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Classical La~'angian theory with radiative reaction: Extension of the Rohrlich two-field

formalism to include monopoles
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%'e give an action integral I.(x,X,A„,a„). The stability of 1. against the variations SA„(g), Sa„((),
Sx„(8), and SX„(v) gives us the coupled Maxwell equations and the Lorentz-Dirac equation for the positron

and monopole.

I. INTRODUCTION

It was Dirac who introduced the concept of mag-
netic monopole' in 1931. Then he came back in
1948 to the question' of the classical action princi-
ple. In Dirac's formulation, it was necessary to
introduce the concept of strings attached to mono-
poles, because his vector potential for a static
magnetic monopole is singular along a semi-infin-
ite line in three-space. Recently, Wu and Yang'
were able to formulate this classical problem
without introducing the Dirac strings. The key
points in Wu and Yang's formulation are (1) divid~

ing the space-time into many overlapping regions
and (2) introducing the potential A„ in each region
such that one of the Maxwell equations becomes a
kinematic equation. But in their formulation, Wu

and Yang did not take the classical radiative re-
action into consideration, so that the equations
they obtained from the variation of the action inte-
gral can only be regarded as formal equations and
possess no finite solution.

It is the purpose of this payer to find a classical
Lagrangian theory of positrons and magnetic
monopoles including the radiative reaction. The
essential point that permits a solution of this prob-
lem is the realization that one is dealing with not
only one electromagnetic field, but with two such
fields. One satisfies the homogeneous Marvell
equations. The other satisfies the inhomogeneous
Maxwell equations. %hey are mathematically and

physically entirely different. Although the separa-
tion of the total electromagnetic field into the.
above-mentioned two parts is not unique it can be
made unambiguous by the proper boundary condi-
tions.

We will write down the action integral in Sec. II
and study the Euler-Lagrange equations for this
action integral in Sec. IQ. Finally we will give
some concluding remarks.

II. THE ACTION INTEGRAL

We will use the same. notations as in Ref. 3, in
which $" are the space-time coordinates, x" (8) is

+e .g & g

where

BA „(&) sAp(g)
e$" 8$"

and

~a„($) sa„(5)
)(1/+ s]v s$)) (4)

f„., (f) =~2&( Sf. ($),

)
Bb"(g) Bb

e)8 eg

= a(fr"'(+f,~'„) )

& "(()=«J «'(~)~((( —«)')&~

so that

f;"„($)=0,

f:"„(()=—-4mgf«"& (( —«)dv. '

. the world line of a positron with electric charge e,
and X"(v) is the world line of a magnetic monopole
with magnetic charge g. Here 8 and v are, respec-
tively, the proper times of positron and monopole.
The metric used is q&, = (-1, 1, 1, 1), the relation
between the electromagnetic field I"„,and its dual
I"~„ is

na —ag
E))))= -2 E)()((«8F, E()))= 2 6))„0(8E, (1)

where c '~' = -1 and ~"" = complete antisymmetric
tensor.

The action integral I is
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Bb ($) Bb)) ($) f (~)B~v Bg)) ))P+ ) 1 ' (6)

Since in region E„ f;",($) = 0, and region E, is a.

simple connected region, so that there exists a
function b„(g) satisfying Eq. (6). We only need to
know that b& ($) exists and do not need to write
down the explicit form of b&($). The independent
dynamical variables for the action integral L are
x„(6), X„(~), A„($), and a„($).

The last term of the action integral L requires
some explanations. As in Ref. 3, the world lines
x(0) and X(v) are constrained to be timelike. Fur-
thermore, they must not cross. That is, x(t)
—X(t)w0 for all-t. The reasons can be found in
Ref. 3. Now, since world lines x(B) and X(7) do
not cross, we can always find a three-dimensional
surface S which divides the space-time into two

, regions E, and E„where E, c,ontains the positron
world line only and E, contains the monopole world
line only. The field b& ($), which appears in the
last term of L, satisfies the equation

Ba" ($) Ba"($)
B&„ B&„

=k [Itg, (5)+&~d.(&)], (13)

F"' -F""+f"'+b""
=F""+f"' +. b"'

in ref re&

(14)

The notations in Eq. (14) are self-evident. From
Eq. (14) we get

F""= ,' (F""+F-"' ).

(15)

Using the boundary conditions in Ref. 4 to separate
the total electromagnetic field into free part and
singular part, we will get

«" (4)=e f «" (4)4((4 —«)')44,

III. STABILITY OF THE ACTION INTEGRAL L Thus Eq. (9) becomes

It is easy to show that the stability of I against
the variations 5A&, 5a&, and 5x„(B) gives us, re-
spectively,

el%" (g) = eFP' x-, (8) e~ (h)" bu' )x
pv—ef «4( Xv ~ (16)

[F""(&)+f"." (&)],.= o,
mx" (B) = eF"' (x)x„(-9)—ef,"'(x)x, (8) .
Since f~" „(()=0, Eqs. (V) and (8) become

4«,".(4) = -4««J «" (4)4'(4 —«)44

and

(8)

(9)

(10)

F"',.(&) = o

[F""(&)+~l' (h) +fl" (&)],.
47re -x" (e)5'(& —x)d&, (7)

One can show' that —,(bf, —b,"~„) is regular at the
positron world line x(0). This term is the radia-
tive-reaction term which is generally accepted.

Now let us consider the stability of L against the
variation 5X"(r). The original form of the action
integral L is not convenient to take the variation
with respect to X"(v). We proceed as follows:

(a) Let L, be the extremum of L with respect to
the variations 5A&($), 5a„($), and 5x))(6). Thus
L,(X,X) is equal to the value of L evaluated at
those functions A& ($), a& ($), and x„(0) which sat-
isfy the equations of motion, Eqs. (10), (11), and
(16). Now consider the term

(A„,. A, ,„)f","(k)d'h-
A„f;",(&)d'$+ terms at infinity

=g A&(X)X"dT+ terms at infinity,

Because F"', ($) = 0, there alwa, ys exists A„($), such that

A, .(&) —A. , (&) = F„.($) .

Now consider the term
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b„„,($)f"," ($)d'$+ e b„(x)dx'.

As before, let S is a three-dimensional surface which divides the space-time into regions F., and E,.
Then

8 ~~"' d +e ~ ~d~
8 h~" ". ~d +e

g

5"d' —— h b"da"
g Sg j.

+
4

a„"," do„—
4 a& "," „d' +e b„x dx"

4 7t

=g a„(X)dx"+ surface term+terms at infinity. (18)

~p= M d7+g A~ X dx" +g a& X dX"

+ terms which are irrelevant

+ terms at infinity.

(b) The stability of L against the variation 5X(~)
is the same as stability of l, against the variation
5X(v); thus we get

MX" (~) = —gE""(X)X, -'gh ","(X)X„

gF,"„'(X)X„-,g(f. f -f~;„-)-X,

(19)

In conclusion, we find that the stability of the
action integral L against the variations 6A„, 6a„,

Here the existence of ~„(g) is ensured by the
condition

b"" „(t)=0

in Z, .
One can show' that the two terms in Eq. (18) can

be combined and are equal to terms at infinity.
Thus

5x, and 5X gives, respectively, Eqs. (7), (8), (9),
and (19).

IV. CONCLUDING REMARKS

(1). We get an action integral L. The. stability
of I against the variations of independent dyna-
mical variables gives us the Maxwell equations
and the equations of motion for the positron and
monopole including the radiative reaction.

(2). The essential point that makes this possible
is to separate the electromagnetic field into free
part and singular part unambiguously. (See Ref.
4.)

(8). We need only to know the existence of b& ($)
in E, and a& (g) in E, and do not need to write down
the explicit forms for b&(g) and a&(E). But there
are many solutions for b($) in E,. Different sol-
utions may give different values of the action inte-
gral I.. In fact, I is a multivalued functional. '
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