

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

以 Petri Net 設計之自動化程序遠端監控系統

Design of the Remote Supervision System for

Automated Processes via the Petri Net Approach

研 究 生 : 李 俊 賢

指導教授 : 徐 保 羅 博士

中 華 民 國 九 十 三 年 七 月

以 Petri Net 設計之自動化程序遠端監控系統

Design of the Remote Supervision System for

Automated Processes via the Petri Net Approach

研 究 生: 李 俊 賢 Student: Jin-Shyan Lee
指導教授: 徐 保 羅 博士 Advisor: Dr. Pau-Lo Hsu

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

A Dissertation
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao-Tung University

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy
in

Electrical and Control Engineering
July 2004

Hsinchu, Taiwan, Republic of China.

中 華 民 國 九 十 三 年 七 月

 i

以 Petri Net 設計之自動化程序遠端監控系統

研究生:李俊賢 指導教授:徐保羅 博士

國立交通大學

電機與控制工程學系

摘 要

近年來，由於網際網路的快速發展，使得自動化程序之即時監控與管理不再受限於

局部的區域來執行。對於以網際網路為基礎的遠端製造系統，本文闡述其一系列以 Petri

net 為基礎，在程序控制，遠端監控，與網路管理系統上之設計與實現的方法，以達成

系統之正常安全與運作。

對於日益複雜的製造系統，傳統之階梯圖程序控制設計，不但變的相當複雜，而且

對於製程變動的彈性處理也更加困難。有鑑於此，本文先提出一套以法則為基礎的評估

方法，來驗證 Petri net 在程序控制器設計上優於階梯圖的特性。之後，本文提出一套以

Petri net 為基礎，而以階梯圖實現之系統化設計方法，來發展製造系統之程序控制器。

在遠端監控系統中，本文提出一個以監督器 (supervisor) 監控人類行為的架構，來

預防與禁止不正當的遠端人為操作。本文使用 Petri net 來塑造命令層中真實系統的抽像

模型，合成出監督器，並進一步使用 Java 技術將監督器實現成一智慧型代理人

(intelligent agent)。藉由遠端受控系統的狀態回饋，我們發展的監控代理人會防止在違反

安全規格下的命令，藉以降低及減少人為失誤所產生的影響。此外，在上述的監控系統

中，為了降低監控器的合成複雜度，我們提出一個階層式的遠端監控架構，使得監督器

的合成需有較少的狀態空間，藉以降低設計與實現的複雜度。

 ii

此外，對於大型遠端監控系統中各種不同的感測、致動、與控制元件，為了管理網

路中各元件所收發的大量監控訊息，本文整合 Petri net 於統一建模語言(unified modeling

language, UML)中，以系統化地從建模，設計，分析，驗證，來實現簡易網路管理協定

(simple network management protocol, SNMP) 代理人。本研究所提出之遠端網路管理方

法，已經成功地應用在台灣大哥大的行動交換機房之環境安全遠端監控系統上。

 iii

Design of the Remote Supervision System for

Automated Processes via the Petri Net Approach

Student: Jin-Shyan Lee Advisor: Dr. Pau-Lo Hsu

Department of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

Applications of the Internet technology become more popular in the modern industry.

This thesis proposes the systematic design and implementation of remote supervision systems

for automated processes via the Petri nets (PN) approach to achieve 1) the sequence controller,

2) the supervisor, and 3) the device management system, respectively.

As automated systems become more complex, traditional ladder logic diagram (LLD)

design of sequence controllers becomes more difficult and inflexible. Thus, this thesis

presents a rule-based evaluation to adequately compare the LLD and PN, and verify the

superiority of PN. Then, since LLD is still widely used today in real industry, this thesis

proposes a PN-based method systematically leading to the final LLD implementation for the

sequence controller design.

In remote control systems, to prevent abnormal operations of humans, a remote

supervisory scheme is proposed so that undesirable human operations are prohibited. PN is

employed to synthesize both the remote supervisor and the local controller, and the Java

technology is employed to implement the intelligent agent for on-line supervision. According

 iv

to the status feedback through the Internet, the developed supervisory agent provides

allowable commands for operators and disables those operations that violate safety

specifications. The possibility of human errors can be thus reduced. Moreover, to reduce the

complexity of mentioned supervisory system design, this thesis further proposes a

hierarchical structure with a smaller state-space size in supervisor synthesis so as to reduce

the design complexity.

Furthermore, to integrate diverse network elements and construct a large-scale and

distributed systems for remote supervision systems, this thesis integrates the PN into the

unified modeling language (UML) to achieve modeling, design, analysis, verification, and

implementation of simple network management protocol (SNMP) agents in the present

framework. The developed management system has been successfully applied to a mobile

switching center of Taiwan Cellular Corporation for the remote supervision and management

of its various environmental devices.

 v

ACKNOWLEDGMENT

博士論文的完成，首先要感謝的是指導教授，徐保羅博士在課業與研究上的

指導，以及生活態度上的相授，在此表達我最深誠的敬意與感謝。

謝謝 New Jersey Institute of Technology 的 Meng-Chu Zhou 教授，在我美國

訪問研究一年期間 (7/1/2003-6/30/2004) 的指導與照顧。感謝 NASA 系統工程

師 Peter Graube 在第二章上的建議，盟立自動化蔡宗憲博士在2001年暑期實習期

間的指導與照顧。感謝口試委員：鄭芳田教授 (成功大學製造工程所)、黃漢邦教

授 (台灣大學機械系)、傅立成教授 (台灣大學電機系)、鄭慕德教授 (台灣海洋大

學電機系)、梁高榮教授 (本校工業工程與管理系)、以及本系胡竹生教授等師長

在論文上的指導與建議。

感謝師門的學長、同學與學弟妹們，在生活及研究上的相互幫助及砥礪。工

研院的沈里正、葉賜旭、王安平，中科院的呂龍騰、黃財富、與中正理工的蒙天

德等學長。碩士班88同梯畢業的明潔、裕淵、永生、與建邦等同學。碩士班學弟

妹們：89梯的清穩、志銘、育憲與生虎，90梯的智迪、旭原、明炫、信宏、啟信

與宜霖，91梯的鎮洲、信銘、育修、正義與松德，92梯的豪聲與致成，93梯的政

衍、政宏與伊婷，94梯的景文、尚玲與議寬，以及現役博士班學弟鎮洲與琮政。

此外，謝謝系辦林滿足、李蜀梅、陳英芝小姐，及施德喜先生在事務上的幫忙。

感謝國科會千里馬計劃，在美國訪問研究上的支持，以及教育部在博士班期

間，出席國際會議上的補助。特別謝謝志剛立川夫婦、曉峰、景功、天志、叢哲

夫婦、梅梅夫婦等友人，以及NJIT台灣同學會，在我美國訪問期間生活上的照顧。

謹將此論文獻給我最敬愛的父親 李金柱先生與母親 陳玉雲女士，雅琪姐與

俊德弟，大姑姑 李金枝女士及其家人，以及貼心的女友彥蓉及其家人，因為有

您們的支持與關懷，我才能夠無後顧之憂地，繼續往前邁進。

感謝所有曾經幫助過我與默默祝福我的朋友，謝謝您們。

 vi

TABLE OF CONTENTS

 Page

ABSTRACT (CHINESE) i

ABSTRACT (ENGLISH) iii

ACKNOWLEDGMENT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1
INTRODUCTION 1

1.1. General Review 2

1.2. Problem Statement 5

1.3. Proposed Approach 7

1.4. Organization of Thesis 8

CHAPTER 2
EVALUATION OF LADDER LOGIC DIAGRAMS AND

PETRI NETS FOR SEQUENCE CONTROLLER DESIGN 9

2.1. Introduction of Petri Nets 10

2.2. The Rule-Based Comparison 13

2.3. Example: A Stamping Process 18

2.4. Discussions 28

2.5. Summary 29

 vii

CHAPTER 3
DESIGN OF THE SEQUENCE CONTROLLER IN

MANUFACTURING SYSTEMS 30

3.1. Simplified Petri Net Controller 30

3.2. The IDEF0/SPNC/TPL/LLD Approach 33

3.3. Example: A Stamping Process 41

3.4. Summary 42

CHAPTER 4
REMOTE SUPERVISION FOR

HUMAN-IN-THE-LOOP SYSTEMS 45

4.1. A Novel Supervisory Structure 45

4.2. Design of the Supervisor Using PN 46

4.3. Implementation of the Supervisor Using Java 50

4.4. Example: A Rapid Thermal Process 54

4.5. Summary 62

CHAPTER 5
HIERARCHICAL SUPERVISION FOR

MANUFACTURING SYSTEMS 63

5.1. Proposed Hierarchical Structure 63

5.2. Design of the Hierarchical Supervision System 65

5.3. Example: A Three-Recipe Flexible Manufacturing System 67

5.4. Discussions 74

5.5. Summary 75

 viii

CHAPTER 6
SNMP-BASED MANAGEMENT SYSTEM 76

6.1. Integration of UML and PN 76

6.2. Requirements of SNMP Agents 78

6.3. UML-Based Modeling for SNMP Agents 81

6.4. Example: A Mobile Switching Center 85

6.5. PN Modeling and Analysis 89

6.6. Architecture Design and Implementation 93

6.7. Discussions 94

6.8. Summary 96

CHAPTER 7
CONCLUSIONS 97

7.1. Summary of Contributions 97

7.2. Future Research 98

REFERENCES 101

VITA 110

PUBLICATION LIST 113

 ix

LIST OF TABLES

2.1. Basic elements in LLD and PN. 10

2.2. IF-THEN rules for LLD and PN. 15

2.3. Comparison of LLD and PN for the sequence: A+, A-. 17

2.4. IF-THEN formats of LLD and PN in Fig. 2.4-2.8. 26

3.1. Notations for the stamping process. 44

4.1. Notations for the PN of the RTP system in Fig. 4.6. 58

4.2. Notations for supervisory places of PN in Fig. 4.7. 59

5.1. Notations for the PN of the FMS in Fig. 5.3. 70

5.2. Notations for supervisory places of the PN in Fig. 5.4. 72

5.3. Comparison between the nonhierarchical and hierarchical schemes. 74

6.1. Notations of the PN for the SNMP-based management system in Fig. 6.7. 92

 x

LIST OF FIGURES

1.1. Architecture of the proposed remote supervision system in this

thesis. 2

2.1. Basic PN models for (a) sequential, (b) concurrent, (c) cyclic,

(d) conflicting, and (e) mutually exclusive relations. 13

2.2. The LLD and PN for the sequence: A+, A-. 17

2.3. The stamping system. 19

2.4. LLD and PN for Sequence_1. 21

2.5. LLD and PN for Sequence_2. 22

2.6. LLD and PN for Sequence_3. 23

2.7. LLD and PN for Sequence_4. 24

2.8. LLD and PN for Sequence_5. 25

2.9. Required basic elements in the basic element approach. 27

2.10. Required rules and logical operators in the IF-THEN transformation. 27

2.11. The increase ratio for the basic element approach. 28

2.12. The increase ratio for the IF-THEN transformation. 28

3.1. The comparison between the PN and the SPNC via a simple

process. (a) Ordinary PN. (b) SPNC. (c) Comparison results. 31

3.2. The icon definition of the SPNC. 32

3.3. Design procedure of the IDEF0/SPNC/TPL/LLD approach. 34

3.4. The IDEF0 scheme. 35

 xi

3.5. The transformation from the IDEF0 to the SPNC. 37

3.6. The transformation from the SPNC to the TPL. 38

3.7. The transformation from the TPL to the LLD. 40

3.8. The transformations of the IDEF0/SPNC/TPL/LLD approach. 40

3.9. The stamping system. 41

3.10. Design of the sequence controller using IDEF0/SPNC/TPL/LLD approach. 43

4.1. (a) Typical remote control system with the human in the loop.

(b) The proposed remote supervisory control scheme. 46

4.2. (a) A general model for door and valve components. (b) The

mutual exclusion specification model. (c) The composed

supervisor for the door-valve system. 50

4.3. Implementation architecture of the remote supervisory control system. 52

4.4. Interactive modeling with sequence diagram for the remote

supervisory control system. 53

4.5. Schematic diagram of the RTP system. 55

4.6. The PN model for automatic control of the RTP system. 57

4.7. The composed PN model for manual control of the RTP system. 57

4.8. Interactive web page for remote control of the RTP system by a

Java applet (only Auto-Control button is admissible in the

automatic control mode). 60

4.9. Interactive web page in manual control mode at Step 3 of RTP

processing (seven buttons are enabled). 61

4.10. The hardware setup during prototype development. 61

 xii

5.1. Proposed three-level architecture for hierarchical supervision. 64

5.2. Schematic diagram of the three-recipe FMS. 68

5.3. Preliminary PN model of the three-recipe FMS. 69

5.4. Composed PN model of the three-recipe FMS. 71

5.5. PN models of (a) loading, (b) conveying, and (c) processing

tasks for FMS. 72

5.6. Interactive Web page for remote supervision of the FMS by a

Java applet (only three buttons are admissible). 73

6.1. The systematic development procedure for SNMP agents. 79

6.2. The simple network management protocol (an extension of

Stallings, 1993). 80

6.3. Functional analysis with the use-case diagram. 82

6.4. Interaction analysis with the sequence diagrams for (a) the

Request scenario and (b) the Trap scenario. 83

6.5. The SNMP-based remote monitoring and control system. 86

6.6. The class diagram of the SNMP-based monitoring and control system. 88

6.7. The PNs of the SNMP-based monitoring and control system. 91

6.8. Architectural design with the deployment diagram. 95

6.9. The hardware setup during prototype development. 96

 1

Chapter 1

Introduction

Recently, with the rapid development of information technology on industrial

applications, remote monitoring, control, and management are critical to increase

safety and flexibility of modern manufacturing processes in real operations. Some

issues in e-automation are extensively discussed like: the integration of the high level

message management and the fundamental layer sequence control, the effect of

human errors in remote control, and the efficient message management among various

devices on the networks, etc.

Generally, an automated system implements a sequence controller to regulate

local processes. Also, a supervisor is required to assure normal operations, and a

device management system is required to administer the various elements efficiently

and flexibly. In this thesis, a remote supervision system will be developed for

automated processes, as shown in Fig 1.1. The design goals of the present remote

supervision system are as follows:

1) to develop the sequence controller to regulate the processes.

2) to develop the supervisor to monitor the human behaviors.

3) to develop the device management system to integrate diverse

elements on networks.

The developed approaches in this thesis have been studied on a stamping process,

a rapid thermal process in semiconductor manufacturing, a three-recipe flexible

manufacturing system, and an environmental monitoring system in mobile switching

centers, respectively.

 2

Supervisor

Event
Feedback

Control
Action

Internet

Sequence
Controller

Device
Management

System

Status
Feedback

Command

Control

Controlled
System

Operator

Supervise

Monitoring

Remote Supervision System

• Sequence Controller: Ch 2, Ch 3.
• Supervisor: Ch 4, Ch 5.
• Device Management System: Ch 6.

Supervisor

Event
Feedback

Control
Action

Internet

Sequence
Controller

Device
Management

System

Status
Feedback

Command

Control

Controlled
System

Operator

Supervise

Monitoring

Remote Supervision System

• Sequence Controller: Ch 2, Ch 3.
• Supervisor: Ch 4, Ch 5.
• Device Management System: Ch 6.

Fig. 1.1. Architecture of the proposed remote supervision system in this thesis.

1.1. General Review
Basically, an automated process is inherently a discrete event system (DES). The

Petri net (PN) has been developed as a powerful tool for modeling, analysis,

simulation, and control of DES. PN was named after Carl A. Petri (1962), who

created a net-like mathematical tool for describing relations between the conditions

and the events. PN was further developed to meet the need in specifying process

synchronization, asynchronous events, concurrent operations, and conflicts or

resource sharing for a variety of industrial automated systems at the discrete-event

level. Starting in the late of 1970’s, researchers investigated possible industrial

applications of PN in discrete-event systems and results can be found in the

survey/tutorial papers of Murata (1989), Zurawski and Zhou (1994), David and Alla

(1994), and Zhou and Jeng (1998).

 3

1.1.1 Systematic design of sequence controllers

A sequence controller that deals with the discrete events plays an important role in

automated manufacturing systems (Tilbury and Khargonekar, 2001; Frey and Litz,

2000). Basically, the ladder logic diagram (LLD) of the industrial standard IEC1131-3

(International Electrotechnical Commission, 1993) has been widely used in real

applications to conduct the control sequences and usually implemented with a

programmable logic controller (PLC). The PLC has the advantages of reliability,

robustness, and direct programming. The I/O procedures of the PLC are specified by

the LLD and automated machines thus perform repetitive operations in sequence. For

some simple controlled systems, it is easy to program the LLD with heuristic

approaches. However, as systems become more complex, the controller design and

the LLD implementation become even more difficult. In addition, because the LLD is

usually programmed only to control the process, corresponding qualitative analysis

and performance characteristics of the PLC controlled processes are seldom discussed

in practice. Since product specifications are varied frequently, LLD programs of

machining processes need to be modified and maintained usually with significant

efforts. Hence, researchers are pursuing a systematic and efficient approach for the

design and implementation of the sequence controller. Based on the PN, Liang and

Hong (1994) proposed a hierarchy transformation method to design and implement

controllers on a G2 expert system. Uzam and Jones (1998) introduced an extended PN

method to analyze a target system and then implemented it via LLD. Feldmann, et al.

(1999a, 1999b) used the colored PN to form the structured text (ST) for PLC

implementation. In the past few years, the PN approach still attracted more attentions

as a potential tool for designing sequence controllers.

1.1.2 Development of supervisory systems
Recently, due to the rapid development of Internet technology, system monitoring

and control no longer needs to be conducted within a local area. Several remote

approaches have been proposed which allow people to monitor the automated

processes from great distances (Weaver et al., 1999; Yang et al., 2002; Kress et al.,

 4

2001; Huang and Mak, 2001; Batur et al., 2000). Practically, to perform maintenance

functions in hazardous environments without their exposure to dangers is a unique

application of the remote technology. By conducting remote access using IP-based

networks, an entire Internet-based control system is inherently a DES and its state

change is driven by occurrences of individual events. The supervisory control theory

provides a suitable framework for analyzing DES (Ramadge and Wonham, 1987,

1989; Balemi et al., 1993) and most existing methods are based on automata models.

The calculus of communicating systems (CCS), which was invented by Robin Milner

(1989), is another classical formalism for representing systems of concurrent

processes. However, these available methods often involve exhaustive searches of

overall system behavior and result in state-space explosion design as system becomes

more complex. On the other hand, PN is an efficient approach to model the DES and

its models are normally more compact than the automata models. Also, PN is better

suitable for modeling systems with parallel and concurrent activities. In addition, PN

has an appealing graphical representation with a powerful algebraic formulation for

supervisory control design (Giua and DiCesare, 1991; Moody and Antsaklis, 1998;

Uzam et al., 2000).

1.1.3 Management of diverse elements on networks
For large-scale and long-distance distributed systems, a reliable management

system for all devices and components on the network is crucial to guarantee normal

operations. It allows for reliably monitoring the status of processes, correctly

detecting abnormal conditions, efficiently activating emergency mechanisms, and

proactively reporting alarms. In general, the components of remote management

systems can be classified into 1) the agent side and 2) the manager side. Some

vendors build their web server software into their agent-side devices and the

manager-side users may thus directly monitor them using web browsers through the

hypertext transfer protocol (HTTP). However, as numerous devices are networked in

automated manufacturing systems, the massive monitoring and control messages from

all devices becomes increasingly difficult to handle. In general, straightforward

integration with all Web access points is apparently not efficient. One approach to

 5

manage diverse network elements is to use the simple network management protocol

(SNMP). It is a standard protocol now widely supported by most device vendors for

their products such as routers, bridges, and printers (Stallings, 1993). Aicklen and

Main (1995) used SNMP to manage a variety of network elements. Cardoso and

Monteiro (1998) applied the SNMP to monitor and control the industrial network.

Kunes and Sauter (2001) provided a modular and extendible gateway to connect the

high-level Internet and low-level fieldbus for SNMP network management.

1.2. Problem Statement
 Although a lot of efforts in the past two decades have been put on the

development of sequence controllers, supervision systems, and management systems

for automated manufacturing processes with Internet technology, some critical issues

still exist in the remote supervision system as discussed in the following:

1. Requirement of adequate evaluation for sequence controller design

Although PN has been studied to design sequence controllers with a potential

in its flexibility, it is still argued that whether the PN approach is superior to the

traditional LLD design for industrial practitioners. Hence, an adequate comparison

is required. In the past, the “basic element” approach was developed to compare

the complexity and flexibility between LLD and PN designs (Venkatesh et al.,

1994a; Zhou and Twiss, 1998). However, the basic elements of these two designs

are inherently different and hence, it may lead to unreliable comparison results.

2. Requirement of systematic sequence controller implementation

In practice, PLC engineers still widely prefer to use LLD for real

implementation. However, it is not straightforward to construct the LLD models

from a given sequence. Some researchers have attempted to transform PN into

LLD (Peng and Zhou, 2001). However, those resultant LLD are usually more

complex as compared to that programmed directly by engineers. A systematic

approach from a given specification to achieve the final LLD implementation is

 6

thus required.

3. Requirement of supervisory systems for human error prevention

Typically, an Internet-based control system is a “human-in-the-loop” system.

The human operator is involved in the loop and use a general web browser or

specific software to monitor and control remotely located systems according to the

observed status, usually displayed by the state and/or image feedback. However,

human operators may send incorrect or improper commands during the operation

and research results indicate that approximately 80% of industrial accidents are

attributed to human errors, such as omitting a step, falling asleep and improper

control of the system (Rasmussen et al., 1994). Therefore, solutions to reduce or

eliminate the possibility of human errors are required in Internet-based control

systems.

4. Requirement of reducing the complexity of supervisor synthesis

PN can represent the remote control system with a more compact model.

However, during the synthesis of the supervisor, the complexity exponentially

increases in the state-space size of the subsystems and specifications. This

computational expense often makes the supervisor synthesis infeasible, especially

for large-scale manufacturing systems.

5. Requirement of management for different networked devices
To design a remote monitoring and control structure through the network,

efficient management to handle the massive information flow and represent data

from different devices in a uniform format is required. Although using SNMP is a

feasible approach to manage diverse network elements, in present industrial

applications, many basic components such as sensors, actuators, and PLCs do not

support SNMP for remote applications yet. Thus, for those without SNMP

functions, a systematic approach to model and implementation SNMP function is

required.

 7

1.3. The Proposed Approach
To deal with the above problems, corresponding approaches are proposed in this

thesis as follows.

1. Improved evaluation of LLD and PN

A rule-based approach for the LLD and PN evaluation via the IF-THEN

transformation is proposed in this thesis. By converting both the LLD and PN into the

same IF-THEN format, a unified comparison is then conducted with the same

measure, which is the sum of 1) the number of IF-THEN rules, and 2) the number of

logical operators, for both LLD and PN.

2. Systematic design of sequence controllers

A systematic approach to the LLD implementation of the sequence controller in

manufacturing systems is introduced in this thesis. By defining the sensor state into

the PN to form a simplified Petri net controller (SPNC), a more compact LLD

structure through the token passing logic (TPL) is obtained. Typically, the sensor state

is used to trigger sequences in manufacturing. The integration definition language 0

(IDEF0) can be used to obtain the SPNC model through the material flow diagrams

and information flow diagrams in sequence. Thus, the proposed

IDEF0/SPNC/TPL/LLD approach, including the IDEF0, SPNC, and TPL tools, leads

to the LLD for general PLC implementation.

3. Supervisory control of human behaviors

In this thesis, a supervisory scheme is proposed for the remotely controlled,

human-in-the-loop system. The role of a supervisory agent is to interact with the

human operator and the controlled system so that the closed human-in-the-loop

system meets the required specifications. In the supervision system, the supervisory

agent acquires the system status and makes the decision to enable/disable associated

events to meet the required safety specifications. The human operator is then only

allowed to perform the enabled events to control the system, and hence, the

supervisory agent guarantees that undesirable manually executions never occur.

 8

4. Hierarchical supervision of processes

In the present design of supervisory systems, PN can be used to design both the

supervisor at the upper level and the local controller at the lower level. This thesis

proposes a hierarchical supervision system resulting in a smaller state-space size

through the supervisory synthesis. The proposed design guarantees that remote

commands meet resource constraints and deadlock-free specifications. Also, fewer

request/response transmissions are required for Internet communication. As a result,

the effects of time delays and packet losses could be moderated.

5. Modeling and implementation of SNMP agents

A new approach to the development of SNMP agents for managing diverse

network elements in manufacturing processes is proposed. The unified modeling

language (UML) is adopted for modeling the system, and then the PN model is

applied to analyze the dynamic behaviors of the system. In real applications, the

present design is implemented with Java and ladder diagrams on the industrial PLC.

1.4. Organization of Thesis
 This thesis is organized as that: the improved evaluation of LLD and PN is

presented in Chapter 2. Then, Chapter 3 introduces the IDEF0/SPNC/TPL/LLD

approach for the sequence controller design. The basic supervisory control scheme for

the remote-controlled processes is proposed in Chapter 4, and Chapter 5 extends it to

a hierarchical scheme. For device management, Chapter 6 proposes an integrated

approach including UML modeling and PN analysis to develop the SNMP agents.

Finally, conclusions and recommendations for further research are provided in

Chapter 7.

 9

Chapter 2

Evaluation of Ladder Logic Diagrams and Petri Nets

for Sequence Controller Design

Sequence controller designs play a key role in advanced manufacturing systems.

Traditionally, the ladder logic diagram (LLD) has been widely applied to programmable

logic controllers (PLC), while recently the Petri net (PN) has emerged as an alternative

tool for the sequence control of complex systems. The evaluation of both approaches has

become crucial and has thus attracted attention.

Practically, only a limited amount of research comparing these approaches has been

reported, because suitable comparison criteria are difficult to identify. Boucher et al.

(1990) studied the sequence control of a manufacturing system and reported that using

PN makes the controller more tractable than using LLD. However, they have not

formally quantified the comparison between LLD and PN to design sequence controllers.

Venkatesh et al. (1994a, 1994b) proposed the number of “basic elements”, which are

nodes and links in the LLD and PN, as a quantified measure to compare their design

complexity and response time. They claimed that PN offers a better solution than LLD,

especially in adaptability as specifications change. Based on the basic element approach,

Zhou and Twiss (1995, 1998) further compared the LLD and PN in terms of the

understandability, flexibility and the ability to perform correctness verification. They also

reported that the PN displays better results. However, note that while basic elements in

the LLD stand for push buttons, limited switches, relay coils, timers, counters, solenoids

and lines, they are places, transitions and arcs in the PN. Since both nodes and links in

the LLD and PN have different physical meaning, as shown in Table 2.1, analysis of

LLDs and PNs simply by using the number of basic elements as the comparison measure

may lead to an incoherent comparison.

 10

Table 2.1. Basic elements in LLD and PN.

Nodes

PNLLDBasic
elements

Place

Transition

Push button

Normally open
contact/switch

Timer TIM

CNTCounter

Solenoid

Normally closed
contact/switch

Links
Normal arc

Line

RRelay coil

Inhibitory arc

Nodes

PNLLDBasic
elements

Place

Transition

Push button

Normally open
contact/switch

Timer TIM

CNTCounter

Solenoid

Timer TIMTIM

CNTCNTCNTCounter

Solenoid

Normally closed
contact/switch

Links
Normal arc

Line

RRRelay coil

Inhibitory arc

In this chapter, an improved approach towards evaluating the LLD and PN methods is

proposed via the IF-THEN transformation. By converting both the LLD and PN into the

same IF-THEN formats (Looney and Alfize, 1987), a unified comparison is then

achieved based on the same measure, which is the sum of 1) the number of IF-THEN

rules, and 2) the number of logical operators for both LLD and PN. An example of five

sequences with increasing complexity for a stamping process is provided to illustrate the

proposed approach. We find that the proposed evaluation approach yields more

reasonable results. Also, the realistic comparisons provided in this chapter support the

superiority of the PN approach.

2.1. Introduction of Petri Nets
A PN is identified as a particular kind of bipartite directed graph populated by three

types of objects. They are places, transitions, and directed arcs connecting places and

transitions. Formally, a PN can be defined as

 11

),,,(OITPG = , (2.1)

where,

P = {p1, p2,…, pm} is a finite set of places, where 0>m ;

T = {t1, t2, …, tn} is a finite set of transitions with ∅≠∪TP and ∅=∩TP ,

where 0>n ;

NTPI →×: is an input function that defines a set of directed arcs from P to T,

where N = {0, 1, 2, …};

NPTO →×: is an output function that defines a set of directed arcs from T to P.

A marked PN is denoted as (G, M0), where M0 : P → N is the initial marking. A

transition t is enabled if each input place p of t contains at least the number of tokens

equal to the weight of the directed arc connecting p to t. When an enabled transition fires,

it removes the tokens from its input places and deposits them on its output places. PN

models are suitable to represent the systems that exhibit concurrency, conflict, and

synchronization.

Some important PN properties in manufacturing systems include boundedness (no

capacity overflow), liveness (freedom from deadlock), conservativeness (conservation of

non-consumable resources), and reversibility (cyclic behavior). The concept of liveness is

closely related to the complete absence of deadlocks. A PN is said to be live if, no matter

what marking has been reached from the initial marking, it is possible to ultimately fire

any transition of the net by progressing through some further firing sequences. This

means that a live PN guarantees deadlock-free operation, no matter what firing sequence

is chosen. Validation methods of these properties include reachability analysis, invariant

analysis, reduction method, siphons/traps-based approach, and simulation (Zhou and Jeng,

1998).

 12

2.1.1 Elementary PN Models

At the modeling stage, one needs to focus on the major operations and their

sequential or precedent, concurrent, or conflicting relationships. The basic relations

among these processes or operations can be classified as follows.

1) Sequential: As shown in Fig. 2.1 (a), if one operation follows the other, then the places

and transitions representing them should form a cascade or sequential relation in PNs.

2) Concurrent: If two or more operations are initiated by an event, they form a parallel

structure starting with a transition, i.e., two or more places are the outputs of a same

transition. An example is shown in Fig. 2.1 (b). The pipeline concurrent operations can

be represented with a sequentially-connected series of places/transitions in which

multiple places can be marked simultaneously or multiple transitions are enabled at

certain markings.

3) Cyclic: As shown in Fig. 2.1 (c), if a sequence of operations follow one after another

and the completion of the last one initiates the first one, then a cyclic structure is formed

among these operations.

4) Conflicting: As shown in Fig. 2.1 (d), if either of two or more operations can follow an

operation, then two or more transitions form the outputs from the same place.

5) Mutually Exclusive: As shown in Fig. 2.1 (e), two processes are mutually exclusive if

they cannot be performed at the same time due to constraints on the usage of shared

resources. A structure to realize this is through a common place marked with one token

plus multiple output and input arcs to activate these processes.

 13

p2t1p1 t2

(a)

p1 t2 p2

t1

t3p3 p4

(b)

t2

p1

t3

t1 p2

t4p3

(d)

p2t1p1 t2

(c)

t2

t3

t1 p2

t4

p3

p1

(e)

p2t1p1 t2p2t1p1 t2

(a)

p1 t2 p2

t1

t3p3 p4

p1 t2 p2

t1

t3p3 p4

t1

t3p3 p4

(b)

t2

p1

t3

t1 p2

t4p3

t2

p1

t3

t1 p2

t4p3

(d)

p2t1p1 t2p2t1p1 t2

(c)

t2

t3

t1 p2

t4

p3

p1

t2

t3

t1 p2

t4

p3

p1

(e)

Fig. 2.1. Basic PN models for (a) sequential, (b) concurrent, (c) cyclic, (d) conflicting,

and (e) mutually exclusive relations.

2.2. The Rule-Based Comparison
Two of major factors for comparison of LLD and PN for sequence control are

identified as design complexity and response time (Venkatesh et al., 1994a). Design

complexity is defined as the complexity associated in designing the control logic for a

given specification. Response time is termed as the scan time in LLD or the execution

time in PN. The major factor for design complexity is the physical size of the control

logic model, whereas the response time is influenced by not only the physical size, but

also the hardware of implementation. For simplicity, this chapter focuses on the

comparison of the control logic models. The proposed approach includes two steps as

follows:

Step 1) Transform both the LLD and PN into the same IF-THEN format.

Step 2) Evaluate the LLD and PN based on the number of a) rules and b) logical

 14

operators.

In general, control models use smaller number of IF-THEN rules and logical

operators are easier to understand, debug, check and maintain. Moreover, they may have

a shorter response time. Thus, the proposed approach based on the unified rule-based

format to compare the corresponding design complexity and response time for different

LLD and PN structures.

2.2.1 IF-THEN Formats
Basically, compound IF-THEN rules, which involve both the conjunctive and

disjunctive connectives in their antecedent or conclusion part, can be categorized into the

following basic four types (Looney and Alfize, 1987).

Type 1: IF (A and B) THEN C, or expressed as (A∩B) →C,

Type 2: IF A THEN (C and D), or expressed as A →(C∩D),

Type 3: IF (A or B) THEN C, or expressed as (A∪B) →C,

Type 4: IF A THEN (C or D), or expressed as. A →(C∪D).

The Type 2 rule can be broken into two simple rules A→C and A→D. Similarly, the

Type 3 rule is equivalent to the two simple rules A→C and B→C because the truth of

either A or B (or both) implies the truth of C. In practice, since the Type 4 rule does not

achieve the specific implication and often causes conflict problems, it is generally not

suitable for real applications in the sequence control. The IF-THEN rules excluding Type

4 for the LLD and PN transformations are shown in Table 2.2. Note that the timers and

counters can also be expressed in the basic rules. For example, the condition A may

represent delaying the desired time units, and the status C may express that a counter

increases or decreases one unit.

 15

Table 2.2. IF-THEN rules for LLD and PN.

IF A and B, THEN C

A∩B → C

IF A, THEN C and D

A → C∩D

IF A or B, THEN C

A∪B →C

A

B

C

C

D

A

A

B

C

PN

D

C
A

BA
C

C

B

A

LLDIF-THEN rules

IF A and B, THEN C

A∩B → C

IF A, THEN C and D

A → C∩D

IF A or B, THEN C

A∪B →C

A

B

CA

B

C

C

D

A C

D

A

A

B

CA

B

C

PN

D

C
A

BA
C

C

B

A

LLD

D

C
A

D

C
AA

BA
C

BBAA
CC

C

B

A
C

BB

AA

LLDIF-THEN rules

2.2.2 Unified Comparison Measures
Based on the IF-THEN rules, two measures are proposed to evaluate PN and LLD as

follows.

Measure 1: The number of IF-THEN rules.

Measure 2: The number of logical operators, including the conjunction (AND),

disjunction (OR), block and implication.

The summation of Measure 1 and Measure 2 can be recognized as a new measure for

evaluating different structures. By transforming both the LLD and PN to the same

IF-THEN formats, comparisons with a unified measure can then be made. Basically,

models use smaller number of IF-THEN rules and logical operators are easier to

understand, debug, check and maintain. Moreover, they often have a shorter response

time. Therefore, the sum of Measure 1 and Measure 2 properly signifies the design

complexity and response time for the process represented in either LLD or PN structures.

 16

2.2.3 A Preliminary Comparison
A simple example we use to illustrate the proposed approach is shown in Fig. 2.2,

which a piston performs a forward stroke and then retracts. In this figure, the

specification A+ indicates a forward stroke and A- indicates return stroke sequentially.

Both the LLD and PN controllers as shown in Fig. 2.2 can be either represented by the

basic elements or transformed into the same IF-THEN format, as listed in Table 2.3.

Results show that the number of basic elements for the LLD and PN are 34 and 22,

respectively. However, the basic elements in LLD and PN are physically different, as

mentioned before, and the comparison based simply on the number of basic elements for

different structures is apparently inappropriate. On the other hand, the results obtained

from the IF-THEN transformation indicate that the LLD programming needs 4 IF-THEN

rules and 14 logical operators, while the PN only needs 5 IF-THEN rules and 6 logic

operators. Therefore, the number of IF-THEN rules and logical operators for LLD and

PN is 18 and 11, respectively. Although the results of both approaches indicate that the

PN offers a better solution than LLD, the present IF-THEN transformation provides more

reasonable results when evaluating different structures in sequence controller design.

Furthermore, the degree of programming flexibility can be analyzed by observing the

increase ratio of either the number of basic elements or the number of present

rules/operators as sequences become more complex.

 17

1. Pb → R1,
2. R1∩a0 → A+,
3. A+ → a1,
4. a1 → A-,
5. A- → a0.

1. ((Pb∩a0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. ((R1∩a1)∪R2)∩a0’ → R2,
4. R2 → A-.

R1

Pb a0

R1

R2

a1

R2

R2

a0

R1

A+

R2

A-

R1

|
a1

|
a0

A+ A-

Cylinder_A

Specification :
A+, A-

PN

LLD

IF-THEN formatsPb

Push Pb

A+

End {A+}

 a1

A-

Do {A+}

a0
R1

Do {A-}

End {A-}

Comparison

1. Pb → R1,
2. R1∩a0 → A+,
3. A+ → a1,
4. a1 → A-,
5. A- → a0.

1. ((Pb∩a0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. ((R1∩a1)∪R2)∩a0’ → R2,
4. R2 → A-.

R1

Pb a0

R1

R2

a1

R2

R2

a0

R1

A+

R2

A-

R1

|
a1

|
a0

A+ A-

Cylinder_A

Specification :
A+, A-

PN

LLD

IF-THEN formatsPb

Push Pb

A+

End {A+}

 a1

A-

Do {A+}

a0
R1

Do {A-}

End {A-}

Comparison

Fig. 2.2. The LLD and PN for the sequence: A+, A-.

Table 2.3. Comparison of LLD and PN for the sequence: A+, A-.

Comparison measures LLD PN

Push button 1
NO contact 7
NC contact 2
Relay 2
Solenoid 2
Line 20

Place 6
Transition 5
Normal Arc 11

Basic elements

Total 34 Total 22
Rule 4
Operator 14

Rule 5
Operator 6IF-THEN rules

Total 18 Total 11

Comparison measures LLD PNComparison measures LLD PN

Push button 1
NO contact 7
NC contact 2
Relay 2
Solenoid 2
Line 20

Place 6
Transition 5
Normal Arc 11

Basic elements

Total 34 Total 22
Rule 4
Operator 14

Rule 5
Operator 6IF-THEN rules

Total 18 Total 11

 18

2.3. Example: A Stamping Process
To illustrate the proposed approach, we use an industrial process for automatic mark

stamping and examine how the specifications change as we consider five increasingly

complex sequences.

2.3.1 System Description
As shown in Fig. 2.3, a mark stamping system consists of three cylinders which are

operated by four-port and two-way solenoid valves. Each cylinder has two normally open

limit switches. For example, when the end of pusher_A contacts the limit switch a0, then

a0 is closed, meaning that pusher_A is at the end of its return stoke. The whole system

includes 7 input sensors corresponding to 6 limit switches and one push button for

starting the system, and 6 output actuators corresponding to 6 solenoid valves. In the

stamping process, pusher_A moves the workpiece from a store onto the worktable. Then,

the workpiece is stamped by stamper_B and afterwards is ejected by thrower_C. The

logical sequence of the stamping system is A+, B+, {A-, B-}, C+, and C-, where {A-, B-}

represents two concurrent actions as the pistons of both pusher_A and stamper_B

perform return stokes simultaneously. Five sequences with increasing complexity are

considered here as follows:

Sequence_1: START, A+, B+, {A-, B-}, C+, C-

Sequence_2: START, A+, B+, 10 sec, {A-, B-}, C+, C-

(Sequence_1 with one 10-sec timer added)

Sequence_3: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-]

(Sequence_2 with one 3-time counter added)

Sequence_4: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-], 30 sec, 2 [A+, B+, 10 sec,

{A-, B-}, C+, C-]

(Sequence_3 with one 30-sec timer and one 2-time counter added)

 19

Sequence_5: Sequence_4 with one emergency stop added.

The complexity of these five sequences increases as specified above.

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

Stamper_B

Thrower_C

Pusher_A

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

|
a1

|
a0

A+ A-

Pusher_A

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

Fig. 2.3. The stamping system.

2.3.2 Sequence Controller Design
In order to solve the interlock problem, the LLD programs are usually developed with

the assistance of the cascaded method which divides the required sequence into groups

(Pessen, 1989). Possible contradictory solenoid signals can be thus avoided. On the other

hand, since PN is a concurrent operation, it can be verified to avoid the interlock logic

problem via the simulation (Zhou and Venkatesh, 1998). The LLD and PN for the

Sequence_1-Sequence_5 are shown in Fig. 2.4-2.8. Although the sequences compared

here only consider a typical cylinder-actuating system, similar analysis can be extended

to general industrial applications such as motors, pumps, heaters and conveyors.

 20

2.3.3 Comparison of LLD and PN
Table 2.4 shows the IF-THEN formats of the LLD and PN in Fig. 2.4-2.8. The

required basic elements in the basic element approach, and the required rules and logical

operators in the IF-THEN transformation for the five sequences are shown in Fig.

2.9-2.10, separately. For these five sequences, the increase ratio, which is the normalized

measure based on Sequence_1 corresponding to the increasing sequence complexity, is

also shown in Fig. 2.11-2.12 for the two approaches. In general, a larger ratio indicates

that the design is less flexible when subjected to changes in sequence control. All results

indicate that the PN is superior to LLD in terms of design simplicity, response time and

flexibility responding to the specification changes.

 21

R1

R1
R2Pb a0

R3c0

R1

a1

A+

B+

R2
R3b1R1

R2

R2

a1

b0 a0

B-

A-

C+

R3
R3

R1R2c1

R3 C-

LLD

(a) (b)

Sequence_1:
START, A+, B+, {A-, B-}, C+, C-

PN
Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

Do {A-,B-}

End {A-,B-}

Basic element: Nodes = 30, Links = 43 Basic element: Nodes = 26, Links = 34

Fig. 2.4. LLD and PN for Sequence_1.

 22

LLD PN

Sequence_2:
START, A+, B+, 10 sec, {A-, B-}, C+, C-
(Sequence_1 with one 10-sec timer added)

R1

R1
R2Pb a0

R3 c0

R1

a1

A+

B+

R2
R3b1R1

b0 c0
TIM1

10 sec

R2

R2

a1

b0 a0

B-

A-

C+

R3
R3

R1R2 c1

R3 C-

Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

End {A-,B-}

TIM1, 10sec
Do {A-,B-}

(a) (b)

Basic element: Nodes = 33, Links = 47 Basic element: Nodes = 26, Links = 34

Fig. 2.5. LLD and PN for Sequence_2.

 23

R1

R1
R2R4Pb a0

R3c0

R1

a1

A+

B+

R2
R3R4b1R1

b0 c0
TIM1

10 sec

R2

R2

a1

b0 a0

B-

A-

C+

R3
R3

R1R4R2c1

R4

c0

Pb
CNT1

3 times

R3 C-

LLD

Sequence_3:
START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-]
(Sequence_2 with one 3-time counter added)

PN Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

TIM1, 10sec
Do {A-,B-}

End {A-,B-}

3CNT1

(a) (b)

Basic element: Nodes = 40, Links = 56 Basic element: Nodes = 27, Links = 36

Fig. 2.6. LLD and PN for Sequence_3.

 24

R1

R5

R1
R6R2R4Pb a0

R3c0

R1

a1

R2
R6R3R4b1R1

b0 c0
TIM1

10 sec

R2

R2

a1

b0 a0

A+

B+

B-

A-

C+

R3
R3

R6R1R4R2c1

R4

R5c0

Pb
CNT1

3 times

R3 C-

R5

R4

Pb
TIM2

30 sec

R6

c0R5

R5
CNT2

2 times

LLD Sequence_4:
START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-],
30 sec, 2 [A+, B+, 10 sec, {A-, B-}, C+, C-]
(Sequence_3 with one 30-sec timer and one 2-
time counter added)

PN Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

End {A-,B-}

3
CNT1

2

CNT2

3

Delay
TIM2,
30sec

TIM1, 10sec
Do {A-,B-}

(a) (b)

Basic element: Nodes = 54, Links = 75 Basic element: Nodes = 29, Links = 40

Fig. 2.7. LLD and PN for Sequence_4.

 25

R1

R5

R1
R7R6R2R4Pb a0

R3c0

R1

a1

R2
R7R6R3R4b1R1

b0 c0
TIM1

10 sec

R2

R2

a1

b0 a0

A+

B+

B-

A-

C+

R3
R3

R7R6R1R4R2c1

R4

R5c0

Pb
CNT1

3 times

R3 C-

R5

R4

Pb
TIM2

30 sec

R6

c0R5

R5
CNT2

2 times

Es
R7

LLD

PN

Sequence_5:
Sequence_4 with one emergency stop added.

CNT2

Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

End {A-,B-}

3
CNT1

2

3

Es

Ti

Ti = T2 to T11

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

Delay
TIM2,
30sec

TIM1, 10sec
Do {A-,B-}

(a) (b)
Basic element: Nodes = 59, Links = 81 Basic element: Nodes = 30, Links = 50

Fig. 2.8. LLD and PN for Sequence_5.

 26

Table 2.4. IF-THEN formats of LLD and PN in Fig. 2.4-2.8.

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1)∪R2)∩R3’ → R2,
5. R2 → B-,
6. R2∩a1 → A-,
7. R2∩b0∩a0 → C+,
8. ((R2∩c1)∪R3)∩R1’ → R3,
9. R3 → C-.

Rules = 9, Operators = 31

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 23
1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’ → R3,
10. R3 → C-.

Rules = 10, Operators = 34

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 24

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’ → R3,
10. R3 → C-,
11. c0∩CNT1 → R4,
12. Pb’ → (RST)CNT1.

Rules = 12, Operators = 40

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 26

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’ → R3,

10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2.

Rules = 16, Operators = 52

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 29

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’∩R7’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’∩R7’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’∩R7’ → R3,
10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2,
17. ES → R7.

Rules = 17, Operators = 56

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1∩ES’→ A+,
3. A+∩ES’ → a1,
4. a0∩b0∩ES’ → B+,
5. B+∩ES’ → b1,
6. b1∩TIM1∩ES’ → A-∩B-,
7. A-∩B-∩ES’ → a0∩b0∩R2,
8. R2∩a0∩b0∩c0∩ES’ → C+,
9. C+∩ES’ → c1,
10. c1∩ES’ → C-,
11. C-∩ES’ → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 39

LLD PN

Seq._1

Seq._4

(Seq._3 with
one timer and
one counter
added)

Seq._2

(Seq._1 with
one timer
added)

Seq._5

(Seq._4 with
one emergency
stop added)

Seq._3

(Seq._2 with
one counter
added)

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1)∪R2)∩R3’ → R2,
5. R2 → B-,
6. R2∩a1 → A-,
7. R2∩b0∩a0 → C+,
8. ((R2∩c1)∪R3)∩R1’ → R3,
9. R3 → C-.

Rules = 9, Operators = 31

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 23
1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’ → R3,
10. R3 → C-.

Rules = 10, Operators = 34

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 24

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’ → R3,
10. R3 → C-,
11. c0∩CNT1 → R4,
12. Pb’ → (RST)CNT1.

Rules = 12, Operators = 40

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 26

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’ → R3,

10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2.

Rules = 16, Operators = 52

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 29

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’∩R7’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’∩R7’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’∩R7’ → R3,
10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2,
17. ES → R7.

Rules = 17, Operators = 56

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1∩ES’→ A+,
3. A+∩ES’ → a1,
4. a0∩b0∩ES’ → B+,
5. B+∩ES’ → b1,
6. b1∩TIM1∩ES’ → A-∩B-,
7. A-∩B-∩ES’ → a0∩b0∩R2,
8. R2∩a0∩b0∩c0∩ES’ → C+,
9. C+∩ES’ → c1,
10. c1∩ES’ → C-,
11. C-∩ES’ → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 39

LLD PN

Seq._1

Seq._4

(Seq._3 with
one timer and
one counter
added)

Seq._2

(Seq._1 with
one timer
added)

Seq._5

(Seq._4 with
one emergency
stop added)

Seq._3

(Seq._2 with
one counter
added)

 27

The Number of Basic Elements

0

20

40

60

80

100

120

140

LLD
PN

Seq._1 Seq._2 Seq._3 Seq._4 Seq._5

73
80

96

129

140

60 60 63
69

80

Fig. 2.9. Required basic elements in the basic element approach.

The Amount of Rules and Operators

40
44

52

68
73

34 35 37
41

51

0

10

20

30

40

50

60

70

80

Seq._1 Seq._2 Seq._3 Seq._4 Seq._5

LLD
PN

Fig. 2.10. Required rules and logical operators in the IF-THEN transformation.

 28

1

1.05
1.15 1.331.1

1.32

1.77
1.92

1

1.2

1.4

1.6

1.8

2

PN

LLDIncrease
ratio

Basic element approach

Seq._1 Seq._2 Seq._3 Seq._4 Seq._5

Fig. 2.11. The increase ratio for the basic element approach.

1.03 1.09

1.21
1.5

1.7

1.3

1.83

1

1.2

1.4

1.6

1.8

2

Seq._1 Seq._2 Seq._3 Seq._4 Seq._5

PN

LLD
Increase

ratio

1.1

IF-THEN transformation

Fig. 2.12. The increase ratio for the IF-THEN transformation.

2.4. Discussions
This chapter presents a novel and unified approach for evaluating the computational

burden and complexity subject of sequence programming for different structures.

Because the basic elements for LLD and PN structures posses different physical

meanings, results using the basic element approach are not adequate to conclude which

design structure is more efficient. By applying the proposed IF-THEN transformation

 29

approach, we obtain the same IF-THEN rules and logical operators for both LLD and PN

structures, and thus the results in Fig. 2.10 show conclusively that the PN structure

design is more efficient.

Furthermore, by applying the IF-THEN transformation, results indicate that the PN

structure also leads to a lower increase ratio than the LLD structure, as shown in Fig.

2.12. Thus, design via the PN structure is more flexible when the specification changes.

Similar trend can also be observed using the basic element approach as shown in Fig.

2.11. Therefore, the PN structure for sequence control design will become more valid for

large-scale processes.

Although both the basic element approach and the IF-THEN transformation present

similar results in terms of increase ratios for given sequence changes as shown in Fig.

2.11-2.12, a comparison indicates that the basic element approach overestimates the

complexity of LLD, and underestimates that of PN. For example, comparing Sequence_1

with Sequence_2, which adds a timer to Sequence_1, results of the basic element

approach indicate that both sequences require the same number of basic elements by

using the PN, as shown in Fig. 2.9. This is obviously misleading. On the other hand,

evaluation results with the present IF-THEN transformation properly indicate that the

complexity of PN increases from 34 to 35, as shown in Fig. 2.10. Therefore, the proposed

IF-THEN transformation is more realistic for evaluating sequence control design than the

basic element approach.

2.5. Summary
In this chapter, we have proposed a unified comparison approach to adequately

evaluate the LLD and PN by using the IF-THEN transformation. Thus, more realistic and

reasonable results can be obtained to analyze the design complexity and flexibility to

specification changes for different structures. Results show that the PN is simpler and

more flexible than LLD in realization of sequence controllers. Hence, based on the given

example, PN might be a promising solution for modern industrial control systems.

 30

Chapter 3

Design of the Sequence Controller in Manufacturing

Systems

In the previous chapter, a comparison between the ladder logic diagram (LLD) and

Petri net (PN) has been provided. However, in real industrial environments, most

industrial PLC users still prefer to program in LLD. Hence, this chapter presents a

systematic approach to the LLD implementation of the sequence controller in

manufacturing systems. Basically, the simplified Petri net controller (SPNC) is employed

in the present approach (Lee, 1999). By employing the IDEF0, the SPNC model can be

built through the material flow diagram and the information flow diagram. Then, the

LLD can be transformed from the SPNC through the token passing logic (TPL). The

proposed approach, including the IDEF0, SPNC, and TPL tools, leads to the standard

IEC1131-3 LLD for PLC implementation. Finally, an application of a stamping process is

provided to illustrate the design procedure of the developed approach.

3.1. Simplified Petri Net Controller
In this section, we propose a simplified Petri net controller (SPNC) by introducing

sensor states into the ordinary PN. The SPNC is applied to simulate the manufacturing

system and to lead the IDEF0 to LLD in the proposed IDEF0/SPNC/TPL/LLD approach.

3.1.1 Formal Definition
Fig. 3.1 (a) shows an ordinary PN model for pushing a button to trigger a process. By

using the ordinary PN approach in controlling manufacturing processes, to deal with

multiple sensor readings makes the net structure become more complicated and difficult

to analyze. Therefore, by introducing the sensor state into the PN to form an SPNC, the

 31

net structure becomes more simplified for implementation. From the control point of

view, as shown in Fig. 3.1 (b), the sensor state in the SPNC replaces the reading sensor

model such as push buttons or limit switches within the ordinary PN. Note that the

condition of sensor states may change depending on the practical situation. Thus, as

sensors increase in processes, the net structure of the SPNC is greatly simplified, as

shown in Fig. 3.1 (c). Then, it becomes easy to model and implement the sequence

controller through the SPNC defined as:

),,,,(SPNC 0MSATP= (3.1)

where,

P = {p1, p2,…, pm} is a finite set of places, where 0>m ;
T = {t1, t2, …, tn} is a finite set of transitions with ∅≠∪TP and ∅=∩TP ,

where 0>n ;

}{}{ PTTPA ×∪×⊆ is the set of arcs between the places and transitions,

S ={s1, s2, …, sn} is the set of sensor states, and

1:0 →PM is the initial marking.

(a)

Start_ready

OFFON

2

2

WorkingIdle

OFF

ON Stop_ready

Start_sensor

Stop_sensor

Start_sensor

WorkingIdle

Stop_sensor

(b)

(c)

Elements PN SPNC
Place 8 2

Transition 6 2
Arc 16 6

Sensor state ― 2
Total 30 12

(a)

Start_ready

OFFON

2

2

WorkingIdle

OFF

ON Stop_ready

Start_sensor

Stop_sensor

Start_ready

OFFON

2

2

WorkingIdle WorkingIdle

OFF

ON Stop_ready

Start_sensor

Stop_sensor

Start_sensor

WorkingIdle

Stop_sensor

Start_sensor

WorkingIdle

Stop_sensor

(b)

(c)

Elements PN SPNC
Place 8 2

Transition 6 2
Arc 16 6

Sensor state ― 2
Total 30 12

Fig. 3.1. The comparison between the PN and the SPNC via a simple process. (a)

Ordinary PN. (b) SPNC. (c) Comparison results.

 32

3.1.2 Graphical Representation
As shown in Fig. 3.2, the SPNC consists of three kinds of nodes: 1) the place, drawn

as a circle, 2) the transition, drawn as a bar, and 3) the sensor state, drawn as a smaller

circle with a hidden arrow. The arcs, represented by directed arrows, are either from a

place to a transition or from a transition to a place. In modeling, the marking conditions

of places represent the status of the system and the transitions represent events. A

transition has a set of input and output places, which represent the pre-conditions and

post-conditions of the event, respectively. A sensor state, associated with its transitions,

represents the sensor readings as a firing condition which triggers a manufacturing

sequence. The sensor state is a Boolean variable that can be 0 in which case the related

transition is not fired, or 1 in which case the related transition is fired if it is enabled. The

marking of the SPNC is represented by the number of tokens in each place, drawn as

black dots. The presence of a token in a given place means that the associated condition

is true or that the actions associated with this place are taken.

Place Transition Token Arc Sensor state

Fig. 3.2. The icon definition of the SPNC.

3.1.3 Dynamic Behavior
The dynamic behavior of a system is simulated by the distribution of tokens in places

as the enable transitions fire. The flow of tokens in the SPNC is governed according to

the following rules:

1) Enabling rule:

A transition is said to be enabled, if all its input places are marked.

2) Firing rule:

 33

Furthermore, the enabled transition is fired if all its sensor states are true. When an

enabled transition fires, it removes one token from all its input places and deposits

one token into all its output places at the same time.

3.1.4 Comparison with Other Models
The behavior of the proposed SPNC is similar to the sequential function chart (SFC).

However, since SFC is derived from PN with some modifications and simplifications,

theoretical results of PN cannot be directly applied to SFC (Miyazawa et al., 1997). Since

the present SPNC is an extension of the PN by introducing sensor states, SPNC allows

formal analysis of various properties, such as the safety, liveness, and reversibility for the

process (David and Alla, 1994). Moreover, SFC only offers the method for depicting

sequences of control system without providing any mechanisms to perform the functional

analysis. Note that in the present IDEF0/SPNC/TPL/LLD approach, by applying the

IDEF0 for functional analysis and information flow design, the SPNC model can be

transformed from the information flow diagram.

Furthermore, compared with other extended PN applications such as Interpreted PN

(Moalla, 1985), Automation PN (Uzam and Jones, 1998), or Signal Interpreted PN (Frey,

2000), which use external events to model sensor readings, the present SPNC simply

applies the sensor states to model the firing conditions. Also, the present

IDEF0/SPNC/TPL/LLD approach obtains the PLC programs systematically, from the

design specifications through the SPNC, and to the final LLD. Since the PN model is

inherently concurrent, whereas the LLD is typically scan-based, the sequential

specification must be determinate and deterministic in the present approach. Also, the

mono-marked restrictions design is required in the proposed SPNC to guarantee the

safety of the sequence in practice.

3.2. The IDEF0/SPNC/TPL/LLD Approach
In this section, the integrated IDEF0/SPNC/TPL/LLD approach, including the IDEF0,

 34

SPNC, and TPL tools, is proposed to systematically obtain the LLD for PLC

implementation. The design procedure of the IDEF0/SPNC/TPL/LLD approach, depicted

in Fig. 3.3, consist of five stages and each stage is described as follows.

Functional
Analysis

Information
Flows
Design

END

START

Dynamic
Verification

Layout

Impementation

Problem?
Yes

No

Problem?
Yes

No

IDEF0
(Material Flow)

IDEF0
(Information Flow)

SPNC

TPL

LLD

Fig. 3.3. Design procedure of the IDEF0/SPNC/TPL/LLD approach.

 35

3.2.1 Functional Analysis Stage: IDEF0
With the given specifications, the purpose of functional analysis is to realize the

functions and operations of the system and then generate the control signals for the next

stage. At this stage, each function of the manufacturing system has to be specified with a

top-down hierarchically decomposing process by using the IDEF0 (Prabhaka, 1993).

IDEF0 is an activity-oriented modeling approach and its representation of a

manufacturing process consists of an ordered set of boxes representing activities

performed by the system. The inputs are those items transformed by the activity and the

outputs are the results of the activity, as shown in Fig. 3.4. The mechanisms, drawn as

supporting arrows, represent resources such as machines, computers and operators, etc.

The decomposition process continues until there is sufficient in detail on the basic

activities to serve the purpose of sequence control. A functional model of the material

flow diagram is obtained at this stage.

ActivityInput
Material/ Information

flows

Control

Output

Mechanism

Material/ Information
flows

Machines/ Computers/ Operators

Parameters/ Rules

Fig. 3.4. The IDEF0 scheme.

3.2.2 Information Flow Design Stage: IDEF0
At this second stage, the information flow is used to control the material flow in a

manufacturing system. The information flow diagram is constructed from the material

flow diagram with static analysis, again using the IDEF0. In the information flow

diagram, the input and output commands are designed to enable the activity and to

 36

change the machine status after firing, respectively. Because the mechanisms will be

assigned within the I/O ports at the layout stage later, the supporting arrows for

mechanisms are omitted here to simplify the information flow design. The sensor

readings representing the conditions to fire the activity are drawn as control signal arrows.

A controllable model of the information flow diagram is obtained at this stage.

3.2.3 Dynamic Verification Stage: SPNC
The information flow diagram only represents system activities and their

interrelationships. Since it does not show direct logical and dynamic dependencies

between activities, a dynamic SPNC model, transformed from the information flow

diagram, is applied to verify the dynamic behavior of the system. The transformation

from the information flow diagram into the SPNC model is based on the following steps:

Step 1) An activity box in the information flow diagram is transformed into a

transition of the SPNC.

Step 2) The input and output commands are transformed into input and output

places, respectively.

Step 3) The control signals of the sensor readings are transformed into sensor

states.

Step 4) The initial marking of the SPNC is set according to the initial condition of

the system.

An example is shown in Fig. 3.5. The activity of the information flow diagram is

transformed into the transition T1. The input command I1 and output command I2 are

transformed into the input place P1 and output place P2, respectively, and the control

signal control is transformed into the sensor state S1. When the SPNC model is obtained,

the correctness of the sequence order can be verified by studying the behaviors via

computer simulations. Also the properties of the PN such as the safety, liveness, and

reversibility can be analyzed to identify the dynamic behavior.

 37

IDEF0 → SPNC

P2P1

S1

T1

activityI1 I2

control

Fig. 3.5. The transformation from the IDEF0 to the SPNC.

3.2.4 Layout Stage: TPL
To simplify the conversion of the SPNC into the LLD, the token passing logic (TPL)

is employed in this stage (Uzam and Jones, 1998). The attractive feature of the TPL is

that it facilitates the direct conversion of a SPNC into a generic form of control logic,

which may be implemented with low-level languages such as LLD, or with high-level

languages such as C. This is achieved by adopting the SPNC concept of using tokens as

the main mechanism for controlling the flow of the control logic. At this stage, the SPNC

model is transformed into the TPL model to assign the I/O ports for actions and sensor

readings. For applications in a variety of industrial PLC hardware, the TPL is defined as

follows:

 TPL = (M, T, A, in, out, time) (3.2)

where,

M = {M1, M2, …, Mm} is a finite set of memory bits,.

T = {T1, T2, …, Tn} is a finite set of transitions,

A {M T} {T M}⊆ × ∪ × is the set of arcs between the memories and transitions,

in ={in1, in2, …, inn} is the set of sensor inputs,

out ={out1, out2, …, outm} is the set of actuator outputs, and

time ={time1, time 2, …, time m} is the set of delay timers.

 38

The transformation from the SPNC model into the TPL form is based on the following

steps:

Step 1) The transition of the SPNC is transformed into a transition of the TPL.

Step 2) The place is transformed into a memory bit.

Step 3) The sensor state is transformed into a sensor input.

Step 4) For the action with a place, besides the memory bit, an actuator output is

assigned.

Step 5) For the delay time with a place, besides the memory bit, a delay timer is

assigned.

P2P1

S1

T1

out1

M1 M2

in1

T1

SPNC → TPL

Fig. 3.6. The transformation from the SPNC to the TPL.

An example is shown in Fig. 3.6. The places P1 and P2 are transformed into the

memory bits M1 and M2, respectively, and the sensor state S1 is transformed into the

sensor input in1. Assume there is an action with P2, the actuator output out1 is assigned.

Hence, each place whose capacity is limited to one within the SPNC corresponds to a

memory bit in the TPL. The token flow is then simulated by setting and resetting these

memory bits. Thus, each place within the SPNC has at least one associated memory bit in

the TPL. The sensor state within the SPNC corresponds to a sensor input contact in the

TPL. To simulate the firing of a transition, if the memory bits associated with input

places are set and the sensor inputs of the transition yield “true”, the memory bits at the

input places are reset and the memory bits at the output places are set simultaneously.

Moreover, the actions and delays within the SPNC are assigned to appropriate memory

 39

bits within the TPL by using the actuator outputs and delay timers, respectively. By using

the TPL, the I/O ports for the sensor readings and actuator outputs are assigned and the

layout for implementation in LLD can be completed. The TPL bridges the gap between

SPNC and LLD and provides a simple way of developing PLC controllers.

3.2.5 Implementation Stage: LLD
In order to convert the TPL model into LLD code for real time implementation, a

direct mapping is used from the TPL to the LLD by maintaining the enabling and firing

rules at this stage. The transformation from the TPL model into the LLD format is based

on the following steps:

Step 1) Initial condition setting: the token in the SPNC is mapped to the

corresponding internal relay with the SET command.

Step 2) For each transition, the input memory is mapped to a conditional contact

and an internal relay with the RST command and the output memory is

mapped to an internal relay with the SET command.

Step 3) The sensor input is mapped to a conditional contact for the associated

transition.

Step 4) The output relay is assigned to send the command to perform the operation.

Step 5) The delay timer is assigned to perform the delay.

An example is shown in Fig. 3.7. For transition T1, the input memory M1 is mapped

to a conditional contact and an internal relay M1 with the RST command and the output

memory M2 is mapped to a internal relay M2 with the SET command. The sensor input

in1 is mapped to a conditional contact X1 and the actuator output out1 is mapped to the

output relay Y1. By integrating initial condition and setting all transitions, the LLD for

sequence control is thus completed.

 40

out1

M1 M2

in1

T1

X1
SET M2

RST M1

M1

M2
Y1

T1

TPL → LLD

Fig. 3.7. The transformation from the TPL to the LLD.

In the proposed IDEF0/SPNC/TPL/LLD approach, the material flow diagram and the

information flow diagram are obtained by using the IDEF0 technique for functional

analysis and information flow design. Then, the information flow diagram is transformed

into the SPNC model to verify its dynamic behavior. Subsequently, the SPNC model is

converted into a TPL model for implementation layout. Finally, the IEC1131-3 LLD for

implementation on PLC controller is obtained using a direct mapping from the TPL into

LLD. Fig. 3.8 summarizes the transformations in the proposed IDEF0/SPNC/TPL/LLD

approach.

IDEF0 → SPNC → TPL → LLD

P2P1

S1

T1

activityI1 I2

control
out1

M1 M2

in1

T1

X1
SET M2

RST M1

M1

M2
Y1

T1

Fig. 3.8. The transformations of the IDEF0/SPNC/TPL/LLD approach.

 41

3.3. Example: A Stamping Process
To demonstrate the viability of the developed approach, an application to a stamping

process is provided.

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

sensor input

actuator output PLC

LLD

PC

Fig. 3.9. The stamping system.

3.3.1 System Description
As shown in Fig. 3.9, a stamping system consists of three cylinders which are

operated by four-port and two-way solenoid valves. Each cylinder has two normally open

limit switches. For example, when the end of pusher_A contacts limit switch a0, a0 is

then closed. This indicates that pusher_A is at the end of its return stoke. The whole

system has 7 input sensors corresponding to 6 limit switches, one push button for starting

the system and 6 output actuators corresponding to 6 solenoid valves. In the stamping

process, pusher_A moves the workpiece from a store onto the worktable. Then the

workpiece is stamped by stamper_B and afterwards is ejected by thrower_C. Thus, the

sequence of the stamping system is A+, B+, {A-, B-}, C+, C-, where the plus and the

minus signs mean a piston performing forward strokes and return strokes, respectively.

 42

{A-, B-} represents two concurrent actions as the pistons of both pusher_A and

stamper_B perform return stokes simultaneously.

3.3.2 Sequence Controller Design
Through the use of the proposed IDEF0/SPNC/TPL/LLD approach, as shown in Fig.

3.10, the LLD code for real time implementation on PLC controllers was systematically

generated. First, by using the IDEF0 technique, the material flow diagram and the

information flow diagram were obtained. Then, to verify its dynamic behavior, the

information flow diagram has transformed into the SPNC model. Subsequently, the

SPNC model was converted into a TPL model for layout. Finally, the LLD for

implementation with PLC controllers was obtained by a direct mapping from the TPL.

This LLD code is written for Mitsubishi FX2 PLCs which meet IEC1131-3. Table 3.1

gives the notations used in the IDEF0/SPNC/TPL/LLD together with their descriptions.

3.4. Summary
In this chapter, we have proposed a systematic IDEF0/SPNC/TPL/LLD approach to

the PLC-based sequence controller design in manufacturing systems. To obtain the LLD

for PLC implementation, the SPNC is defined by introducing the sensor states into the

ordinary Petri net and leads to meaningfully simplified process modeling. Moreover, the

IDEF0 technique is employed to construct the SPNC model through the material flow

diagram and information flow diagram. Starting from the basic sequential specification,

the proposed approach includes IDEF0, SPNC, and TPL, and systematically leads to the

standard IEC1131-3 LLD for PLC implementation. An application of a stamping process

is provided to demonstrate the viability of the developed approach.

 43

R
ea

dy

ou
t1

ou
t2

ou
t3

ou
t4

in
1 in
2

in
3

in
4

in
0

ou
t5

ou
t6

T1 T2 T3

T4
T5

T6

M
2

M
1

M
3

M
4

M
5

M
6

M
8

M
7

M
9

T7 T8

in
5

in
6

4.
TP

L

SE
T

 M
1

SE
T

 M
0

M
0

in
iti

al
 s

et
tin

g

X
1

SE
T

 M
3

R
ST

 M
2

M
2

M
3

Y2

m
ai

n
pr

og
ra

m
X

0
SE

T
 M

2

R
ST

 M
1

M
1

M
2

Y1

T1 T2

X
2

S
ET

 M
4

M
3

M
4

Y3

S
ET

 M
5

R
ST

 M
3

M
5

Y4

T3

X
6

S
ET

 M
2

R
S

T
 M

9

M
9

X3
SE

T
 M

6

R
S

T
 M

4

M
4

X
4

SE
T

 M
7

R
S

T
 M

5

M
5

T4 T5

M
6

S
ET

 M
8

M
7

M
8

Y
5

R
ST

 M
6

R
ST

 M
7

T6

X5
S

ET
 M

9

R
ST

 M
8

M
8

M
9

Y
6

T7 T8

5.
LL

D
3.

S
P

N
C

P
1

P2

P
3

P
4

P5

P
6

P
7

S
1

a1

S
2

b1

S3
 a

0
S

4
b0

S
0 pu
sh

 b
ut

to
n

P
8

P
9

S
5

c1

S6
 c

0

T1
 {A

+}

T2
 {B

+}

T3
 {A

-,
B-

}

T4
T5

T6
 {C

+}

T7
 {C

-}

T8
 R

ep
ea

t

In
fo

rm
at

io
n

Fl
ow

 D
ia

gr
am

: A
0

Ti
tle

: M
ar

k
St

am
pi

ng
 S

ys
te

m

R
ea

dy
pu

sh
 in

 a
nd

ho
ld

 o
n

{A
+}

A
1

st
am

p
do

w
n

{B
+}

A
2

re
le

as
e

w
or

kp
ie

ce
{A

-,
B

-} A
3

th
ro

w
ou

t
{C

+}
A

4

re
se

t
{C

-}
A

5

re
pe

at
{A

+}
A

6

a1

b1

(a
0,

 b
0)

c1

c0

pu
sh

 b
ut

to
n

ho
ld

in
g

st
am

pi
ng

re
al

ea
si

ng

th
ro

w
in

g

re
se

tti
ng

[A
0]

 s
ta

m
p [A

1]
 p

us
h

in
 a

nd
 h

ol
d

on
 {A

+}
[A

2]
 s

ta
m

p
do

w
n

{B
+}

[A
3]

 re
le

as
e

w
or

kp
ie

ce
{A

-,
B

-}
[A

4]
 th

ro
w

 o
ut

 {C
+}

[A
5]

 re
se

t {
C

-}
[A

6]
 re

pe
at

 {A
+}

1.
ID

E
F0

 (S
pe

ci
fic

at
io

ns
 →

M
at

er
ia

l F
lo

w
s)

2.
ID

E
F0

 (I
nf

or
m

at
io

n
Fl

ow
s)w
kp

ie
ce

_c
on

ta
in

er
S

ta
m

pe
r

w
kp

ie
ce

_s
to

re
pu

sh
 in

an
d

ho
ld

 o
n

A
1

st
am

p
do

w
n

A
2

th
ro

w
ou

t
A

3

w
kp

ie
ce

_w
kt

ab
le

P
us

he
r

Th
ro

w
er

w
kp

ie
ce

_w
kt

ab
le

[A
0]

 S
ta

m
p

[A
1]

 p
us

h
in

 a
nd

 h
ol

d
on

[A
2]

 s
ta

m
p

do
w

n

[A
3]

 th
ro

w
 o

ut

M
at

er
ai

lF
lo

w
 D

ia
gr

am
: A

0
Ti

tle
: M

ar
k

St
am

pi
ng

 S
ys

te
m

R
ea

dy

ou
t1

ou
t2

ou
t3

ou
t4

in
1 in
2

in
3

in
4

in
0

ou
t5

ou
t6

T1 T2 T3

T4
T5

T6

M
2

M
1

M
3

M
4

M
5

M
6

M
8

M
7

M
9

T7 T8

in
5

in
6

4.
TP

L

SE
T

 M
1

SE
T

 M
1

SE
T

 M
0

SE
T

 M
0

M
0

in
iti

al
 s

et
tin

g

X
1

SE
T

 M
3

SE
T

 M
3

R
ST

 M
2

R
ST

 M
2

M
2

M
3

Y2

m
ai

n
pr

og
ra

m
X

0
SE

T
 M

2
SE

T
 M

2

R
ST

 M
1

R
ST

 M
1

M
1

M
2

Y1

T1 T2

X
2

S
ET

 M
4

M
3

M
4

Y3

S
ET

 M
5

R
ST

 M
3

M
5

Y4

T3
X

2
S

ET
 M

4
S

ET
 M

4
M

3

M
4

Y3
M

4
Y3

S
ET

 M
5

S
ET

 M
5

S
ET

 M
5

R
ST

 M
3

R
ST

 M
3

R
ST

 M
3

M
5

Y4
M

5
Y4

T3

X
6

S
ET

 M
2

R
S

T
 M

9

M
9

X3
SE

T
 M

6

R
S

T
 M

4

M
4

X
4

SE
T

 M
7

R
S

T
 M

5

M
5

T4 T5

M
6

S
ET

 M
8

M
7

M
8

Y
5

R
ST

 M
6

R
ST

 M
7

T6

X5
S

ET
 M

9

R
ST

 M
8

M
8

M
9

Y
6

T7 T8
X

6
S

ET
 M

2
S

ET
 M

2

R
S

T
 M

9
R

S
T

 M
9

M
9

X3
SE

T
 M

6

R
S

T
 M

4

M
4

X3
SE

T
 M

6
SE

T
 M

6

R
S

T
 M

4
R

S
T

 M
4

M
4

X
4

SE
T

 M
7

R
S

T
 M

5

M
5

X
4

SE
T

 M
7

SE
T

 M
7

R
S

T
 M

5
R

S
T

 M
5

M
5

T4 T5

M
6

S
ET

 M
8

S
ET

 M
8

M
7

M
8

Y
5

M
8

Y
5

R
ST

 M
6

R
ST

 M
6

R
ST

 M
6

R
ST

 M
7

R
ST

 M
7

R
ST

 M
7

T6

X5
S

ET
 M

9

R
ST

 M
8

M
8

M
9

Y
6

X5
S

ET
 M

9
S

ET
 M

9

R
ST

 M
8

R
ST

 M
8

M
8

M
9

Y
6

T7 T8

5.
LL

D
3.

S
P

N
C

P
1

P2

P
3

P
4

P5

P
6

P
7

S
1

a1

S
2

b1

S3
 a

0
S

4
b0

S
0 pu
sh

 b
ut

to
n

P
8

P
9

S
5

c1

S6
 c

0

T1
 {A

+}

T2
 {B

+}

T3
 {A

-,
B-

}

T4
T5

T6
 {C

+}

T7
 {C

-}

T8
 R

ep
ea

t

In
fo

rm
at

io
n

Fl
ow

 D
ia

gr
am

: A
0

Ti
tle

: M
ar

k
St

am
pi

ng
 S

ys
te

m

R
ea

dy
pu

sh
 in

 a
nd

ho
ld

 o
n

{A
+}

A
1

st
am

p
do

w
n

{B
+}

A
2

re
le

as
e

w
or

kp
ie

ce
{A

-,
B

-} A
3

th
ro

w
ou

t
{C

+}
A

4

re
se

t
{C

-}
A

5

re
pe

at
{A

+}
A

6

a1

b1

(a
0,

 b
0)

c1

c0

pu
sh

 b
ut

to
n

ho
ld

in
g

st
am

pi
ng

re
al

ea
si

ng

th
ro

w
in

g

re
se

tti
ng

In
fo

rm
at

io
n

Fl
ow

 D
ia

gr
am

: A
0

Ti
tle

: M
ar

k
St

am
pi

ng
 S

ys
te

m

R
ea

dy
pu

sh
 in

 a
nd

ho
ld

 o
n

{A
+}

A
1

st
am

p
do

w
n

{B
+}

A
2

re
le

as
e

w
or

kp
ie

ce
{A

-,
B

-} A
3

th
ro

w
ou

t
{C

+}
A

4

re
se

t
{C

-}
A

5

re
pe

at
{A

+}
A

6

a1

b1

(a
0,

 b
0)

c1

c0

pu
sh

 b
ut

to
n

ho
ld

in
g

st
am

pi
ng

re
al

ea
si

ng

th
ro

w
in

g

re
se

tti
ng

[A
0]

 s
ta

m
p [A

1]
 p

us
h

in
 a

nd
 h

ol
d

on
 {A

+}
[A

2]
 s

ta
m

p
do

w
n

{B
+}

[A
3]

 re
le

as
e

w
or

kp
ie

ce
{A

-,
B

-}
[A

4]
 th

ro
w

 o
ut

 {C
+}

[A
5]

 re
se

t {
C

-}
[A

6]
 re

pe
at

 {A
+}

1.
ID

E
F0

 (S
pe

ci
fic

at
io

ns
 →

M
at

er
ia

l F
lo

w
s)

2.
ID

E
F0

 (I
nf

or
m

at
io

n
Fl

ow
s)w
kp

ie
ce

_c
on

ta
in

er
S

ta
m

pe
r

w
kp

ie
ce

_s
to

re
pu

sh
 in

an
d

ho
ld

 o
n

A
1

st
am

p
do

w
n

A
2

th
ro

w
ou

t
A

3

w
kp

ie
ce

_w
kt

ab
le

P
us

he
r

Th
ro

w
er

w
kp

ie
ce

_w
kt

ab
le

w
kp

ie
ce

_c
on

ta
in

er
S

ta
m

pe
r

w
kp

ie
ce

_s
to

re
pu

sh
 in

an
d

ho
ld

 o
n

A
1

st
am

p
do

w
n

A
2

th
ro

w
ou

t
A

3

w
kp

ie
ce

_w
kt

ab
le

P
us

he
r

Th
ro

w
er

w
kp

ie
ce

_w
kt

ab
le

[A
0]

 S
ta

m
p

[A
1]

 p
us

h
in

 a
nd

 h
ol

d
on

[A
2]

 s
ta

m
p

do
w

n

[A
3]

 th
ro

w
 o

ut

M
at

er
ai

lF
lo

w
 D

ia
gr

am
: A

0
Ti

tle
: M

ar
k

St
am

pi
ng

 S
ys

te
m

Fi
g.

 3
.1

0.
 D

es
ig

n
of

 th
e

se
qu

en
ce

 c
on

tro
lle

r u
si

ng
 ID

EF
0/

SP
N

C
/T

PL
/L

LD
 a

pp
ro

ac
h.

 44

Table 3.1. Notations for the stamping process.

SPNC element TPL element LLD element Description
P1 M1 M1 Ready
P2 M2, out1 M2, Y1 Holding {A}
P3 M3, out2 M3, Y2 Stamping {B}
P4 M4, out3 M4, Y3 Releasing {A}
P5 M5, out4 M5, Y4 Releasing {B}
P6 M6 M6 --
P7 M7 M7 --
P8 M8, out5 M8, Y5 Throwing {C}
P9 M9, out6 M9, Y6 Resetting {C}
T1 T1 -- Push in and Hold on {A+}
T2 T2 -- Stamp down {B+}
T3 T3 -- Release workpiece {A-, B-}
T4 T4 -- --
T5 T5 -- --
T6 T6 -- Throw out {C+}
T7 T7 -- Reset {C-}
T8 T8 -- Repeat {A+}
S0 in0 X0 Push button {ON}
S1 in1 X1 Sensor a1 {ON}
S2 in2 X2 Sensor b1 {ON}
S3 in3 X3 Sensor a0 {ON}
S4 in4 X4 Sensor b0 {ON}
S5 in5 X5 Sensor c1 {ON}
S6 in6 X6 Sensor c0 {ON}

 45

Chapter 4

Remote Supervision for Human-in-the-Loop Systems

In remote-controlled processes, human operations may violate desired safety

requirements and result in catastrophic failure. For such human-in-the-loop systems, this

chapter proposes a systematic approach to develop supervisory agents that guarantee that

remote manual operations meet safety specifications. The PN is applied to model, design,

and verify a supervisory controller that prevents human errors. Then, the Java technology

is adopted to implement the supervisor as an intelligent agent for on-line supervision of

the remote control system. To demonstrate the feasibility and practicability of the

proposed approach, the developed supervision system is applied to a rapid thermal

process (RTP).

4.1. A Novel Supervisory Structure
Typically, an Internet-based control system (remote access using IP-based networks)

is a “human-in-the-loop” system since people use a general web browser or specific

software to monitor and control remotely located systems. As shown in Fig. 4.1 (a), the

human operator is involved in the loop and sends control commands according to the

observed status displayed by the state and/or image feedback. Research results indicate

that approximately 80% of industrial accidents are attributed to human errors, such as

omitting a step, falling asleep and improper control of the system (Rasmussen et al.,

1994). However, the Internet-based control literature provides few solutions for reducing

or eliminating the possibility of human errors. In this chapter, we propose applying a

supervisory design to the present remotely controlled, human-in-the-loop system so as to

prevent abnormal operations from being carried out. Fig. 4.1 (b) shows the proposed

supervisory control scheme for a remotely located system with the human in the loop.

 46

First, the supervisory agent acquires the system status and makes the decision to

enable/disable associated events to meet the required specifications, typically safety

requirements. The human operator is then only allowed to perform the enabled events to

control the system. The role of a supervisory agent is to interact with the human operator

and the controlled system so that the closed human-in-the-loop system meets the required

specifications and to guarantee that undesirable executions do not occur.

Controlled
System

Supervisory
Agent

Human
Operator

Enable/Disable
Events

Status Feedback

Control Action

Internet

Controlled
System

Human
Operator

Control Action

Status Display

Internet

(a) (b)

Controlled
System

Supervisory
Agent

Human
Operator

Enable/Disable
Events

Status Feedback

Control Action

Internet

Controlled
System

Human
Operator

Control Action

Status Display

Internet

(a) (b)
Fig. 4.1. (a) Typical remote control system with the human in the loop. (b) The proposed

remote supervisory control scheme.

4.2. Design of the Supervisor Using PN
This section first shows the required control modes and specification types for remote

supervisory control. Then, the PN-based procedure for designing the supervisor is

described with a simple door-valve system for a RTP.

4.2.1 Control Modes
For remote control via the Internet, we are interested in the following two control

modes:

 47

1) Automatic control mode: When the system is in automatic control mode, the

automatic controller autonomously controls the manufacturing process without user

intervention (the human operator only needs to push a button to start the control cycle).

Generally, an active sequence controller is used to automatically complete several

operations in a certain order.

2) Manual control mode: A system often must be open to manual control for various

purposes, such as for test runs and fault diagnosis. Here, we examine the case in which

the user can directly perform each operation. To ensure that safety constraints are not

violated, the supervisory agent is on-line executed to acquire the system status and decide

to either enable or disable specific operations.

4.2.2 Specification Types
The objective of the supervisor is to restrict the behavior of the system so that it is

contained within the set of admissible states, called the specification. Two types of

specification are classified as follows:

1) Explicit specifications for control sequences: Generally, these specifications are

“recipe-dependent”. They are enforced by a sequence controller in automatic mode or by

a human operator in manual mode so as to accomplish certain tasks in a desired logical

order.

2) Implicit specifications for safety requirements: These specifications are

“recipe-independent” and thus must always be obeyed throughout operation of the system.

Basically, these specifications are required to satisfy safety and liveness constraints. The

safety specification prevents the system from performing undesirable actions, while the

liveness specification ensures that a given behavior is repeatable. In automatic mode,

these specifications can be effectively dealt with by the sequence controller. In manual

mode, the supervisor enforces these specifications by restricting the commands available

to human operators.

 48

4.2.3 PN-Based Design for the Supervisor
PNs have been used to model, analyze, and synthesize control laws for DES. Zhou

and DiCesare (1991), moreover, addressing the shared resource problem recognized that

mutual exclusion theory plays a key role in synthesizing a bounded, live, and reversible

PN. In mutual exclusion theory, parallel mutual exclusion consists of a place marked

initially with one token to model a single shared resource, and a set of pairs of transitions.

Each pair of transitions models a unique operation that requires the use of the shared

resource.

Definition 4.1: Given two nets),,,(11111 OITPG = and),,,(22222 OITPG = with

initial marking M0,1 and M0,2, respectively. The synchronous composition of G1 and G2 is

a net),,,(OITPG = with initial marking M0:

21 || GGG = , (4.1)

where,

21 PPP ∪= ;

21 TTT ∪= ;

),(),(tpItpI i= if]})[2,1{(ii TtPpi ∈∧∈∈∃ , else 0),(=tpI ;

),(),(tpOtpO i= if]})[2,1{(ii TtPpi ∈∧∈∈∃ , else 0),(=tpO ;

)()(1,00 pMpM = if 1Pp∈ , else)()(2,00 pMpM = .

An agent that specifies which events are to be enabled and disabled when the system

is in a given state is called a supervisor. For a system with plant model G and

specification model H, the supervisor can be obtained by synchronous composition of the

plant and the specification models:

HGSG ||= , (4.2)

where the transitions of H are a subset of the transitions of G, i.e. GH TT ∈ . Note that SG

obtained through the above construction, in the general case, does not represent a proper

 49

supervisor, since it may contain deadlock states from which a final state cannot be

reached. Thus, the behavior of S should be further refined and restricted by PN analysis.

In this chapter, we adopt mutual exclusion concept to build the PN specification

model and then compose it with the plant model to design the supervisor. Moreover, the

PN plant model is constructed using the task-oriented concept. Each operation is modeled

as a task with a start transition, an end transition, a progressive place and a completed

place. Note that the start transition is a controllable event as “command” input, while the

end transition is an uncontrollable event as “response” output. The supervisor design

procedure consists of the following steps:

Step 1) Construct the PN model of the plant using the task-oriented approach.

Step 2) Construct the PN model of the specifications using the mutual exclusion

concept.

Step 3) Compose the plant and specification models to yield the supervisor model.

Step 4) Verify and refine the supervisor model to obtain a live, bounded and

reversible model.

4.2.4 Example: A Door-Valve System
Consider a simple example of the interaction for the chamber door-gas valve system

in a rapid thermal processor. The general PN model, shown in Fig. 4.2 (a), can be used to

describe the open/close tasks for both the door and valve. The initial states of the door

and valve are both closed. Assume that one basic safety specification is that the door and

valve must not be open at the same time. A PN model for this specification constructed

using the mutual exclusion concept is shown in Fig. 4.2 (b). In this model, the

start_open_door and start_open_valve commands are mutually exclusive. Intuitively,

performance of the start_open_valve command is only allowed if the door is closed and

the start_open_door event has not yet been fired. If the start_open_door command has

been fired, the start_open_valve command cannot be executed until the end_close_door

response is given to signal that the door has been closed. The composed PN model of the

door-valve system with the safety specification is shown in Fig. 4.2 (c). The supervisory

 50

arcs are shown with dashed lines and the place ps showing the supervisor position is

drawn thicker than those showing the task positions. In this approach, the supervisor

consists only of places and arcs, and its size is proportional to the number of

specifications that must be satisfied.

Command:
start_open_door

Response:
end_close_door

Command:
start_open_valve

Response:
end_close_valve

start_close

end_close

end_open start_open

closingclosed

opening open

Command:
start_open

Response:
end_open

Response:
end_close

Command:
start_ close

opening open

closingclosed

end_close

start_close

opening open

closingclosed

end_open start_open

open/close door

open/close valve

(a)

(b) (c)

ps

Command:
start_open_door

Response:
end_close_door

Command:
start_open_valve

Response:
end_close_valve

Command:
start_open_door

Response:
end_close_door

Command:
start_open_valve

Response:
end_close_valve

start_close

end_close

end_open start_open

closingclosed

opening open

Command:
start_open

Response:
end_open

Response:
end_close

Command:
start_ close

opening open

closingclosed

Command:
start_open

Response:
end_open

Response:
end_close

Command:
start_ close

opening open

closingclosed

end_close

start_close

opening open

closingclosed

end_open start_open

open/close door

open/close valve

(a)

(b) (c)

ps

Fig. 4.2. (a) A general model for door and valve components. (b) The mutual exclusion

specification model. (c) The composed supervisor for the door-valve system.

4.3. Implementation of the Supervisor Using Java
This section first describes the agent concept, and then shows the implementation

architecture and interactive modeling of the hierarchical supervisory control system.

Finally, the reasons of choosing implementation methods in Java technology are

mentioned.

 51

4.3.1 Agent Technology
The agent technology is a new and important technique in recent novel researches of

the artificial intelligence. Using agent technology leads to a number of advantages such

as scalability, event-driven actions, task-orientation, and adaptivity (Bradshaw, 1997).

The concept of an agent as a computing entity is very dependent on the application

domain in which it operates. As a result, there exists many definitions and theories on

what actually constitutes an agent and the sufficient and necessary conditions for agency.

Wooldridge and Jennings (1995) depicts an agent as a computer system that is situated in

some environment, and that is capable of autonomous actions in this environment in

order to meet its design objectives. From a software technology point of view, agents are

similar to software objects, which however run upon call by other higher-level objects in

a hierarchical structure. On the contrary, in the narrow sense, agents must run

continuously and autonomously. In addition, the distributed multiagent coordination

system is defined as the agents that share the desired tasks in a cooperative point of view,

and they are autonomously executing at different sites. For our purposes, we have

adopted the description of an agent as a software program associated to the specific

function of remote supervision for the manufacturing system. A supervisory agent is

implemented to acquire the system status and then enable and disable associated tasks so

as to advise and guide the manager in issuing commands.

4.3.2 Client/Server Architecture
Fig. 4.3 shows the client/server architecture for implementing the remote supervisory

control system. On the remote client, the human operator uses a Java-capable web

browser, such as Netscape Navigator or Microsoft Internet Explorer, to connect to the

web server through the Internet. On the web server side, a Java servlet handles user

authentication, while a Java applet is provides a graphical human/machine interface

(HMI) and invokes the supervisory agent. In this chapter, we use Java technology to

implement the supervisory agent on an industrial PLC, with a built-in Java-capable web

 52

server assigned to handle the client requests.

Remote Client
(with Java-capable Web browser)

Internet

I/O Bus

• Java Servlet:
for user authentication

• Java Applet:
for graphical HMI and to
invoke supervisory agent

• Ladder Logic Diagram:
for direct sense and control
of I/O devices

Industrial PLC
(with built-in Java-capable Web server)

Controlled
System

Remote Client
(with Java-capable Web browser)

Internet

I/O Bus

• Java Servlet:
for user authentication

• Java Applet:
for graphical HMI and to
invoke supervisory agent

• Ladder Logic Diagram:
for direct sense and control
of I/O devices

Industrial PLC
(with built-in Java-capable Web server)

Controlled
System

 Fig. 4.3. Implementation architecture of the remote supervisory control system.

4.3.3 Interactive Modeling
A sequence diagram of the UML (Booch et al., 1999) is applied to model client/server

interaction in the remote control system. Within a sequence diagram, an object is shown

as a box at the top of a vertical dashed line, called the object’s lifeline and representing

the life of the object during the interaction. Messages are represented by horizontal

arrows and are drawn chronologically from the top of the diagram to the bottom.

Fig. 4.4 shows the sequence diagram of the implemented remote supervisory control

system. At the first stage, the Remote Client sends a hypertext transfer protocol (HTTP)

request to the Web Server. Next, the Web Server sends an HTTP response with an

authentication web page, on which the Remote Client can login to the system by sending

a request with user/password. The Web Server then invokes a Java servlet to authenticate

the user. If the authentication fails, the Java servlet will respond with the authentication

web page again. On the other hand, if the authentication succeeds, the Java servlet’s

response will be a control web page with a Java applet. The Java applet first builds a

graphical HMI and constructs a socket on the specified port to maintain continuous

communication with the server. Then, the Java applet acquires the system status through

the constructed socket and displays it on the control web page iteratively by invoking the

Device Handler to fetch the sensor states of Device objects. Finally, the supervisory agent

is called by the Java applet and run to enable/disable associated control buttons on the

 53

HMI according to the current system status so as to meet the required specifications. Thus,

the Remote Client can send an action command by pushing an enabled button to control

the remote system through the constructed socket.

HTTP request

Remote
Client

Time

HTTP response (authentication page)

[Fail] HTTP response (authentication page)

HTTP request (Login request)
Check user by
Java Servlet

[Success] HTTP response (control page)
1. Build graphic HMI by Java Applet.
2. Build socket-communication.
3. Acquire and display system status via

socket iteratively.
4. Run supervisory agent (enable/disable

control buttons).

Request via socket (action command)

Device
Handler

getSensor
*getSensor

returnreturn(data)

Iteration

setActuator
setActuator

Device
(sensor/
actuator)

Web
Server

HTTP request

Remote
Client

Time

HTTP response (authentication page)

[Fail] HTTP response (authentication page)

HTTP request (Login request)
Check user by
Java Servlet

[Success] HTTP response (control page)
1. Build graphic HMI by Java Applet.
2. Build socket-communication.
3. Acquire and display system status via

socket iteratively.
4. Run supervisory agent (enable/disable

control buttons).

Request via socket (action command)

Device
Handler

getSensor
*getSensor

returnreturn(data)return(data)

Iteration

setActuator
setActuator

Device
(sensor/
actuator)

Web
Server

Fig. 4.4. Interactive modeling with sequence diagram for the remote supervisory control

system.

4.3.4 Java Implementation
In this thesis, we have employed the Java servlet for authentication and Java applet

for graphical HMI. A Java servlet (Hunter and Crawford, 1998) is a compiled code,

dynamically loaded to process requests from a Web server. It does not depend on browser

compatibility due to running on the server side. Moreover, a Java server page (JSP) is a

script and compiled into Java servlets during its first invocation and may call JavaBeans

to perform processing on the server. A JavaBean is a portable, platform-independent

component model, developed in collaboration with industry leaders. Since JSP with

 54

JavaBean requires the script translation, Java servlet has been selected for

implementation due to its faster performance and easier debugging. On the other hand, a

Java applet (Campione and Walrath, 1995) is a widely used program that can be

embedded in a Web page. When you use a Java-enabled browser to view a page that

contains an applet, the applet’s code is transferred to your system and executed by the

browser’s Java virtual machine (JVM).

This thesis has adopted the Java applet for graphical HMI due to its plentiful

availability of application programming interfaces (API). Also, most Web browsers

(Navigator or Internet Explorer) provide the JVM to support Java applets. Moreover, as

shown in Fig. 4.4, the TCP socket communication is used for data transmission due to its

easier implementation. For distributed application development, the Java remote method

invocation (RMI) or interface definition language (IDL) can be further applied (Hunter

and Crawford, 1998). Moreover, Java object-oriented programming is one where each

small part of the program is considered as a separate object that can interact with other

objects. The advantage of object-oriented software is that blocks of code can easily be

reused in different parts of the program, or even in different programs. This reduces

development time and therefore costs (Rumbaugh et al, 1991).

4.4. Example: A Rapid Thermal Process
This section demonstrates a practical application of the remote monitoring and

supervisory control to a rapid thermal process (RTP) via the Internet.

4.4.1 Description of the RTP System
A rapid thermal processor is a relatively new semiconductor manufacturing device

(Fair, 1993). A schematic diagram of the RTP system is shown in Fig. 4.5, which is

composed of 1) a reaction chamber with a door, 2) a robot arm for wafer

loading/unloading, 3) a gas supply module with a mass flow controller and pressure

controller-I, 4) a heating lamp module with a temperature controller, and 5) a flush

 55

pumping system with a pressure controller-II.

Temperature
Controller

Heating
Lamp

Flush Pump

Gas Supply

Pressure
Controller-I

Pressure
Controller-II

Mass Flow
Controller

Chamber
Door

Robot
Arm

Wafer

Exhaust

Source Gases
(e.g. H2, N2, O2)

Bypass

Reaction
Chamber Temperature

Controller

Heating
Lamp

Flush Pump

Gas Supply

Pressure
Controller-I

Pressure
Controller-II

Mass Flow
Controller

Chamber
Door

Robot
Arm

WaferWafer

Exhaust

Source Gases
(e.g. H2, N2, O2)

Bypass

Reaction
Chamber

Fig. 4.5. Schematic diagram of the RTP system.

A realistic “recipe” of the hydrogen baking process, i.e. the explicit specification as

mentioned in Section 4.2.2, is as follows:

Step 1) Load the raw wafer.

Step 2) Close the chamber door.

Step 3) Open the gas valve to supply gases with a desired gas flow rate and

pressure of 2.8 liters per minute (lpm) and 0.5 Torr, respectively.

Step 4) Close the gas valve.

Step 5) Turn on the heating lamp to bake the wafer with a desired baking

temperature and duration of 1000 C° and 4 seconds, respectively.

Step 6) Turn off the heating lamp.

Step 7) Turn on the flush pump with a desired pressure of less than 0.05 Torr.

 56

Step 8) Turn off the flush pump.

Step 9) Open the chamber door.

Step 10) Unload the processed wafer.

The initial state of the components in the RTP is either closed or off, except that the

door is open. The following safety specifications, i.e. the implicit specification mentioned

in Section 4.2.2, must be enforced throughout system operation.

Spec-1: Wafer Loading is allowed only when no wafer is in the chamber.

Spec-2: Wafer Loading/unloading is allowed only when the door is open.

Spec-3: The gas valve must be closed when the flush pump is applied to the

chamber.

Spec-4: The gas valve, heating lamp, and flush pump cannot be started when the

door is open.

4.4.2 Design of the Sequence Controller
As mentioned in Section 4.2.2, the specifications can be satisfied and involved in the

sequence controller in automatic control mode. By applying the task-oriented concept, the

PN model for the automatic control mode of the RTP is constructed as shown in Fig. 4.6,

which consists of 26 places and 20 transitions, respectively. Corresponding notations are

described in Table 4.1. Transitions drawn with dark symbols are events that are

controllable by remote clients via the Internet.

 57

p2 p3t2t1 p4 p5t4t3

p1

p6p9 t6 t5

p12p13

t10 t9 p10p11 t8 t7

p15

p16 t12 t11

p14

p8

p7

Load Wafer Close Door

Supply GasBake Wafer

p20 p21

t16

t15p17 p18t14

t13

p24 p25t20t19p22 p23t18

t17

Unload WaferOpen DoorFlush Chamber

p26

p19

Controllable event via Internet

p2 p3t2t1 p4 p5t4t3

p1

p6p9 t6 t5

p12p13

t10 t9 p10p11 t8 t7

p15

p16 t12 t11

p14

p8

p7

Load Wafer Close Door

Supply GasBake Wafer

p20 p21

t16

t15p17 p18t14

t13

p24 p25t20t19p22 p23t18

t17

Unload WaferOpen DoorFlush Chamber

p26

p19p19

Controllable event via InternetControllable event via Internet

Fig. 4.6. The PN model for automatic control of the RTP system.

p20 p21

t16

t15p17 p18t14

t13

p24 p25t20t19p22 p23t18

t17

ps2

p2 p3t2t1 p4 p5t4t3

p1

p6
p9 t6 t5

p12p13

t10

t9

p10p11 t8 t7

p15

p16 t12 t11

p14

p8

p7

ps1
ps6

ps3

ps5

ps4
ps7

p26

p19

A

H IG

F E D C

B

J

A: load wafer
B: close chamber door
C: open gas valve
D: close gas valve
E: turn on heating lamp

F: turn off heating lamp
G: turn on flush pump
H: turn off flush pump
I: open chamber door
J: unload wafer

Controllable event via Internet

p20 p21

t16

t15p17 p18t14

t13

p24 p25t20t19p22 p23t18

t17

ps2

p2 p3t2t1 p4 p5t4t3

p1

p6
p9 t6 t5

p12p13

t10

t9

p10p11 t8 t7

p15

p16 t12 t11

p14

p8

p7

ps1
ps6

ps3

ps5

ps4
ps7

p26

p19p19

A

H IG

F E D C

B

J

A: load wafer
B: close chamber door
C: open gas valve
D: close gas valve
E: turn on heating lamp

F: turn off heating lamp
G: turn on flush pump
H: turn off flush pump
I: open chamber door
J: unload wafer

A: load wafer
B: close chamber door
C: open gas valve
D: close gas valve
E: turn on heating lamp

F: turn off heating lamp
G: turn on flush pump
H: turn off flush pump
I: open chamber door
J: unload wafer

Controllable event via InternetControllable event via Internet

Fig. 4.7. The composed PN model for manual control of the RTP system.

 58

Table 4.1. Notations for the PN of the RTP system in Fig. 4.6.

Place Description Transition Description
p1 Raw wafer buffer t1 Cmd: start loading wafer
p2 Loading wafer t2 Re: end loading wafer
p3 Loading wafer completed t3 Cmd: start closing chamber door
p4 Closing chamber door t4 Re: end closing chamber door
p5 Closing chamber door completed t5 Cmd: start opening gas valve
p6 Opening gas valve t6 Re: end opening gas valve
p7 Mass flow controller ready t7 Cmd: start closing gas valve
p8 Pressure controller-I ready t8 Re: end closing gas valve
p9 Opening gas valve completed t9 Cmd: start turning on heating lamp

p10 Closing gas valve t10 Re: end turning on heating lamp
p11 Closing gas valve completed t11 Cmd: start turning off heating lamp
p12 Turning on heating lamp t12 Re: end turning off heating lamp
p13 Turning on heating lamp completed t13 Cmd: start turning on flush pump
p14 Temperature controller ready t14 Re: end turning on flush pump
p15 Turning off heating lamp t15 Cmd: start turning off flush pump
p16 Turning off heating lamp completed t16 Re: end turning off flush pump
p17 Turning on flush pump t17 Cmd: start opening chamber door
p18 Turning on flush pump completed t18 Re: end opening chamber door
p19 Pressure controller-II ready t19 Cmd: start unloading wafer
p20 Turning off flush pump t20 Re: end unloading wafer
p21 Turning off flush pump completed
p22 Opening chamber door
p23 Opening chamber door completed
p24 Unloading wafer
p25 Unloading wafer completed
p26 Processed wafer buffer

4.4.3 Design of the Supervisor
For manual control mode, the plant model is formed by unconnecting each pair of

transitions for the tasks in Fig. 4.6. In the specification model, Spec-1 and Spec-2 are

modeled as the pre-conditions of the associated operations, while Spec-3 and Spec-4 are

built by using the mutual exclusion concept. The composed PN model of both the plant

and specifications is shown in Fig. 4.7, where A-J represent ten remote controllable tasks

for the RTP system. The supervisory places ps1-7 (ps1 for Spec-1, ps2-3 for Spec-2, ps4

for Spec-3, ps5-7 for Spec-4) are used to prevent undesired and unsafe operations on the

part of the human operator. Corresponding notations for the supervisory places are

described in Table 4.2. At this stage, the software package ARP (Maziero, 1990) is

 59

chosen to verify the behavioral properties of the composed PN model due to its graphical

representation, ease of manipulation, and ability to perform structural and performance

analyses. The ARP uses the reachability analysis to validate the PN properties. Results

reveal that the present PN model is live and bounded. The liveness property means that

the system can be executed properly without deadlocks, while the boundedness property

means that the system can be executed with limited resources (e.g., limited buffer sizes).

Table 4.2. Notations for supervisory places of PN in Fig. 4.7.

Place Description
ps1 Spec-1: chamber is empty
ps2 Spec-2: chamber door is open
ps3 Spec-2: chamber door is open
ps4 Spec-3: gas is closed/pump is off
ps5 Spec-4: door is closed/lamp is off
ps6 Spec-4: door is closed/gas is closed
ps7 Spec-4: door is closed/pump is off

4.4.4 Implementation with Java Technology
The system modeling and design developed in previous stages provide supervisory

control models for implementation of the present remote monitoring and control

technology. To implement the supervisory control, we use Java due to its

object-orientation, portability, safety, and built-in support for networking and

concurrency (Hoshi, 1999; Bertolissi and Preece, 1998). The developed supervisory

agent is implemented on the Mirle SoftPLC (80486-100 CPU), an advanced industrial

PLC with built-in Web server and Java virtual machine so that it can interpret the LLD,

HTTP requests, and Java programs (Mirle Automation Corporation, 1999; SoftPLC

Corporation, 1999).

The developed HMI, shown in Fig. 4.8, is carefully designed to make its web pages

more user friendly and also to increase download speed by avoiding unnecessary images.

Since the client users will be mainly operators and engineers, they will want effective

information delivery and will not be interested in flashy graphics (Shikli, 1997). The

current system status is placed on the left, the system message is in the center, and the

 60

button control area is on the right. Fig. 4.8 also shows that the system is in automatic

control mode, and thus only the Auto-Control button has been enabled by the

supervisory agent. The human operator can only push this button which starts automatic

process control by the sequence controller.

Fig. 4.8. Interactive web page for remote control of the RTP system by a Java applet

(only Auto-Control button is admissible in the automatic control mode).

Fig. 4.9 shows the web pages for manual control mode after the Open Valve button

has just been pushed (Step 3 in Section 4.4.1). In this situation, since one wafer is already

in the chamber and the door is closed, the Load Wafer and Unload Wafer buttons are

both disabled by the supervisory agent to meet Spec-1 and Spec-2. Moreover, the

Turn_On Pump and Open Door buttons are disabled to meet Spec-3 and Spec-4,

respectively. Thus, the safety requirements of the RTP processing are guaranteed as

human operations are conducted. Fig. 4.10 shows the hardware setup during prototype

development.

 61

Fig. 4.9. Interactive web page in manual control mode at Step 3 of RTP processing

(seven buttons are enabled).

Fig. 4.10. The hardware setup during prototype development.

 62

4.5. Summary
This chapter presents a framework for designing and implementing a PN-based

supervisor for Internet-based control systems with the human in the loop. The supervisor

is systematically designed by applying the mutual exclusion concept and is then

implemented using the Java technology. To demonstrate the practicability of the proposed

remote supervisory approach, an application is provided in which an simulated RTP

system with an industrial PLC is controlled over the Internet. According to the feedback

status of the remotely located system, the developed supervisor provides allowable

commands for human operators while disabling operations that violate safety

specifications.

 63

Chapter 5

Hierarchical Supervision for Manufacturing Systems

In the previous chapter, a supervisory structure has been proposed to prevent the

abnormal human commands from being carried out for remote control systems. However,

the supervisor synthesis algorithm has computational complexity that is exponential in

the state-space size of the system. In addition, communication delays and packet loss in

the Internet are unavoidable. This chapter proposes a hierarchical supervisory scheme

resulting in a smaller state-space size in supervisor synthesis. Moreover, fewer packet

transmissions are required so that the effects of time delays and packet loss could be

moderated. An application to a three-recipe flexible manufacturing system (FMS)

controlled over the Internet is provided to illustrate the developed approach.

5.1. Proposed Hierarchical Structure
Hierarchical control is a familiar approach to the design of large-scale DES in order

to reduce design complexity (Zhong and Wonham, 1990; Wong and Wonham, 1996;

Tittus and Lennartson, 1999; Charbonnier et al., 1999). This chapter applies such

hierarchical scheme to design the supervision systems for remote-controlled processes.

As shown in Fig. 5.1, we use a three-level architecture. In the command level, the

abstract model is a simplified representation of the controlled system and is employed by

the remote manager to make decisions for task allocation. Here, a task is a group of

certain steps and the manager can send task requests to control the remotely located

processes according to the displayed status. In this way, the manager exercises “virtual”

control over the behavior of the abstract model. Actually, the manager sends a request for

a decided task to the local controller, which really regulates the detailed operations of the

task with event feedback in the control level. State changes in the system will eventually

 64

be conveyed in a summary form to the abstract model via the response channel. To avoid

resource conflicts and deadlock, an agent is designed to acquire the system status and

then enable and disable associated tasks so as to advise and guide the manager in issuing

commands at the supervisory level. Thus, the manager is only allowed to issue the

enabled tasks, and the hierarchical loop is closed in this way.

As compared with the traditional scheduling and planning architecture for

manufacturing systems (Gershwin, 1989), the proposed hierarchical scheme specifically

designed by applying the virtual control concept is more suitable for the remote

supervision. Moreover, the proposed supervisor guarantees that remote human-issued

commands lead to normal operations without deadlocks. In addition, as compared with

direct remote control of each step (Kress et al., 2001), the proposed approach not only

guarantees deadlock-free operation, it also moderates the effects of time delays and

packet loss across the Internet since fewer packet transmissions are needed to complete a

task.

Supervisory
Agent Status

Feedback
Command

Advice

Remote
Manager

Abstract
Model

Virtual Control
Request

Local
Controller

Controlled
System

Event Feedback

Real
Control

Response

Status
Display

Supervisory
Level

Command
Level

Control
Level

Internet

Supervisory
Agent Status

Feedback
Command

Advice

Remote
Manager

Abstract
Model

Virtual Control
Request

Local
Controller

Controlled
System

Event Feedback

Real
Control

Response

Status
Display

Supervisory
Level

Command
Level

Control
Level

Supervisory
Level

Command
Level

Control
Level

Internet

Fig. 5.1. Proposed three-level architecture for hierarchical supervision.

 65

5.2. Design of the Hierarchical Supervision System
This section first introduces multi-recipe processes, and then, shows the separated

specifications for the command level and control level in remote supervisory control

design. Finally, the PN-based design for the supervisor and the controller is introduced.

5.2.1 Multi-Recipe Processes
For multi-recipe systems with parallel or concurrent activities, each recipe describes a

number of alternative desired paths through the plant. A recipe specifies the sequence of

tasks to be executed and all possible ways the plant can be utilized in order to produce

the desired product. Note that our recipe definition here corresponds to the master recipe

in the batch control standard, ISA-S88.01 (ANSI/ISA, 1995). The master recipe is that

level of recipe that accounts for equipment capabilities and may include process

cell-specific information. It is thus natural to view a recipe as a specification on the plant

to exhibit a certain task-sequence. However, there can be several independent recipes

using the plant simultaneously, and all of these together form a non-deterministic joint

specification on the overall system behavior. Since more than one recipe may be required

to access the same resource, and each resource can only serve one recipe at a time,

deadlock between different recipes may thus occur. The remote control problem then is

to design a system that:

1) coordinates the resources for different recipes in order to ensure that the specified

tasks in all recipes are executed correctly without deadlock occurring, and

2) regulates the execution of each task in detailed operations.

5.2.2 Separated Specifications
The objective of the hierarchical supervision is to restrict the behavior of the system

so that it is contained within the desired states, called the specifications. The

specifications are separated into two levels as follows:

1) Command-level specifications for recipes, resources, and liveness: These

specifications require that the logical order of each recipe, resource constraints, and

 66

liveness requirement are satisfied throughout all operations of the system. The recipe

specification indicates the sequence of tasks to be executed, and it can be modeled as a

sequential flow. The resource specification presents the physical constraints of the

limited resources, and shared resources can be adequately expressed in terms of mutual

exclusion conditions. The liveness specification ensures that a given behavior is

deadlock-free and repeatable, and it can be preserved by deadlock analysis with

avoidance policies (Fanti et al., 2000). In the proposed hierarchical architecture, the

supervisory agent enforces these specifications by restricting the task commands

available to the remote manager.

2) Control-level specifications for detailed operations: These specifications are the

detailed logical operations of each task. In the proposed hierarchical architecture, the

control-level specifications are enforced by a local controller which accomplishes certain

operations of the requested task for the physical plant in a desired logical order.

To summarize, the system requirements are separated into the command-level

specification, which results in non-deterministic sequences of tasks, and the control-level

specification, which leads to detailed deterministic operations of each task. The proposed

separation not only reduces the design complexity of the supervisor synthesis, as shown

latter, it also makes the system design more flexible, since it avoids the need to redesign

the local controller, as only the command-level specification varies.

5.2.3 Design of the Supervisor
In this chapter, we first build the resource specification models and then compose

them with the recipe models to design the supervisor. The supervisor design procedure

consists of the following steps:

Step 1) Construct the Petri-net model of the recipe specifications in command level

using the task-oriented approach.

Step 2) Build the Petri-net model of the resource specifications using the mutual

exclusion concept.

Step 3) Compose the recipe and resource models to yield the basic supervisor model.

 67

Step 4) Analyze and refine the supervisor model to obtain a deadlock-free, bounded,

and reversible model.

The PN recipe model is constructed using the task-oriented concept. Each task is

modeled with a start transition, an end transition, a progressive place, and a completed

place. Note that the start transition, as the “command” input is a controllable event, while

the end transition, as the “response” output is an uncontrollable event. Obviously, the

presented hierarchical scheme is endowed with task-based modularity in the command

level.

5.2.4 Design of the Local Controller
The logical behavior of each task in the control level is a deterministic process. For

the local controller design, the detailed PN models of each controllable task in the recipe

are built to describe the detailed operations and follow the deterministic sequences in this

stage. Applying the PN to design the controller leads to a unified PN-based approach to

develop the hierarchical supervision, and thus facilitates the use of established PN

analysis and implementation methods.

5.3. Example: A Three-Recipe Flexible Manufacturing System
5.3.1 Description of the System

Fig. 5.2 shows the remote-controlled FMS, which is composed of 1) three processing

machines, 2) three raw material suppliers, and 3) six automated conveyers. It is assumed

that the raw materials are provided infinitely. The FMS corresponding to different

products are specified in terms of recipes, i.e. the sequences of tasks to be carried out on

discrete amounts of materials by employing all or part of the machines. This particular

FMS is a multi-recipe system with three recipes for three different products described as

follows:

Recipe 1) Product x-y: Load materials x and y to Machine 1 for processing. Then, convey

x-y to Machine 3. After processing x-y in Machine 3, unload the product.

 68

Recipe 2) Product x-z: Load materials x to Machine 1 and z to Machine 2 for processing,

and then convey x and z to Machine 3. After processing x-z in Machine 3,

unload the product.

Recipe 3) Product y-z: Load materials y to Machine 1 and z to Machine 2 for processing,

and then convey y and z to Machine 3. After processing y-z in Machine 3,

unload the product.

Machine 1

Export x-y,
x-z, or y-z

Machine 3

Machine 2

x

z

y

Raw
Material Supplier

Conveyer_X1

Conveyer_Y1

Conveyer_13

Conveyer_23

Conveyer_Z2

Conveyer_3

Machine 1

Export x-y,
x-z, or y-z

Machine 3

Machine 2

x

z

y

Raw
Material Supplier

Conveyer_X1

Conveyer_Y1

Conveyer_13

Conveyer_23

Conveyer_Z2

Conveyer_3

Fig. 5.2. Schematic diagram of the three-recipe FMS.

By applying the task-oriented concept, the PN model for the three recipes is

constructed as shown in Fig. 5.3, which consists of 19 places and 22 transitions,

respectively. Transitions drawn with dark symbols are events that are controllable by

remote managers via the Internet. Corresponding notation is described in Table 5.1.

5.3.2 Design of the Supervisor
The three machines represent resources shared between the different recipes. Since

more than one recipe may require access to the same resource, but each resource can only

serve one recipe at a time, deadlock between different recipes may thus occur. The

required specifications are as follows.

Spec-1: Raw material loading of x and y is allowed only when Machine 1 is available.

 69

Spec-2: Raw material loading of z is allowed only when Machine 2 is available.

Spec-3: Material conveying to Machine 3 is allowed only when Machine 3 is available.

Spec-4: Liveness, i.e. no deadlock states, must be enforced throughout system

operation.

p1 p2t2t1 p3 p4t4t3

p5 p6t6
t5 p7 p8t8t7

p9 p10t10t9

p11

p12t12t11

p13 p14t14t13 p15 p16t16t15

p17 t18t17

p18 t20t19

p19

t22t21

Load x-y to M1

Load z to M2

Convey x to M3Load x to M1

Process x-yConvey x-y to M3

Convey z to M3

Process y-z

Process x-z

x-y

x

z

y

x-y

x-z

y-zLoad y to M1 Convey y to M3

Controllable Event via Remote Manager

p1 p2t2t1 p3 p4t4t3

p5 p6t6
t5 p7 p8t8t7

p9 p10t10t9

p11

p12t12t11

p13 p14t14t13 p15 p16t16t15

p17 t18t17

p18 t20t19

p19

t22t21

Load x-y to M1

Load z to M2

Convey x to M3Load x to M1

Process x-yConvey x-y to M3

Convey z to M3

Process y-z

Process x-z

x-y

x

z

y

x-y

x-z

y-zLoad y to M1 Convey y to M3

Controllable Event via Remote ManagerControllable Event via Remote Manager

Fig. 5.3. Preliminary PN model of the three-recipe FMS.

 70

Table 5.1. Notations for the PN of the FMS in Fig. 5.3.

Place Description Transition Description
p1 Loading x-y to M1 t1 Cmd: start loading x-y to M1
p2 Loading x-y to M1 completed t2 Re: end loading x-y to M1
p3 Conveying x-y to M3 t3 Cmd: start conveying x-y to M3
p4 Conveying x-y to M3 completed t4 Re: end conveying x-y to M3
p5 Loading x to M1 t5 Cmd: start loading x to M1
p6 Loading x to M1 completed t6 Re: end loading x to M1
p7 Conveying x to M3 t7 Cmd: start conveying x to M3
p8 Conveying x to M3 completed t8 Re: end conveying x to M3
p9 Loading z to M2 t9 Cmd: start loading z to M2
p10 Loading z to M2 completed t10 Re: end loading z to M2
p11 Conveying z to M3 t11 Cmd: start conveying z to M3
p12 Conveying z to M3 completed t12 Re: end conveying z to M3
p13 Loading y to M1 t13 Cmd: start loading y to M1
p14 Loading y to M1 completed t14 Re: end loading y to M1
p15 Conveying y to M3 t15 Cmd: start conveying y to M3
p16 Conveying y to M3 completed t16 Re: end conveying y to M3
p17 Processing x-y in M3 t17 Cmd: start processing x-y
p18 Processing x-z in M3 t18 Re: end processing x-y
p19 Processing y-z in M3 t19 Cmd: start processing x-z

t20 Re: end processing x-z
t21 Cmd: start processing y-z
t22 Re: end processing y-z

In the specification model, Spec-1 and Spec-3 are built by using the mutual exclusion

concept, while Spec-2 is modeled as the precondition of the associated tasks. The

composed PN model of both the recipe and specifications is shown in Fig. 5.4. The

supervisory arcs are shown with dashed lines and the places showing the supervisory

positions are drawn thicker than those showing the task positions. The supervisory places

ps1-4 (ps1 for Spec-1, ps2 for Spec-2, ps3-4 for Spec-3) are used to prevent the remote

manager from issuing undesired commands leading to resource conflicts on the part of the

system. Corresponding notation for the supervisory places is described in Table 5.2.

At this stage, the software package ARP (Maziero, 1990) is used again to verify the

behavioral properties of the composed PN models. The validation result (without ps5)

shows that one deadlock occurs with the places p2, p10, p12, and ps3 marked only. The

 71

physical meaning of the deadlock state is that if both Machine 2 and Machine 3 are

occupied with z for Product x-z or y-z, while Machine 1 is loaded for the Product x-y,

then no product can be completed and the system is deadlocked. Hence, for Spec-4, the

ps5 is further designed and added to the PN model, as shown in Fig. 5.4. Validation

results (with ps5) reveal that the present PN model is live, bounded, and reversible. The

liveness property means that the system can be executed properly without deadlocks,

while boundedness indicates that the system can be executed with limited resources, and

reversibility implies that the initial system configuration is always reachable. In this

approach, the supervisor consists only of places and arcs, and its size is proportional to

the number of specifications that must be satisfied.

Controllable Event via Remote Manager

p1 p2t2t1 p3 p4t4t3

p5 p6t6t5 p7 p8t8t7

p9 p10t10t9

p11

p12t12t11

p13 p14t14t13 p15 p16t16t15

p17 t18t17

p18 t20t19

p19

t22t21

ps1

ps2

ps3

ps4

ps5

x-y

x

z

y

x-y

x-z

y-z

Controllable Event via Remote ManagerControllable Event via Remote Manager

p1 p2t2t1 p3 p4t4t3

p5 p6t6t5 p7 p8t8t7

p9 p10t10t9

p11

p12t12t11

p13 p14t14t13 p15 p16t16t15

p17 t18t17

p18 t20t19

p19

t22t21

ps1

ps2

ps3

ps4

ps5

p1 p2t2t1 p3 p4t4t3

p5 p6t6t5 p7 p8t8t7

p9 p10t10t9

p11

p12t12t11

p13 p14t14t13 p15 p16t16t15

p17 t18t17

p18 t20t19

p19

t22t21

ps1

ps2

ps3

ps4

ps5

x-y

x

z

y

x-y

x-z

y-z

Fig. 5.4. Composed PN model of the three-recipe FMS.

 72

Table 5.2. Notations for supervisory places of the PN in Fig. 5.4.

Place Description
ps1 Spec-1: M1 is available for x-y, x, or y.
ps2 Spec-2: M2 is available for z.
ps3 Spec-3: M3 is available for x-y, x, or y.
ps4 Spec-3: M3 is available for x-y, or z.
ps5

(2-bound)
Spec-4: One token means x-y is not in M1 and
z is not in M3. Another means x or y is in M3.

5.3.3 Design of the Local Controller
As mentioned in Section 5.2.4, the detailed operations of each task can also be

designed and constructed with PN models. Fig. 5.5 (a)-(c) shows the PN model of the

tasks Loading (from raw material supplier to M1 or M2 with processing), Conveying

(from M1 or M2 to M3), and Processing (processed by M3 and unloaded), respectively.

M3: on

finished finished

Processing: t17-t18, t19-t20, t21-t22

M3: off Convey_3: offConvey_3: on

Command:
start processing

Response:
end processingstart upload

Place: Actuator
Transition: SensorConveyer_Y1: on

x in M1
finished

Loading: t1-t2

Conveyer_Y1: off

M1: offM1: on

Command:
start loading x-y

Response:
end loading x-ystart work

Conveyer_X1: on

y in M1

Conveyer_X1: off

Conveyer: on

in M3

Conveying: t3-t4, t7-t8,
t11-12, t15-t16

Conveyer: off

Command:
start conveying

Response:
end conveying

Conveyer _13 for t1, t7, t15.
Conveyer_23 for t11.

Conveyer: on

in M1 or M2 finished

Loading: t5-t6, t9-t10,
t13-t14

Conveyer: off M1 or M2: offM1 or M2: on

Command:
start loading

Response:
end loadingstart work

M1 for t5, t13.
M2 for t9.

Conveyer_X1 for t5.
Conveyer_Y1 for t13.
Conveyer_Z2 for t9.

(b)

(c)(a)

M3: on

finished finished

Processing: t17-t18, t19-t20, t21-t22

M3: off Convey_3: offConvey_3: on

Command:
start processing

Response:
end processingstart upload

Place: Actuator
Transition: SensorConveyer_Y1: on

x in M1
finished

Loading: t1-t2

Conveyer_Y1: off

M1: offM1: on

Command:
start loading x-y

Response:
end loading x-ystart work

Conveyer_X1: on

y in M1

Conveyer_X1: off

Conveyer: on

in M3

Conveying: t3-t4, t7-t8,
t11-12, t15-t16

Conveyer: off

Command:
start conveying

Response:
end conveying

Conveyer _13 for t1, t7, t15.
Conveyer_23 for t11.

Conveyer: on

in M1 or M2 finished

Loading: t5-t6, t9-t10,
t13-t14

Conveyer: off M1 or M2: offM1 or M2: on

Command:
start loading

Response:
end loadingstart work

M1 for t5, t13.
M2 for t9.

Conveyer_X1 for t5.
Conveyer_Y1 for t13.
Conveyer_Z2 for t9.

M1 for t5, t13.
M2 for t9.

Conveyer_X1 for t5.
Conveyer_Y1 for t13.
Conveyer_Z2 for t9.

(b)

(c)(a)

Fig. 5.5. PN models of (a) loading, (b) conveying, and (c) processing tasks for FMS.

5.3.4 Implementation of Remote Hierarchical Supervision
The system modeling and design developed in previous stages provide supervisory

and control models for implementation of the present remote hierarchical supervision.

 73

The developed local controller and supervisory agent are implemented on the Mirle

SoftPLC. Fig. 5.6 shows the developed HMI. By pushing the enabled buttons, the remote

manager can issue commands to start tasks operated by the local controller. It also shows

that Machine 1 is available, and both Machine 2 and 3 are occupied with material z (the

pre-state of the mentioned deadlock in Section 5.3.2). In this situation, buttons Load X to

M1 or Load Y to M1 are enabled to meet Spec-1, while the Load X-Y to M1 button is

disabled by the supervisory agent to satisfy Spec-4, and the other buttons are disabled to

meet Spec-2, Spec-3 and recipe specifications. The remote manager can only push the

buttons Load X to M1 or Load Y to M1 to generate Product x-z or y-z, respectively.

Thus, the desired requirements of the three-recipe FMS are guaranteed as the commands

issued by the remote human manager are conducted.

Fig. 5.6. Interactive Web page for remote supervision of the FMS by a Java applet (only

three buttons are admissible).

 74

5.4. Discussions
In the proposed hierarchical framework, the supervisor turns out to be more compact

and simple, since it deals only with the command-level tasks, i.e. groups of operations.

This greatly simplifies analysis and validation of the supervisor. The implementation of

several elementary operations can be grouped into a single task performed by the local

controllers. Separation of detailed control and supervision enables us to increase the

conciseness of our design problem and makes the complexity manageable. By

comparison, as shown in Table 5.3, using a conventional nonhierarchical approach to the

present three-recipe FMS, verification of the supervisor has to resolve all deadlock

situations by searching the whole reachability graph, with the detailed control-level

operations in a 2228-state space. However, by applying the proposed hierarchical

framework, the supervisor design has a more compact model with a 248-state space.

Moreover, to produce thirty products (ten x-y, x-z, y-z each), 560 request/response

transmissions over the Internet are consumed in the nonhierarchical approach, while only

260 ones are required using the proposed hierarchical scheme.

Table 5.3. Comparison between the nonhierarchical and hierarchical schemes.

Index
Conventional

nonhierarchical
scheme

Proposed
hierarchical

scheme
Places 50 23

Transitions 48 22
State space 2228 248
Req/Resp

transmissions for 30
products (10 each)

560 260

 75

5.5. Summary
This chapter has presented a unified Petri-net framework to design and implement a

three-level hierarchical supervisory system for remote-controlled processes over the

Internet. The supervisor in the upper level is systematically synthesized, using PNs, to

enforce the command-level specifications of resource constraints and liveness for the

processes, and then is implemented with Java technology. The local controller in the

lower level is also designed with PNs to meet the control-level specifications and is

implemented by the LLD. An application to a three-recipe FMS with an industrial PLC

controlled over the Internet is provided to illustrate the proposed approach. According to

the feedback status of the remotely located system, the designed Java-based supervisory

agent guarantees that all requested commands from the remote manager satisfy the

requirements for multiple recipes, resource sharing, and deadlock avoidance, while the

developed local controller performs the corresponding operations to meet the requested

tasks.

Moreover, results show that the supervisor synthesis of the presented hierarchical

scheme is less complex than the conventional nonhierarchical one, and fewer packet

transmissions are consumed so that the effects of time delays and packet loss across the

Internet can be moderated.

 76

Chapter 6

SNMP-Based Management System

For large-scale and distributed systems, a management system is crucial to manage

diverse network elements and handle their messages for remote supervision. One

approach is to use the simple network management protocol (SNMP). However, in real

industrial applications, many basic and major components such as sensors, actuators, and

PLC still do not support SNMP function for remote applications. Therefore, this chapter

presents a systematic design to embed SNMP agents into PLC for those devices so as to

achieve remote monitoring and control through such a standard network protocol. Then,

the standard unified modeling language (UML) is adopted for modeling the system, and

the PN model is applied to analyze the dynamic behavior of the system. The developed

system has been used successfully in a mobile switching center (MSC) of Taiwan

Cellular Corporation for the remote supervision, through the Internet, to monitor and

control its environmental conditions including the temperature, humidity, power, and

security, with a total of 316 sensors and 140 actuators.

6.1. Integration of UML and PN
The UML is a language for specifying, constructing, visualizing, and documenting

the elements of a software-intensive system (Booch et al., 1999). It defines the notation

and semantics to describe systems using object-oriented and meta-modeling concepts in

the spirit of the multi-paradigm modeling (Mosterman et al., 2004). Each model in the

UML describes one aspect of a system, and the combination of the various models

adequately describes the entire system. However, although UML is convenient for

modeling a complex system, UML is not equipped with the necessary techniques for

analyzing a system’s qualitative and quantitative properties (Jeng and Lu, 2002). One of

the major problems in using UML for the formal specification of systems is that the

 77

semantics of UML are imprecise and vague. Particularly, the UML has no execution

semantics and the current behavioral specifications in UML are primitive. UML also

lacks tools and analysis support for behavioral models (Bernardi et al., 2002; Bordbar et

al., 2000).

On the other hand, the PN is a graphical-mathematical tool used to model and analyze

various systems, especially for systems with parallel and concurrent activities. PN

provides qualitative analysis for system properties such as reachability, liveness,

boundedness, and conservativeness. Moreover, by introducing time functions into the PN

to form a timed PN, quantitative analysis can then be performed. PN complements the

UML in a number of ways. First, it provides a powerful and rich visual formalization for

specifying behavior in general, and concurrent behavior in particular. Second, it provides

an executable notation, something that UML currently lacks. Statechart is the model that

most closely resembles PN in the UML. However, Statechart describes state machines

that are, in general, finite state systems whereas PN can be extended to present infinite

state systems. Furthermore, PN has, in contrast to UML Statechart, dynamic

representation (i.e. the token flow mechanism) and powerful analytical methods. This is

why, in this chapter, the PN is adopted to obtain a dynamic and analyzable model for

large-scale and long-distance distributed systems. With this approach, both qualitative

and quantitative analyses can be applied to achieve reliable remote monitoring and

control.

6.1.1 Design Procedures
A remote monitoring system consists of the agent and manager sides. The present

approach develops SNMP agents based on the UML modeling with PN analysis. As

shown in Fig. 6.1, the use-case diagram and sequence diagram in UML are used to

capture the SNMP requirements corresponding to the monitoring and control

specifications at the stage of functional and interactive analyses. Then, at the stage of

static structural modeling, the class diagram is applied to describe the static relationships

of the system. Subsequently, the PN model is constructed according to the above models

such that both qualitative and quantitative analyses of the system’s dynamic behavior can

be performed. Finally, at the architectural design stage, the deployment diagram is

 78

modeled to capture the physical relationships among software and hardware components,

and the obtained models are implemented using Java and ladder diagrams on the

industrial PLC. The design procedure in Fig. 6.1 is a type of ‘round-trip’ engineering, in

which all models may be developed in an iterative and incremental way through a

repeated cycle of analysis, design, implementation and testing. Therefore, the proposed

approach is quite flexible and it allows making some alterations, such as changing the

requirements or fixing a design flaw. A case study of an environmental monitoring

system for the mobile switching center is provided in this chapter to illustrate the

proposed approach.

6.2. Requirements of SNMP Agents
The SNMP is an application-level protocol that offers network management services

in the transmission-control protocol/internet protocol (TCP/IP) suite. It is based on a

client/server relationship in which the client issues requests to the server and the server

processes requests and responds to the client. The SNMP network management system

includes four key components: 1) management station, 2) management agent, 3)

management information base (MIB), and 4) management protocol. A management

station uses the management protocol to request management agents performing

management operations on MIB objects. Essentially, each MIB object is a data variable

that represents the manageable attribute. A management station can monitor and control

remote elements by retrieving or changing the value of MIB objects of the management

agent via the SNMP protocol. The management agent synchronously responds to requests

from the management station and may further asynchronously provide important but

unsolicited information (e.g. the alarm conditions) to the management station in the

monitoring and control center.

 79

Use-Case Diagram

Requirement

Sequence Diagram

Class Diagram

Petri-Net Model

Deployment Diagram

Qualitative & Quantitative
Analyses

Java &
Ladder Diagrams

Round-trip engineering

Test

Functional & Interactive
Analyses

Static Structural
Modeling

Dynamic Behavioral
Modeling & Analysis

Architectural Design

Implementation

Petri Net

UML

Modify

Use-Case Diagram

Requirement

Sequence Diagram

Class Diagram

Petri-Net Model

Deployment Diagram

Qualitative & Quantitative
Analyses

Java &
Ladder Diagrams

Round-trip engineering

Test

Functional & Interactive
Analyses

Static Structural
Modeling

Dynamic Behavioral
Modeling & Analysis

Architectural Design

Implementation

Petri Net

UML

Modify

Fig. 6.1. The systematic development procedure for SNMP agents.

In the management station as shown in Fig. 6.2, three basic types of SNMP messages

are issued on behalf of a management application:

z GetRequest

z GetNextRequest

z SetRequest

where the first two are variations of the get function. All three messages are transmitted

with protocol data units (PDU) and acknowledged by the agent in the form of

GetResponse message passed to the management application. In addition, an agent may

issue a trap message in response to an event that affects the MIB and the underlying

managed resources. Since SNMP relies on user datagram protocol (UDP) which is a

 80

connectionless protocol and has high transmission efficiency for small data packets,

SNMP is itself connectionless. No ongoing connections are maintained between a

management station and agents.

Managed Resources

SNMP Manager

Te
st

R
eq

ue
st

Tr
ap

A
ck

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
es

po
ns

e

Tr
ap

User Datagram Protocol (UDP)

Internet Protocol (IP)

Network-dependent Protocols

new addition

SNMP Agent

SNMP Managed Objects

Te
st

R
eq

ue
st

Tr
ap

A
ck

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
es

po
ns

e

Tr
ap

User Datagram Protocol (UDP)

Internet Protocol (IP)

Network-dependent Protocols

SNMP
Messages

Application
manages objects

network or
Internet

SNMP Management Station SNMP Management Agent

Management Application

Default Port:
Request: 161
Trap: 162

Managed Resources

SNMP Manager

Te
st

R
eq

ue
st

Tr
ap

A
ck

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
es

po
ns

e

Tr
ap

User Datagram Protocol (UDP)

Internet Protocol (IP)

Network-dependent Protocols

new additionnew addition

SNMP Agent

SNMP Managed Objects

Te
st

R
eq

ue
st

Tr
ap

A
ck

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

S
et

R
eq

ue
st

G
et

R
es

po
ns

e

Tr
ap

User Datagram Protocol (UDP)

Internet Protocol (IP)

Network-dependent Protocols

SNMP
Messages

Application
manages objects

network or
Internet

network or
Internet

SNMP Management Station SNMP Management Agent

Management Application

Default Port:
Request: 161
Trap: 162

Fig. 6.2. The simple network management protocol (an extension of Stallings, 1993).

Moreover, in the standard SNMP, since traps from the agent are not acknowledged by

the manager, there must be a mechanism to ensure that conditions in devices requiring

attention are not missed. Therefore, we further design and implement the following two

messages based on SetRequest to respond to traps:

z TestRequest

z TrapAck

When an alarm condition occurs, the designed SNMP agent will send the corresponding

trap message to the manager periodically. The TestRequest message is used to check the

alarm conditions in order to avoid false alarms, while the TrapAck message is used to

confirm alarms. When an alarm is reported to the manager, the manager may use

TestRequest to reset the alarm. If the physical input for such an alarm is still high, the

same alarm trap message will be sent again. On the other hand, after an alarm trap is sent,

 81

the manager may use the TrapAck message to confirm the alarm and the SNMP agent

will then be disabled to send the same trap message periodically.

Two major advantages are obtained due to the utilization of SNMP for remote

monitoring and control as follows.

1) De-localization of the monitoring stations: the management stations can be

arbitrarily located anywhere through the Internet. Also, integration of a large

number of monitoring devices in a given station becomes possible.

2) Ease of Access: the remote manager can access the local industrial devices easily

via the standard SNMP protocol.

6.3. UML-Based Modeling for SNMP Agents
In the proposed approach, UML modeling and PN analysis are used to develop

SNMP agents for remote monitoring and control. Then, the Java language and ladder

diagrams are adopted to implement the system on an industrial PLC practically.

6.3.1 Functional Analysis with the Use-Case Diagram
A use-case diagram is used to capture the basic functional requirements of the system.

As shown in Fig. 6.3, it consists of three actors and nine use cases. The actors, drawn as

stick figures, represent users and other external systems that interact with the described

system. The use cases, drawn as ellipses, represent the scenarios of the system. A scenario

is a sequence of steps describing interaction between a user and a system. Basically, an

SNMP Manager can perform the following five use cases:

z GetRequest

z GetNextRequest

z SetRequest

z TestRequest

z TrapAck

where GetNextRequest is an extension of GetRequest; TestRequest and TrapAck are

specialized from SetRequest. Any one of the above five requests will cause the SNMP

 82

Agent to carry out HandleRequest, including GetResponse, to result in a response to the

request. On the other hand, as soon as Managed Device lies in the AlarmCondition, the

SNMP Agent will perform SendTrap to report the alarms. Then, the SNMP Manager can

carry out TestRequest to check the alarm conditions in order to avoid false alarms, and

may perform TrapAck to confirm the alarm and then take the necessary control actions.

GetNextRequest

«extend»

GetRequest

SetRequest

HandleRequest

TestRequest

TrapAck

«generalize»

«use»

GetResponse

SendTrap

«confirm»

«include»

SNMP-Based Remote Monitoring System

SNMP
Manager

SNMP
Agent

«check»

Managed
Device

AlarmCondition

«use»

Actor

Use case

GetNextRequest

«extend»

GetRequest

SetRequest

HandleRequest

TestRequest

TrapAck

«generalize»

«use»

GetResponse

SendTrap

«confirm»

«include»

SNMP-Based Remote Monitoring System

SNMP
Manager

SNMP
Agent

«check»

Managed
Device

AlarmCondition

«use»

Actor

Use case

Fig. 6.3. Functional analysis with the use-case diagram.

 83

(a)

(b)

Request
Listener

request(pdu)

SNMP
Manager

«thread»

Request
Handler

Device
Handler

Managed
Device

SNMP
Agent

invoke()

return
create

get/set()

return(data)

get/setData()

return
response(pdu)

Time

Object self-destruction

Object

lifeline

Request
Listener

request(pdu)

SNMP
Manager
SNMP

Manager

«thread»

Request
Handler

Device
Handler

Managed
Device

Managed
Device

SNMP
Agent
SNMP
Agent

invoke()

return
create

get/set()

return(data)

get/setData()

return
response(pdu)

TimeTime

Object self-destruction

Object

lifeline

Condition
Checker

*getData()

SNMP
Manager

Trap
Listener

Managed
Device

SNMP
Agent

invoke()

get()

return

request(pdu)

Device
Handler

return(data)

check()

[Normal] return

«thread»

Trap
Handler

create

*sendTrap(pdu)

return

Iteration

Self-call

Asynchronous
message

[Alarm] requestTrap()

Condition
Checker

*getData()

SNMP
Manager
SNMP

Manager

Trap
Listener

Managed
Device

Managed
Device

SNMP
Agent
SNMP
Agent

invoke()

get()

return

request(pdu)

Device
Handler

return(data)

check()

[Normal] return

«thread»

Trap
Handler

create

*sendTrap(pdu)

return

Iteration

Self-call

Asynchronous
message

[Alarm] requestTrap()

(a)

(b)

Request
Listener

request(pdu)

SNMP
Manager

«thread»

Request
Handler

Device
Handler

Managed
Device

SNMP
Agent

invoke()

return
create

get/set()

return(data)

get/setData()

return
response(pdu)

Time

Object self-destruction

Object

lifeline

Request
Listener

request(pdu)

SNMP
Manager
SNMP

Manager

«thread»

Request
Handler

Device
Handler

Managed
Device

Managed
Device

SNMP
Agent
SNMP
Agent

invoke()

return
create

get/set()

return(data)

get/setData()

return
response(pdu)

TimeTime

Object self-destruction

Object

lifeline

Condition
Checker

*getData()

SNMP
Manager

Trap
Listener

Managed
Device

SNMP
Agent

invoke()

get()

return

request(pdu)

Device
Handler

return(data)

check()

[Normal] return

«thread»

Trap
Handler

create

*sendTrap(pdu)

return

Iteration

Self-call

Asynchronous
message

[Alarm] requestTrap()

Condition
Checker

*getData()

SNMP
Manager
SNMP

Manager

Trap
Listener

Managed
Device

Managed
Device

SNMP
Agent
SNMP
Agent

invoke()

get()

return

request(pdu)

Device
Handler

return(data)

check()

[Normal] return

«thread»

Trap
Handler

create

*sendTrap(pdu)

return

Iteration

Self-call

Asynchronous
message

[Alarm] requestTrap()

Fig. 6.4. Interaction analysis with the sequence diagrams for (a) the Request scenario and

(b) the Trap scenario.

 84

6.3.2 Interactive Analysis with the Sequence Diagram
A sequence diagram shown in Fig. 6.4 is used to model the object interaction in a

system. Whereas the use-case diagram enables modeling of scenarios, the sequence

diagram indicates details of the scenario including the objects and classes used to

implement the scenario and messages passed between objects. Within a sequence diagram,

an object is shown as a box at the top of a vertical dashed line, called the object’s lifeline,

representing the life of the object during the interaction. Messages are represented by

horizontal arrows and are drawn chronologically from the top of the diagram to the

bottom.

Fig. 6.4 (a) shows the sequence diagram for the Request scenario, which includes the

five types of requests (GetRequest, GetNextRequest, SetRequest, TestRequest, and TrapAck)

described in the use-case diagram in Fig. 6.3. At the first stage, the SNMP Manager may

send a request to the SNMP Agent. Then, the SNMP Agent will invoke the Request

Listener to create a threaded object, Request Handler, to carry out the request. The

Request Handler then performs the specified actions on the Managed Device through the

Device Handler, and then sends a response to the SNMP Manager. After finishing the

request, the threaded object Request Handler will delete itself so as to release resources

for the system.

For the Trap scenario as shown in Fig. 6.4 (b), the Condition Checker iteratively scans the

status of the Managed Device through the Device Handler and checks its condition (the asterisk

indicates the iteration in UML). If the condition is undesirable or faulty, Condition Checker will

send a requestTrap message to the SNMP Agent. Then, SNMP Agent will invoke the Trap

Listener to create a Trap Handler, a threaded object which carries out the request. The Trap

Handler sends the trap to SNMP Manager asynchronously (the half-arrowhead symbol indicates

an asynchronous message in UML), and then deletes itself to release the resources for proceeding

use. When SNMP Manager receives the trap message, it will send a request of TestRequest to

check the alarm condition, or perform TrapAck to confirm the alarm.

 85

6.4. Example: A Mobile Switching Center
In wireless cellular communication systems, the service area is generally covered by

many cells with base stations, and the clusters of cells are connected to mobile switching

centers (MSCs). Each MSC receives encoded speech and data packets transmitted from

the traffic channels in the base stations and provides call control, processing, and access

to the public switched telephone network (Vucetic and Kline, 1998). Since the remote

MSC plays an important role in mobile communications, the environmental conditions,

emergency management, and safety of such large-scale and long-distance distributed

systems are essential considerations. In the present design, an SNMP-based remote

monitoring and control system, as shown in Fig. 6.5, is developed to provide real-time

data on device status and environmental conditions in the MSC. Also, the embedded

SNMP agents detect abnormal conditions in the MSC and report alarms to three

de-localized management stations. Furthermore, necessary control actions may be taken

through the Internet.

We choose a building complex as our target system. In this system, 24 temperature

sensors, 24 humidity sensors, 4 power sensors, 4 current sensors, 4 voltage sensors, and

256 binary sensors for security (e.g. burglar alarms) are connected to two PLCs in the

MSC to be monitored. Twelve alarm conditions are considered in the present monitoring

system:

z Fire alarm

z Wateriness alarm

z Burglar alarm

z Temperature alarm

z Humidity alarm

z Electric voltage alarm

z Electric current alarm

z Power equipment alarm

z Power supplier alarm

z Dynamo alarm

z Uninterruptible power supply (UPS) alarm

 86

z Air conditioner alarm

Moreover, six control actions can be operated remotely if specific alarm signals are

issued:

z Emergency door control (open/close)

z Dynamo control (power on/off)

z UPS control (power on/off)

z Air conditioner control (off/wind/low/middle/high)

z Setting limitations of temperature and humidity

z Enable/disable alarms

Under normal operation, air conditioners are locally controlled to achieve desirable

temperature and humidity within the specified ranges. As faults occur and are detected,

corresponding control actions are taken by a total of 140 actuators. The actions that can

be performed in the present remote monitoring and control system include 1) open

emergency door, 2) adjust air conditioner, 3) power on dynamos, and 4) power on UPSs.

Moreover, the hardware specifications provide three management stations and two PLC

controllers for safety in case of crashes among local agents and remote managers.

Management
Station #1

Ethernet

….

SNMP
Agent #1

Sensor/Actuator

Management
Station #2

Management
Station #3

….

SNMP
Agent #2

In Mobile Switching Center

PLC

Management
Station #1

Ethernet

….….

SNMP
Agent #1

Sensor/Actuator

Management
Station #2

Management
Station #2

Management
Station #3

Management
Station #3

….….

SNMP
Agent #2

In Mobile Switching Center

PLC

Fig. 6.5. The SNMP-based remote monitoring and control system.

 87

6.4.1 Static Structural Modeling
The class diagram shown in Fig. 6.6 provides the main static structural models of the

system. It is developed using information collected in the use-case diagram and sequence

diagram discussed in Section III. A class diagram describes the types of objects in the

system and the various kinds of static relationships that exist among them. It also shows

the attributes and operations of a class and the constraints on how objects are connected.

Fig. 6.6 is a class diagram of the SNMP-based monitoring and control system. It

represents the static structure and object relations of SNMP agents for remote monitoring

and control of the MSC. The SnmpManager class has five operations corresponding to

the five types of requests as depicted in the use-case diagram. The SnmpAgent class has

the composition relation (represented as a black diamond) with three classes:

RequestListener, TrapListener, and ConditionChecker. The composition relation

indicates that the composite is explicitly responsible for the creation and destruction of

the contained objects. RequestListener can create a RequestHandler, which has five

operations for the five types of requests, in order to process the request and respond to the

SnmpManager. TrapListener may create a TrapHandler, which gets the IP addresses of

trap managers, sets the hosts, ports of trap managers, and sends the Trap to report alarms

to trap managers. The ConditionChecker uses the DeviceHandler to access the managed

devices through the DataTable which reflects the real I/O status of managed devices and

saves system variables, such as MIB mapping information and required limits (e.g.

limitations as to temperature and humidity).

After real-time status checking, ConditionChecker obtains either the Normal or Alarm

condition. As noted in Fig. 6.6, the Alarm object has twelve sub-objects, such as

FireAlarm, WaterinessAlarm, etc. As soon as an alarm condition occurs, SnmpAgent is

requested to create a TrapHandler to send a trap to the managers. The MgdDevice has a

generalized relation with the Sensor and Actuator. In the present case, the remote

controllable actuators are emergency doors, dynamos, UPSs, and air conditioners. In

addition, certain system variables such as limitations on temperature and humidity can be

set remotely, and all alarms can also be remotely enabled and disabled. The Sensor class

is ‘inherited’ by the BinarySensor and AnalogSensor, the latter of which includes

TemperatureSensor, HumiditySensor, etc. The class diagram can be developed and

 88

modified in an iterative fashion, through a repeated cycle of analysis, design and

implementation, and then returning to the first stage of the cycle, as shown previously in

Fig. 6.1.

MgdDevice

TrapListener

RequestListener

«thread»
RequestHandler

procGet()
procGetNext()
procSet()
procTest()
procTrapAck()

ConditionChecker

SnmpAgent

init()
run()
deinstall()

has

creates
1

1

*

*

ActuatorSensor

requests

1

Normal Alarm
*

DataTabledependent MIB

uses

maps

BinarySensor AnalogSensor

inherits

SnmpManager

GetRequest()
GetNextRequest()
SetRequest()
TestRequest()
TrapAck()

requests

responses

reports alarm to

*

1

1

1

1

1

creates

1

1

results in

{or}

DeviceHandler

accesses accesses

**

*

Remote Controllable Objects:
EmergencyDoor {0:close, 1:open, -1:error}
Dynamo {0:power off, 1:power on, -1:error}
Ups {0:power off, 1:power on, -1:error}
AirConditioner {0:off, 1:wind, 2:low, 3:middle, 4:high, -1:error}
Limitations of Temperature and Humidity can be set remotely.
All Alarm objects can be remotely enabled/disabled.

Alarm Sub-Objects:
FireAlarm
WaterinessAlarm
BurglarAlarm
TemperatureAlarm
HumidityAlarm
VoltageAlarm

CurrentAlarm
PowerEquipAlarm
PowerSupplierAlarm
DynamoAlarm
UpsAlarm
AirConditionAlarm

AnalogSensor Sub-Objects:
TemperatureSensor
HumiditySensor

VoltageSensor
CurrentSensor
PowerSensor

uses

«thread»
TrapHandler

GetTrapMgr()
setMgrHost()
setMgrPort()
sendTrap()

MgdDevice

TrapListener

RequestListener

«thread»
RequestHandler

procGet()
procGetNext()
procSet()
procTest()
procTrapAck()

«thread»
RequestHandler

procGet()
procGetNext()
procSet()
procTest()
procTrapAck()

ConditionChecker

SnmpAgent

init()
run()
deinstall()

SnmpAgent

init()
run()
deinstall()

has has

createscreates
1

1

*

*

ActuatorSensor

requestsrequests

1

Normal Alarm
*

DataTabledependent MIB

usesuses

mapsmaps

BinarySensor AnalogSensor

inheritsinherits

SnmpManager

GetRequest()
GetNextRequest()
SetRequest()
TestRequest()
TrapAck()

SnmpManager

GetRequest()
GetNextRequest()
SetRequest()
TestRequest()
TrapAck()

requestsrequests

responsesresponses

reports alarm toreports alarm to

*

1

1

1

1

1

createscreates

1

1

results in results in

{or}

DeviceHandler

accessesaccesses accessesaccesses

**

*

Remote Controllable Objects:
EmergencyDoor {0:close, 1:open, -1:error}
Dynamo {0:power off, 1:power on, -1:error}
Ups {0:power off, 1:power on, -1:error}
AirConditioner {0:off, 1:wind, 2:low, 3:middle, 4:high, -1:error}
Limitations of Temperature and Humidity can be set remotely.
All Alarm objects can be remotely enabled/disabled.

Remote Controllable Objects:
EmergencyDoor {0:close, 1:open, -1:error}
Dynamo {0:power off, 1:power on, -1:error}
Ups {0:power off, 1:power on, -1:error}
AirConditioner {0:off, 1:wind, 2:low, 3:middle, 4:high, -1:error}
Limitations of Temperature and Humidity can be set remotely.
All Alarm objects can be remotely enabled/disabled.

Remote Controllable Objects:
EmergencyDoor {0:close, 1:open, -1:error}
Dynamo {0:power off, 1:power on, -1:error}
Ups {0:power off, 1:power on, -1:error}
AirConditioner {0:off, 1:wind, 2:low, 3:middle, 4:high, -1:error}
Limitations of Temperature and Humidity can be set remotely.
All Alarm objects can be remotely enabled/disabled.

Alarm Sub-Objects:
FireAlarm
WaterinessAlarm
BurglarAlarm
TemperatureAlarm
HumidityAlarm
VoltageAlarm

CurrentAlarm
PowerEquipAlarm
PowerSupplierAlarm
DynamoAlarm
UpsAlarm
AirConditionAlarm

Alarm Sub-Objects:
FireAlarm
WaterinessAlarm
BurglarAlarm
TemperatureAlarm
HumidityAlarm
VoltageAlarm

CurrentAlarm
PowerEquipAlarm
PowerSupplierAlarm
DynamoAlarm
UpsAlarm
AirConditionAlarm

AnalogSensor Sub-Objects:
TemperatureSensor
HumiditySensor

VoltageSensor
CurrentSensor
PowerSensor

AnalogSensor Sub-Objects:
TemperatureSensor
HumiditySensor

VoltageSensor
CurrentSensor
PowerSensor

AnalogSensor Sub-Objects:
TemperatureSensor
HumiditySensor

VoltageSensor
CurrentSensor
PowerSensor

usesuses

«thread»
TrapHandler

GetTrapMgr()
setMgrHost()
setMgrPort()
sendTrap()

«thread»
TrapHandler

GetTrapMgr()
setMgrHost()
setMgrPort()
sendTrap()

Fig. 6.6. The class diagram of the SNMP-based monitoring and control system.

 89

6.5. PN Modeling and Analysis
In order to obtain a verifiable dynamic model for real applications, we use the PN

model replacing the Statechart in UML. This allows us to perform both qualitative and

quantitative analyses on the developed remote monitoring and control system.

6.5.1 Dynamic Behavioral Modeling
Based on the sequence diagram and class diagram constructed using UML,

information can be extracted to build a PN model. The simplified PN of the remote

monitoring and control system for the mobile switching center is shown in Fig. 6.7. It

consists of 30 places and 28 transitions. Corresponding notations are described in Table

6.1. For example, the dynamic behavior of the RequestHandler in Fig. 6.4 (a) and Fig. 6.6

is modeled as p9-p15 and t6-t13 in Fig. 6.7. The software package ARP (Maziero, 1990)

is adopted again to verify the qualitative and quantitative properties of the PN model.

6.5.2 PN Analysis
In our qualitative analysis, validation results via the PN modeling show the present

design to be live and bounded. The liveness property means that the system can be

executed properly without deadlocks, while the boundedness property means that the

system can be executed with limited facilities (e.g., limited request buffer size). For

quantitative analysis, appropriate parameters such as the time period and the probability

of an alarm occurring are assigned for the timed PN modeling. Simulation results show

that t1, t12, t13, and t25, drawn with dark symbols in Fig. 6.7, are critical timed

transitions of the system. These critical time delays are dependent on the transmission

rate between the manager and agent. For example, if the data rate on the line is 512K bps,

i.e. 64K characters per second, then the delay is 1/64K second per character. Since the

SNMP rides over UDP/IP, of which the maximum packet size is 64K, the delay will be 1

second if there is no significant network congestion. On the other hand, the delay time of

t20 can be chosen to avoid sending a great number of traps to managers in a short time

 90

interval for the same alarm condition. In our case, we choose a delay of 30 seconds for

t20. That means that if an alarm is reported to the manager but the agent does not receive

an acknowledgement within 30 seconds from the manager (i.e. TestRequest or TrapAck),

the designed agent will send the trap again for this alarm condition.

In addition to finding the critical timed transitions, the PN model can also be used to

decide time periods, such as t14 (time period in which to scan the real I/O status) and t16

(time period in which to check the data in DataTable), by performing sensitivity analysis

based on the p-invariant or static cycle methods (Zuberek, 2001; Srinivasan, 1998).

 91

p2
8

t2
6

t2
7

t2
8

p2

p1

SN
M

P
M

an
ag

er

SN
M

P
A

ge
nt

p4

p3

p2
9

R
eq

ue
st

 M
an

ag
em

en
t

A
la

rm
 M

an
ag

em
en

t

p9

t9
p1

3

p1
1

p1
6

p1
7p1

4

p1
5

t7
t1

0

p1
8

p1
9

t1
9

t2
0

p6

p2
1

p2
4

t2
3

p2
2

p2
3

p2
7

p2
6

t1
8

p2
0

t1
7

R
eq

ue
st

 L
is

te
ne

r
R

eq
ue

st
 H

an
dl

er

C
on

di
tio

n
C

he
ck

er
Tr

ap
 H

an
dl

er
Tr

ap
 L

is
te

ne
r

D
ev

ic
e

H
an

dl
er

p5

t4

t1
t2 t3

p7
t5

p8

t6

t8

p1
0

p1
2

t1
1

t1
2

t1
3

t1
5

t1
4

t1
6

p2
5

t2
1

t2
2

t2
4

t2
5

p3
0

p2
8

t2
6

t2
7

t2
8

p2

p1

SN
M

P
M

an
ag

er

SN
M

P
A

ge
nt

p4

p3

p2
9

R
eq

ue
st

 M
an

ag
em

en
t

A
la

rm
 M

an
ag

em
en

t

p9

t9
p1

3

p1
1

p1
6

p1
7p1

4

p1
5

t7
t1

0

p1
8

p1
9

t1
9

t2
0

p6

p2
1

p2
4

t2
3

p2
2

p2
3

p2
7

p2
6

t1
8

p2
0

t1
7

R
eq

ue
st

 L
is

te
ne

r
R

eq
ue

st
 H

an
dl

er

C
on

di
tio

n
C

he
ck

er
Tr

ap
 H

an
dl

er
Tr

ap
 L

is
te

ne
r

D
ev

ic
e

H
an

dl
er

p5

t4

t1
t2 t3

p7
t5

p8

t6

t8

p1
0

p1
2

t1
1

t1
2

t1
3

t1
5

t1
4

t1
6

p2
5

t2
1

t2
2

t2
4

t2
5

p3
0

Fi
g.

 6
.7

. T
he

 P
N

s o
f t

he
 S

N
M

P-
ba

se
d

m
on

ito
rin

g
an

d
co

nt
ro

l s
ys

te
m

.

 92

Table 6.1. Notations of the PN for the SNMP-based management system in Fig. 6.7.

Place Description Transition Description
p1 New request t1 Send request
p2 MIB browser ready t2 Report result
p3 Waiting for response t3 Report error
p4 Receiving result message t4 Invoke request listener
p5 Receiving error message t5 Finish request handler creation
p6 Request buffer t6 Decode request PDU
p7 Creating request handler t7 Error occurs
p8 Request listener available t8 Finish decoding
p9 Request handler ready t9 Start processing request

p10 Decoding request PDU t10 Error occurs
p11 MIB of objects available t11 End processing request
p12 Decoded commands and variables t12 Send error message
p13 Processing request t13 Send result message
p14 Collecting error message t14 Access devices
p15 Collecting result message t15 End handling devices
p16 Device handler available t16 Start checking states
p17 Handling devices (get/set status) t17 Normal level-condition

p18 Condition checker ready t18 Abnormal level-condition
(Trigger/Hold timer to generate impulse)

p19 Processing level-check t19 Normal impulse-condition
p20 Processing impulse-check t20 Abnormal impulse-condition
p21 Trap buffer t21 Invoke trap listener
p22 Creating trap handler t22 Finish trap handler creation
p23 Trap listener available t23 Encode alarm to trap PDU
p24 Trap handler ready t24 Finish encoding
p25 Encoding trap PDU t25 Send trap to managers
p26 MIB of traps available t26 Process trap
p27 Trap PDU ready t27 Answer TestRequest (check alarm)
p28 Receiving trap message t28 Answer TrapAck (confirm alarm)
p29 Trap browser ready
p30 Deciding response for trap

 93

6.6. Architecture Design and Implementation
A deployment diagram is used to model the physical relationships among software

and hardware components in the deployed remote monitoring and control system, as

shown in Fig. 6.8. It includes a set of nodes (drawn as cubes) to represent the

computational units and relationships among three main machines: (1) the management

station, (2) management agent, and (3) managed devices. The management station uses

the SNMP Manager to communicate with the SNMP Agent through an Ethernet

connection, while the management agent uses the Device Handler to communicate with

the managed devices such as sensors and actuators through PLC I/O connections or the

industrial network Modbus.

The system modeling and analysis developed in previous stages provide standard

models for implementation of the present remote monitoring and control technology.

Although UML modeling is not restricted to any particular language in implementation,

Java is preferred due to its object-orientation, portability, safety, and built-in support for

networking and concurrency. In the implementation of the present design, we need to

translate information from multiple UML and PN models into the code and database

structure. This translation is not straightforward. However, there is a close

correspondence between Java and UML, and a standard mapping is described in

(Greenfield, 2001). Also, a mapping between PN and Java is described in (Conway et al.,

2002). Moreover, since Java cannot directly control the I/O devices, the ladder diagram

implemented on the PLC is applied to make the SNMP agent access the low-level sensors

and actuators. The developed SNMP agent is implemented on the Mirle SoftPLC. Fig.

6.9 shows the hardware setup during prototype development.

The developed SNMP-based remote monitoring and control system in this chapter is

now operating at an MSC belonging to Taiwan Cellular Corporation. A total of 316

sensors and 140 actuators are handled by two PLCs with 189 rungs in each ladder

diagram. Under normal operation, the desirable temperature and humidity of the MSC are

locally controlled by air conditioners and only remote monitoring is needed. As any

faults occur in the MSC, the SNMP agents will immediately send alarm signals to the

three remote management stations, and proper control actions will then be taken to

 94

correct the faults. Thus, environmental conditions in the MSC are supervised by the local

SNMP agents and can be further monitored and controlled by the remote manager from

great distances through the Internet.

6.7. Discussions
This chapter integrates the PN into UML modeling to achieve design, modeling,

analysis, verification, and implementation of remote monitoring and control systems

within a systematic framework. The results of this study lead to the following discussion.

1) The models developed here for application to SNMP-based remote monitoring and

control of mobile switching centers are general models. Since the UML is based on the

object-oriented concept, reusable models can be grouped into a library to make the

design process more efficient when similar SNMP applications are encountered.

2) Basically, if SNMP traps are allowed to go unacknowledged, SNMP agents cannot

guarantee that a critical message definitely reaches the management station. In this

chapter, TestRequest and TrapAck are further proposed to respond to the traps and thus,

the present SNMP agents ensure that conditions requiring attention in the monitored

systems or processes are not missed.

 95

SNMP
Manager

Management
Information
Base (MIB)

Data
Table

Device
Handler

Management Station (PC)

SNMP
Agent

Management
Information
Base (MIB)

Management Agent (PLC)

….

Managed
Devices

Sensor Actuator

«communication»

Ethernet

«communication»
PLC I/O connection
or Modbus

….

Component

Node

SNMP
Manager
SNMP

Manager

Management
Information
Base (MIB)

Management
Information
Base (MIB)

Data
Table
Data
Table

Device
Handler
Device
Handler

Management Station (PC)

SNMP
Agent
SNMP
Agent

Management
Information
Base (MIB)

Management
Information
Base (MIB)

Management Agent (PLC)

….

Managed
Devices

SensorSensorSensor ActuatorActuatorActuator

«communication»

Ethernet

«communication»
PLC I/O connection
or Modbus

….

Component

Node

Fig. 6.8. Architectural design with the deployment diagram.

 96

Fig. 6.9. The hardware setup during prototype development.

6.8. Summary
This chapter presents a systematical design and implementation of SNMP agents for

device management systems. In the UML-based design of the SNMP agents, the use-case

diagram and the sequence diagram are applied to describe the functionalities and

interactions, respectively. Then, a class diagram is used to describe static structures, and

the PN model is further applied to verify the dynamic behavior of the system. In addition,

the deployment diagram is used to model the distribution of physical components in the

system. Implementation is then accomplished using the Java language and ladder

diagrams on the PLC. For the management of large-scale and distributed systems, the

proposed multi-paradigm approach provides systematic design and implementation of

SNMP agents to achieve remote monitoring and control by integrating UML modeling

and PN analysis.

Chapter 7

CONCLUSION

7.1. Summary of Contributions

 For remotely monitored and controlled processes, a series of design and

implementation results of the sequence controller, the supervisor, and the device

management system are proposed in this thesis. In the current e-automation world, the

techniques developed in this thesis are useful for industrial applications. The

contributions of this thesis are summarized into five aspects:

1) Rule-based evaluation of the ladder logic diagram (LLD) and Petri net (PN)

 To verify the potential of PN in the sequence control applications, this

work presents a rule-based comparison to adequately evaluate the LLD and

PN. An example of five sequences with increasing complexity for a

stamping process is provided to illustrate the proposed approach. The

results indicate that the proposed evaluation approach is more reasonable

(Lee and Hsu, 2004a).

2) PN-based design for LLD implementation

 Since the LLDs are still widely used today in real industry projects,

this thesis proposes a PN-based design to the final LLD implementation for

sequence control. Starting from the basic sequential specification, the

proposed approach combines integration definition language 0 (IDEF0),

simplified Petri net controller (SPNC), and token passing logic (TPL), and

systematically leads to the LLD for PLC implementation. An application of

a stamping process is provided to illustrate the developed approach (Lee

and Hsu, accepted).

3) Supervisory control of human behaviors

 To prevent abnormal operations of humans, a remote supervisory

 97

scheme is proposed so that undesirable human operations are prohibited.

According to the feedback status of a remotely located system, the

developed supervisory agent provides allowable commands for operators

by disabling those operations that violate safety specifications. The

possibility of human errors can be thus either reduced or fully eliminated.

An example of rapid thermal processor in semiconductor manufacturing is

provided to illustrate the proposed approach (Lee and Hsu, 2003b).

4) Hierarchical supervision of manufacturing systems

 To reduce the complexity of supervisory system design, this thesis

proposes a hierarchical structure to synthesize subsystems for remote

monitored and controlled processes. A three-recipe flexible manufacturing

system is also provided to illustrate the developed hierarchical design. The

results show that the developed hierarchical design leads to a smaller

state-space size. Also, fewer request/response transmissions are consumed

resulting in less transmission faults (Lee and Hsu, 2003a).

5) Realization of simple network management protocol (SNMP)-based device

management system

 To manage diverse network elements, this thesis integrates the PN into

the unified modeling language (UML) to achieve modeling, design,

analysis, verification, and implementation of SNMP agents within a

systematic framework. The developed system has been successfully used

in a mobile switching center of Taiwan Cellular Corporation for the

remote supervision and management of its various environmental devices

(Lee and Hsu, 2004b).

7.2. Future Research
Through the study of applying the PN for remote supervision systems, there are

several directions in which this work can be extended in the future as follows:

 98

1) Time-based constraints

 The discussed supervisory control framework in this thesis is restricted

to purely logical system models (Giua and DiCesare, 1991; Moody and

Antsaklis, 1998) For applications with time-based constraints (e.g.

communication delays), it is necessary to extend the present model with

time-related specifications (Cofer and Garg, 1996; Caramihai et al., 1998).

2) Automatic model transformations

 This work provides the design approach by integrating

IDEF0/SPNC/TPL/LLD to systematically achieve the sequence controller.

Furthermore, the approach by applying the UML with PN is also employed

to develop an SNMP-based management system. However, the model

transformation between these two approaches is still achieved manually in

the present study. Design of computer programs could be the future

research to transform the models automatically (Mosterman et al., 2004).

3) Access security

 Security is a prime concern for network systems with remote access

and only basic user/password and IP-access policies are adopted in this

thesis. Several solutions have been proposed for SNMP to improve the

access-control policy, such as Secure-SNMP (S-SNMP) and SNMPv3

(Zeltserman, 1999). Improving the security of the present remote systems

by applying the new SNMP policies is considered in the future

implementation.

4) Multiple-user conditions

 The remote control scheme presented in this thesis is focused on the

condition of single-user access at a time. Future work should study the

conditions of multiple-user access.

5) Error recovery mechanisms

 For the remote supervision systems, the missing message and channel

 99

disconnection are unavoidable in Internet. Moreover, process errors or

device faults may also occur during the operations. Thus, error recovery

mechanisms for the present remote supervision systems can be further

investigated (Jeng, 1997; Zhou and Dicesare, 1989).

 100

REFERENCES

Aicklen, G. H., and Main, P. M. (1995), “Remote control of diverse network elements

using SNMP,” in Proc. IEEE Int. Conf. Military Communication, San Diego, CA, pp.

673-677.

ANSI/ISA (1995), S88.01: Batch Control Part 1: Models and Terminology. Instrument

Society of America.

Balemi, S., Hoffmann, G. J., Gyugyi, P., Wong-Toi, H., and Franklin, G. F. (1993),

“Supervisory control of a rapid thermal multiprocessor,” IEEE Trans. Automat.

Contr., vol. 38, no. 7, pp. 1040-1059.

Batur, C., Ma, Q., Larson, K., and Kettenbauer, N. (2000), “Remote tuning of a PID

position controller via Internet,” in Proc. Amer. Contr. Conf., pp. 4403-4406.

Bernardi, S., Donatelli, S., and Merseguer, J. (2002), “From UML sequence diagrams and

Statecharts to analyzable Petri net models,” in Proc. ACM Int. Workshop Soft.

Performan., Rome, Italy, pp. 35-45.

Bertolissi, E., and Preece, C. (1998), “Java in real-time applications,” IEEE Trans.

Nuclear Science, vol. 45, no. 4, pp 1965-1972.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999) The Unified Modeling Language User

Guide. Reading, MA: Addison-Wesley.

Bordbar, B., Giacomini, L., and Holding, D. J. (2000), “UML and Petri nets for design

and analysis of distributed systems,” in Proc. IEEE Int. Conf. Contr. Appli.,

Anchorage, AK, pp. 610-615.

Boucher, T. O., Jafari, M. A., and Meredith, G. A. (1990), “Petri net control of an

automated manufacturing cell,” Adv. Manuf. Engin., vol. 2, no. 3, pp. 151-157.

 101

Bradshaw, J. M. (1997), “Introduction to Software Agents,” Software Agents, Bradshaw,

J. M. Ed., Cambridge, MA: AAAI Press/MIT Press.

Campione, M., and Walrath, K. (1998), The Java Tutorial: Object-Oriented

Programming for the Internet. Second Ed., Reading, MA: Addison-Wesley. [Online].

Available: http://java.sun.com/docs/books/tutorial/

Caramihai, S. I., Dumitrache, I., and Stanescu, A. M. (1998), “Real-time supervision for

intelligent manufacturing supported by T-temporal Petri net models,” in Proc. IEEE

Int. Conf. Syst., Man, Cybern., San Diego, CA, pp. 582-587.

Cardoso, P. F., and Monteiro, J. L. (1998), “SNMP and industrial networks,” in Proc.

IEEE Int. Conf. Industrial Electronics, Aachen, Germany, pp. 242-246.

Charbonnier, F., Alla, H., and David, R. (1999), “The supervised control of discrete-

event dynamic systems,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 2, pp. 175-187.

Cofer, D. D., and Garg, V. K. (1996), “Supervisory control of real-time discrete-event

systems using lattice theory,” IEEE Trans. Automat. Contr., vol. 41, no. 2, pp. 199-

209.

Conway, C., Li, C. H., and Pengelly, M. (2002), Pencil: A Petri Net Specification

Language for Java. Mathematics Department, Macquarie University, Sydney.

[Online]. Available: http://www.cs.columbia.edu/~conway/plt/pencil/index.html

David, R., and Alla, H. (1994), “Petri nets for modeling of dynamics systems– A survey,”

Automatica, vol. 30, no. 2, pp. 175-202.

Fair, R. B. (1993), Rapid Thermal Processing: Science and Technology. New York:

Academic.

Fanti, M. P., Maione, B., and Turchiano, T. (2000), “Comparing diagraph and Petri net

approaches to deadlock avoidance in FMS modeling and performance analysis,”

 102

http://java.sun.com/docs/books/tutorial/
http://www.cs.columbia.edu/~conway/plt/pencil/index.html

IEEE Trans. Syst., Man, Cybern., Part B, vol. 30, no. 5, pp. 783-798, (Special issue

on discrete systems and control).

Feldmann, K., Colombo, A. W., Schnur, C., and Stockel, T. (1999a), “Specification,

design, and implementation of logic controllers based on colored Petri net models and

the standard IEC1131. I. Specification and design,” IEEE Trans. Contr. Syst. Tech.,

vol. 7, no. 6, pp. 657-665.

Feldmann, K., Colombo, A. W., Schnur, C., and Stockel, T. (1999b), “Specification,

design, and implementation of logic controllers based on colored Petri net models and

the standard IEC1131. II. Design and implementation,” IEEE Trans. Contr. Syst.

Tech., vol. 7, no. 6, pp. 666-674.

Frey, G. (2000), “Automatic implementation of Petri net based control algorithm on

PLC,” in Proc. American Control Conf., pp. 2819-2823.

Frey, G. and Litz, L. (2000), “Formal methods in PLC programming,” in Proc. IEEE Int.

Conf. Systems, Man, and Cybernetics, Nashville, TN, pp. 2431-2436.

Gershwin, S. B. (1989), “Hierarchical flow control: A framework for scheduling and

planning discrete events in manufacturing systems,” Proc. IEEE, vol. 77, no. 1, pp.

195-208.

Giua, A., and DiCesare, F. (1991), “Supervisory design using Petri nets,” in Proc. IEEE

Int. Conf. Decision Contr., Brighton, England, pp. 92-97.

Greenfield, J. (2001), Unified Modeling Language/Enterprise JavaBeans (UML/EJB)

Mapping Specification. Rational Software Corporation Document.

Hoshi, T. (1999), “Current and future Java technology for manufacturing industry,” in

Proc. IEEE Int. Conf. Syst., Man, Cybern., Tokyo, Japan, pp. 404-409.

 103

Huang, G. Q., and Mak, K. L. (2001), “Web-integrated manufacturing: recent

developments and emerging issues,” Int. J. Comput. Integrated Manuf., vol. 14, no. 1,

pp. 3-13, (Special issue on Web-integrated manufacturing).

Hunter, J., and Crawford, W. (1998), Java Servlet Programming. Sebastopol, CA:

O’Reilly & Associates Inc.

International Electrotechnical Commission (1993), Programmable Controllers Part 3,

Programming Languages, IEC 1131-3. Geneva: IEC.

Jeng, M. D. (1997), “Petri nets for modeling automated manufacturing systems with error

recovery,” IEEE Trans. Robot. Automat., vol. 13, no. 5, pp. 752-760.

Jeng, M. D. and Lu, W. Z. (2002), “Extension of UML and its conversion to Petri nets for

semiconductor manufacturing modeling,” in Proc. IEEE Int. Conf. Robot. Automat.,

Washington, DC, pp. 3175-3180.

Kress, R. L., Hamel, W. R., Murray, P., and Bills, K. (2001), “Control strategies for

teleoperated Internet assembly,” IEEE/ASME Trans. Mechatronics, vol. 6, no. 4, pp.

410-416, (Focused section on Internet-based manufacturing systems).

Kunes, M., and Sauter, T. (2001), “Fieldbus–Internet connectivity: The SNMP

approach,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1248-1256, 2001.

Lee, J. S. (1999), A PLC-Based Design for the Controller and the Diagnostic System in

Discrete Event Systems, Master Thesis, Department of Electrical and Control

Engineering, NCTU, Taiwan.

Lee, J. S., and Hsu, P. L. (accepted), “A systematic approach for the sequence controller

design in manufacturing systems,” Int. J. Adv. Manuf. Tech.

Lee, J. S., and Hsu, P. L. (2003a), “A Petri-net approach to hierarchical supervision for

remote-controlled processes,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetic,

Washington, DC, pp. 1880-1885.

 104

Lee, J. S., and Hsu, P. L. (2003b), “Remote supervisory control of the human-in-the-loop

system by using Petri nets and Java,” IEEE Trans. Indu. Electron., vol. 50, no. 3, pp.

431-439.

Lee, J. S., and Hsu, P. L. (2004a), “An improved evaluation of ladder logic diagrams and

Petri nets for the sequence controller design in manufacturing systems,” Int. J. Adv.

Manuf. Tech., vol. 24, no. 3-4, pp. 279-287.

Lee, J. S., and Hsu, P. L. (2004b), “Design and implementation of the SNMP agents for

remote monitoring and control via UML and Petri nets,” IEEE Trans. Contr. Syst.

Technol., vol. 12, no. 2, pp. 293-302.

Liang, G. R., and Hong, H. M. (1994), “Hierarchy transformation method for repetitive

manufacturing system specification, design, verification and implementation,”

Comput.-Integr. Manuf. Syst., vol. 7, no. 3, pp. 191-205.

Looney, C. G., and Alfize A. R. (1987), ”Logic control via Boolean rule matrix

transformations, ” IEEE Trans. Syst. Man, and Cybern., vol. 17, no. 6, pp. 1077-1082.

Maziero, C. A. (1990), ARP: Petri Net Analyzer. Control and Microinformatic

Laboratory, Federal University of Santa Catarina, Brazil.

Milner R. (1989), Communication and Concurrency. Englewood Cliffs, NJ: Prentice Hall.

Mirle Automation Corporation (1999), SoftPLC Controller User’s Manual Version 1.2.

Hsinchu, Taiwan.

Miyazawa, I., Tanaka, H., and Sekiguchi, T. (1997), “Verification of the behavior of

sequential function chart based on its Peti net model”, in Proc. IEEE Int. Workshop

Emerging Technologies and Factory Automation, pp. 532-537.

Moalla, M. (1985), “Réseaux de Petri interprétés et Grafcet”, TSI–Technique et Science

Informatique, vol. 14, no.1, pp. 17-30.

 105

Moody, J. O., and Antsaklis, P. J. (1998), Supervisory Control of Discrete Event systems

Using Petri Nets. Boston, MA: Kluwer.

Mosterman, P. J., Sztipanovits, J., and Engell, S. (2004), “Computer-automated multi-

paradigm modeling in control systems technology,” IEEE Trans. Contr. Syst.

Technol., vol. 12, no. 2, pp. 223-234, (Special section on Computer automated multi-

paradigm modeling).

Murata, T. (1989), “Petri nets: Properties, analysis, and applications,” Proc. of the IEEE,

vol. 77, no. 4, pp. 541-580.

Peng, S. S., and Zhou, M. C. (2001), “Conversion between ladder diagrams and PNs in

discrete-event control design— A survey,” in Proc. IEEE Int. Conf. Syst., Man,

Cybern., Tucson, AZ, pp. 2682-2687.

Pessen, W. (1989), “Ladder-diagram design for programmable controllers,” Automatica,

vol. 25, no. 3, pp. 407-412.

Petri, C. A. (1962), Kommunikation mit Automaten. Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM Nr. 2. English translation, Communication with

Automata. New York: Griffiss Air Force Base, Tech.l Rep. RADC-TR-65--377, vol.

1, pages 1-Suppl. 1. 1966.

Prabhaka, A. (1993), Integration Definition for Function Modeling (IDEF0). National

Institute of Standards and Technology, FIPS 183.

Ramadge, P. J., and Wonham, W. M. (1987), “Supervisory control of a class of discrete

event processes,” SIAM J. Contr. Optimiz., vol. 25, no. 1, pp. 206-230.

Ramadge, P. J., and Wonham, W. M. (1989), “The control of discrete event systems,”

Proc. IEEE, vol. 77, no. 1, pp. 81-98.

Rasmussen, J., Pejtersen, A. M., and Goodstein, L. P. (1994), Cognitive Systems

Engineering. New York, NY: John Wiley and Sons.

 106

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991), Object-

Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall.

Shikli, P. (1997), “Designing winning Web sites for engineers,” Machine Design, vol. 69,

no. 21, pp. 30-40.

SoftPLC Corporation (1999), SoftPLC-Java Programmer’s Toolkit. Spicewood, TX.

Srinivasan, R. S. (1998), “Modeling and performance analysis of cluster tools using Petri

nets,” IEEE Trans. Semicond. Manuf., vol. 11, no. 3, pp. 394-403, (Special section on

Petri nets in semiconductor manufacturing).

Stallings, W. (1993), SNMP, SNMP2, and CMIP. Reading, MA: Addison-Wesley.

Tilbury, D., and Khargonekar, P. (2001), “Challenges and opportunities in logic control

for manufacturing systems,” IEEE Contr. Syst. Maga., vol. 21, no. 1, pp. 105-108.

Tittus, M., and Lennartson, B. (1999), “Hierarchical supervisory control for batch

processes,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 5, pp. 542-554.

Uzam, M., and Jones, A. H. (1998), “Discrete event control system design using

automation Petri nets and their ladder diagram implementation,” Int. J. Adv. Manuf.

Tech., vol. 14, no. 10, pp. 716-728 (Special issue on Petri nets applications in

manufacturing system).

Uzam, M., Jones, A. H., and Yücel, I. (2000), “Using a Petri-net-based approach for the

real-time supervisory control of an experimental manufacturing system,” Int. J. Adv.

Manuf. Tech., vol. 16, no. 7, pp. 498-515.

Venkatesh, K., Zhou, M. C., and Caudill, R. (1994a) “Comparing ladder logic diagrams

and Petri nets for sequence controller design through a discrete manufacturing

system,” IEEE Trans. Indu. Electron., vol. 41, no. 6, pp. 611-619, (Special section on

Petri nets in manufacturing).

 107

Venkatesh, K., Zhou, M. C., and Caudill, R. (1994b), “Evaluating the complexity of Petri

nets and ladder logic diagrams and for sequence controllers design in flexible

automation,” in Proc. IEEE Symp. Emerging Technology and Factory Automation, pp.

428-435.

Vucetic, J., and Kline, P. (1998), “Signal monitoring system for wireless network

operation and management,” in Proc. SBT/IEEE Int. Symp. Telecommu., pp. 296-300.

Weaver, A., Luo, J., and Zhang, X. (1999), “Monitoring and control using the Internet

and Java,” in Proc. IEEE Int. Conf. Industrial Electronics, San Jose, CA, pp. 1152-

1158.

Wong, K. C., and Wonham, W. M. (1996), “Hierarchical control of discrete-event

systems,” Discrete Event Dynamic Systems: Theory and Applications, vol. 6, pp. 241-

273.

Wooldridge, M., and Jenkins, M. R. (1995), “Intelligent agents: theory and practice,”

Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152.

Yang, S. H., Chen, X., and Alty, J. L. (2002), “Design issues and implementation of

Internet-based process control systems,” Contr. Engin. Pract., vol. 11, no. 6, pp. 709-

720.

Zeltserman, D. (1999), A Practical Guide to SNMPv3 and Network Management. Upper

Saddle River, NJ: Prentice-Hall.

Zhong, H., and Wonham, W. M. (1990), “On the consistency of hierarchical supervision

in discrete-event systems,” IEEE Trans. Automat. Contr., vol. 35, no. 10, pp. 1125-

1134, Oct.

Zhou, M. C., and Dicesare, F. (1989), “Adaptive design of Petri net controllers for error

recovery in automated manufacturing systems,” IEEE Trans. Syst., Man, Cybern., vol.

19, no. 5, pp. 963-973.

 108

Zhou, M. C., and DiCesare, F. (1991), “Parallel and sequential mutual exclusions for

Petri net modeling for manufacturing systems,” IEEE Trans. Robot. Automat., vol. 7,

no. 4, pp. 515-527.

Zhou, M. C., and Jeng, M. D. (1998), “Modeling, analysis, simulation, scheduling, and

control of semiconductor manufacturing systems: A Petri net approach,” IEEE Trans.

Semicond. Manuf., vol. 11, no. 3, pp. 333-357, (Special section on Petri nets in

semiconductor manufacturing).

Zhou, M. C., and Twiss, E. (1995), ”A comparison of relay ladder logic programming

and Petri net approach for sequential industrial control systems, ” in Proc. IEEE Int.

Conf. Control Applications, pp. 748-753.

Zhou, M. C., and Twiss, E. (1998), ”Design of industrial automated systems via relay

ladder logic programming and Petri nets, ” IEEE Trans. Syst., Man, and Cybern., Part

C, vol. 28, no. 1, pp. 137-150.

Zhou, M. C., and Venkatesh, K. (1998), Modeling, Simulation and Control of Flexible

Manufacturing Systems: A Petri Net Approach. Singapore: World Scientific.

Zuberek, W. M. (2001), “Timed Petri nets in modeling and analysis of cluster tools,”

IEEE Trans. Robot. Automat., vol. 17, no. 5, pp. 562-575.

Zurawski, R., and Zhou, M. C. (1994), “Petri nets and industrial applications: a tutorial,”

IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 567-583, (Special section on Petri nets

in manufacturing).

 109

 110

VITA
Aug 16, 2004

PERSONAL DATA

Name: 李俊賢，Jin-Shyan Lee
Date of Birth: Nov. 7, 1975
E-mail: jslee.ece88g@nctu.edu.tw

EDUCATION

1999/9 – 2004/7

Receive the Ph.D. degree in the Department of Electrical and Control
Engineering at National Chiao-Tung University, Taiwan, ROC.

1997/9 - 1999/6 Receive the M.S. degree in the Department of Electrical and Control
Engineering from National Chiao-Tung University, Taiwan, ROC.

1995/9 - 1997/6
Receive the B.S. degree in the Department of Mechanical
Engineering from National Taiwan University of Science and
Technology, Taiwan, ROC.

EXPERIENCE

2004/9
Co-organizer of a special section: “Computer automated
multi-paradigm modeling” in IEEE Int. Conf. Computer-Aided Control
System Design 2004, Sept 1-4, Taipei, Taiwan.

2003 - Present Assistant Reviewer of IEEE Transactions on Systems, Man and
Cybernetic, Part A: Systems and Humans.

2003/7 - 2004/6
One-year Visiting Researcher in the Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark,
USA.

2003/10 Invited Speaker of North Jersey IEEE Control Systems Chapter.

2003/3 - 2003/6 Teaching assistant of the class: “Computer-Controlled Systems.”
2002/2 – 2003/6 Secretary of the Chinese Automatic Control Society (CAC).

 111

2002/4 - 2003/6 Research Assistant of the project:
“Human Technology — Intelligent Transportation System (ITS)”
sponsored by the Ministry of Education for promoting University
Academic Excellence.

2001/8 - 2003/6 Research Assistant of the project:
“Design of Real-Time Supervisory Systems for Intelligent Vehicles”
sponsored by the National Science Council (NSC).

2001/7 - 2001/8 Engineering internship of the Industrial Control Business in Mirle
Automation Corporation, research and develop the Internet-based
environmental monitoring systems.

2001/3 - 2001/6 Teaching assistant of the class: “Advanced Digital Control Systems.”
2000/8 - 2001/7 Research Assistant of the project:

“The Lane Departure Warning System with Image Processing for
Automobile Drivers” sponsored by the NSC.

1999/11 - 2001/12 Research Assistant of the project:
“Core Technology Study and Prototype Development of Advanced
Vehicle Safety Systems (AVSS)” sponsored by the China Engineering
Consultants, Inc.

1998/8 - 2000/7 Research Assistant of the project:
“Integration of Advanced Mechatronics Systems and Information
Intelligence to Construct an Open-Structured Controller” sponsored by
the NSC.

1998/3 - 1998/6 Teaching assistant of the class: “Micro-Computer Lab.”

ATTENDED CONFERENCES

• International Conferences

1. 2004 Sept., IEEE Int. Conf. Computer-Aided Control System Design, Taipei, Taiwan.

2. 2004 Aug., SICE Annual Conference, Sapporo, Japan.

3. 2003 Oct., IEEE Intl. Conf. Systems, Man and Cybernetic, Washington, DC, USA.

4. 2003 Sept., Chinese Institute of Engineers-USA Annual Convention, Newark, NJ, USA.

5. 2002 Sept., IEEE Int. Conf. Control Applications, Glasgow, Scotland, UK.

6. 2001 Oct., IEEE Intl. Conf. Systems, Man and Cybernetics, Tucson, AZ, USA.

7. 2000 Sept., IEEE Int. Conf. Control Applications, Anchorage, AK, USA.

 112

• Domestic Conferences

1. 2003 Mar., Chinese Automatic Control Conference, Taoyuan, Taiwan.

2. 2002 Mar., Chinese Automatic Control Conference, Tainan, Taiwan.

3. 2001 Mar., Chinese Automatic Control Conference, Taoyuan, Taiwan.

4. 2000 Mar., Chinese Automatic Control Conference, Hsinchu, Taiwan.

ACHIEVEMENTS

2004/8 Winner of the SICE International Scholarship in the 2004 SICE
Annual Conference, Sapporo, Japan.

2004/8 Finalist of both the Annual International Award and Young Author’s
Award in the 2004 SICE Annual Conference, Sapporo, Japan.

2004/2 3rd Place of IEEE Student Paper Presentation Contest in the graduate
category, awarded by North New Jersey IEEE Section, Newark, USA.

2003/9 3rd Place of Student Paper Contest Scholarship in the Chinese
Institute of Engineers (CIE)-USA Annual Convention, Newark, USA.

2003/7 - 2004/6 One-year Visiting Scholarship in Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark,
USA, sponsored by National Science Council (NSC), Taiwan.

2002/3 Student Paper Award of the 2002 Chinese Automatic Control
Conference, Taiwan.

2001/8 - 2002/7 2001 Excellent Ph.D. Student’s MOE Scholarship of the Department
of Electrical and Control Engineering, National Chiao-Tung
University, awarded by the Ministry of Education (MOE).

2001/3 Student Paper Award of the 2001 Chinese Automatic Control
Conference, Taiwan.

2000/8 - 2001/7 2000 Excellent Ph.D. Student’s MOE Scholarship of the Department
of Electrical and Control Engineering, National Chiao-Tung
University, awarded by the Ministry of Education (MOE).

 113

PUBLICATION LIST
August 16, 2004

JOURNAL PAPERS

1. J. S. Lee and P. L. Hsu, “An improved evaluation of ladder logic diagrams and Petri nets
for the sequence controller design in manufacturing systems,” International Journal of
Advanced Manufacturing Technology, vol. 24, no. 3-4, pp. 279-287, August 2004 (SCI).

2. J. S. Lee and P. L. Hsu, “Design and implementation of the SNMP agents for remote
monitoring and control via UML and Petri nets,” IEEE Transactions on Control System
Technology, vol. 12, no. 2, pp. 293-302, March 2004 (SCI).

3. J. S. Lee and P. L. Hsu, “Remote supervisory control of the human-in-the-loop system by
using Petri nets and Java,” IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp.
431-439, June 2003 (SCI).

4. J. S. Lee, M. C. Zhou, and P. L. Hsu, “An application of Petri nets to supervisory control
for human-computer interactive systems,” accepted as a regular paper to appear in IEEE
Transactions on Industrial Electronics (SCI).

5. J. S. Lee and P. L. Hsu, “A systematic approach for the sequence controller design in
manufacturing systems,” accepted as a regular paper to appear in International Journal of
Advanced Manufacturing Technology (SCI).

6. J. S. Lee, M. C. Zhou, and P. L. Hsu, “Statechart Modeling and Web-Based Simulation of
Hybrid Dynamic Systems for e-Automation,” accepted as a regular paper to appear in
Journal of Chinese Institute of Industrial Engineers (EI).

7. J. S. Lee and P. L. Hsu, “Implementation of a remote hierarchical supervision system using
Petri nets and agent technology,” IEEE Transactions on Systems, Man and Cybernetic, Part
A: Systems and Humans (revised).

INTERNATIONAL CONFERENCE PAPERS

1. J. S. Lee, M. C. Zhou, and P. L. Hsu, “Multi-paradigm modeling approach for hybrid
dynamic systems,” accepted to present in IEEE Int. Conf. Computer-Aided Control System
Design, Taipei, Taiwan, Sept. 2004 (invited paper).

2. J. S. Lee, M. C. Zhou, and P. L. Hsu, “Petri net-based design of modular supervisors for
remotely human control systems,” SICE Annual Conference, Sapporo, Japan, August 2004,
pp. 1271-1276 (Winner of the SICE International Scholarship, also the Finalist in both
the Annual International Award and Young Author’s Award).

3. J. S. Lee and P. L. Hsu, “A Petri-Net approach to hierarchical supervision for
remote-controlled processes,” IEEE Intl. Conf. Systems, Man and Cybernetic, Washington,
D.C., October 2003, pp. 1880-1885 (invited paper).

 114

4. J. S. Lee and P. L. Hsu, “An IDEF0/Petri net approach to the system integration in
semiconductor manufacturing systems,” IEEE Intl. Conf. Systems, Man and Cybernetic,
Washington, DC, October 2003, pp. 4910-4915.

5. J. S. Lee and P. L. Hsu, “Development of the supervisory agent for Internet-based control
systems with human-in-the-loop,” Chinese Institute of Engineers (CIE)-USA/GNYC Annual
Convention, Newark, NJ, September 2003 (3rd Place of Student Paper Contest).

6. J. S. Lee and P. L. Hsu, “Design of remote environmental monitoring systems,” IEEE Int.
Conf. Control Applications, Glasgow, Scotland, September 2002, pp. 856-861.

7. J. S. Lee and P. L. Hsu, “UML-based modeling and multi-threaded simulation for hybrid
dynamic systems,” IEEE Int. Conf. Control Applications, Glasgow, Scotland, September
2002, pp. 1207-1212.

8. J. S. Lee and P. L. Hsu, “An object-oriented design of the hybrid controller for automated
vehicles in an AHS,” IEEE Intelligent Vehicles Symposium, Versailles, France, June 2002,
pp. 115-120.

9. J. S. Lee and P. L. Hsu, “A new approach to evaluate ladder logic diagrams and Petri nets
via the IF-THEN transformation,” IEEE Intl. Conf. Systems, Man and Cybernetics, Tucson,
AZ, October 2001, pp. 2711-2716.

10. J. S. Lee and P. L. Hsu, “ A PLC-based design for the sequence controller in discrete
event systems,” IEEE Int. Conf. Control Applications, Anchorage, AK, September 2000,
pp. 929-934.

DOMESTIC CONFERENCE PAPERS

1. J. S. Lee and P. L. Hsu, “An IDEF0/Petri net approach to the emulator design for
semiconductor manufacturing systems,” Chinese Automatic Control Conference, Taoyuan,
Taiwan, March 2003, pp. 1209-1214.

2. J. S. Lee and P. L. Hsu, “Modeling and simulation for hybrid dynamic systems,” Chinese
Automatic Control Conference, Tainan, Taiwan, March 2002, pp. 20-25 (Student Paper
Award).

3. J. S. Lee and P. L. Hsu, “Design of PLC-based fault diagnostic systems via the Petri net
and logic functions,” Chinese Automatic Control Conference, Taoyuan, Taiwan, March
2001, pp. 30-35 (Student Paper Award).

4. J. S. Lee and P. L. Hsu, “ A PLC-based design for the sequence controller in discrete event
systems,” Chinese Automatic Control Conference, Hsinchu, Taiwan, March 2000, pp.
12-17.

