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The effect of nonparabolic band structure on the transverse magnetoresistance in a semiconductor such as n-
type InSb in the presence of a dc magnetic field is studied taking into account the inelasticities in the
electron-phonon scattering. We discus's this effect of nonparabolicity in semiconductors for both deformation-

potential'coupling and piezoelectric coupling to acoustic phonons. Results show that the numerical values of
the transverse magnetoresistance for the case of the piezoelectric c'oupling are much smaller than those for
the case of the deformation-potential coupling. Therefore, the deformation-potential coupling mechanism

plays the dominant role for the transverse magnetoresistance in strong magnetic fields in n-type InSb. We
also found that the nonparabolicity of the energy-band structure will change the effect of the temperature on

the transverse magnetoresistance besides the enhancement of its magnitude. Our numerical results are found

to be in qualitative agreement with experimental results in the quantum limit.

I. INTRODUCTION

The quantum effect of a dc magnetic field on the
scattering of electrons in semiconductors has been
studied by many authors. ' This quantum effect
is being investigated intensively in such semicon-
ductors as indium antimonide and indium arsenide
because of the high carrier. mobilities and small
effective masses in these compounds. The longi-
tudinal and transverse magnetorqsistanee are the
bvo most investigated properties in which the ef-
fect of the dc magnetic field is exhibited. These
magnetoresistances depend on the nature of energy-
band structures of the material, the carrier mo-
bilities, the strength of the dc magnetic field, and
the temperature. It has been found that the nonpar-
abolicity of the energy bands in nondegenerate
semiconductors can lead to a nonzero longitudinal
magnetoresistance even when the energy and mag-
netic field dependences of the relaxation time are
neglected in strong magnetic fields. ' This result
is contrary to the zero magnetoresistance pre-
dicted by the usual Boltzmann theory which as-
sumes that the collisions are unaffected by the dc
magnetic field. Asgerov et al. '~ have pointed out
that in the case of degenerate semiconductors, the
band nonparabolicity and the scattering inelasticity
have a strong influence on the field dependences of
the longitudinal and transverse magnetoresistance.
The transverse magnetoresistance for nondegener-
ate semiconductors with isotropic parabolic energy
bands has been studied for the ease where acoustic
phonons- are the dominant scattering mechanism, "
where it was shown that the transverse magneto-
resistance increases with the dc magnetic field in

'

the quantum limit. Arora" found that the trans-
verse magnetoresistance changes dramatically with

inelasticity, while the longitudinal magnetoresis-
tance remains essentially unchanged. Consequent-
ly, inelasticity may be expected to play an active
role and should be included for electronic trans-
port in the transverse configuration.

In the case of a nonparabolic band structure, one
has to. consider the effect of the band shape not only
in the density of states, but also in the scattering
probability. It is the purpose of the present paper
to study the effect of the nonparabolicity of the con-
duction bind in nondegenerate semiconductors on
the transverse magnetoresistance, taking into ac-
count the inelasticity of the acoustic phonons. We
investigate this effect for the inelastic scattering
of acoustic phonons from the deformation-potential
and piezoelectric coupling. The scattering is treat-
ed in the Born approximation for strong magnetic
fields. In Sec. II, we calculate the transverse
magnetoresistance for the deformation-potential
coupling and piezoelectric coupling to acoustic
phonons. It is assumed here that the inelasticity
is the dominant mechanism in resolving the div. er-
gence which occurs for the strong-field transverse
magnetoresistance. In Sec. GI, we present numer-
icaI results and give a brief discussion.

II. THEORETICAL DEVELOPMENT

In the nonparabolic model, the energy eigenvalue
equation for electrons in a uniform dc magnetic
field B directed a,long the g axis is

0 1+ +~„=— p„+ p — +Pz

where E is the energy gap between the conduction
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bands, re* is the effective mass of electrons at the

minimum of the conduction band, and Ekn is the

true energy of the system, defined by BOO k' E k + k„.
The eigenfunctions and eigenvalues for E{l. (1) are
given by

y „-„=exp(ik„y +ik, z) e„[x—(&c/ea) k, ]

@2k2 - g/2

1 —1+ (n+-')k(u +
kn 2 g

g

(~)
where k, and k, are the y and z component of the

electron wave vector k, C„(x) is the harmonic-
oscillator wave function, and ~, =

I el B/m*c is the

cyclotron frequency of electrons. Since (kk )'/
2m*Z, =keT/Z «1 at the low temperatures in

which we are interested (T &120'K), Eq. (3) can be
expanded as

Z -„„=-,'Z, (b„-b„') + I'k', /2m +b„,

where

b„=1+2(n +-,') k(u, /Z, .
ik{hen (~+ —,')k{d + g'k'/2m* «Z, , the energy eigen-

values reduce to those obtained using the parabolic
model for the band structure. However, when the

dc magnetic fields come into the high-field region,
the energy levels of electrons are quite different
from those that would be predicted by using the

parabolic model.
From the nondegenerate statistics, we have the

Boltzmann distribution in the form of

vs /e s,
I""*~{{.T)"*)

x exp[-Z (b„—b„')/4keT -k'k,'/2m*k Tb„]
oo -Z, (b„-b„)x pb„'/'exp

4k~T

with the carrier density ~,.
For the scattering due to acoustic phonons, the

dissipative current lying in the direction of the
total electric field is given by"

I elL'v„@
k~7.

(k, -k;)'
x

kn, k'n'

(6)

x[IM;„,;„.(4)l'(~, +1)

X 5 (Z p —Z {,t, -@{d )

+
I M{,. P (-{l)l'

x~,5(Z„-„-Z-„, , +h~, )], (7)

where q =(i, q) denotes collectively the branch and
wave vector for the phonon mode with the energy
8{d„N,=[exp(h&u, /keT) —1] ' is the Planck dis-
tribution function for the phonons in thermal equi-
librium, C(q) is the electron-phonon coupling con-
stant, and 5(x) is the Dirac 5 function. The two
terms in Eq. (7) give the contributions to the scat-
tering rate of the phonon emission and absorption
processes, respectively. Now, the matrix element
I Mg„p„, (q) I' in Eci. (7) can be expressed as" ~4

where L =(k/m*~, )' ' is the classical radius of the
lowest Landau level, v„=c(ExB)/Z' is the Hall
velocity with the applied electric field E, and

W-„„{,,„t is the transition probability in the Born
approximation between the Landau states kn. and
k'n'. For acoustic-phonon scattering, the transi-
tion probability is given by

2r
Q I c(q)l

I M„-„p,„,({1)I ' =
I (kn

I exp(i {1 r) I
k'~' ) I

'

nf
exp ——,'L q~ L"„" 5 k, —q, -k,' Q k, —q, -k,' for (8a)

IM;„,;„({l)I'=I&k I exp(-i{i r) Ik'~')I'

n't L2 2 n-n' L2 2 2

exp(- —,'L'q,') L"„," — 5(k, +q, -k„') 5(k, +q, —k,') for n' ~n, (8b)

where L„(x) is the associated Laguerre polynomial, "and q„q„and q„are the components of the phonon

wave vector. directed parallel to the dc magnetic field, normal to the dc magnetic field, and in, the B&&E

direction, respectively. 5(Z„-„—Z„-,„, -her, ) and 5(Z„-„-Z-„,„, +k&u, ) in E{l. (7) are given by

5(Zp„-Zp, „, -k{d, ) =(m /k'q„, „)b„b„,(b„, -b„) '[5(k, +q, b„/(b„-b„) +q„,„)+5(k,+q, b„/(b„, -b„)—q„,„)]
for n'& n (9a)
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5(Ek„-zk,„,+k&u, ) =(m /8 q„„,) b„b„,(b„-b„,) '[5(k, +q, b„/(b„—b„,) +q„„,)+5(k, +q, b„/(b„—b„,) —q„„,)]
for n'&n,

with

(9b)

Substituting Egs. (5), (V), (8a), (8b), (9a), and (9b) into (6), one can obtain

-E.(bn-bn')
g =n ieiU E'' 4m''(k T)''m*(g' b''exp

d 0 H g B c n 4k Tn=O B

00 Oo
t mg' g J &'ql &(q)l'q,'&, ' b„„b,(1+b„+,b, d„) '~'exp(--,'q', L') '

Lp
m= Oo )=0], q.'E,' &q.'RE, (m +1)q,'NE, ~ E (1 +1/2)~ @-

@3/2q, E, Z/2

Tmy 7/2 m+1 $ m (10)

where d„=1+2+,/m&u, +q2E, /2m2&g~m*, and p' indicates a summation over all m except m =0. The term
in which m =0 is vanished, because the second exponential function in the integrand contains a negative
value of 1/m'. This means that no contribution of the dissipative current for the case of the transition
m =0. Since the value of q, E,'~'/ m+, k~T(m*)'~' is small in the high-field region, one can expand cosh(x)
up to the second order in x and obtain

J', =n,
~ e~ v„E,'~'exp(-E /2k~T) 32W2v'~'(k~T)'~'m*&u2+b„'~'exp

n=O 8
2 g2 !

kBT 4m ~,m* 2m~, 2kBT m+c
m =

(
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q~L k(dg cvq

2kBT m+~ j
where we have used the 'relation"

(12)

and f„(x) is the modified Bessel function of the first kind. Functions P(m, v„T;ur, , j) and Q(m, co„T;v, , q)
are given by
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(13)
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(14)

where E, is tbe deformation potential constant, p is the mass density of the crystal, and z, is tbe sound
velocity. For the high-temperature approximation, tbe energies of the phonons involved in the scattering
processes can be neglected. "'~4 Then, we have N, =keT/h&o, =keT!Sv, ~q ~. In strong magnetic fields, the
transverse magnetoresistance can be approximated by"

2%V

,'d +1' '~2
4~m'&o m*k T' ' " mE 4~m'&o m*k'T'

c B E c B

+ (d +1) ' ' coth d — ' csch' — ' d--
ms, 2kBT m, 2kBT me, J

For acoustic-phonon scattering in semiconductors via the deformation-potential-coupling mechanism, the
electron-pbonon coupling constant is given by"'4

~C(q) P =E,'qS/2pv, , (15)

p, =Ex,/(n, ~e
~

v„)'. (16)

The expression for tbe resistivity in the absence of a dc magnetic field due to the deformation-potential
coupling is24

po
= [3(2m*keT)' '/87/' 'I~](m */noe2)(E~/pv2) . (1V)

Using Eqs. (11) and (15)-(1V), the transverse magnetoresistance due to the deformation-potential coupling
is obtained,

g CO E (b b'-
4E1 /2 exp z 96v 2(k T)2(m d P /2

&g ~ bi /2 exp t( n n

4keT

x Q' f d'qq*„exPI-„( —,;,+ ' '———,'e,q) —-', q',!.'cote
q

-'—
(d

—--'—
) I

e

„2QBT Pl (dc

+Q(m, &o„T;&o, , q) I„„2 csch
2

' d
q', I.' h~,

2keT ~ m&u (18)

For the acoustic-phonon scattering due to the piezoelectric interaction, the electron-phonon coupling
constant is given by"

~
C(q) ~'=(P' h/2pv, )q/(q'+q', ), (19)

where I' is the piezoelectric coupling constant, and the Fermi-Thomas screening wave number q, is given
by q', =4''no/vkeT (v is the dielectric constant). The resistivity in the absence of a dc magnetic field due
to the piezoelectric coupling is24

p =[3(2m*k T)'/'G(2k T)/327/' '5']( m/n e')(P /pv')

where

G(x) =1 —(qak /8m*x) ln(1+8m*x/q, k ) .

(20)

Using Eqs. (11), (16), (19), and (20), the transverse magnetoresistance due to the piezoelectric coupling
is obtained,

= 5 E' 'exp — 12m'A T m* ' 'G 2k T b' 'exp — -'E (b„—b ')
Po ~

~ 2jgBT 4kBT

x P' f d q~~,q",)expI
'

( ';,', + ~ .'e, q) ,' r; qcoqee—(d —e
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&
~
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2 2

- 2A'BT Pl &
(22)
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FIG. 1. Transverse magnetoresistance (p~/po)D as a
function of dq magnetic field B at different temperatures.
The dashed curve indicates experimental results.
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pIG. 3. Transverse magnetoresistance (p1/pp) J, as a
function of dc magnetic field B at different temperatures.
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FIG. 2. Transverse magnetaresistance (p~/po)p as a
function of temperature T ag different magnetic fields.

III. NUMERICAL RESULTS AND DISCUSSION

The expressions in Eqs. (18) and (22) can be ap-
proximp, ted by making use of the conditions for the
strong magnetic-field region" ""s"@~,= hg, q,
»m*va, @e,=pa/m*1 »m "v„and m*v, /E =q,/
q, «1. As a numerical example, e we consider the

transverse magnetoresistance for both cases of the
deformation-potential coupling and piezoelectric
coupling in n-type InSb. The relevant values of
physical parameters for this material are n, =1.75
x 10' cm ', m*=0.013m„v=18, E =0.2 eV, and

v, =4 x 10' cm/sec. In Fig. 1, it is shown that the
transverse magnetoresistance for the case of the
deformation-potential coupling to acoustic phonons
increases with the dc magnetic field. The dashed
curve represents the experimental results with
fEO 2 3 ~ &0' em ' and T = 77 .4 'K.' 'The numerical
results shown here for the nonparabolie band
structure are enhanced over those for the parabolic
band structure. " However, this transverse mag-
netoresistance will also change with the tempera-
ture, owing to the factor E,/ksT. We plot the
transverse rgagnetoresistance aq a function of the
absolute temperature for the case of the deforma-
tion-potential coupling at some dc magnetic fields
as shown in Fig. 2. It can be seen that the trans-
verse magnetoresistance decreases with increas-
ing the temperature. When the dc magnetic field
is at B=1 kQ, the transverse magnetoresistance
will drop to zero in a neighborhood of T =74'K.
This abnormal phenomenon indicates that our pres-
ent method used here will be invalid at the high-
temperature region with low magnetic fields. For
the piezoelectric coupling the transverse magneto-
resistance changing with the dc magnetic field at
some values of temperature is shown in Fig. 3. It
shows that the numerical values of the transverse
magnetoresistance for the case.of the piezoelectric
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FIQ. 6. Transverse magnetoresistance (p~/po)z as a
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FIG. 4. Transverse magnetoresistance (p~/po)& as a
function of temperature T at B=1 kG.
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FIG. 5. Transverse magnetoresistance (p~/po)~ as a
function of temperature T at B= 5 kG.

coupling is much smaller than those for the case of
the deformation-potentia, l coupling. We also plot
the transverse magnetoresistance as'a function of
the absolute temperature for the piezoelectric
coupling as shown in Figs. 4-6. In Fj.g. 4, it shows
that the transverse magnetoresistance decreases
with increasing the temperature at lower dc mag-
netic fields. When the dc magnetic fieid is at

8 = 5 kG, the transverse magnetoresistance in-
creases with the temperature up to T = 52 'K and
then decreases with the temperature. However,
when the dc magnetic field is larger than B = 5 ko,
the transverse magnetoresistance increases with
the temperature.

We have investigated the transverse magnetore-
sistance for the. case where acoustic phonons are
the dominant scattering mec'hanism. It has been
shown that the acoustic-phonon scattering due to
the piezoelectric coupling contributes very insig-
nificantly to the transverse magnetoresistance in
our present numerical analysis. The most impor-
tant and dominant contribution to the transverse
magnetoresistance is the acoustic-phonon scatter-
ing due to the deformation-potential coupling. We
compare our numerical. results for the case of the
deforrmtion-potential coupling with experiments
performed by Aliev et al." It shows that our num-
eric', l results are in qualitative agreement with ex-
perimegtal results in the quantum limit. We also
gave shown that the nonparabolicity of energy-band
structure will change the effect of the temperature
op the transverse magnetoresistance besides the
enhancement of its magnitude. This means that the
factor E /keT will play an important role in the
transverse magnetoresistance for the nonparabolic
band structure in gondegenerate semiconductors.
Therefore, in the high-. temperature region, the
effect of the nonpar@bolicity on nondegenerate
semi. conductors will be diminished, and the numer-
ical results of the transverse magnetoresistance
we obtained would 4e the same as those for the
parabolic band. structure. ,
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