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以 Petri Net 設計之自動化程序遠端監控系統 

 

研究生:李俊賢 指導教授:徐保羅 博士 

 

國立交通大學 

電機與控制工程學系 

 

摘 要 

 

近年來，由於網際網路的快速發展，使得自動化程序之即時監控與管理不再受限於

局部的區域來執行。對於以網際網路為基礎的遠端製造系統，本文闡述其一系列以 Petri 

net 為基礎，在程序控制，遠端監控，與網路管理系統上之設計與實現的方法，以達成

系統之正常安全與運作。 

對於日益複雜的製造系統，傳統之階梯圖程序控制設計，不但變的相當複雜，而且

對於製程變動的彈性處理也更加困難。有鑑於此，本文先提出一套以法則為基礎的評估

方法，來驗證 Petri net 在程序控制器設計上優於階梯圖的特性。之後，本文提出一套以

Petri net 為基礎，而以階梯圖實現之系統化設計方法，來發展製造系統之程序控制器。 

在遠端監控系統中，本文提出一個以監督器 (supervisor) 監控人類行為的架構，來

預防與禁止不正當的遠端人為操作。本文使用 Petri net 來塑造命令層中真實系統的抽像

模型，合成出監督器，並進一步使用 Java 技術將監督器實現成一智慧型代理人

(intelligent agent)。藉由遠端受控系統的狀態回饋，我們發展的監控代理人會防止在違反

安全規格下的命令，藉以降低及減少人為失誤所產生的影響。此外，在上述的監控系統

中，為了降低監控器的合成複雜度，我們提出一個階層式的遠端監控架構，使得監督器

的合成需有較少的狀態空間，藉以降低設計與實現的複雜度。 
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此外，對於大型遠端監控系統中各種不同的感測、致動、與控制元件，為了管理網

路中各元件所收發的大量監控訊息，本文整合 Petri net 於統一建模語言(unified modeling 

language, UML)中，以系統化地從建模，設計，分析，驗證，來實現簡易網路管理協定 

(simple network management protocol, SNMP) 代理人。本研究所提出之遠端網路管理方

法，已經成功地應用在台灣大哥大的行動交換機房之環境安全遠端監控系統上。 
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Design of the Remote Supervision System for 

Automated Processes via the Petri Net Approach 

 

Student: Jin-Shyan Lee Advisor: Dr. Pau-Lo Hsu 

 
Department of Electrical and Control Engineering 

National Chiao-Tung University 

 

ABSTRACT 

Applications of the Internet technology become more popular in the modern industry. 

This thesis proposes the systematic design and implementation of remote supervision systems 

for automated processes via the Petri nets (PN) approach to achieve 1) the sequence controller, 

2) the supervisor, and 3) the device management system, respectively. 

As automated systems become more complex, traditional ladder logic diagram (LLD) 

design of sequence controllers becomes more difficult and inflexible. Thus, this thesis 

presents a rule-based evaluation to adequately compare the LLD and PN, and verify the 

superiority of PN. Then, since LLD is still widely used today in real industry, this thesis 

proposes a PN-based method systematically leading to the final LLD implementation for the 

sequence controller design. 

In remote control systems, to prevent abnormal operations of humans, a remote 

supervisory scheme is proposed so that undesirable human operations are prohibited. PN is 

employed to synthesize both the remote supervisor and the local controller, and the Java 

technology is employed to implement the intelligent agent for on-line supervision. According 
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to the status feedback through the Internet, the developed supervisory agent provides 

allowable commands for operators and disables those operations that violate safety 

specifications. The possibility of human errors can be thus reduced. Moreover, to reduce the 

complexity of mentioned supervisory system design, this thesis further proposes a 

hierarchical structure with a smaller state-space size in supervisor synthesis so as to reduce 

the design complexity. 

Furthermore, to integrate diverse network elements and construct a large-scale and 

distributed systems for remote supervision systems, this thesis integrates the PN into the 

unified modeling language (UML) to achieve modeling, design, analysis, verification, and 

implementation of simple network management protocol (SNMP) agents in the present 

framework. The developed management system has been successfully applied to a mobile 

switching center of Taiwan Cellular Corporation for the remote supervision and management 

of its various environmental devices. 
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Chapter 1 

Introduction 
 

Recently, with the rapid development of information technology on industrial 

applications, remote monitoring, control, and management are critical to increase 

safety and flexibility of modern manufacturing processes in real operations. Some 

issues in e-automation are extensively discussed like: the integration of the high level 

message management and the fundamental layer sequence control, the effect of 

human errors in remote control, and the efficient message management among various 

devices on the networks, etc. 

Generally, an automated system implements a sequence controller to regulate 

local processes. Also, a supervisor is required to assure normal operations, and a 

device management system is required to administer the various elements efficiently 

and flexibly. In this thesis, a remote supervision system will be developed for 

automated processes, as shown in Fig 1.1. The design goals of the present remote 

supervision system are as follows: 

1) to develop the sequence controller to regulate the processes. 

2) to develop the supervisor to monitor the human behaviors. 

3) to develop the device management system to integrate diverse 

elements on networks. 

The developed approaches in this thesis have been studied on a stamping process, 

a rapid thermal process in semiconductor manufacturing, a three-recipe flexible 

manufacturing system, and an environmental monitoring system in mobile switching 

centers, respectively. 
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Fig. 1.1. Architecture of the proposed remote supervision system in this thesis. 

 

 

1.1. General Review 
Basically, an automated process is inherently a discrete event system (DES). The 

Petri net (PN) has been developed as a powerful tool for modeling, analysis, 

simulation, and control of DES. PN was named after Carl A. Petri (1962), who 

created a net-like mathematical tool for describing relations between the conditions 

and the events. PN was further developed to meet the need in specifying process 

synchronization, asynchronous events, concurrent operations, and conflicts or 

resource sharing for a variety of industrial automated systems at the discrete-event 

level. Starting in the late of 1970’s, researchers investigated possible industrial 

applications of PN in discrete-event systems and results can be found in the 

survey/tutorial papers of Murata (1989), Zurawski and Zhou (1994), David and Alla 

(1994), and Zhou and Jeng (1998). 
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1.1.1 Systematic design of sequence controllers  

A sequence controller that deals with the discrete events plays an important role in 

automated manufacturing systems (Tilbury and Khargonekar, 2001; Frey and Litz, 

2000). Basically, the ladder logic diagram (LLD) of the industrial standard IEC1131-3 

(International Electrotechnical Commission, 1993) has been widely used in real 

applications to conduct the control sequences and usually implemented with a 

programmable logic controller (PLC). The PLC has the advantages of reliability, 

robustness, and direct programming. The I/O procedures of the PLC are specified by 

the LLD and automated machines thus perform repetitive operations in sequence. For 

some simple controlled systems, it is easy to program the LLD with heuristic 

approaches. However, as systems become more complex, the controller design and 

the LLD implementation become even more difficult. In addition, because the LLD is 

usually programmed only to control the process, corresponding qualitative analysis 

and performance characteristics of the PLC controlled processes are seldom discussed 

in practice. Since product specifications are varied frequently, LLD programs of 

machining processes need to be modified and maintained usually with significant 

efforts. Hence, researchers are pursuing a systematic and efficient approach for the 

design and implementation of the sequence controller. Based on the PN, Liang and 

Hong (1994) proposed a hierarchy transformation method to design and implement 

controllers on a G2 expert system. Uzam and Jones (1998) introduced an extended PN 

method to analyze a target system and then implemented it via LLD. Feldmann, et al. 

(1999a, 1999b) used the colored PN to form the structured text (ST) for PLC 

implementation. In the past few years, the PN approach still attracted more attentions 

as a potential tool for designing sequence controllers. 

 

1.1.2 Development of supervisory systems 
Recently, due to the rapid development of Internet technology, system monitoring 

and control no longer needs to be conducted within a local area. Several remote 

approaches have been proposed which allow people to monitor the automated 

processes from great distances (Weaver et al., 1999; Yang et al., 2002; Kress et al., 
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2001; Huang and Mak, 2001; Batur et al., 2000). Practically, to perform maintenance 

functions in hazardous environments without their exposure to dangers is a unique 

application of the remote technology. By conducting remote access using IP-based 

networks, an entire Internet-based control system is inherently a DES and its state 

change is driven by occurrences of individual events. The supervisory control theory 

provides a suitable framework for analyzing DES (Ramadge and Wonham, 1987, 

1989; Balemi et al., 1993) and most existing methods are based on automata models. 

The calculus of communicating systems (CCS), which was invented by Robin Milner 

(1989), is another classical formalism for representing systems of concurrent 

processes. However, these available methods often involve exhaustive searches of 

overall system behavior and result in state-space explosion design as system becomes 

more complex. On the other hand, PN is an efficient approach to model the DES and 

its models are normally more compact than the automata models. Also, PN is better 

suitable for modeling systems with parallel and concurrent activities. In addition, PN 

has an appealing graphical representation with a powerful algebraic formulation for 

supervisory control design (Giua and DiCesare, 1991; Moody and Antsaklis, 1998; 

Uzam et al., 2000). 

 

1.1.3 Management of diverse elements on networks 
For large-scale and long-distance distributed systems, a reliable management 

system for all devices and components on the network is crucial to guarantee normal 

operations. It allows for reliably monitoring the status of processes, correctly 

detecting abnormal conditions, efficiently activating emergency mechanisms, and 

proactively reporting alarms. In general, the components of remote management 

systems can be classified into 1) the agent side and 2) the manager side. Some 

vendors build their web server software into their agent-side devices and the 

manager-side users may thus directly monitor them using web browsers through the 

hypertext transfer protocol (HTTP). However, as numerous devices are networked in 

automated manufacturing systems, the massive monitoring and control messages from 

all devices becomes increasingly difficult to handle. In general, straightforward 

integration with all Web access points is apparently not efficient. One approach to 
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manage diverse network elements is to use the simple network management protocol 

(SNMP). It is a standard protocol now widely supported by most device vendors for 

their products such as routers, bridges, and printers (Stallings, 1993). Aicklen and 

Main (1995) used SNMP to manage a variety of network elements. Cardoso and 

Monteiro (1998) applied the SNMP to monitor and control the industrial network. 

Kunes and Sauter (2001) provided a modular and extendible gateway to connect the 

high-level Internet and low-level fieldbus for SNMP network management. 

 

 

1.2. Problem Statement 
 Although a lot of efforts in the past two decades have been put on the 

development of sequence controllers, supervision systems, and management systems 

for automated manufacturing processes with Internet technology, some critical issues 

still exist in the remote supervision system as discussed in the following: 

 
1. Requirement of adequate evaluation for sequence controller design 

Although PN has been studied to design sequence controllers with a potential 

in its flexibility, it is still argued that whether the PN approach is superior to the 

traditional LLD design for industrial practitioners. Hence, an adequate comparison 

is required. In the past, the “basic element” approach was developed to compare 

the complexity and flexibility between LLD and PN designs (Venkatesh et al., 

1994a; Zhou and Twiss, 1998). However, the basic elements of these two designs 

are inherently different and hence, it may lead to unreliable comparison results. 

 

2. Requirement of systematic sequence controller implementation 

In practice, PLC engineers still widely prefer to use LLD for real 

implementation. However, it is not straightforward to construct the LLD models 

from a given sequence. Some researchers have attempted to transform PN into 

LLD (Peng and Zhou, 2001). However, those resultant LLD are usually more 

complex as compared to that programmed directly by engineers. A systematic 

approach from a given specification to achieve the final LLD implementation is 
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thus required. 

 

3. Requirement of supervisory systems for human error prevention 

Typically, an Internet-based control system is a “human-in-the-loop” system. 

The human operator is involved in the loop and use a general web browser or 

specific software to monitor and control remotely located systems according to the 

observed status, usually displayed by the state and/or image feedback. However, 

human operators may send incorrect or improper commands during the operation 

and research results indicate that approximately 80% of industrial accidents are 

attributed to human errors, such as omitting a step, falling asleep and improper 

control of the system (Rasmussen et al., 1994). Therefore, solutions to reduce or 

eliminate the possibility of human errors are required in Internet-based control 

systems. 

 

4. Requirement of reducing the complexity of supervisor synthesis 

PN can represent the remote control system with a more compact model. 

However, during the synthesis of the supervisor, the complexity exponentially 

increases in the state-space size of the subsystems and specifications. This 

computational expense often makes the supervisor synthesis infeasible, especially 

for large-scale manufacturing systems. 

 

5. Requirement of management for different networked devices 
To design a remote monitoring and control structure through the network, 

efficient management to handle the massive information flow and represent data 

from different devices in a uniform format is required. Although using SNMP is a 

feasible approach to manage diverse network elements, in present industrial 

applications, many basic components such as sensors, actuators, and PLCs do not 

support SNMP for remote applications yet. Thus, for those without SNMP 

functions, a systematic approach to model and implementation SNMP function is 

required. 

 

 



 7

1.3. The Proposed Approach 
To deal with the above problems, corresponding approaches are proposed in this 

thesis as follows. 

 
1. Improved evaluation of LLD and PN 

A rule-based approach for the LLD and PN evaluation via the IF-THEN 

transformation is proposed in this thesis. By converting both the LLD and PN into the 

same IF-THEN format, a unified comparison is then conducted with the same 

measure, which is the sum of 1) the number of IF-THEN rules, and 2) the number of 

logical operators, for both LLD and PN. 

 

2. Systematic design of sequence controllers 

A systematic approach to the LLD implementation of the sequence controller in 

manufacturing systems is introduced in this thesis. By defining the sensor state into 

the PN to form a simplified Petri net controller (SPNC), a more compact LLD 

structure through the token passing logic (TPL) is obtained. Typically, the sensor state 

is used to trigger sequences in manufacturing. The integration definition language 0 

(IDEF0) can be used to obtain the SPNC model through the material flow diagrams 

and information flow diagrams in sequence. Thus, the proposed 

IDEF0/SPNC/TPL/LLD approach, including the IDEF0, SPNC, and TPL tools, leads 

to the LLD for general PLC implementation.  

 

3. Supervisory control of human behaviors 

In this thesis, a supervisory scheme is proposed for the remotely controlled, 

human-in-the-loop system. The role of a supervisory agent is to interact with the 

human operator and the controlled system so that the closed human-in-the-loop 

system meets the required specifications. In the supervision system, the supervisory 

agent acquires the system status and makes the decision to enable/disable associated 

events to meet the required safety specifications. The human operator is then only 

allowed to perform the enabled events to control the system, and hence, the 

supervisory agent guarantees that undesirable manually executions never occur. 
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4. Hierarchical supervision of processes 

In the present design of supervisory systems, PN can be used to design both the 

supervisor at the upper level and the local controller at the lower level. This thesis 

proposes a hierarchical supervision system resulting in a smaller state-space size 

through the supervisory synthesis. The proposed design guarantees that remote 

commands meet resource constraints and deadlock-free specifications. Also, fewer 

request/response transmissions are required for Internet communication. As a result, 

the effects of time delays and packet losses could be moderated.  

 
5. Modeling and implementation of SNMP agents 

A new approach to the development of SNMP agents for managing diverse 

network elements in manufacturing processes is proposed. The unified modeling 

language (UML) is adopted for modeling the system, and then the PN model is 

applied to analyze the dynamic behaviors of the system. In real applications, the 

present design is implemented with Java and ladder diagrams on the industrial PLC. 
 

 

1.4. Organization of Thesis 
 This thesis is organized as that: the improved evaluation of LLD and PN is 

presented in Chapter 2. Then, Chapter 3 introduces the IDEF0/SPNC/TPL/LLD 

approach for the sequence controller design. The basic supervisory control scheme for 

the remote-controlled processes is proposed in Chapter 4, and Chapter 5 extends it to 

a hierarchical scheme. For device management, Chapter 6 proposes an integrated 

approach including UML modeling and PN analysis to develop the SNMP agents. 

Finally, conclusions and recommendations for further research are provided in 

Chapter 7. 
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Chapter 2 

Evaluation of Ladder Logic Diagrams and Petri Nets 

for Sequence Controller Design 
 

 

Sequence controller designs play a key role in advanced manufacturing systems. 

Traditionally, the ladder logic diagram (LLD) has been widely applied to programmable 

logic controllers (PLC), while recently the Petri net (PN) has emerged as an alternative 

tool for the sequence control of complex systems. The evaluation of both approaches has 

become crucial and has thus attracted attention. 

Practically, only a limited amount of research comparing these approaches has been 

reported, because suitable comparison criteria are difficult to identify. Boucher et al. 

(1990) studied the sequence control of a manufacturing system and reported that using 

PN makes the controller more tractable than using LLD. However, they have not 

formally quantified the comparison between LLD and PN to design sequence controllers. 

Venkatesh et al. (1994a, 1994b) proposed the number of “basic elements”, which are 

nodes and links in the LLD and PN, as a quantified measure to compare their design 

complexity and response time. They claimed that PN offers a better solution than LLD, 

especially in adaptability as specifications change. Based on the basic element approach, 

Zhou and Twiss (1995, 1998) further compared the LLD and PN in terms of the 

understandability, flexibility and the ability to perform correctness verification. They also 

reported that the PN displays better results. However, note that while basic elements in 

the LLD stand for push buttons, limited switches, relay coils, timers, counters, solenoids 

and lines, they are places, transitions and arcs in the PN. Since both nodes and links in 

the LLD and PN have different physical meaning, as shown in Table 2.1, analysis of 

LLDs and PNs simply by using the number of basic elements as the comparison measure 

may lead to an incoherent comparison. 
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Table 2.1. Basic elements in LLD and PN. 

Nodes

PNLLDBasic 
elements

Place

Transition

Push button

Normally open
contact/switch

Timer TIM

CNTCounter

Solenoid

Normally closed
contact/switch

Links
Normal arc

Line

RRelay coil

Inhibitory arc

Nodes

PNLLDBasic 
elements

Place

Transition

Push button

Normally open
contact/switch

Timer TIM

CNTCounter

Solenoid

Timer TIMTIM

CNTCNTCNTCounter

Solenoid

Normally closed
contact/switch

Links
Normal arc

Line

RRRelay coil

Inhibitory arc
 

 

In this chapter, an improved approach towards evaluating the LLD and PN methods is 

proposed via the IF-THEN transformation. By converting both the LLD and PN into the 

same IF-THEN formats (Looney and Alfize, 1987), a unified comparison is then 

achieved based on the same measure, which is the sum of 1) the number of IF-THEN 

rules, and 2) the number of logical operators for both LLD and PN. An example of five 

sequences with increasing complexity for a stamping process is provided to illustrate the 

proposed approach. We find that the proposed evaluation approach yields more 

reasonable results. Also, the realistic comparisons provided in this chapter support the 

superiority of the PN approach. 

 

 

2.1. Introduction of Petri Nets 
A PN is identified as a particular kind of bipartite directed graph populated by three 

types of objects. They are places, transitions, and directed arcs connecting places and 

transitions. Formally, a PN can be defined as 
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),,,( OITPG = ,      (2.1) 

where,  

P = {p1, p2,…, pm} is a finite set of places, where 0>m ; 

T = {t1, t2, …, tn} is a finite set of transitions with ∅≠∪TP  and ∅=∩TP , 

where 0>n ; 

NTPI →×:  is an input function that defines a set of directed arcs from P to T, 

where N = {0, 1, 2, …}; 

NPTO →×:  is an output function that defines a set of directed arcs from T to P. 

A marked PN is denoted as (G, M0), where M0 : P → N is the initial marking. A 

transition t is enabled if each input place p of t contains at least the number of tokens 

equal to the weight of the directed arc connecting p to t. When an enabled transition fires, 

it removes the tokens from its input places and deposits them on its output places. PN 

models are suitable to represent the systems that exhibit concurrency, conflict, and 

synchronization. 

Some important PN properties in manufacturing systems include boundedness (no 

capacity overflow), liveness (freedom from deadlock), conservativeness (conservation of 

non-consumable resources), and reversibility (cyclic behavior). The concept of liveness is 

closely related to the complete absence of deadlocks. A PN is said to be live if, no matter 

what marking has been reached from the initial marking, it is possible to ultimately fire 

any transition of the net by progressing through some further firing sequences. This 

means that a live PN guarantees deadlock-free operation, no matter what firing sequence 

is chosen. Validation methods of these properties include reachability analysis, invariant 

analysis, reduction method, siphons/traps-based approach, and simulation (Zhou and Jeng, 

1998). 
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2.1.1 Elementary PN Models 

At the modeling stage, one needs to focus on the major operations and their 

sequential or precedent, concurrent, or conflicting relationships. The basic relations 

among these processes or operations can be classified as follows. 

1) Sequential: As shown in Fig. 2.1 (a), if one operation follows the other, then the places 

and transitions representing them should form a cascade or sequential relation in PNs.  

2) Concurrent: If two or more operations are initiated by an event, they form a parallel 

structure starting with a transition, i.e., two or more places are the outputs of a same 

transition. An example is shown in Fig. 2.1 (b). The pipeline concurrent operations can 

be represented with a sequentially-connected series of places/transitions in which 

multiple places can be marked simultaneously or multiple transitions are enabled at 

certain markings. 

3) Cyclic: As shown in Fig. 2.1 (c), if a sequence of operations follow one after another 

and the completion of the last one initiates the first one, then a cyclic structure is formed 

among these operations. 

4) Conflicting: As shown in Fig. 2.1 (d), if either of two or more operations can follow an 

operation, then two or more transitions form the outputs from the same place. 

5) Mutually Exclusive: As shown in Fig. 2.1 (e), two processes are mutually exclusive if 

they cannot be performed at the same time due to constraints on the usage of shared 

resources. A structure to realize this is through a common place marked with one token 

plus multiple output and input arcs to activate these processes. 
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p2t1p1 t2

(a)

p1 t2 p2

t1

t3p3 p4

(b)

t2

p1

t3

t1 p2

t4p3

(d)

p2t1p1 t2

(c)

t2

t3

t1 p2

t4

p3

p1

(e)

p2t1p1 t2p2t1p1 t2

(a)

p1 t2 p2

t1

t3p3 p4

p1 t2 p2

t1

t3p3 p4

t1

t3p3 p4

(b)

t2

p1

t3

t1 p2

t4p3

t2

p1

t3

t1 p2

t4p3

(d)

p2t1p1 t2p2t1p1 t2

(c)

t2

t3

t1 p2

t4

p3

p1

t2

t3

t1 p2

t4

p3

p1

(e)  

Fig. 2.1. Basic PN models for (a) sequential, (b) concurrent, (c) cyclic, (d) conflicting, 

and (e) mutually exclusive relations. 

 

 

2.2. The Rule-Based Comparison 
Two of major factors for comparison of LLD and PN for sequence control are 

identified as design complexity and response time (Venkatesh et al., 1994a). Design 

complexity is defined as the complexity associated in designing the control logic for a 

given specification. Response time is termed as the scan time in LLD or the execution 

time in PN. The major factor for design complexity is the physical size of the control 

logic model, whereas the response time is influenced by not only the physical size, but 

also the hardware of implementation. For simplicity, this chapter focuses on the 

comparison of the control logic models. The proposed approach includes two steps as 

follows: 

Step 1) Transform both the LLD and PN into the same IF-THEN format. 

Step 2) Evaluate the LLD and PN based on the number of a) rules and b) logical 
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operators. 

In general, control models use smaller number of IF-THEN rules and logical 

operators are easier to understand, debug, check and maintain. Moreover, they may have 

a shorter response time. Thus, the proposed approach based on the unified rule-based 

format to compare the corresponding design complexity and response time for different 

LLD and PN structures. 

 

2.2.1 IF-THEN Formats 
Basically, compound IF-THEN rules, which involve both the conjunctive and 

disjunctive connectives in their antecedent or conclusion part, can be categorized into the 

following basic four types (Looney and Alfize, 1987). 

 

Type 1: IF (A and B) THEN C, or expressed as (A∩B) →C, 

Type 2: IF A THEN (C and D), or expressed as A →(C∩D), 

Type 3: IF (A or B) THEN C, or expressed as (A∪B) →C, 

Type 4: IF A THEN (C or D), or expressed as. A →(C∪D). 

 

The Type 2 rule can be broken into two simple rules A→C and A→D. Similarly, the 

Type 3 rule is equivalent to the two simple rules A→C and B→C because the truth of 

either A or B (or both) implies the truth of C. In practice, since the Type 4 rule does not 

achieve the specific implication and often causes conflict problems, it is generally not 

suitable for real applications in the sequence control. The IF-THEN rules excluding Type 

4 for the LLD and PN transformations are shown in Table 2.2. Note that the timers and 

counters can also be expressed in the basic rules. For example, the condition A may 

represent delaying the desired time units, and the status C may express that a counter 

increases or decreases one unit. 
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Table 2.2. IF-THEN rules for LLD and PN. 

IF A and B, THEN C

A∩B → C

IF A, THEN C and D

A → C∩D 

IF A or B, THEN C

A∪B →C

A

B

C

C

D

A

A

B

C

PN

D

C
A

BA
C

C

B

A

LLDIF-THEN rules

IF A and B, THEN C

A∩B → C

IF A, THEN C and D

A → C∩D 

IF A or B, THEN C

A∪B →C

A

B

CA

B

C

C

D

A C

D

A

A

B

CA

B

C

PN

D

C
A

BA
C

C

B

A

LLD

D

C
A

D

C
AA

BA
C

BBAA
CC

C

B

A
C

BB

AA

LLDIF-THEN rules

 
 

2.2.2 Unified Comparison Measures 
Based on the IF-THEN rules, two measures are proposed to evaluate PN and LLD as 

follows. 

Measure 1: The number of IF-THEN rules. 

Measure 2: The number of logical operators, including the conjunction (AND), 

disjunction (OR), block and implication. 

The summation of Measure 1 and Measure 2 can be recognized as a new measure for 

evaluating different structures. By transforming both the LLD and PN to the same 

IF-THEN formats, comparisons with a unified measure can then be made. Basically, 

models use smaller number of IF-THEN rules and logical operators are easier to 

understand, debug, check and maintain. Moreover, they often have a shorter response 

time. Therefore, the sum of Measure 1 and Measure 2 properly signifies the design 

complexity and response time for the process represented in either LLD or PN structures. 
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2.2.3 A Preliminary Comparison 
A simple example we use to illustrate the proposed approach is shown in Fig. 2.2, 

which a piston performs a forward stroke and then retracts. In this figure, the 

specification A+ indicates a forward stroke and A- indicates return stroke sequentially. 

Both the LLD and PN controllers as shown in Fig. 2.2 can be either represented by the 

basic elements or transformed into the same IF-THEN format, as listed in Table 2.3. 

Results show that the number of basic elements for the LLD and PN are 34 and 22, 

respectively. However, the basic elements in LLD and PN are physically different, as 

mentioned before, and the comparison based simply on the number of basic elements for 

different structures is apparently inappropriate. On the other hand, the results obtained 

from the IF-THEN transformation indicate that the LLD programming needs 4 IF-THEN 

rules and 14 logical operators, while the PN only needs 5 IF-THEN rules and 6 logic 

operators. Therefore, the number of IF-THEN rules and logical operators for LLD and 

PN is 18 and 11, respectively. Although the results of both approaches indicate that the 

PN offers a better solution than LLD, the present IF-THEN transformation provides more 

reasonable results when evaluating different structures in sequence controller design. 

Furthermore, the degree of programming flexibility can be analyzed by observing the 

increase ratio of either the number of basic elements or the number of present 

rules/operators as sequences become more complex. 
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1. Pb → R1,
2. R1∩a0 → A+,
3. A+ → a1,
4. a1 → A-,
5. A- → a0.

1. ((Pb∩a0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. ((R1∩a1)∪R2)∩a0’ → R2,
4. R2 → A-.

R1

Pb a0

R1

R2

a1

R2

R2

a0

R1

A+

R2

A-

R1

|
a1

|
a0

A+ A-

Cylinder_A

Specification :
A+, A-

PN

LLD

IF-THEN formatsPb

Push Pb

A+

End {A+}

 a1

A-

Do {A+}

a0
R1

Do {A-}

End {A-}

Comparison

1. Pb → R1,
2. R1∩a0 → A+,
3. A+ → a1,
4. a1 → A-,
5. A- → a0.

1. ((Pb∩a0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. ((R1∩a1)∪R2)∩a0’ → R2,
4. R2 → A-.

R1

Pb a0

R1

R2

a1

R2

R2

a0

R1

A+

R2

A-

R1

|
a1

|
a0

A+ A-

Cylinder_A

Specification :
A+, A-

PN

LLD

IF-THEN formatsPb

Push Pb

A+

End {A+}

 a1

A-

Do {A+}

a0
R1

Do {A-}

End {A-}

Comparison

 
Fig. 2.2. The LLD and PN for the sequence: A+, A-. 

 

 

Table 2.3. Comparison of LLD and PN for the sequence: A+, A-. 

Comparison measures LLD PN

Push button 1
NO contact 7
NC contact 2
Relay 2
Solenoid 2
Line 20

Place 6
Transition 5
Normal Arc 11

Basic elements

Total 34 Total 22
Rule 4
Operator 14

Rule 5
Operator 6IF-THEN rules

Total 18 Total 11

Comparison measures LLD PNComparison measures LLD PN

Push button 1
NO contact 7
NC contact 2
Relay 2
Solenoid 2
Line 20

Place 6
Transition 5
Normal Arc 11

Basic elements

Total 34 Total 22
Rule 4
Operator 14

Rule 5
Operator 6IF-THEN rules

Total 18 Total 11  
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2.3. Example: A Stamping Process 
To illustrate the proposed approach, we use an industrial process for automatic mark 

stamping and examine how the specifications change as we consider five increasingly 

complex sequences. 

 

2.3.1 System Description 
As shown in Fig. 2.3, a mark stamping system consists of three cylinders which are 

operated by four-port and two-way solenoid valves. Each cylinder has two normally open 

limit switches. For example, when the end of pusher_A contacts the limit switch a0, then 

a0 is closed, meaning that pusher_A is at the end of its return stoke. The whole system 

includes 7 input sensors corresponding to 6 limit switches and one push button for 

starting the system, and 6 output actuators corresponding to 6 solenoid valves. In the 

stamping process, pusher_A moves the workpiece from a store onto the worktable. Then, 

the workpiece is stamped by stamper_B and afterwards is ejected by thrower_C. The 

logical sequence of the stamping system is A+, B+, {A-, B-}, C+, and C-, where {A-, B-} 

represents two concurrent actions as the pistons of both pusher_A and stamper_B 

perform return stokes simultaneously. Five sequences with increasing complexity are 

considered here as follows: 

 

Sequence_1: START, A+, B+, {A-, B-}, C+, C- 

 

Sequence_2: START, A+, B+, 10 sec, {A-, B-}, C+, C- 

(Sequence_1 with one 10-sec timer added) 

Sequence_3: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-] 

(Sequence_2 with one 3-time counter added) 

 

Sequence_4: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-], 30 sec, 2 [A+, B+, 10 sec, 

{A-, B-}, C+, C-] 

(Sequence_3 with one 30-sec timer and one 2-time counter added) 
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Sequence_5: Sequence_4 with one emergency stop added. 

 

The complexity of these five sequences increases as specified above. 

 

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

Stamper_B

Thrower_C

Pusher_A

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

|
a1

|
a0

A+ A-

Pusher_A

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

 
Fig. 2.3. The stamping system. 

 

2.3.2 Sequence Controller Design 
In order to solve the interlock problem, the LLD programs are usually developed with 

the assistance of the cascaded method which divides the required sequence into groups 

(Pessen, 1989). Possible contradictory solenoid signals can be thus avoided. On the other 

hand, since PN is a concurrent operation, it can be verified to avoid the interlock logic 

problem via the simulation (Zhou and Venkatesh, 1998). The LLD and PN for the 

Sequence_1-Sequence_5 are shown in Fig. 2.4-2.8. Although the sequences compared 

here only consider a typical cylinder-actuating system, similar analysis can be extended 

to general industrial applications such as motors, pumps, heaters and conveyors. 
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2.3.3 Comparison of LLD and PN  
Table 2.4 shows the IF-THEN formats of the LLD and PN in Fig. 2.4-2.8. The 

required basic elements in the basic element approach, and the required rules and logical 

operators in the IF-THEN transformation for the five sequences are shown in Fig. 

2.9-2.10, separately. For these five sequences, the increase ratio, which is the normalized 

measure based on Sequence_1 corresponding to the increasing sequence complexity, is 

also shown in Fig. 2.11-2.12 for the two approaches. In general, a larger ratio indicates 

that the design is less flexible when subjected to changes in sequence control. All results 

indicate that the PN is superior to LLD in terms of design simplicity, response time and 

flexibility responding to the specification changes. 
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R1

R1
R2Pb a0

R3c0

R1

a1

A+

B+

R2
R3b1R1

R2

R2

a1

b0 a0

B-

A-

C+

R3
R3

R1R2c1

R3 C-

LLD

(a) (b)

Sequence_1:
START, A+, B+, {A-, B-}, C+, C-

PN
Pb

Push Pb

A+

End {A+}
 a1

B+

 b1

Do {A+}

A- B-

R2

b0

a0

Do {C+}

 C+

End {C+}

End {C-}

Do {C-}

 c1

 C-

 c0

R1

Do {B+}

End {B+}

Do {A-,B-}

End {A-,B-}

Basic element: Nodes = 30, Links = 43 Basic element: Nodes = 26, Links = 34

 
Fig. 2.4. LLD and PN for Sequence_1. 
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LLD PN

Sequence_2:
START, A+, B+, 10 sec, {A-, B-}, C+, C-
(Sequence_1 with one 10-sec timer added)
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Fig. 2.5. LLD and PN for Sequence_2. 
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Fig. 2.6. LLD and PN for Sequence_3. 
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Fig. 2.7. LLD and PN for Sequence_4. 
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Fig. 2.8. LLD and PN for Sequence_5. 
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Table 2.4. IF-THEN formats of LLD and PN in Fig. 2.4-2.8. 

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1)∪R2)∩R3’ → R2,
5. R2 → B-,
6. R2∩a1 → A-,
7. R2∩b0∩a0 → C+,
8. ((R2∩c1)∪R3)∩R1’ → R3,
9. R3 → C-.

Rules = 9, Operators = 31

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1. 

Rules = 11, Operators = 23
1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’ → R3,
10. R3 → C-.

Rules = 10, Operators = 34

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 24

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’ → R3,
10. R3 → C-,
11. c0∩CNT1 → R4,
12. Pb’ → (RST)CNT1.

Rules = 12, Operators = 40

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1. 

Rules = 11, Operators = 26

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’ → R3,

10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2.

Rules = 16, Operators = 52

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 29

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’∩R7’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’∩R7’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’∩R7’ → R3,
10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2,
17. ES → R7.

Rules = 17, Operators = 56

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1∩ES’→ A+,
3. A+∩ES’ → a1,
4. a0∩b0∩ES’ → B+,
5. B+∩ES’ → b1,
6. b1∩TIM1∩ES’ → A-∩B-,
7. A-∩B-∩ES’ → a0∩b0∩R2,
8. R2∩a0∩b0∩c0∩ES’ → C+,
9. C+∩ES’ → c1,
10. c1∩ES’ → C-,
11. C-∩ES’ → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 39

LLD PN

Seq._1

Seq._4

(Seq._3 with 
one timer and 
one counter 
added)

Seq._2

(Seq._1 with 
one timer 
added)

Seq._5

(Seq._4 with 
one emergency 
stop added)

Seq._3

(Seq._2 with 
one counter 
added)

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1)∪R2)∩R3’ → R2,
5. R2 → B-,
6. R2∩a1 → A-,
7. R2∩b0∩a0 → C+,
8. ((R2∩c1)∪R3)∩R1’ → R3,
9. R3 → C-.

Rules = 9, Operators = 31

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1. 

Rules = 11, Operators = 23
1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’ → R3,
10. R3 → C-.

Rules = 10, Operators = 34

1. Pb → R1,
2. a0∩R1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1.

Rules = 11, Operators = 24

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’ → R3,
10. R3 → C-,
11. c0∩CNT1 → R4,
12. Pb’ → (RST)CNT1.

Rules = 12, Operators = 40

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1. 

Rules = 11, Operators = 26

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’ → R3,

10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2.

Rules = 16, Operators = 52

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1 → A+,
3. A+ → a1,
4. a0∩b0 → B+,
5. B+ → b1,
6. b1∩TIM1 → A-∩B-,
7. A-∩B- → a0∩b0∩R2,
8. R2∩a0∩b0∩c0 → C+,
9. C+ → c1,
10. c1 → C-,
11. C- → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 29

1. ((Pb∩a0)∪(R3∩c0)∪R1)∩R2’∩R4’∩R6’∩R7’ → R1,
2. R1 → A+,
3. R1∩a1 → B+,
4. ((R1∩b1∩TIM1)∪R2)∩R3’∩R4’∩R6’∩R7’ → R2,
5. b0’∩c0’ → (RST)TIM1,
6. R2 → B-,
7. R2∩a1 → A-,
8. R2∩b0∩a0 → C+,
9. ((R2∩c1)∪R3)∩R1’∩R4’∩R6’∩R7’ → R3,
10. R3 → C-,
11. c0∩R5∩CNT1 → R4,
12. Pb’ → (RST)CNT1,
13. R4∩TIM2 → R5,
14. Pb’ → (RST)TIM2,
15. R5∩c0∩CNT2 → R6,
16. R5’ → (RST)CNT2,
17. ES → R7.

Rules = 17, Operators = 56

1. Pb → R1∩(SET)CNT1 ,
2. a0∩R1∩CNT1∩ES’→ A+,
3. A+∩ES’ → a1,
4. a0∩b0∩ES’ → B+,
5. B+∩ES’ → b1,
6. b1∩TIM1∩ES’ → A-∩B-,
7. A-∩B-∩ES’ → a0∩b0∩R2,
8. R2∩a0∩b0∩c0∩ES’ → C+,
9. C+∩ES’ → c1,
10. c1∩ES’ → C-,
11. C-∩ES’ → a0∩b0∩c0∩R1∩(SET)CNT2,
12. CNT2∩TIM2 → (SET)CNT1.

Rules = 12, Operators = 39

LLD PN

Seq._1

Seq._4

(Seq._3 with 
one timer and 
one counter 
added)

Seq._2

(Seq._1 with 
one timer 
added)

Seq._5

(Seq._4 with 
one emergency 
stop added)

Seq._3

(Seq._2 with 
one counter 
added)
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Fig. 2.9. Required basic elements in the basic element approach. 
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Fig. 2.10. Required rules and logical operators in the IF-THEN transformation. 
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Fig. 2.11. The increase ratio for the basic element approach. 
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Fig. 2.12. The increase ratio for the IF-THEN transformation. 

 

 

2.4. Discussions 
This chapter presents a novel and unified approach for evaluating the computational 

burden and complexity subject of sequence programming for different structures. 

Because the basic elements for LLD and PN structures posses different physical 

meanings, results using the basic element approach are not adequate to conclude which 

design structure is more efficient. By applying the proposed IF-THEN transformation 
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approach, we obtain the same IF-THEN rules and logical operators for both LLD and PN 

structures, and thus the results in Fig. 2.10 show conclusively that the PN structure 

design is more efficient.  

Furthermore, by applying the IF-THEN transformation, results indicate that the PN 

structure also leads to a lower increase ratio than the LLD structure, as shown in Fig. 

2.12. Thus, design via the PN structure is more flexible when the specification changes. 

Similar trend can also be observed using the basic element approach as shown in Fig. 

2.11. Therefore, the PN structure for sequence control design will become more valid for 

large-scale processes.  

Although both the basic element approach and the IF-THEN transformation present 

similar results in terms of increase ratios for given sequence changes as shown in Fig. 

2.11-2.12, a comparison indicates that the basic element approach overestimates the 

complexity of LLD, and underestimates that of PN. For example, comparing Sequence_1 

with Sequence_2, which adds a timer to Sequence_1, results of the basic element 

approach indicate that both sequences require the same number of basic elements by 

using the PN, as shown in Fig. 2.9. This is obviously misleading. On the other hand, 

evaluation results with the present IF-THEN transformation properly indicate that the 

complexity of PN increases from 34 to 35, as shown in Fig. 2.10. Therefore, the proposed 

IF-THEN transformation is more realistic for evaluating sequence control design than the 

basic element approach. 

 

 

2.5. Summary 
In this chapter, we have proposed a unified comparison approach to adequately 

evaluate the LLD and PN by using the IF-THEN transformation. Thus, more realistic and 

reasonable results can be obtained to analyze the design complexity and flexibility to 

specification changes for different structures. Results show that the PN is simpler and 

more flexible than LLD in realization of sequence controllers. Hence, based on the given 

example, PN might be a promising solution for modern industrial control systems. 
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Chapter 3 

Design of the Sequence Controller in Manufacturing 

Systems 
 

In the previous chapter, a comparison between the ladder logic diagram (LLD) and 

Petri net (PN) has been provided. However, in real industrial environments, most 

industrial PLC users still prefer to program in LLD. Hence, this chapter presents a 

systematic approach to the LLD implementation of the sequence controller in 

manufacturing systems. Basically, the simplified Petri net controller (SPNC) is employed 

in the present approach (Lee, 1999). By employing the IDEF0, the SPNC model can be 

built through the material flow diagram and the information flow diagram. Then, the 

LLD can be transformed from the SPNC through the token passing logic (TPL). The 

proposed approach, including the IDEF0, SPNC, and TPL tools, leads to the standard 

IEC1131-3 LLD for PLC implementation. Finally, an application of a stamping process is 

provided to illustrate the design procedure of the developed approach. 

 

 

3.1. Simplified Petri Net Controller 
In this section, we propose a simplified Petri net controller (SPNC) by introducing 

sensor states into the ordinary PN. The SPNC is applied to simulate the manufacturing 

system and to lead the IDEF0 to LLD in the proposed IDEF0/SPNC/TPL/LLD approach. 

 

3.1.1 Formal Definition 
Fig. 3.1 (a) shows an ordinary PN model for pushing a button to trigger a process. By 

using the ordinary PN approach in controlling manufacturing processes, to deal with 

multiple sensor readings makes the net structure become more complicated and difficult 

to analyze. Therefore, by introducing the sensor state into the PN to form an SPNC, the 



 31

net structure becomes more simplified for implementation. From the control point of 

view, as shown in Fig. 3.1 (b), the sensor state in the SPNC replaces the reading sensor 

model such as push buttons or limit switches within the ordinary PN. Note that the 

condition of sensor states may change depending on the practical situation. Thus, as 

sensors increase in processes, the net structure of the SPNC is greatly simplified, as 

shown in Fig. 3.1 (c). Then, it becomes easy to model and implement the sequence 

controller through the SPNC defined as: 

 

),,,,(SPNC 0MSATP=       (3.1) 

where, 

P = {p1, p2,…, pm} is a finite set of places, where 0>m ; 
T = {t1, t2, …, tn} is a finite set of transitions with ∅≠∪TP  and ∅=∩TP , 

where 0>n ; 

}{}{ PTTPA ×∪×⊆  is the set of arcs between the places and transitions, 

S ={s1, s2, …, sn} is the set of sensor states, and 

1:0 →PM  is the initial marking. 
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Fig. 3.1. The comparison between the PN and the SPNC via a simple process. (a) 

Ordinary PN. (b) SPNC. (c) Comparison results. 
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3.1.2 Graphical Representation 
As shown in Fig. 3.2, the SPNC consists of three kinds of nodes: 1) the place, drawn 

as a circle, 2) the transition, drawn as a bar, and 3) the sensor state, drawn as a smaller 

circle with a hidden arrow. The arcs, represented by directed arrows, are either from a 

place to a transition or from a transition to a place. In modeling, the marking conditions 

of places represent the status of the system and the transitions represent events. A 

transition has a set of input and output places, which represent the pre-conditions and 

post-conditions of the event, respectively. A sensor state, associated with its transitions, 

represents the sensor readings as a firing condition which triggers a manufacturing 

sequence. The sensor state is a Boolean variable that can be 0 in which case the related 

transition is not fired, or 1 in which case the related transition is fired if it is enabled. The 

marking of the SPNC is represented by the number of tokens in each place, drawn as 

black dots. The presence of a token in a given place means that the associated condition 

is true or that the actions associated with this place are taken. 

 

Place   Transition    Token       Arc       Sensor state
 

Fig. 3.2. The icon definition of the SPNC. 

 

3.1.3 Dynamic Behavior 
The dynamic behavior of a system is simulated by the distribution of tokens in places 

as the enable transitions fire. The flow of tokens in the SPNC is governed according to 

the following rules: 

1) Enabling rule: 

A transition is said to be enabled, if all its input places are marked. 

2) Firing rule: 
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Furthermore, the enabled transition is fired if all its sensor states are true. When an 

enabled transition fires, it removes one token from all its input places and deposits 

one token into all its output places at the same time. 

 

3.1.4 Comparison with Other Models 
The behavior of the proposed SPNC is similar to the sequential function chart (SFC). 

However, since SFC is derived from PN with some modifications and simplifications, 

theoretical results of PN cannot be directly applied to SFC (Miyazawa et al., 1997). Since 

the present SPNC is an extension of the PN by introducing sensor states, SPNC allows 

formal analysis of various properties, such as the safety, liveness, and reversibility for the 

process (David and Alla, 1994). Moreover, SFC only offers the method for depicting 

sequences of control system without providing any mechanisms to perform the functional 

analysis. Note that in the present IDEF0/SPNC/TPL/LLD approach, by applying the 

IDEF0 for functional analysis and information flow design, the SPNC model can be 

transformed from the information flow diagram. 

Furthermore, compared with other extended PN applications such as Interpreted PN 

(Moalla, 1985), Automation PN (Uzam and Jones, 1998), or Signal Interpreted PN (Frey, 

2000), which use external events to model sensor readings, the present SPNC simply 

applies the sensor states to model the firing conditions. Also, the present 

IDEF0/SPNC/TPL/LLD approach obtains the PLC programs systematically, from the 

design specifications through the SPNC, and to the final LLD. Since the PN model is 

inherently concurrent, whereas the LLD is typically scan-based, the sequential 

specification must be determinate and deterministic in the present approach. Also, the 

mono-marked restrictions design is required in the proposed SPNC to guarantee the 

safety of the sequence in practice. 

 

 

3.2. The IDEF0/SPNC/TPL/LLD Approach 
In this section, the integrated IDEF0/SPNC/TPL/LLD approach, including the IDEF0, 
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SPNC, and TPL tools, is proposed to systematically obtain the LLD for PLC 

implementation. The design procedure of the IDEF0/SPNC/TPL/LLD approach, depicted 

in Fig. 3.3, consist of five stages and each stage is described as follows. 
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Flows
Design

END

START

Dynamic
Verification

Layout

Impementation

Problem?
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No

Problem?
Yes

No

IDEF0
(Material Flow)

IDEF0
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SPNC

TPL

LLD

 
 

Fig. 3.3. Design procedure of the IDEF0/SPNC/TPL/LLD approach. 
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3.2.1 Functional Analysis Stage: IDEF0 
With the given specifications, the purpose of functional analysis is to realize the 

functions and operations of the system and then generate the control signals for the next 

stage. At this stage, each function of the manufacturing system has to be specified with a 

top-down hierarchically decomposing process by using the IDEF0 (Prabhaka, 1993). 

IDEF0 is an activity-oriented modeling approach and its representation of a 

manufacturing process consists of an ordered set of boxes representing activities 

performed by the system. The inputs are those items transformed by the activity and the 

outputs are the results of the activity, as shown in Fig. 3.4. The mechanisms, drawn as 

supporting arrows, represent resources such as machines, computers and operators, etc. 

The decomposition process continues until there is sufficient in detail on the basic 

activities to serve the purpose of sequence control. A functional model of the material 

flow diagram is obtained at this stage. 

 

ActivityInput
Material/ Information

flows

Control

Output

Mechanism

Material/ Information
flows

Machines/ Computers/ Operators

Parameters/ Rules

 
Fig. 3.4. The IDEF0 scheme. 

 

3.2.2 Information Flow Design Stage: IDEF0 
At this second stage, the information flow is used to control the material flow in a 

manufacturing system. The information flow diagram is constructed from the material 

flow diagram with static analysis, again using the IDEF0. In the information flow 

diagram, the input and output commands are designed to enable the activity and to 
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change the machine status after firing, respectively. Because the mechanisms will be 

assigned within the I/O ports at the layout stage later, the supporting arrows for 

mechanisms are omitted here to simplify the information flow design. The sensor 

readings representing the conditions to fire the activity are drawn as control signal arrows. 

A controllable model of the information flow diagram is obtained at this stage. 

 

3.2.3 Dynamic Verification Stage: SPNC 
The information flow diagram only represents system activities and their 

interrelationships. Since it does not show direct logical and dynamic dependencies 

between activities, a dynamic SPNC model, transformed from the information flow 

diagram, is applied to verify the dynamic behavior of the system. The transformation 

from the information flow diagram into the SPNC model is based on the following steps: 

Step 1) An activity box in the information flow diagram is transformed into a 

transition of the SPNC. 

Step 2) The input and output commands are transformed into input and output 

places, respectively. 

Step 3) The control signals of the sensor readings are transformed into sensor 

states. 

Step 4) The initial marking of the SPNC is set according to the initial condition of 

the system. 

An example is shown in Fig. 3.5. The activity of the information flow diagram is 

transformed into the transition T1. The input command I1 and output command I2 are 

transformed into the input place P1 and output place P2, respectively, and the control 

signal control is transformed into the sensor state S1. When the SPNC model is obtained, 

the correctness of the sequence order can be verified by studying the behaviors via 

computer simulations. Also the properties of the PN such as the safety, liveness, and 

reversibility can be analyzed to identify the dynamic behavior. 
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IDEF0     →     SPNC

P2P1

S1

T1

activityI1 I2

control

 
Fig. 3.5. The transformation from the IDEF0 to the SPNC. 

 

3.2.4 Layout Stage: TPL 
To simplify the conversion of the SPNC into the LLD, the token passing logic (TPL) 

is employed in this stage (Uzam and Jones, 1998). The attractive feature of the TPL is 

that it facilitates the direct conversion of a SPNC into a generic form of control logic, 

which may be implemented with low-level languages such as LLD, or with high-level 

languages such as C. This is achieved by adopting the SPNC concept of using tokens as 

the main mechanism for controlling the flow of the control logic. At this stage, the SPNC 

model is transformed into the TPL model to assign the I/O ports for actions and sensor 

readings. For applications in a variety of industrial PLC hardware, the TPL is defined as 

follows: 

 

 TPL = (M, T, A, in, out, time)    (3.2) 

where, 

M = {M1, M2, …, Mm} is a finite set of memory bits,. 

T = {T1, T2, …, Tn} is a finite set of transitions, 

A {M T} {T M}⊆ × ∪ ×  is the set of arcs between the memories and transitions, 

in ={in1, in2, …, inn} is the set of sensor inputs, 

out ={out1, out2, …, outm} is the set of actuator outputs, and 

time ={time1, time 2, …, time m} is the set of delay timers. 
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The transformation from the SPNC model into the TPL form is based on the following 

steps: 

Step 1) The transition of the SPNC is transformed into a transition of the TPL. 

Step 2) The place is transformed into a memory bit. 

Step 3) The sensor state is transformed into a sensor input. 

Step 4) For the action with a place, besides the memory bit, an actuator output is 

assigned. 

Step 5) For the delay time with a place, besides the memory bit, a delay timer is 

assigned. 

 

P2P1

S1

T1

out1

M1 M2

in1

T1

SPNC      →     TPL

 
Fig. 3.6. The transformation from the SPNC to the TPL. 

 

An example is shown in Fig. 3.6. The places P1 and P2 are transformed into the 

memory bits M1 and M2, respectively, and the sensor state S1 is transformed into the 

sensor input in1. Assume there is an action with P2, the actuator output out1 is assigned. 

Hence, each place whose capacity is limited to one within the SPNC corresponds to a 

memory bit in the TPL. The token flow is then simulated by setting and resetting these 

memory bits. Thus, each place within the SPNC has at least one associated memory bit in 

the TPL. The sensor state within the SPNC corresponds to a sensor input contact in the 

TPL. To simulate the firing of a transition, if the memory bits associated with input 

places are set and the sensor inputs of the transition yield “true”, the memory bits at the 

input places are reset and the memory bits at the output places are set simultaneously. 

Moreover, the actions and delays within the SPNC are assigned to appropriate memory 
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bits within the TPL by using the actuator outputs and delay timers, respectively. By using 

the TPL, the I/O ports for the sensor readings and actuator outputs are assigned and the 

layout for implementation in LLD can be completed. The TPL bridges the gap between 

SPNC and LLD and provides a simple way of developing PLC controllers. 

 

3.2.5 Implementation Stage: LLD 
In order to convert the TPL model into LLD code for real time implementation, a 

direct mapping is used from the TPL to the LLD by maintaining the enabling and firing 

rules at this stage. The transformation from the TPL model into the LLD format is based 

on the following steps: 

Step 1) Initial condition setting: the token in the SPNC is mapped to the 

corresponding internal relay with the SET command. 

Step 2) For each transition, the input memory is mapped to a conditional contact 

and an internal relay with the RST command and the output memory is 

mapped to an internal relay with the SET command. 

Step 3) The sensor input is mapped to a conditional contact for the associated 

transition. 

Step 4) The output relay is assigned to send the command to perform the operation. 

Step 5) The delay timer is assigned to perform the delay. 

An example is shown in Fig. 3.7. For transition T1, the input memory M1 is mapped 

to a conditional contact and an internal relay M1 with the RST command and the output 

memory M2 is mapped to a internal relay M2 with the SET command. The sensor input 

in1 is mapped to a conditional contact X1 and the actuator output out1 is mapped to the 

output relay Y1. By integrating initial condition and setting all transitions, the LLD for 

sequence control is thus completed. 
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out1

M1 M2

in1

T1

X1
SET  M2

RST  M1

M1

M2
Y1

T1

TPL       →         LLD
 

Fig. 3.7. The transformation from the TPL to the LLD. 

 

In the proposed IDEF0/SPNC/TPL/LLD approach, the material flow diagram and the 

information flow diagram are obtained by using the IDEF0 technique for functional 

analysis and information flow design. Then, the information flow diagram is transformed 

into the SPNC model to verify its dynamic behavior. Subsequently, the SPNC model is 

converted into a TPL model for implementation layout. Finally, the IEC1131-3 LLD for 

implementation on PLC controller is obtained using a direct mapping from the TPL into 

LLD. Fig. 3.8 summarizes the transformations in the proposed IDEF0/SPNC/TPL/LLD 

approach. 

 

 

IDEF0     →     SPNC   →     TPL       →         LLD

P2P1

S1

T1

activityI1 I2

control
out1

M1 M2

in1

T1

X1
SET  M2

RST  M1

M1

M2
Y1

T1

 
Fig. 3.8. The transformations of the IDEF0/SPNC/TPL/LLD approach. 
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3.3. Example: A Stamping Process 
To demonstrate the viability of the developed approach, an application to a stamping 

process is provided. 

 

Stamper_B

Thrower_C

Pusher_A

|
a1

|
a0

A+ A-

Pusher_A

|
c0

|
c1

C+ C-

Thrower_C

|
b0

|
b1

B+ B-

Stamper_B

sensor input

actuator output PLC

LLD

PC

 
Fig. 3.9. The stamping system. 

 

3.3.1 System Description 
As shown in Fig. 3.9, a stamping system consists of three cylinders which are 

operated by four-port and two-way solenoid valves. Each cylinder has two normally open 

limit switches. For example, when the end of pusher_A contacts limit switch a0, a0 is 

then closed. This indicates that pusher_A is at the end of its return stoke. The whole 

system has 7 input sensors corresponding to 6 limit switches, one push button for starting 

the system and 6 output actuators corresponding to 6 solenoid valves. In the stamping 

process, pusher_A moves the workpiece from a store onto the worktable. Then the 

workpiece is stamped by stamper_B and afterwards is ejected by thrower_C. Thus, the 

sequence of the stamping system is A+, B+, {A-, B-}, C+, C-, where the plus and the 

minus signs mean a piston performing forward strokes and return strokes, respectively. 
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{A-, B-} represents two concurrent actions as the pistons of both pusher_A and 

stamper_B perform return stokes simultaneously. 

 

3.3.2 Sequence Controller Design 
Through the use of the proposed IDEF0/SPNC/TPL/LLD approach, as shown in Fig. 

3.10, the LLD code for real time implementation on PLC controllers was systematically 

generated. First, by using the IDEF0 technique, the material flow diagram and the 

information flow diagram were obtained. Then, to verify its dynamic behavior, the 

information flow diagram has transformed into the SPNC model. Subsequently, the 

SPNC model was converted into a TPL model for layout. Finally, the LLD for 

implementation with PLC controllers was obtained by a direct mapping from the TPL. 

This LLD code is written for Mitsubishi FX2 PLCs which meet IEC1131-3. Table 3.1 

gives the notations used in the IDEF0/SPNC/TPL/LLD together with their descriptions. 

 

 

3.4. Summary 
In this chapter, we have proposed a systematic IDEF0/SPNC/TPL/LLD approach to 

the PLC-based sequence controller design in manufacturing systems. To obtain the LLD 

for PLC implementation, the SPNC is defined by introducing the sensor states into the 

ordinary Petri net and leads to meaningfully simplified process modeling. Moreover, the 

IDEF0 technique is employed to construct the SPNC model through the material flow 

diagram and information flow diagram. Starting from the basic sequential specification, 

the proposed approach includes IDEF0, SPNC, and TPL, and systematically leads to the 

standard IEC1131-3 LLD for PLC implementation. An application of a stamping process 

is provided to demonstrate the viability of the developed approach. 
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Table 3.1. Notations for the stamping process. 

SPNC element TPL element LLD element Description
P1 M1 M1 Ready
P2 M2, out1 M2, Y1 Holding {A}
P3 M3, out2 M3, Y2 Stamping {B}
P4 M4, out3 M4, Y3 Releasing {A}
P5 M5, out4 M5, Y4 Releasing {B}
P6 M6 M6 --
P7 M7 M7 --
P8 M8, out5 M8, Y5 Throwing {C}
P9 M9, out6 M9, Y6 Resetting {C}
T1 T1 -- Push in and Hold on {A+}
T2 T2 -- Stamp down {B+}
T3 T3 -- Release workpiece {A-, B-}
T4 T4 -- --
T5 T5 -- --
T6 T6 -- Throw out {C+}
T7 T7 -- Reset {C-}
T8 T8 -- Repeat {A+}
S0 in0 X0 Push button {ON}
S1 in1 X1 Sensor a1 {ON}
S2 in2 X2 Sensor b1 {ON}
S3 in3 X3 Sensor a0 {ON}
S4 in4 X4 Sensor b0 {ON}
S5 in5 X5 Sensor c1 {ON}
S6 in6 X6 Sensor c0 {ON}  
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Chapter 4  

Remote Supervision for Human-in-the-Loop Systems 
 

In remote-controlled processes, human operations may violate desired safety 

requirements and result in catastrophic failure. For such human-in-the-loop systems, this 

chapter proposes a systematic approach to develop supervisory agents that guarantee that 

remote manual operations meet safety specifications. The PN is applied to model, design, 

and verify a supervisory controller that prevents human errors. Then, the Java technology 

is adopted to implement the supervisor as an intelligent agent for on-line supervision of 

the remote control system. To demonstrate the feasibility and practicability of the 

proposed approach, the developed supervision system is applied to a rapid thermal 

process (RTP). 

 

 

4.1. A Novel Supervisory Structure 
Typically, an Internet-based control system (remote access using IP-based networks) 

is a “human-in-the-loop” system since people use a general web browser or specific 

software to monitor and control remotely located systems. As shown in Fig. 4.1 (a), the 

human operator is involved in the loop and sends control commands according to the 

observed status displayed by the state and/or image feedback. Research results indicate 

that approximately 80% of industrial accidents are attributed to human errors, such as 

omitting a step, falling asleep and improper control of the system (Rasmussen et al., 

1994). However, the Internet-based control literature provides few solutions for reducing 

or eliminating the possibility of human errors. In this chapter, we propose applying a 

supervisory design to the present remotely controlled, human-in-the-loop system so as to 

prevent abnormal operations from being carried out. Fig. 4.1 (b) shows the proposed 

supervisory control scheme for a remotely located system with the human in the loop. 
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First, the supervisory agent acquires the system status and makes the decision to 

enable/disable associated events to meet the required specifications, typically safety 

requirements. The human operator is then only allowed to perform the enabled events to 

control the system. The role of a supervisory agent is to interact with the human operator 

and the controlled system so that the closed human-in-the-loop system meets the required 

specifications and to guarantee that undesirable executions do not occur. 
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Fig. 4.1. (a) Typical remote control system with the human in the loop. (b) The proposed 

remote supervisory control scheme. 

 

 

4.2. Design of the Supervisor Using PN 
This section first shows the required control modes and specification types for remote 

supervisory control. Then, the PN-based procedure for designing the supervisor is 

described with a simple door-valve system for a RTP. 

 

4.2.1 Control Modes 
For remote control via the Internet, we are interested in the following two control 

modes: 
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1) Automatic control mode: When the system is in automatic control mode, the 

automatic controller autonomously controls the manufacturing process without user 

intervention (the human operator only needs to push a button to start the control cycle). 

Generally, an active sequence controller is used to automatically complete several 

operations in a certain order. 

2) Manual control mode: A system often must be open to manual control for various 

purposes, such as for test runs and fault diagnosis. Here, we examine the case in which 

the user can directly perform each operation. To ensure that safety constraints are not 

violated, the supervisory agent is on-line executed to acquire the system status and decide 

to either enable or disable specific operations. 

 

4.2.2 Specification Types 
The objective of the supervisor is to restrict the behavior of the system so that it is 

contained within the set of admissible states, called the specification. Two types of 

specification are classified as follows: 

1) Explicit specifications for control sequences: Generally, these specifications are 

“recipe-dependent”. They are enforced by a sequence controller in automatic mode or by 

a human operator in manual mode so as to accomplish certain tasks in a desired logical 

order. 

2) Implicit specifications for safety requirements: These specifications are 

“recipe-independent” and thus must always be obeyed throughout operation of the system. 

Basically, these specifications are required to satisfy safety and liveness constraints. The 

safety specification prevents the system from performing undesirable actions, while the 

liveness specification ensures that a given behavior is repeatable. In automatic mode, 

these specifications can be effectively dealt with by the sequence controller. In manual 

mode, the supervisor enforces these specifications by restricting the commands available 

to human operators. 
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4.2.3 PN-Based Design for the Supervisor 
PNs have been used to model, analyze, and synthesize control laws for DES. Zhou 

and DiCesare (1991), moreover, addressing the shared resource problem recognized that 

mutual exclusion theory plays a key role in synthesizing a bounded, live, and reversible 

PN. In mutual exclusion theory, parallel mutual exclusion consists of a place marked 

initially with one token to model a single shared resource, and a set of pairs of transitions. 

Each pair of transitions models a unique operation that requires the use of the shared 

resource.  

Definition 4.1: Given two nets ),,,( 11111 OITPG =  and ),,,( 22222 OITPG =  with 

initial marking M0,1 and M0,2, respectively. The synchronous composition of G1 and G2 is 

a net ),,,( OITPG =  with initial marking M0: 

21 || GGG = ,      (4.1) 

where, 

21 PPP ∪= ; 

21 TTT ∪= ; 

),(),( tpItpI i=  if ]})[2,1{( ii TtPpi ∈∧∈∈∃ , else 0),( =tpI ; 

),(),( tpOtpO i=  if ]})[2,1{( ii TtPpi ∈∧∈∈∃ , else 0),( =tpO ; 

)()( 1,00 pMpM =  if 1Pp∈ , else )()( 2,00 pMpM = . 

 

An agent that specifies which events are to be enabled and disabled when the system 

is in a given state is called a supervisor. For a system with plant model G and 

specification model H, the supervisor can be obtained by synchronous composition of the 

plant and the specification models: 

HGSG ||= ,      (4.2) 

where the transitions of H are a subset of the transitions of G, i.e. GH TT ∈ . Note that SG 

obtained through the above construction, in the general case, does not represent a proper 
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supervisor, since it may contain deadlock states from which a final state cannot be 

reached. Thus, the behavior of S should be further refined and restricted by PN analysis. 

In this chapter, we adopt mutual exclusion concept to build the PN specification 

model and then compose it with the plant model to design the supervisor. Moreover, the 

PN plant model is constructed using the task-oriented concept. Each operation is modeled 

as a task with a start transition, an end transition, a progressive place and a completed 

place. Note that the start transition is a controllable event as “command” input, while the 

end transition is an uncontrollable event as “response” output. The supervisor design 

procedure consists of the following steps: 

Step 1)  Construct the PN model of the plant using the task-oriented approach.   

Step 2)  Construct the PN model of the specifications using the mutual exclusion 

concept. 

Step 3)  Compose the plant and specification models to yield the supervisor model. 

Step 4)  Verify and refine the supervisor model to obtain a live, bounded and 

reversible model. 

 

4.2.4 Example: A Door-Valve System 
Consider a simple example of the interaction for the chamber door-gas valve system 

in a rapid thermal processor. The general PN model, shown in Fig. 4.2 (a), can be used to 

describe the open/close tasks for both the door and valve. The initial states of the door 

and valve are both closed. Assume that one basic safety specification is that the door and 

valve must not be open at the same time. A PN model for this specification constructed 

using the mutual exclusion concept is shown in Fig. 4.2 (b). In this model, the 

start_open_door and start_open_valve commands are mutually exclusive. Intuitively, 

performance of the start_open_valve command is only allowed if the door is closed and 

the start_open_door event has not yet been fired. If the start_open_door command has 

been fired, the start_open_valve command cannot be executed until the end_close_door 

response is given to signal that the door has been closed. The composed PN model of the 

door-valve system with the safety specification is shown in Fig. 4.2 (c). The supervisory 



 50

arcs are shown with dashed lines and the place ps showing the supervisor position is 

drawn thicker than those showing the task positions. In this approach, the supervisor 

consists only of places and arcs, and its size is proportional to the number of 

specifications that must be satisfied. 
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Fig. 4.2. (a) A general model for door and valve components. (b) The mutual exclusion 

specification model. (c) The composed supervisor for the door-valve system. 

 

 

4.3. Implementation of the Supervisor Using Java 
This section first describes the agent concept, and then shows the implementation 

architecture and interactive modeling of the hierarchical supervisory control system. 

Finally, the reasons of choosing implementation methods in Java technology are 

mentioned. 
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4.3.1 Agent Technology 
The agent technology is a new and important technique in recent novel researches of 

the artificial intelligence. Using agent technology leads to a number of advantages such 

as scalability, event-driven actions, task-orientation, and adaptivity (Bradshaw, 1997). 

The concept of an agent as a computing entity is very dependent on the application 

domain in which it operates. As a result, there exists many definitions and theories on 

what actually constitutes an agent and the sufficient and necessary conditions for agency. 

Wooldridge and Jennings (1995) depicts an agent as a computer system that is situated in 

some environment, and that is capable of autonomous actions in this environment in 

order to meet its design objectives. From a software technology point of view, agents are 

similar to software objects, which however run upon call by other higher-level objects in 

a hierarchical structure. On the contrary, in the narrow sense, agents must run 

continuously and autonomously. In addition, the distributed multiagent coordination 

system is defined as the agents that share the desired tasks in a cooperative point of view, 

and they are autonomously executing at different sites. For our purposes, we have 

adopted the description of an agent as a software program associated to the specific 

function of remote supervision for the manufacturing system. A supervisory agent is 

implemented to acquire the system status and then enable and disable associated tasks so 

as to advise and guide the manager in issuing commands. 

 

4.3.2 Client/Server Architecture 
Fig. 4.3 shows the client/server architecture for implementing the remote supervisory 

control system. On the remote client, the human operator uses a Java-capable web 

browser, such as Netscape Navigator or Microsoft Internet Explorer, to connect to the 

web server through the Internet. On the web server side, a Java servlet handles user 

authentication, while a Java applet is provides a graphical human/machine interface 

(HMI) and invokes the supervisory agent. In this chapter, we use Java technology to 

implement the supervisory agent on an industrial PLC, with a built-in Java-capable web 
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server assigned to handle the client requests. 
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 Fig. 4.3. Implementation architecture of the remote supervisory control system. 

 

4.3.3 Interactive Modeling 
A sequence diagram of the UML (Booch et al., 1999) is applied to model client/server 

interaction in the remote control system. Within a sequence diagram, an object is shown 

as a box at the top of a vertical dashed line, called the object’s lifeline and representing 

the life of the object during the interaction. Messages are represented by horizontal 

arrows and are drawn chronologically from the top of the diagram to the bottom.  

Fig. 4.4 shows the sequence diagram of the implemented remote supervisory control 

system. At the first stage, the Remote Client sends a hypertext transfer protocol (HTTP) 

request to the Web Server. Next, the Web Server sends an HTTP response with an 

authentication web page, on which the Remote Client can login to the system by sending 

a request with user/password. The Web Server then invokes a Java servlet to authenticate 

the user. If the authentication fails, the Java servlet will respond with the authentication 

web page again. On the other hand, if the authentication succeeds, the Java servlet’s 

response will be a control web page with a Java applet. The Java applet first builds a 

graphical HMI and constructs a socket on the specified port to maintain continuous 

communication with the server. Then, the Java applet acquires the system status through 

the constructed socket and displays it on the control web page iteratively by invoking the 

Device Handler to fetch the sensor states of Device objects. Finally, the supervisory agent 

is called by the Java applet and run to enable/disable associated control buttons on the 
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HMI according to the current system status so as to meet the required specifications. Thus, 

the Remote Client can send an action command by pushing an enabled button to control 

the remote system through the constructed socket. 
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Fig. 4.4. Interactive modeling with sequence diagram for the remote supervisory control 

system. 

 

4.3.4 Java Implementation 
In this thesis, we have employed the Java servlet for authentication and Java applet 

for graphical HMI. A Java servlet (Hunter and Crawford, 1998) is a compiled code, 

dynamically loaded to process requests from a Web server. It does not depend on browser 

compatibility due to running on the server side. Moreover, a Java server page (JSP) is a 

script and compiled into Java servlets during its first invocation and may call JavaBeans 

to perform processing on the server. A JavaBean is a portable, platform-independent 

component model, developed in collaboration with industry leaders. Since JSP with 
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JavaBean requires the script translation, Java servlet has been selected for 

implementation due to its faster performance and easier debugging. On the other hand, a 

Java applet (Campione and Walrath, 1995) is a widely used program that can be 

embedded in a Web page. When you use a Java-enabled browser to view a page that 

contains an applet, the applet’s code is transferred to your system and executed by the 

browser’s Java virtual machine (JVM). 

This thesis has adopted the Java applet for graphical HMI due to its plentiful 

availability of application programming interfaces (API). Also, most Web browsers 

(Navigator or Internet Explorer) provide the JVM to support Java applets. Moreover, as 

shown in Fig. 4.4, the TCP socket communication is used for data transmission due to its 

easier implementation. For distributed application development, the Java remote method 

invocation (RMI) or interface definition language (IDL) can be further applied (Hunter 

and Crawford, 1998). Moreover, Java object-oriented programming is one where each 

small part of the program is considered as a separate object that can interact with other 

objects. The advantage of object-oriented software is that blocks of code can easily be 

reused in different parts of the program, or even in different programs. This reduces 

development time and therefore costs (Rumbaugh et al, 1991). 

 

 

4.4. Example: A Rapid Thermal Process 
This section demonstrates a practical application of the remote monitoring and 

supervisory control to a rapid thermal process (RTP) via the Internet. 

 

4.4.1 Description of the RTP System 
A rapid thermal processor is a relatively new semiconductor manufacturing device 

(Fair, 1993). A schematic diagram of the RTP system is shown in Fig. 4.5, which is 

composed of 1) a reaction chamber with a door, 2) a robot arm for wafer 

loading/unloading, 3) a gas supply module with a mass flow controller and pressure 

controller-I, 4) a heating lamp module with a temperature controller, and 5) a flush 
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pumping system with a pressure controller-II.  
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Fig. 4.5. Schematic diagram of the RTP system. 

 

A realistic “recipe” of the hydrogen baking process, i.e. the explicit specification as 

mentioned in Section 4.2.2, is as follows:  

Step 1)  Load the raw wafer. 

Step 2)  Close the chamber door. 

Step 3)  Open the gas valve to supply gases with a desired gas flow rate and 

pressure of 2.8 liters per minute (lpm) and 0.5 Torr, respectively. 

Step 4)  Close the gas valve. 

Step 5)  Turn on the heating lamp to bake the wafer with a desired baking 

temperature and duration of 1000 C°  and 4 seconds, respectively. 

Step 6)  Turn off the heating lamp. 

Step 7)  Turn on the flush pump with a desired pressure of less than 0.05 Torr. 
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Step 8)  Turn off the flush pump. 

Step 9)  Open the chamber door. 

Step 10)  Unload the processed wafer. 

 

The initial state of the components in the RTP is either closed or off, except that the 

door is open. The following safety specifications, i.e. the implicit specification mentioned 

in Section 4.2.2, must be enforced throughout system operation. 

Spec-1: Wafer Loading is allowed only when no wafer is in the chamber. 

Spec-2: Wafer Loading/unloading is allowed only when the door is open. 

Spec-3: The gas valve must be closed when the flush pump is applied to the 

chamber. 

Spec-4: The gas valve, heating lamp, and flush pump cannot be started when the 

door is open. 

 

4.4.2 Design of the Sequence Controller 
As mentioned in Section 4.2.2, the specifications can be satisfied and involved in the 

sequence controller in automatic control mode. By applying the task-oriented concept, the 

PN model for the automatic control mode of the RTP is constructed as shown in Fig. 4.6, 

which consists of 26 places and 20 transitions, respectively. Corresponding notations are 

described in Table 4.1. Transitions drawn with dark symbols are events that are 

controllable by remote clients via the Internet. 
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Fig. 4.6. The PN model for automatic control of the RTP system. 
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Fig. 4.7. The composed PN model for manual control of the RTP system. 
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Table 4.1. Notations for the PN of the RTP system in Fig. 4.6. 

Place Description Transition Description
p1 Raw wafer buffer t1 Cmd: start loading wafer
p2 Loading wafer t2 Re: end loading wafer
p3 Loading wafer completed t3 Cmd: start closing chamber door
p4 Closing chamber door t4 Re: end closing chamber door
p5 Closing chamber door completed t5 Cmd: start opening gas valve
p6 Opening gas valve t6 Re: end opening gas valve
p7 Mass flow controller ready t7 Cmd: start closing gas valve
p8 Pressure controller-I ready t8 Re: end closing gas valve
p9 Opening gas valve completed t9 Cmd: start turning on heating lamp

p10 Closing gas valve t10 Re: end turning on heating lamp
p11 Closing gas valve completed t11 Cmd: start turning off heating lamp
p12 Turning on heating lamp t12 Re: end turning off heating lamp
p13 Turning on heating lamp completed t13 Cmd: start turning on flush pump
p14 Temperature controller ready t14 Re: end turning on flush pump
p15 Turning off heating lamp t15 Cmd: start turning off flush pump
p16 Turning off heating lamp completed t16 Re: end turning off flush pump
p17 Turning on flush pump t17 Cmd: start opening chamber door
p18 Turning on flush pump completed t18 Re: end opening chamber door
p19 Pressure controller-II ready t19 Cmd: start unloading wafer
p20 Turning off flush pump t20 Re: end unloading wafer
p21 Turning off flush pump completed
p22 Opening chamber door
p23 Opening chamber door completed
p24 Unloading wafer
p25 Unloading wafer completed
p26 Processed wafer buffer  

 

4.4.3 Design of the Supervisor 
For manual control mode, the plant model is formed by unconnecting each pair of 

transitions for the tasks in Fig. 4.6. In the specification model, Spec-1 and Spec-2 are 

modeled as the pre-conditions of the associated operations, while Spec-3 and Spec-4 are 

built by using the mutual exclusion concept. The composed PN model of both the plant 

and specifications is shown in Fig. 4.7, where A-J represent ten remote controllable tasks 

for the RTP system. The supervisory places ps1-7 (ps1 for Spec-1, ps2-3 for Spec-2, ps4 

for Spec-3, ps5-7 for Spec-4) are used to prevent undesired and unsafe operations on the 

part of the human operator. Corresponding notations for the supervisory places are 

described in Table 4.2. At this stage, the software package ARP (Maziero, 1990) is 
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chosen to verify the behavioral properties of the composed PN model due to its graphical 

representation, ease of manipulation, and ability to perform structural and performance 

analyses. The ARP uses the reachability analysis to validate the PN properties. Results 

reveal that the present PN model is live and bounded. The liveness property means that 

the system can be executed properly without deadlocks, while the boundedness property 

means that the system can be executed with limited resources (e.g., limited buffer sizes). 

 

Table 4.2. Notations for supervisory places of PN in Fig. 4.7. 

Place Description
ps1 Spec-1: chamber is empty
ps2 Spec-2: chamber door is open
ps3 Spec-2: chamber door is open
ps4 Spec-3: gas is closed/pump is off
ps5 Spec-4: door is closed/lamp is off
ps6 Spec-4: door is closed/gas is closed
ps7 Spec-4: door is closed/pump is off  

 

4.4.4 Implementation with Java Technology 
The system modeling and design developed in previous stages provide supervisory 

control models for implementation of the present remote monitoring and control 

technology. To implement the supervisory control, we use Java due to its 

object-orientation, portability, safety, and built-in support for networking and 

concurrency (Hoshi, 1999; Bertolissi and Preece, 1998). The developed supervisory 

agent is implemented on the Mirle SoftPLC (80486-100 CPU), an advanced industrial 

PLC with built-in Web server and Java virtual machine so that it can interpret the LLD, 

HTTP requests, and Java programs (Mirle Automation Corporation, 1999; SoftPLC 

Corporation, 1999). 

The developed HMI, shown in Fig. 4.8, is carefully designed to make its web pages 

more user friendly and also to increase download speed by avoiding unnecessary images. 

Since the client users will be mainly operators and engineers, they will want effective 

information delivery and will not be interested in flashy graphics (Shikli, 1997). The 

current system status is placed on the left, the system message is in the center, and the 
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button control area is on the right. Fig. 4.8 also shows that the system is in automatic 

control mode, and thus only the Auto-Control button has been enabled by the 

supervisory agent. The human operator can only push this button which starts automatic 

process control by the sequence controller. 

 

 
Fig. 4.8. Interactive web page for remote control of the RTP system by a Java applet 

(only Auto-Control button is admissible in the automatic control mode). 

 

Fig. 4.9 shows the web pages for manual control mode after the Open Valve button 

has just been pushed (Step 3 in Section 4.4.1). In this situation, since one wafer is already 

in the chamber and the door is closed, the Load Wafer and Unload Wafer buttons are 

both disabled by the supervisory agent to meet Spec-1 and Spec-2. Moreover, the 

Turn_On Pump and Open Door buttons are disabled to meet Spec-3 and Spec-4, 

respectively. Thus, the safety requirements of the RTP processing are guaranteed as 

human operations are conducted. Fig. 4.10 shows the hardware setup during prototype 

development. 
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Fig. 4.9. Interactive web page in manual control mode at Step 3 of RTP processing 

(seven buttons are enabled). 

 

 

 
Fig. 4.10. The hardware setup during prototype development. 
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4.5. Summary 
This chapter presents a framework for designing and implementing a PN-based 

supervisor for Internet-based control systems with the human in the loop. The supervisor 

is systematically designed by applying the mutual exclusion concept and is then 

implemented using the Java technology. To demonstrate the practicability of the proposed 

remote supervisory approach, an application is provided in which an simulated RTP 

system with an industrial PLC is controlled over the Internet. According to the feedback 

status of the remotely located system, the developed supervisor provides allowable 

commands for human operators while disabling operations that violate safety 

specifications. 
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Chapter 5 

Hierarchical Supervision for Manufacturing Systems 
 

 

In the previous chapter, a supervisory structure has been proposed to prevent the 

abnormal human commands from being carried out for remote control systems. However, 

the supervisor synthesis algorithm has computational complexity that is exponential in 

the state-space size of the system. In addition, communication delays and packet loss in 

the Internet are unavoidable. This chapter proposes a hierarchical supervisory scheme 

resulting in a smaller state-space size in supervisor synthesis. Moreover, fewer packet 

transmissions are required so that the effects of time delays and packet loss could be 

moderated. An application to a three-recipe flexible manufacturing system (FMS) 

controlled over the Internet is provided to illustrate the developed approach. 

 

 

5.1. Proposed Hierarchical Structure 
Hierarchical control is a familiar approach to the design of large-scale DES in order 

to reduce design complexity (Zhong and Wonham, 1990; Wong and Wonham, 1996; 

Tittus and Lennartson, 1999; Charbonnier et al., 1999). This chapter applies such 

hierarchical scheme to design the supervision systems for remote-controlled processes. 

As shown in Fig. 5.1, we use a three-level architecture. In the command level, the 

abstract model is a simplified representation of the controlled system and is employed by 

the remote manager to make decisions for task allocation. Here, a task is a group of 

certain steps and the manager can send task requests to control the remotely located 

processes according to the displayed status. In this way, the manager exercises “virtual” 

control over the behavior of the abstract model. Actually, the manager sends a request for 

a decided task to the local controller, which really regulates the detailed operations of the 

task with event feedback in the control level. State changes in the system will eventually 
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be conveyed in a summary form to the abstract model via the response channel. To avoid 

resource conflicts and deadlock, an agent is designed to acquire the system status and 

then enable and disable associated tasks so as to advise and guide the manager in issuing 

commands at the supervisory level. Thus, the manager is only allowed to issue the 

enabled tasks, and the hierarchical loop is closed in this way. 

As compared with the traditional scheduling and planning architecture for 

manufacturing systems (Gershwin, 1989), the proposed hierarchical scheme specifically 

designed by applying the virtual control concept is more suitable for the remote 

supervision. Moreover, the proposed supervisor guarantees that remote human-issued 

commands lead to normal operations without deadlocks. In addition, as compared with 

direct remote control of each step (Kress et al., 2001), the proposed approach not only 

guarantees deadlock-free operation, it also moderates the effects of time delays and 

packet loss across the Internet since fewer packet transmissions are needed to complete a 

task. 
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Fig. 5.1. Proposed three-level architecture for hierarchical supervision. 
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5.2. Design of the Hierarchical Supervision System 
This section first introduces multi-recipe processes, and then, shows the separated 

specifications for the command level and control level in remote supervisory control 

design. Finally, the PN-based design for the supervisor and the controller is introduced. 

 

5.2.1 Multi-Recipe Processes 
For multi-recipe systems with parallel or concurrent activities, each recipe describes a 

number of alternative desired paths through the plant. A recipe specifies the sequence of 

tasks to be executed and all possible ways the plant can be utilized in order to produce 

the desired product. Note that our recipe definition here corresponds to the master recipe 

in the batch control standard, ISA-S88.01 (ANSI/ISA, 1995). The master recipe is that 

level of recipe that accounts for equipment capabilities and may include process 

cell-specific information. It is thus natural to view a recipe as a specification on the plant 

to exhibit a certain task-sequence. However, there can be several independent recipes 

using the plant simultaneously, and all of these together form a non-deterministic joint 

specification on the overall system behavior. Since more than one recipe may be required 

to access the same resource, and each resource can only serve one recipe at a time, 

deadlock between different recipes may thus occur. The remote control problem then is 

to design a system that: 

1) coordinates the resources for different recipes in order to ensure that the specified 

tasks in all recipes are executed correctly without deadlock occurring, and 

2) regulates the execution of each task in detailed operations. 

 

5.2.2 Separated Specifications 
The objective of the hierarchical supervision is to restrict the behavior of the system 

so that it is contained within the desired states, called the specifications. The 

specifications are separated into two levels as follows: 

1) Command-level specifications for recipes, resources, and liveness: These 

specifications require that the logical order of each recipe, resource constraints, and 
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liveness requirement are satisfied throughout all operations of the system. The recipe 

specification indicates the sequence of tasks to be executed, and it can be modeled as a 

sequential flow. The resource specification presents the physical constraints of the 

limited resources, and shared resources can be adequately expressed in terms of mutual 

exclusion conditions. The liveness specification ensures that a given behavior is 

deadlock-free and repeatable, and it can be preserved by deadlock analysis with 

avoidance policies (Fanti et al., 2000). In the proposed hierarchical architecture, the 

supervisory agent enforces these specifications by restricting the task commands 

available to the remote manager. 

2) Control-level specifications for detailed operations: These specifications are the 

detailed logical operations of each task. In the proposed hierarchical architecture, the 

control-level specifications are enforced by a local controller which accomplishes certain 

operations of the requested task for the physical plant in a desired logical order. 

To summarize, the system requirements are separated into the command-level 

specification, which results in non-deterministic sequences of tasks, and the control-level 

specification, which leads to detailed deterministic operations of each task. The proposed 

separation not only reduces the design complexity of the supervisor synthesis, as shown 

latter, it also makes the system design more flexible, since it avoids the need to redesign 

the local controller, as only the command-level specification varies. 

 

5.2.3 Design of the Supervisor 
In this chapter, we first build the resource specification models and then compose 

them with the recipe models to design the supervisor. The supervisor design procedure 

consists of the following steps: 

Step 1)  Construct the Petri-net model of the recipe specifications in command level 

using the task-oriented approach. 

Step 2)  Build the Petri-net model of the resource specifications using the mutual 

exclusion concept. 

Step 3)  Compose the recipe and resource models to yield the basic supervisor model. 
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Step 4)  Analyze and refine the supervisor model to obtain a deadlock-free, bounded, 

and reversible model. 

The PN recipe model is constructed using the task-oriented concept. Each task is 

modeled with a start transition, an end transition, a progressive place, and a completed 

place. Note that the start transition, as the “command” input is a controllable event, while 

the end transition, as the “response” output is an uncontrollable event. Obviously, the 

presented hierarchical scheme is endowed with task-based modularity in the command 

level. 

 

5.2.4 Design of the Local Controller 
The logical behavior of each task in the control level is a deterministic process. For 

the local controller design, the detailed PN models of each controllable task in the recipe 

are built to describe the detailed operations and follow the deterministic sequences in this 

stage. Applying the PN to design the controller leads to a unified PN-based approach to 

develop the hierarchical supervision, and thus facilitates the use of established PN 

analysis and implementation methods. 

 

 

5.3. Example: A Three-Recipe Flexible Manufacturing System 
5.3.1 Description of the System 

Fig. 5.2 shows the remote-controlled FMS, which is composed of 1) three processing 

machines, 2) three raw material suppliers, and 3) six automated conveyers. It is assumed 

that the raw materials are provided infinitely. The FMS corresponding to different 

products are specified in terms of recipes, i.e. the sequences of tasks to be carried out on 

discrete amounts of materials by employing all or part of the machines. This particular 

FMS is a multi-recipe system with three recipes for three different products described as 

follows: 

Recipe 1) Product x-y: Load materials x and y to Machine 1 for processing. Then, convey 

x-y to Machine 3. After processing x-y in Machine 3, unload the product. 



 68

Recipe 2) Product x-z: Load materials x to Machine 1 and z to Machine 2 for processing, 

and then convey x and z to Machine 3. After processing x-z in Machine 3, 

unload the product. 

Recipe 3) Product y-z: Load materials y to Machine 1 and z to Machine 2 for processing, 

and then convey y and z to Machine 3. After processing y-z in Machine 3, 

unload the product. 
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Fig. 5.2. Schematic diagram of the three-recipe FMS. 

 

By applying the task-oriented concept, the PN model for the three recipes is 

constructed as shown in Fig. 5.3, which consists of 19 places and 22 transitions, 

respectively. Transitions drawn with dark symbols are events that are controllable by 

remote managers via the Internet. Corresponding notation is described in Table 5.1.  

 

5.3.2 Design of the Supervisor 
The three machines represent resources shared between the different recipes. Since 

more than one recipe may require access to the same resource, but each resource can only 

serve one recipe at a time, deadlock between different recipes may thus occur. The 

required specifications are as follows. 

Spec-1: Raw material loading of x and y is allowed only when Machine 1 is available. 
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Spec-2: Raw material loading of z is allowed only when Machine 2 is available. 

Spec-3: Material conveying to Machine 3 is allowed only when Machine 3 is available. 

Spec-4: Liveness, i.e. no deadlock states, must be enforced throughout system 

operation. 
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Fig. 5.3. Preliminary PN model of the three-recipe FMS. 
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Table 5.1. Notations for the PN of the FMS in Fig. 5.3. 

Place Description Transition Description
p1 Loading x-y to M1 t1 Cmd: start loading x-y to M1
p2 Loading x-y to M1 completed t2 Re: end loading x-y to M1
p3 Conveying x-y to M3 t3 Cmd: start conveying x-y to M3
p4 Conveying x-y to M3 completed t4 Re: end conveying x-y to M3
p5 Loading x to M1 t5 Cmd: start loading x to M1
p6 Loading x to M1 completed t6 Re: end loading x to M1
p7 Conveying x to M3 t7 Cmd: start conveying x to M3
p8 Conveying x to M3 completed t8 Re: end conveying x to M3
p9 Loading z to M2 t9 Cmd: start loading z to M2
p10 Loading z to M2 completed t10 Re: end loading z to M2
p11 Conveying z to M3 t11 Cmd: start conveying z to M3
p12 Conveying z to M3 completed t12 Re: end conveying z to M3
p13 Loading y to M1 t13 Cmd: start loading y to M1
p14 Loading y to M1 completed t14 Re: end loading y to M1
p15 Conveying y to M3 t15 Cmd: start conveying y to M3
p16 Conveying y to M3 completed t16 Re: end conveying y to M3
p17 Processing x-y in M3 t17 Cmd: start processing x-y
p18 Processing x-z in M3 t18 Re: end processing x-y
p19 Processing y-z in M3 t19 Cmd: start processing x-z

t20 Re: end processing x-z
t21 Cmd: start processing y-z
t22 Re: end processing y-z  

 

In the specification model, Spec-1 and Spec-3 are built by using the mutual exclusion 

concept, while Spec-2 is modeled as the precondition of the associated tasks. The 

composed PN model of both the recipe and specifications is shown in Fig. 5.4. The 

supervisory arcs are shown with dashed lines and the places showing the supervisory 

positions are drawn thicker than those showing the task positions. The supervisory places 

ps1-4 (ps1 for Spec-1, ps2 for Spec-2, ps3-4 for Spec-3) are used to prevent the remote 

manager from issuing undesired commands leading to resource conflicts on the part of the 

system. Corresponding notation for the supervisory places is described in Table 5.2. 

At this stage, the software package ARP (Maziero, 1990) is used again to verify the 

behavioral properties of the composed PN models. The validation result (without ps5) 

shows that one deadlock occurs with the places p2, p10, p12, and ps3 marked only. The 
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physical meaning of the deadlock state is that if both Machine 2 and Machine 3 are 

occupied with z for Product x-z or y-z, while Machine 1 is loaded for the Product x-y, 

then no product can be completed and the system is deadlocked. Hence, for Spec-4, the 

ps5 is further designed and added to the PN model, as shown in Fig. 5.4. Validation 

results (with ps5) reveal that the present PN model is live, bounded, and reversible. The 

liveness property means that the system can be executed properly without deadlocks, 

while boundedness indicates that the system can be executed with limited resources, and 

reversibility implies that the initial system configuration is always reachable. In this 

approach, the supervisor consists only of places and arcs, and its size is proportional to 

the number of specifications that must be satisfied. 
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Fig. 5.4. Composed PN model of the three-recipe FMS. 
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Table 5.2. Notations for supervisory places of the PN in Fig. 5.4. 

Place Description
ps1 Spec-1: M1 is available for x-y, x, or y.
ps2 Spec-2: M2 is available for z.
ps3 Spec-3: M3 is available for x-y, x, or y.
ps4 Spec-3: M3 is available for x-y, or z.
ps5

(2-bound)
Spec-4: One token means x-y is not in M1 and
z is not in M3. Another means x or y is in M3.  

 

5.3.3 Design of the Local Controller 
As mentioned in Section 5.2.4, the detailed operations of each task can also be 

designed and constructed with PN models. Fig. 5.5 (a)-(c) shows the PN model of the 

tasks Loading (from raw material supplier to M1 or M2 with processing), Conveying 

(from M1 or M2 to M3), and Processing (processed by M3 and unloaded), respectively. 
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Fig. 5.5. PN models of (a) loading, (b) conveying, and (c) processing tasks for FMS. 

 

5.3.4 Implementation of Remote Hierarchical Supervision 
The system modeling and design developed in previous stages provide supervisory 

and control models for implementation of the present remote hierarchical supervision. 
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The developed local controller and supervisory agent are implemented on the Mirle 

SoftPLC. Fig. 5.6 shows the developed HMI. By pushing the enabled buttons, the remote 

manager can issue commands to start tasks operated by the local controller. It also shows 

that Machine 1 is available, and both Machine 2 and 3 are occupied with material z (the 

pre-state of the mentioned deadlock in Section 5.3.2). In this situation, buttons Load X to 

M1 or Load Y to M1 are enabled to meet Spec-1, while the Load X-Y to M1 button is 

disabled by the supervisory agent to satisfy Spec-4, and the other buttons are disabled to 

meet Spec-2, Spec-3 and recipe specifications. The remote manager can only push the 

buttons Load X to M1 or Load Y to M1 to generate Product x-z or y-z, respectively. 

Thus, the desired requirements of the three-recipe FMS are guaranteed as the commands 

issued by the remote human manager are conducted. 

 

 
 

Fig. 5.6. Interactive Web page for remote supervision of the FMS by a Java applet (only 

three buttons are admissible). 
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5.4. Discussions 
In the proposed hierarchical framework, the supervisor turns out to be more compact 

and simple, since it deals only with the command-level tasks, i.e. groups of operations. 

This greatly simplifies analysis and validation of the supervisor. The implementation of 

several elementary operations can be grouped into a single task performed by the local 

controllers. Separation of detailed control and supervision enables us to increase the 

conciseness of our design problem and makes the complexity manageable. By 

comparison, as shown in Table 5.3, using a conventional nonhierarchical approach to the 

present three-recipe FMS, verification of the supervisor has to resolve all deadlock 

situations by searching the whole reachability graph, with the detailed control-level 

operations in a 2228-state space. However, by applying the proposed hierarchical 

framework, the supervisor design has a more compact model with a 248-state space. 

Moreover, to produce thirty products (ten x-y, x-z, y-z each), 560 request/response 

transmissions over the Internet are consumed in the nonhierarchical approach, while only 

260 ones are required using the proposed hierarchical scheme. 

 

Table 5.3. Comparison between the nonhierarchical and hierarchical schemes. 

Index
Conventional 

nonhierarchical 
scheme

Proposed 
hierarchical 

scheme
Places 50 23

Transitions 48 22
State space 2228 248
Req/Resp 

transmissions for 30 
products (10 each)

560 260
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5.5. Summary 
This chapter has presented a unified Petri-net framework to design and implement a 

three-level hierarchical supervisory system for remote-controlled processes over the 

Internet. The supervisor in the upper level is systematically synthesized, using PNs, to 

enforce the command-level specifications of resource constraints and liveness for the 

processes, and then is implemented with Java technology. The local controller in the 

lower level is also designed with PNs to meet the control-level specifications and is 

implemented by the LLD. An application to a three-recipe FMS with an industrial PLC 

controlled over the Internet is provided to illustrate the proposed approach. According to 

the feedback status of the remotely located system, the designed Java-based supervisory 

agent guarantees that all requested commands from the remote manager satisfy the 

requirements for multiple recipes, resource sharing, and deadlock avoidance, while the 

developed local controller performs the corresponding operations to meet the requested 

tasks. 

Moreover, results show that the supervisor synthesis of the presented hierarchical 

scheme is less complex than the conventional nonhierarchical one, and fewer packet 

transmissions are consumed so that the effects of time delays and packet loss across the 

Internet can be moderated. 
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Chapter 6 

SNMP-Based Management System 
 

 

For large-scale and distributed systems, a management system is crucial to manage 

diverse network elements and handle their messages for remote supervision. One 

approach is to use the simple network management protocol (SNMP). However, in real 

industrial applications, many basic and major components such as sensors, actuators, and 

PLC still do not support SNMP function for remote applications. Therefore, this chapter 

presents a systematic design to embed SNMP agents into PLC for those devices so as to 

achieve remote monitoring and control through such a standard network protocol. Then, 

the standard unified modeling language (UML) is adopted for modeling the system, and 

the PN model is applied to analyze the dynamic behavior of the system. The developed 

system has been used successfully in a mobile switching center (MSC) of Taiwan 

Cellular Corporation for the remote supervision, through the Internet, to monitor and 

control its environmental conditions including the temperature, humidity, power, and 

security, with a total of 316 sensors and 140 actuators. 

 

 

6.1. Integration of UML and PN 
The UML is a language for specifying, constructing, visualizing, and documenting 

the elements of a software-intensive system (Booch et al., 1999). It defines the notation 

and semantics to describe systems using object-oriented and meta-modeling concepts in 

the spirit of the multi-paradigm modeling (Mosterman et al., 2004). Each model in the 

UML describes one aspect of a system, and the combination of the various models 

adequately describes the entire system. However, although UML is convenient for 

modeling a complex system, UML is not equipped with the necessary techniques for 

analyzing a system’s qualitative and quantitative properties (Jeng and Lu, 2002). One of 

the major problems in using UML for the formal specification of systems is that the 
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semantics of UML are imprecise and vague. Particularly, the UML has no execution 

semantics and the current behavioral specifications in UML are primitive. UML also 

lacks tools and analysis support for behavioral models (Bernardi et al., 2002; Bordbar et 

al., 2000). 

On the other hand, the PN is a graphical-mathematical tool used to model and analyze 

various systems, especially for systems with parallel and concurrent activities. PN 

provides qualitative analysis for system properties such as reachability, liveness, 

boundedness, and conservativeness. Moreover, by introducing time functions into the PN 

to form a timed PN, quantitative analysis can then be performed. PN complements the 

UML in a number of ways. First, it provides a powerful and rich visual formalization for 

specifying behavior in general, and concurrent behavior in particular. Second, it provides 

an executable notation, something that UML currently lacks. Statechart is the model that 

most closely resembles PN in the UML. However, Statechart describes state machines 

that are, in general, finite state systems whereas PN can be extended to present infinite 

state systems. Furthermore, PN has, in contrast to UML Statechart, dynamic 

representation (i.e. the token flow mechanism) and powerful analytical methods. This is 

why, in this chapter, the PN is adopted to obtain a dynamic and analyzable model for 

large-scale and long-distance distributed systems. With this approach, both qualitative 

and quantitative analyses can be applied to achieve reliable remote monitoring and 

control. 

 

6.1.1 Design Procedures 
A remote monitoring system consists of the agent and manager sides. The present 

approach develops SNMP agents based on the UML modeling with PN analysis. As 

shown in Fig. 6.1, the use-case diagram and sequence diagram in UML are used to 

capture the SNMP requirements corresponding to the monitoring and control 

specifications at the stage of functional and interactive analyses. Then, at the stage of 

static structural modeling, the class diagram is applied to describe the static relationships 

of the system. Subsequently, the PN model is constructed according to the above models 

such that both qualitative and quantitative analyses of the system’s dynamic behavior can 

be performed. Finally, at the architectural design stage, the deployment diagram is 
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modeled to capture the physical relationships among software and hardware components, 

and the obtained models are implemented using Java and ladder diagrams on the 

industrial PLC. The design procedure in Fig. 6.1 is a type of ‘round-trip’ engineering, in 

which all models may be developed in an iterative and incremental way through a 

repeated cycle of analysis, design, implementation and testing. Therefore, the proposed 

approach is quite flexible and it allows making some alterations, such as changing the 

requirements or fixing a design flaw. A case study of an environmental monitoring 

system for the mobile switching center is provided in this chapter to illustrate the 

proposed approach.  

 

 

6.2. Requirements of SNMP Agents 
The SNMP is an application-level protocol that offers network management services 

in the transmission-control protocol/internet protocol (TCP/IP) suite. It is based on a 

client/server relationship in which the client issues requests to the server and the server 

processes requests and responds to the client. The SNMP network management system 

includes four key components: 1) management station, 2) management agent, 3) 

management information base (MIB), and 4) management protocol. A management 

station uses the management protocol to request management agents performing 

management operations on MIB objects. Essentially, each MIB object is a data variable 

that represents the manageable attribute. A management station can monitor and control 

remote elements by retrieving or changing the value of MIB objects of the management 

agent via the SNMP protocol. The management agent synchronously responds to requests 

from the management station and may further asynchronously provide important but 

unsolicited information (e.g. the alarm conditions) to the management station in the 

monitoring and control center. 

 



 79

Use-Case Diagram

Requirement

Sequence Diagram

Class Diagram

Petri-Net Model

Deployment Diagram 

Qualitative & Quantitative
Analyses

Java &
Ladder Diagrams

Round-trip engineering

Test

Functional & Interactive
Analyses 

Static Structural
Modeling 

Dynamic Behavioral
Modeling & Analysis 

Architectural Design 

Implementation 

Petri Net

UML

Modify

Use-Case Diagram

Requirement

Sequence Diagram

Class Diagram

Petri-Net Model

Deployment Diagram 

Qualitative & Quantitative
Analyses

Java &
Ladder Diagrams

Round-trip engineering

Test

Functional & Interactive
Analyses 

Static Structural
Modeling 

Dynamic Behavioral
Modeling & Analysis 

Architectural Design 

Implementation 

Petri Net

UML

Modify

 
Fig. 6.1. The systematic development procedure for SNMP agents. 

 

 

In the management station as shown in Fig. 6.2, three basic types of SNMP messages 

are issued on behalf of a management application:  

z GetRequest 

z GetNextRequest 

z SetRequest 

where the first two are variations of the get function. All three messages are transmitted 

with protocol data units (PDU) and acknowledged by the agent in the form of 

GetResponse message passed to the management application. In addition, an agent may 

issue a trap message in response to an event that affects the MIB and the underlying 

managed resources. Since SNMP relies on user datagram protocol (UDP) which is a 
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connectionless protocol and has high transmission efficiency for small data packets, 

SNMP is itself connectionless. No ongoing connections are maintained between a 

management station and agents. 
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Fig. 6.2. The simple network management protocol (an extension of Stallings, 1993). 

 

Moreover, in the standard SNMP, since traps from the agent are not acknowledged by 

the manager, there must be a mechanism to ensure that conditions in devices requiring 

attention are not missed. Therefore, we further design and implement the following two 

messages based on SetRequest to respond to traps: 

z TestRequest  

z TrapAck  

When an alarm condition occurs, the designed SNMP agent will send the corresponding 

trap message to the manager periodically. The TestRequest message is used to check the 

alarm conditions in order to avoid false alarms, while the TrapAck message is used to 

confirm alarms. When an alarm is reported to the manager, the manager may use 

TestRequest to reset the alarm. If the physical input for such an alarm is still high, the 

same alarm trap message will be sent again. On the other hand, after an alarm trap is sent, 
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the manager may use the TrapAck message to confirm the alarm and the SNMP agent 

will then be disabled to send the same trap message periodically. 

Two major advantages are obtained due to the utilization of SNMP for remote 

monitoring and control as follows. 

1) De-localization of the monitoring stations: the management stations can be 

arbitrarily located anywhere through the Internet. Also, integration of a large 

number of monitoring devices in a given station becomes possible. 

2) Ease of Access: the remote manager can access the local industrial devices easily 

via the standard SNMP protocol. 

 

 

6.3. UML-Based Modeling for SNMP Agents 
In the proposed approach, UML modeling and PN analysis are used to develop 

SNMP agents for remote monitoring and control. Then, the Java language and ladder 

diagrams are adopted to implement the system on an industrial PLC practically. 

 

6.3.1 Functional Analysis with the Use-Case Diagram 
A use-case diagram is used to capture the basic functional requirements of the system. 

As shown in Fig. 6.3, it consists of three actors and nine use cases. The actors, drawn as 

stick figures, represent users and other external systems that interact with the described 

system. The use cases, drawn as ellipses, represent the scenarios of the system. A scenario 

is a sequence of steps describing interaction between a user and a system. Basically, an 

SNMP Manager can perform the following five use cases: 

z GetRequest 

z GetNextRequest 

z SetRequest 

z TestRequest  

z TrapAck 

where GetNextRequest is an extension of GetRequest; TestRequest and TrapAck are 

specialized from SetRequest. Any one of the above five requests will cause the SNMP 
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Agent to carry out HandleRequest, including GetResponse, to result in a response to the 

request. On the other hand, as soon as Managed Device lies in the AlarmCondition, the 

SNMP Agent will perform SendTrap to report the alarms. Then, the SNMP Manager can 

carry out TestRequest to check the alarm conditions in order to avoid false alarms, and 

may perform TrapAck to confirm the alarm and then take the necessary control actions. 
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Fig. 6.3. Functional analysis with the use-case diagram. 
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Fig. 6.4. Interaction analysis with the sequence diagrams for (a) the Request scenario and 

(b) the Trap scenario. 
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6.3.2 Interactive Analysis with the Sequence Diagram 
A sequence diagram shown in Fig. 6.4 is used to model the object interaction in a 

system. Whereas the use-case diagram enables modeling of scenarios, the sequence 

diagram indicates details of the scenario including the objects and classes used to 

implement the scenario and messages passed between objects. Within a sequence diagram, 

an object is shown as a box at the top of a vertical dashed line, called the object’s lifeline, 

representing the life of the object during the interaction. Messages are represented by 

horizontal arrows and are drawn chronologically from the top of the diagram to the 

bottom. 

Fig. 6.4 (a) shows the sequence diagram for the Request scenario, which includes the 

five types of requests (GetRequest, GetNextRequest, SetRequest, TestRequest, and TrapAck) 

described in the use-case diagram in Fig. 6.3. At the first stage, the SNMP Manager may 

send a request to the SNMP Agent. Then, the SNMP Agent will invoke the Request 

Listener to create a threaded object, Request Handler, to carry out the request. The 

Request Handler then performs the specified actions on the Managed Device through the 

Device Handler, and then sends a response to the SNMP Manager. After finishing the 

request, the threaded object Request Handler will delete itself so as to release resources 

for the system. 

For the Trap scenario as shown in Fig. 6.4 (b), the Condition Checker iteratively scans the 

status of the Managed Device through the Device Handler and checks its condition (the asterisk 

indicates the iteration in UML). If the condition is undesirable or faulty, Condition Checker will 

send a requestTrap message to the SNMP Agent. Then, SNMP Agent will invoke the Trap 

Listener to create a Trap Handler, a threaded object which carries out the request. The Trap 

Handler sends the trap to SNMP Manager asynchronously (the half-arrowhead symbol indicates 

an asynchronous message in UML), and then deletes itself to release the resources for proceeding 

use. When SNMP Manager receives the trap message, it will send a request of TestRequest to 

check the alarm condition, or perform TrapAck to confirm the alarm. 
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6.4. Example: A Mobile Switching Center  
In wireless cellular communication systems, the service area is generally covered by 

many cells with base stations, and the clusters of cells are connected to mobile switching 

centers (MSCs). Each MSC receives encoded speech and data packets transmitted from 

the traffic channels in the base stations and provides call control, processing, and access 

to the public switched telephone network (Vucetic and Kline, 1998). Since the remote 

MSC plays an important role in mobile communications, the environmental conditions, 

emergency management, and safety of such large-scale and long-distance distributed 

systems are essential considerations. In the present design, an SNMP-based remote 

monitoring and control system, as shown in Fig. 6.5, is developed to provide real-time 

data on device status and environmental conditions in the MSC. Also, the embedded 

SNMP agents detect abnormal conditions in the MSC and report alarms to three 

de-localized management stations. Furthermore, necessary control actions may be taken 

through the Internet. 

We choose a building complex as our target system. In this system, 24 temperature 

sensors, 24 humidity sensors, 4 power sensors, 4 current sensors, 4 voltage sensors, and 

256 binary sensors for security (e.g. burglar alarms) are connected to two PLCs in the 

MSC to be monitored. Twelve alarm conditions are considered in the present monitoring 

system: 

z Fire alarm 

z Wateriness alarm 

z Burglar alarm 

z Temperature alarm 

z Humidity alarm 

z Electric voltage alarm 

z Electric current alarm 

z Power equipment alarm 

z Power supplier alarm 

z Dynamo alarm 

z Uninterruptible power supply (UPS) alarm 
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z Air conditioner alarm 

Moreover, six control actions can be operated remotely if specific alarm signals are 

issued: 

z Emergency door control (open/close) 

z Dynamo control (power on/off) 

z UPS control (power on/off) 

z Air conditioner control (off/wind/low/middle/high) 

z Setting limitations of temperature and humidity  

z Enable/disable alarms 

Under normal operation, air conditioners are locally controlled to achieve desirable 

temperature and humidity within the specified ranges. As faults occur and are detected, 

corresponding control actions are taken by a total of 140 actuators. The actions that can 

be performed in the present remote monitoring and control system include 1) open 

emergency door, 2) adjust air conditioner, 3) power on dynamos, and 4) power on UPSs. 

Moreover, the hardware specifications provide three management stations and two PLC 

controllers for safety in case of crashes among local agents and remote managers. 
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Fig. 6.5. The SNMP-based remote monitoring and control system. 
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6.4.1 Static Structural Modeling 
The class diagram shown in Fig. 6.6 provides the main static structural models of the 

system. It is developed using information collected in the use-case diagram and sequence 

diagram discussed in Section III. A class diagram describes the types of objects in the 

system and the various kinds of static relationships that exist among them. It also shows 

the attributes and operations of a class and the constraints on how objects are connected. 

Fig. 6.6 is a class diagram of the SNMP-based monitoring and control system. It 

represents the static structure and object relations of SNMP agents for remote monitoring 

and control of the MSC. The SnmpManager class has five operations corresponding to 

the five types of requests as depicted in the use-case diagram. The SnmpAgent class has 

the composition relation (represented as a black diamond) with three classes: 

RequestListener, TrapListener, and ConditionChecker. The composition relation 

indicates that the composite is explicitly responsible for the creation and destruction of 

the contained objects. RequestListener can create a RequestHandler, which has five 

operations for the five types of requests, in order to process the request and respond to the 

SnmpManager. TrapListener may create a TrapHandler, which gets the IP addresses of 

trap managers, sets the hosts, ports of trap managers, and sends the Trap to report alarms 

to trap managers. The ConditionChecker uses the DeviceHandler to access the managed 

devices through the DataTable which reflects the real I/O status of managed devices and 

saves system variables, such as MIB mapping information and required limits (e.g. 

limitations as to temperature and humidity). 

After real-time status checking, ConditionChecker obtains either the Normal or Alarm 

condition. As noted in Fig. 6.6, the Alarm object has twelve sub-objects, such as 

FireAlarm, WaterinessAlarm, etc. As soon as an alarm condition occurs, SnmpAgent is 

requested to create a TrapHandler to send a trap to the managers. The MgdDevice has a 

generalized relation with the Sensor and Actuator. In the present case, the remote 

controllable actuators are emergency doors, dynamos, UPSs, and air conditioners. In 

addition, certain system variables such as limitations on temperature and humidity can be 

set remotely, and all alarms can also be remotely enabled and disabled. The Sensor class 

is ‘inherited’ by the BinarySensor and AnalogSensor, the latter of which includes 

TemperatureSensor, HumiditySensor, etc. The class diagram can be developed and 
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modified in an iterative fashion, through a repeated cycle of analysis, design and 

implementation, and then returning to the first stage of the cycle, as shown previously in 

Fig. 6.1. 
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Fig. 6.6. The class diagram of the SNMP-based monitoring and control system. 
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6.5. PN Modeling and Analysis 
In order to obtain a verifiable dynamic model for real applications, we use the PN 

model replacing the Statechart in UML. This allows us to perform both qualitative and 

quantitative analyses on the developed remote monitoring and control system.  

 

6.5.1 Dynamic Behavioral Modeling  
Based on the sequence diagram and class diagram constructed using UML, 

information can be extracted to build a PN model. The simplified PN of the remote 

monitoring and control system for the mobile switching center is shown in Fig. 6.7. It 

consists of 30 places and 28 transitions. Corresponding notations are described in Table 

6.1. For example, the dynamic behavior of the RequestHandler in Fig. 6.4 (a) and Fig. 6.6 

is modeled as p9-p15 and t6-t13 in Fig. 6.7. The software package ARP (Maziero, 1990) 

is adopted again to verify the qualitative and quantitative properties of the PN model. 

 

6.5.2 PN Analysis 
In our qualitative analysis, validation results via the PN modeling show the present 

design to be live and bounded. The liveness property means that the system can be 

executed properly without deadlocks, while the boundedness property means that the 

system can be executed with limited facilities (e.g., limited request buffer size). For 

quantitative analysis, appropriate parameters such as the time period and the probability 

of an alarm occurring are assigned for the timed PN modeling. Simulation results show 

that t1, t12, t13, and t25, drawn with dark symbols in Fig. 6.7, are critical timed 

transitions of the system. These critical time delays are dependent on the transmission 

rate between the manager and agent. For example, if the data rate on the line is 512K bps, 

i.e. 64K characters per second, then the delay is 1/64K second per character. Since the 

SNMP rides over UDP/IP, of which the maximum packet size is 64K, the delay will be 1 

second if there is no significant network congestion. On the other hand, the delay time of 

t20 can be chosen to avoid sending a great number of traps to managers in a short time 
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interval for the same alarm condition. In our case, we choose a delay of 30 seconds for 

t20. That means that if an alarm is reported to the manager but the agent does not receive 

an acknowledgement within 30 seconds from the manager (i.e. TestRequest or TrapAck), 

the designed agent will send the trap again for this alarm condition. 

In addition to finding the critical timed transitions, the PN model can also be used to 

decide time periods, such as t14 (time period in which to scan the real I/O status) and t16 

(time period in which to check the data in DataTable), by performing sensitivity analysis 

based on the p-invariant or static cycle methods (Zuberek, 2001; Srinivasan, 1998). 
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Table 6.1. Notations of the PN for the SNMP-based management system in Fig. 6.7. 

Place Description Transition Description
p1 New request t1 Send request
p2 MIB browser ready t2 Report result
p3 Waiting for response t3 Report error
p4 Receiving result message t4 Invoke request listener
p5 Receiving error message t5 Finish request handler creation
p6 Request buffer t6 Decode request PDU
p7 Creating request handler t7 Error occurs
p8 Request listener available t8 Finish decoding
p9 Request handler ready t9 Start processing request

p10 Decoding request PDU t10 Error occurs
p11 MIB of objects available t11 End processing request
p12 Decoded commands and variables t12 Send error message
p13 Processing request t13 Send result message
p14 Collecting error message t14 Access devices
p15 Collecting result message t15 End  handling devices
p16 Device handler available t16 Start checking states
p17 Handling devices (get/set status) t17 Normal level-condition

p18 Condition checker ready t18 Abnormal level-condition
(Trigger/Hold timer to generate impulse)

p19 Processing level-check t19 Normal impulse-condition
p20 Processing impulse-check t20 Abnormal impulse-condition
p21 Trap buffer t21 Invoke trap listener
p22 Creating trap handler t22 Finish trap handler creation
p23 Trap listener available t23 Encode alarm to trap PDU
p24 Trap handler ready t24 Finish encoding
p25 Encoding trap PDU t25 Send trap to managers
p26 MIB of traps available t26 Process trap
p27 Trap PDU ready t27 Answer TestRequest  (check alarm)
p28 Receiving trap message t28 Answer TrapAck  (confirm alarm)
p29 Trap browser ready
p30 Deciding response for trap
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6.6. Architecture Design and Implementation 
A deployment diagram is used to model the physical relationships among software 

and hardware components in the deployed remote monitoring and control system, as 

shown in Fig. 6.8. It includes a set of nodes (drawn as cubes) to represent the 

computational units and relationships among three main machines: (1) the management 

station, (2) management agent, and (3) managed devices. The management station uses 

the SNMP Manager to communicate with the SNMP Agent through an Ethernet 

connection, while the management agent uses the Device Handler to communicate with 

the managed devices such as sensors and actuators through PLC I/O connections or the 

industrial network Modbus.  

The system modeling and analysis developed in previous stages provide standard 

models for implementation of the present remote monitoring and control technology. 

Although UML modeling is not restricted to any particular language in implementation, 

Java is preferred due to its object-orientation, portability, safety, and built-in support for 

networking and concurrency. In the implementation of the present design, we need to 

translate information from multiple UML and PN models into the code and database 

structure. This translation is not straightforward. However, there is a close 

correspondence between Java and UML, and a standard mapping is described in 

(Greenfield, 2001). Also, a mapping between PN and Java is described in (Conway et al., 

2002). Moreover, since Java cannot directly control the I/O devices, the ladder diagram 

implemented on the PLC is applied to make the SNMP agent access the low-level sensors 

and actuators. The developed SNMP agent is implemented on the Mirle SoftPLC. Fig. 

6.9 shows the hardware setup during prototype development. 

The developed SNMP-based remote monitoring and control system in this chapter is 

now operating at an MSC belonging to Taiwan Cellular Corporation. A total of 316 

sensors and 140 actuators are handled by two PLCs with 189 rungs in each ladder 

diagram. Under normal operation, the desirable temperature and humidity of the MSC are 

locally controlled by air conditioners and only remote monitoring is needed. As any 

faults occur in the MSC, the SNMP agents will immediately send alarm signals to the 

three remote management stations, and proper control actions will then be taken to 
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correct the faults. Thus, environmental conditions in the MSC are supervised by the local 

SNMP agents and can be further monitored and controlled by the remote manager from 

great distances through the Internet. 

 

 

6.7. Discussions 
This chapter integrates the PN into UML modeling to achieve design, modeling, 

analysis, verification, and implementation of remote monitoring and control systems 

within a systematic framework. The results of this study lead to the following discussion. 

1) The models developed here for application to SNMP-based remote monitoring and 

control of mobile switching centers are general models. Since the UML is based on the 

object-oriented concept, reusable models can be grouped into a library to make the 

design process more efficient when similar SNMP applications are encountered. 

2) Basically, if SNMP traps are allowed to go unacknowledged, SNMP agents cannot 

guarantee that a critical message definitely reaches the management station. In this 

chapter, TestRequest and TrapAck are further proposed to respond to the traps and thus, 

the present SNMP agents ensure that conditions requiring attention in the monitored 

systems or processes are not missed. 
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Fig. 6.8. Architectural design with the deployment diagram. 
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Fig. 6.9. The hardware setup during prototype development. 

 

 

6.8. Summary 
This chapter presents a systematical design and implementation of SNMP agents for 

device management systems. In the UML-based design of the SNMP agents, the use-case 

diagram and the sequence diagram are applied to describe the functionalities and 

interactions, respectively. Then, a class diagram is used to describe static structures, and 

the PN model is further applied to verify the dynamic behavior of the system. In addition, 

the deployment diagram is used to model the distribution of physical components in the 

system. Implementation is then accomplished using the Java language and ladder 

diagrams on the PLC. For the management of large-scale and distributed systems, the 

proposed multi-paradigm approach provides systematic design and implementation of 

SNMP agents to achieve remote monitoring and control by integrating UML modeling 

and PN analysis. 



Chapter 7 

CONCLUSION 
 
7.1. Summary of Contributions 

 For remotely monitored and controlled processes, a series of design and 

implementation results of the sequence controller, the supervisor, and the device 

management system are proposed in this thesis. In the current e-automation world, the 

techniques developed in this thesis are useful for industrial applications. The 

contributions of this thesis are summarized into five aspects: 

1) Rule-based evaluation of the ladder logic diagram (LLD) and Petri net (PN)  

 To verify the potential of PN in the sequence control applications, this 

work presents a rule-based comparison to adequately evaluate the LLD and 

PN. An example of five sequences with increasing complexity for a 

stamping process is provided to illustrate the proposed approach. The 

results indicate that the proposed evaluation approach is more reasonable 

(Lee and Hsu, 2004a). 

 

2) PN-based design for LLD implementation  

 Since the LLDs are still widely used today in real industry projects, 

this thesis proposes a PN-based design to the final LLD implementation for 

sequence control. Starting from the basic sequential specification, the 

proposed approach combines integration definition language 0 (IDEF0), 

simplified Petri net controller (SPNC), and token passing logic (TPL), and 

systematically leads to the LLD for PLC implementation. An application of 

a stamping process is provided to illustrate the developed approach (Lee 

and Hsu, accepted). 

 

3) Supervisory control of human behaviors  

 To prevent abnormal operations of humans, a remote supervisory 
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scheme is proposed so that undesirable human operations are prohibited. 

According to the feedback status of a remotely located system, the 

developed supervisory agent provides allowable commands for operators 

by disabling those operations that violate safety specifications. The 

possibility of human errors can be thus either reduced or fully eliminated. 

An example of rapid thermal processor in semiconductor manufacturing is 

provided to illustrate the proposed approach (Lee and Hsu, 2003b). 

 

4) Hierarchical supervision of manufacturing systems  

 To reduce the complexity of supervisory system design, this thesis 

proposes a hierarchical structure to synthesize subsystems for remote 

monitored and controlled processes. A three-recipe flexible manufacturing 

system is also provided to illustrate the developed hierarchical design. The 

results show that the developed hierarchical design leads to a smaller 

state-space size. Also, fewer request/response transmissions are consumed 

resulting in less transmission faults (Lee and Hsu, 2003a). 

 

5) Realization of simple network management protocol (SNMP)-based device 

management system  

  To manage diverse network elements, this thesis integrates the PN into 

the unified modeling language (UML) to achieve modeling, design, 

analysis, verification, and implementation of SNMP agents within a 

systematic framework. The developed system has been successfully used 

in a mobile switching center of Taiwan Cellular Corporation for the 

remote supervision and management of its various environmental devices 

(Lee and Hsu, 2004b). 

 

 

7.2. Future Research 
Through the study of applying the PN for remote supervision systems, there are 

several directions in which this work can be extended in the future as follows: 
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1) Time-based constraints 

 The discussed supervisory control framework in this thesis is restricted 

to purely logical system models (Giua and DiCesare, 1991; Moody and 

Antsaklis, 1998) For applications with time-based constraints (e.g. 

communication delays), it is necessary to extend the present model with 

time-related specifications (Cofer and Garg, 1996; Caramihai et al., 1998). 

 

2) Automatic model transformations 

 This work provides the design approach by integrating 

IDEF0/SPNC/TPL/LLD to systematically achieve the sequence controller. 

Furthermore, the approach by applying the UML with PN is also employed 

to develop an SNMP-based management system. However, the model 

transformation between these two approaches is still achieved manually in 

the present study. Design of computer programs could be the future 

research to transform the models automatically (Mosterman et al., 2004). 

 

3) Access security 

 Security is a prime concern for network systems with remote access 

and only basic user/password and IP-access policies are adopted in this 

thesis. Several solutions have been proposed for SNMP to improve the 

access-control policy, such as Secure-SNMP (S-SNMP) and SNMPv3 

(Zeltserman, 1999). Improving the security of the present remote systems 

by applying the new SNMP policies is considered in the future 

implementation. 

 

4) Multiple-user conditions 

 The remote control scheme presented in this thesis is focused on the 

condition of single-user access at a time. Future work should study the 

conditions of multiple-user access. 

 

5) Error recovery mechanisms 

 For the remote supervision systems, the missing message and channel 
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disconnection are unavoidable in Internet. Moreover, process errors or 

device faults may also occur during the operations. Thus, error recovery 

mechanisms for the present remote supervision systems can be further 

investigated (Jeng, 1997; Zhou and Dicesare, 1989). 
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