. Foias and B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe co. III, Acta Sci. Math. (Szeged) 37 (1975), 313-322.
- 3. I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- 4. J. B. Conway and P. Y. Wu, The splitting of $\mathcal{C}(T_1 \oplus T_2)$ and related questions, Indiana Univ. Math. J. 26 (1977), 41-56.
- 5. R. G. Douglas, On the operator equation $S^*XT = X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19-32.
- 6. A. A. Jafarian, Weak contractions of Sz.-Nagy and Foias are decomposable, Rev. Roumaine Math. Pures Appl. 22 (1977), 489-497.
 - 7. T. L. Kriete, III, Similarity of canonical models, Bull. Amer. Math. Soc. 76 (1970), 326-330.
- 8. C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330.
- 9. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiado, Budapest, 1970.
- 10. P. Y. Wu, On nonorthogonal decompositions of certain contractions, Acta Sci. Math. (Szeged) 37 (1975), 301-306.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA