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Design of the Remote Supervision System for

Automated Processes via the Petri Net Approach

Student: Jin-Shyan Lee Advisor: Dr. Pau-Lo Hsu

Department of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

Applications of the Internet*technology become more popular in the modern industry.
This thesis proposes the systematic design and implementation of remote supervision systems
for automated processes via the Pétri nets (PN) approach to achieve 1) the sequence controller,
2) the supervisor, and 3) the device management system, respectively.

As automated systems become more complex, traditional ladder logic diagram (LLD)
design of sequence controllers becomes more difficult and inflexible. Thus, this thesis
presents a rule-based evaluation to adequately compare the LLD and PN, and verify the
superiority of PN. Then, since LLD is still widely used today in real industry, this thesis
proposes a PN-based method systematically leading to the final LLD implementation for the
sequence controller design.

In remote control systems, to prevent abnormal operations of humans, a remote
supervisory scheme is proposed so that undesirable human operations are prohibited. PN is
employed to synthesize both the remote supervisor and the local controller, and the Java

technology is employed to implement the intelligent agent for on-line supervision. According

il



to the status feedback through the Internet, the developed supervisory agent provides
allowable commands for operators and disables those operations that violate safety
specifications. The possibility of human errors can be thus reduced. Moreover, to reduce the
complexity of mentioned supervisory system design, this thesis further proposes a
hierarchical structure with a smaller state-space size in supervisor synthesis so as to reduce
the design complexity.

Furthermore, to integrate diverse network elements and construct a large-scale and
distributed systems for remote supervision systems, this thesis integrates the PN into the
unified modeling language (UML) to achieve modeling, design, analysis, verification, and
implementation of simple network management protocol (SNMP) agents in the present
framework. The developed management system has been successfully applied to a mobile
switching center of Taiwan Cellular Corporation. forthe remote supervision and management

of its various environmental devices.
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Chapter 1

Introduction

Recently, with the rapid development of information technology on industrial
applications, remote monitoring, control, and management are critical to increase
safety and flexibility of modern manufacturing processes in real operations. Some
issues in e-automation are extensively discussed like: the integration of the high level
message management and the fundamental layer sequence control, the effect of
human errors in remote control, and the efficient message management among various
devices on the networks, etc.

Generally, an automated system implements a sequence controller to regulate
local processes. Also, a supervisor is required to assure normal operations, and a
device management system is required, to administer the various elements efficiently
and flexibly. In this thesis, a remote supervision system will be developed for
automated processes, as shown in Fig 1:1. The-design goals of the present remote
supervision system are as follows:

1) to develop the sequence controller to.regulate the processes.

2) to develop the supervisor to monitor the human behaviors.

3) to develop the device management system to integrate diverse
elements on networks.

The developed approaches in this thesis have been studied on a stamping process,
a rapid thermal process in semiconductor manufacturing, a three-recipe flexible
manufacturing system, and an environmental monitoring system in mobile switching

centers, respectively.
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Fig. 1.1. Architecture of the proposed remote supervision system in this thesis.

1.1. General Review

Basically, an automated process is inherently a discrete event system (DES). The
Petri net (PN) has been developed as a powerful tool for modeling, analysis,
simulation, and control of DES. PN was named after Carl A. Petri (1962), who
created a net-like mathematical tool for describing relations between the conditions
and the events. PN was further developed to meet the need in specifying process
synchronization, asynchronous events, concurrent operations, and conflicts or
resource sharing for a variety of industrial automated systems at the discrete-event
level. Starting in the late of 1970’s, researchers investigated possible industrial
applications of PN in discrete-event systems and results can be found in the
survey/tutorial papers of Murata (1989), Zurawski and Zhou (1994), David and Alla
(1994), and Zhou and Jeng (1998).



1.1.1 Systematic design of sequence controllers

A sequence controller that deals with the discrete events plays an important role in
automated manufacturing systems (Tilbury and Khargonekar, 2001; Frey and Litz,
2000). Basically, the ladder logic diagram (LLD) of the industrial standard IEC1131-3
(International Electrotechnical Commission, 1993) has been widely used in real
applications to conduct the control sequences and usually implemented with a
programmable logic controller (PLC). The PLC has the advantages of reliability,
robustness, and direct programming. The I/O procedures of the PLC are specified by
the LLD and automated machines thus perform repetitive operations in sequence. For
some simple controlled systems, it is easy to program the LLD with heuristic
approaches. However, as systems become more complex, the controller design and
the LLD implementation become even more difficult. In addition, because the LLD is
usually programmed only to control the,precess, corresponding qualitative analysis
and performance characteristics ofithe PLC controlled processes are seldom discussed
in practice. Since product specifications! are varied frequently, LLD programs of
machining processes need to be modified and maintained usually with significant
efforts. Hence, researchers are pursuing a systematic and efficient approach for the
design and implementation of the sequence controller. Based on the PN, Liang and
Hong (1994) proposed a hierarchy transformation method to design and implement
controllers on a G2 expert system. Uzam and Jones (1998) introduced an extended PN
method to analyze a target system and then implemented it via LLD. Feldmann, et al.
(1999a, 1999b) used the colored PN to form the structured text (ST) for PLC
implementation. In the past few years, the PN approach still attracted more attentions

as a potential tool for designing sequence controllers.

1.1.2 Development of supervisory systems

Recently, due to the rapid development of Internet technology, system monitoring
and control no longer needs to be conducted within a local area. Several remote
approaches have been proposed which allow people to monitor the automated

processes from great distances (Weaver et al., 1999; Yang et al., 2002; Kress et al.,



2001; Huang and Mak, 2001; Batur et al., 2000). Practically, to perform maintenance
functions in hazardous environments without their exposure to dangers is a unique
application of the remote technology. By conducting remote access using IP-based
networks, an entire Internet-based control system is inherently a DES and its state
change is driven by occurrences of individual events. The supervisory control theory
provides a suitable framework for analyzing DES (Ramadge and Wonham, 1987,
1989; Balemi et al., 1993) and most existing methods are based on automata models.
The calculus of communicating systems (CCS), which was invented by Robin Milner
(1989), is another classical formalism for representing systems of concurrent
processes. However, these available methods often involve exhaustive searches of
overall system behavior and result in state-space explosion design as system becomes
more complex. On the other hand, PN is an efficient approach to model the DES and
its models are normally more compact than the automata models. Also, PN is better
suitable for modeling systems with parallel.and concurrent activities. In addition, PN
has an appealing graphical representation, with a powerful algebraic formulation for
supervisory control design (Gita and DiCeésare, 1991; Moody and Antsaklis, 1998;
Uzam et al., 2000).

1.1.3 Management of diverse elements'on networks

For large-scale and long-distance distributed systems, a reliable management
system for all devices and components on the network is crucial to guarantee normal
operations. It allows for reliably monitoring the status of processes, correctly
detecting abnormal conditions, efficiently activating emergency mechanisms, and
proactively reporting alarms. In general, the components of remote management
systems can be classified into 1) the agent side and 2) the manager side. Some
vendors build their web server software into their agent-side devices and the
manager-side users may thus directly monitor them using web browsers through the
hypertext transfer protocol (HTTP). However, as numerous devices are networked in
automated manufacturing systems, the massive monitoring and control messages from
all devices becomes increasingly difficult to handle. In general, straightforward

integration with all Web access points is apparently not efficient. One approach to



manage diverse network elements is to use the simple network management protocol
(SNMP). It is a standard protocol now widely supported by most device vendors for
their products such as routers, bridges, and printers (Stallings, 1993). Aicklen and
Main (1995) used SNMP to manage a variety of network elements. Cardoso and
Monteiro (1998) applied the SNMP to monitor and control the industrial network.
Kunes and Sauter (2001) provided a modular and extendible gateway to connect the

high-level Internet and low-level fieldbus for SNMP network management.

1.2. Problem Statement

Although a lot of efforts in the past two decades have been put on the
development of sequence controllers, supervision systems, and management systems
for automated manufacturing processes with Internet technology, some critical issues

still exist in the remote supervision system as discussed in the following:

1. Requirement of adequate evaluation for-Sequence-controller design

Although PN has been studied tordesign sequence controllers with a potential
in its flexibility, it is still argued that whether the PN approach is superior to the
traditional LLD design for industrial practitioners. Hence, an adequate comparison
is required. In the past, the “basic element” approach was developed to compare
the complexity and flexibility between LLD and PN designs (Venkatesh et al.,
1994a; Zhou and Twiss, 1998). However, the basic elements of these two designs

are inherently different and hence, it may lead to unreliable comparison results.

2. Requirement of systematic sequence controller implementation

In practice, PLC engineers still widely prefer to use LLD for real
implementation. However, it is not straightforward to construct the LLD models
from a given sequence. Some researchers have attempted to transform PN into
LLD (Peng and Zhou, 2001). However, those resultant LLD are usually more
complex as compared to that programmed directly by engineers. A systematic

approach from a given specification to achieve the final LLD implementation is



thus required.

Requirement of supervisory systems for human error prevention

Typically, an Internet-based control system is a “human-in-the-loop” system.
The human operator is involved in the loop and use a general web browser or
specific software to monitor and control remotely located systems according to the
observed status, usually displayed by the state and/or image feedback. However,
human operators may send incorrect or improper commands during the operation
and research results indicate that approximately 80% of industrial accidents are
attributed to human errors, such as omitting a step, falling asleep and improper
control of the system (Rasmussen et al., 1994). Therefore, solutions to reduce or
eliminate the possibility of human errors are required in Internet-based control

systems.

Requirement of reducing the complexity. of supervisor synthesis

PN can represent the réemote control system with a more compact model.
However, during the synthesis of the supervisor, the complexity exponentially
increases in the state-space. sizeof the subsystems and specifications. This
computational expense often makes the supervisor synthesis infeasible, especially

for large-scale manufacturing systems.

Requirement of management for different networked devices

To design a remote monitoring and control structure through the network,
efficient management to handle the massive information flow and represent data
from different devices in a uniform format is required. Although using SNMP is a
feasible approach to manage diverse network elements, in present industrial
applications, many basic components such as sensors, actuators, and PLCs do not
support SNMP for remote applications yet. Thus, for those without SNMP
functions, a systematic approach to model and implementation SNMP function is

required.



1.3. The Proposed Approach

To deal with the above problems, corresponding approaches are proposed in this

thesis as follows.

1. Improved evaluation of LLD and PN
A rule-based approach for the LLD and PN evaluation via the IF-THEN

transformation is proposed in this thesis. By converting both the LLD and PN into the
same [F-THEN format, a unified comparison is then conducted with the same
measure, which is the sum of 1) the number of IF-THEN rules, and 2) the number of

logical operators, for both LLD and PN.

2. Systematic design of sequence controllers

A systematic approach to the LLD implementation of the sequence controller in
manufacturing systems is introduced:in this thesis. By defining the sensor state into
the PN to form a simplified Petri; net -controller’.(SPNC), a more compact LLD
structure through the token passing logic (TPL) is obtained. Typically, the sensor state
is used to trigger sequences in ‘manufacturing=-The integration definition language 0
(IDEFO0) can be used to obtain the’ SPNC model through the material flow diagrams
and information flow diagrams in sequence. Thus, the proposed
IDEFO/SPNC/TPL/LLD approach, including the IDEF0, SPNC, and TPL tools, leads
to the LLD for general PLC implementation.

3. Supervisory control of human behaviors

In this thesis, a supervisory scheme is proposed for the remotely controlled,
human-in-the-loop system. The role of a supervisory agent is to interact with the
human operator and the controlled system so that the closed human-in-the-loop
system meets the required specifications. In the supervision system, the supervisory
agent acquires the system status and makes the decision to enable/disable associated
events to meet the required safety specifications. The human operator is then only
allowed to perform the enabled events to control the system, and hence, the

supervisory agent guarantees that undesirable manually executions never occur.



4. Hierarchical supervision of processes

In the present design of supervisory systems, PN can be used to design both the
supervisor at the upper level and the local controller at the lower level. This thesis
proposes a hierarchical supervision system resulting in a smaller state-space size
through the supervisory synthesis. The proposed design guarantees that remote
commands meet resource constraints and deadlock-free specifications. Also, fewer
request/response transmissions are required for Internet communication. As a result,

the effects of time delays and packet losses could be moderated.

5. Modeling and implementation of SNMP agents

A new approach to the development of SNMP agents for managing diverse
network elements in manufacturing processes is proposed. The unified modeling
language (UML) is adopted for modeling the.system, and then the PN model is
applied to analyze the dynamic behaviors. of ‘the system. In real applications, the

present design is implemented with Java and ladder diagrams on the industrial PLC.

1.4. Organization of Thesis

This thesis is organized as that: the improved evaluation of LLD and PN is
presented in Chapter 2. Then, Chapter 3 introduces the IDEFO/SPNC/TPL/LLD
approach for the sequence controller design. The basic supervisory control scheme for
the remote-controlled processes is proposed in Chapter 4, and Chapter 5 extends it to
a hierarchical scheme. For device management, Chapter 6 proposes an integrated
approach including UML modeling and PN analysis to develop the SNMP agents.
Finally, conclusions and recommendations for further research are provided in

Chapter 7.



Chapter 2
Evaluation of Ladder Logic Diagrams and Petri Nets

for Sequence Controller Design

Sequence controller designs play a key role in advanced manufacturing systems.
Traditionally, the ladder logic diagram (LLD) has been widely applied to programmable
logic controllers (PLC), while recently the Petri net (PN) has emerged as an alternative
tool for the sequence control of complex systems. The evaluation of both approaches has
become crucial and has thus attracted attention.

Practically, only a limited amount’of research.comparing these approaches has been
reported, because suitable compadrison criteria are difficult to identify. Boucher et al.
(1990) studied the sequence control of a manufacturing system and reported that using
PN makes the controller more~tractable-thanyusing LLD. However, they have not
formally quantified the comparison‘between LLD-and PN to design sequence controllers.
Venkatesh et al. (1994a, 1994b) proposed the number of “basic elements”, which are
nodes and links in the LLD and PN, as a quantified measure to compare their design
complexity and response time. They claimed that PN offers a better solution than LLD,
especially in adaptability as specifications change. Based on the basic element approach,
Zhou and Twiss (1995, 1998) further compared the LLD and PN in terms of the
understandability, flexibility and the ability to perform correctness verification. They also
reported that the PN displays better results. However, note that while basic elements in
the LLD stand for push buttons, limited switches, relay coils, timers, counters, solenoids
and lines, they are places, transitions and arcs in the PN. Since both nodes and links in
the LLD and PN have different physical meaning, as shown in Table 2.1, analysis of
LLDs and PNs simply by using the number of basic elements as the comparison measure

may lead to an incoherent comparison.



Table 2.1. Basic elements in LLD and PN.

Basic LLD PN
elements
Pushbutton | I
Normally open e Place ( )
contact/switch
Normally closed }F Transition —)l—»
Nod contact/switch
odes
Relay coil —®—
Timer M|
Counter _CNT:
Solenoid J\/—
Normal arc —>
i Line —_
Links Inhibitory arc | ———o

In this chapter, an improved approach towards evaluating the LLD and PN methods is
proposed via the IF-THEN transformation: "By converting both the LLD and PN into the
same IF-THEN formats (Looney and"Alfize, 1987), a unified comparison is then
achieved based on the same measure, which is the sum of 1) the number of IF-THEN
rules, and 2) the number of logical operators for both LLD and PN. An example of five
sequences with increasing complexity for a stamping process is provided to illustrate the
proposed approach. We find that the proposed evaluation approach yields more
reasonable results. Also, the realistic comparisons provided in this chapter support the

superiority of the PN approach.

2.1. Introduction of Petri Nets

A PN is identified as a particular kind of bipartite directed graph populated by three
types of objects. They are places, transitions, and directed arcs connecting places and

transitions. Formally, a PN can be defined as

10



G=(P,1T,1,0), (2.1)
where,
P = {p\, ps,..., pm} 1s a finite set of places, where m >0;
T = {t, t, ..., t,} 1s a finite set of transitions with PUT #O and PmT:®,
where 7>0;

I1:PxT — N is an input function that defines a set of directed arcs from P to 7,

where N= {0, 1, 2, ...};
O:TxP — N is an output function that defines a set of directed arcs from 7 to P.

A marked PN is denoted as (G, M,), where M, : P — N is the initial marking. A
transition ¢ is enabled if each input place p of ¢ contains at least the number of tokens
equal to the weight of the directed are connecting p to . When an enabled transition fires,
it removes the tokens from its input places and deposits them on its output places. PN
models are suitable to represent the systems that exhibit concurrency, conflict, and

synchronization.

Some important PN properties in manufacturing systems include boundedness (no
capacity overflow), liveness (freedom from deadlock), conservativeness (conservation of
non-consumable resources), and reversibility (cyclic behavior). The concept of liveness is
closely related to the complete absence of deadlocks. A PN is said to be live if, no matter
what marking has been reached from the initial marking, it is possible to ultimately fire
any transition of the net by progressing through some further firing sequences. This
means that a live PN guarantees deadlock-free operation, no matter what firing sequence
is chosen. Validation methods of these properties include reachability analysis, invariant
analysis, reduction method, siphons/traps-based approach, and simulation (Zhou and Jeng,

1998).
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2.1.1 Elementary PN Models

At the modeling stage, one needs to focus on the major operations and their
sequential or precedent, concurrent, or conflicting relationships. The basic relations
among these processes or operations can be classified as follows.

1) Sequential: As shown in Fig. 2.1 (a), if one operation follows the other, then the places
and transitions representing them should form a cascade or sequential relation in PNs.

2) Concurrent: If two or more operations are initiated by an event, they form a parallel
structure starting with a transition, i.e., two or more places are the outputs of a same
transition. An example is shown in Fig. 2.1 (b). The pipeline concurrent operations can
be represented with a sequentially-connected series of places/transitions in which
multiple places can be marked simultaneously or multiple transitions are enabled at
certain markings.

3) Cyclic: As shown in Fig. 2.1 (c),.if'a sequenceof operations follow one after another
and the completion of the last one initiates the first one, then a cyclic structure is formed
among these operations.

4) Conflicting: As shown in Fig. 2.1 (d);ifeither-of two or more operations can follow an
operation, then two or more transitions form the outputs from the same place.

5) Mutually Exclusive: As shown in Fig. 2.1 (e), two processes are mutually exclusive if
they cannot be performed at the same time due to constraints on the usage of shared
resources. A structure to realize this is through a common place marked with one token

plus multiple output and input arcs to activate these processes.
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(b)
p1 t1 p2 t2 3 p1 “
p3
(c) (e)

Fig. 2.1. Basic PN models for (a) sequential, (b),concurrent, (c) cyclic, (d) conflicting,

and (e) mutually exclusive relations.

2.2. The Rule-Based Comparison

Two of major factors for comparison of LLD and PN for sequence control are
identified as design complexity and response time (Venkatesh et al., 1994a). Design
complexity is defined as the complexity associated in designing the control logic for a
given specification. Response time is termed as the scan time in LLD or the execution
time in PN. The major factor for design complexity is the physical size of the control
logic model, whereas the response time is influenced by not only the physical size, but
also the hardware of implementation. For simplicity, this chapter focuses on the
comparison of the control logic models. The proposed approach includes two steps as
follows:

Step 1) Transform both the LLD and PN into the same [F-THEN format.
Step 2) Evaluate the LLD and PN based on the number of a) rules and b) logical

13



operators.

In general, control models use smaller number of IF-THEN rules and logical
operators are easier to understand, debug, check and maintain. Moreover, they may have
a shorter response time. Thus, the proposed approach based on the unified rule-based
format to compare the corresponding design complexity and response time for different

LLD and PN structures.

2.2.1 IF-THEN Formats

Basically, compound IF-THEN rules, which involve both the conjunctive and
disjunctive connectives in their antecedent or conclusion part, can be categorized into the

following basic four types (Looney and Alfize, 1987).

Type 1: IF (A and B) THEN C, or,expressed as.(A 1 B) —C,
Type 2: IF A THEN (C and Dy); or expressed as A = (C D),
Type 3: IF (A or B) THEN C; orexpressed as (A UUB) —C,
Type 4: IF A THEN (C or D), or expressed-as. A/ —(CUD).

The Type 2 rule can be broken into two simple rules A—C and A—D. Similarly, the
Type 3 rule is equivalent to the two simple rules A—C and B—C because the truth of
either A or B (or both) implies the truth of C. In practice, since the Type 4 rule does not
achieve the specific implication and often causes conflict problems, it is generally not
suitable for real applications in the sequence control. The IF-THEN rules excluding Type
4 for the LLD and PN transformations are shown in Table 2.2. Note that the timers and
counters can also be expressed in the basic rules. For example, the condition A may
represent delaying the desired time units, and the status C may express that a counter

increases or decreases one unit.
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Table 2.2. IF-THEN rules for LLD and PN.

IF-THEN rules LLD PN
A c
IF Aand B, THEN C A B
G
ANB—C B
A A c
IF A, THEN C and D I ©
A ( —>
IFAorB, THEN C — A >CD
B
AUB —C — B Q—’

2.2.2 Unified Comparison Measures

Based on the IF-THEN rules, two measures-are proposed to evaluate PN and LLD as
follows.

Measure 1: The number of IF-THEN rules.

Measure 2: The number of logical operators, including the conjunction (AND),

disjunction (OR), block and implication.

The summation of Measure 1 and Measure 2 can be recognized as a new measure for
evaluating different structures. By transforming both the LLD and PN to the same
IF-THEN formats, comparisons with a unified measure can then be made. Basically,
models use smaller number of IF-THEN rules and logical operators are easier to
understand, debug, check and maintain. Moreover, they often have a shorter response
time. Therefore, the sum of Measure 1 and Measure 2 properly signifies the design

complexity and response time for the process represented in either LLD or PN structures.
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2.2.3 A Preliminary Comparison

A simple example we use to illustrate the proposed approach is shown in Fig. 2.2,
which a piston performs a forward stroke and then retracts. In this figure, the
specification A+ indicates a forward stroke and A- indicates return stroke sequentially.
Both the LLD and PN controllers as shown in Fig. 2.2 can be either represented by the
basic elements or transformed into the same IF-THEN format, as listed in Table 2.3.
Results show that the number of basic elements for the LLD and PN are 34 and 22,
respectively. However, the basic elements in LLD and PN are physically different, as
mentioned before, and the comparison based simply on the number of basic elements for
different structures is apparently inappropriate. On the other hand, the results obtained
from the IF-THEN transformation indicate that the LLD programming needs 4 IF-THEN
rules and 14 logical operators, while the PN only needs 5 IF-THEN rules and 6 logic
operators. Therefore, the number of JF~=FHEN rules and logical operators for LLD and
PN is 18 and 11, respectively. Although the results of both approaches indicate that the
PN offers a better solution than ILLD); the present IF-THEN transformation provides more
reasonable results when evaluating different structurés in sequence controller design.
Furthermore, the degree of programming flexibility can be analyzed by observing the
increase ratio of either the number of" basic elements or the number of present

rules/operators as sequences become more complex.
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R1 a1 a0
Specification : LLD H———®&2—
A+, A- !TZ
Cylinder_A & _|R2 A A

al a0 ) Pb%
N g I

PN O

Push Pb
R1

Do {A+}
End {A+}

Do {A-}

End {A}

=

IF-THEN formats

=

1. ((PbNa0)UR1)NR2 — R,
2.R1—> A+,
3. (R1Nal)UR2)Na0’ — R2,

R
A

1.Pb— R1,
2. R1Na0 — A+,
3. A+ — at,
4, a1 — A-,
5. A-— al.

Comparison

Fig. 2.2. The ELD and PN for the sequence: A+, A-.

Table 2.3. Comparison of LLD and PN for the sequence: A+, A-.

Comparison measures LLD PN
Push button 1 Place 6
NO contact 7 Transition 5
NC contact 2 Normal Arc 11
Basic elements Relay 2
Solenoid 2
Line 20
Total 34 Total 22
Rule 4 Rule 5
IF-THEN rules Operator 14 Operator 6
Total 18 Total 11
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2.3. Example: A Stamping Process

To illustrate the proposed approach, we use an industrial process for automatic mark
stamping and examine how the specifications change as we consider five increasingly

complex sequences.

2.3.1 System Description

As shown in Fig. 2.3, a mark stamping system consists of three cylinders which are
operated by four-port and two-way solenoid valves. Each cylinder has two normally open
limit switches. For example, when the end of pusher A contacts the limit switch a0, then
a0 is closed, meaning that pusher A is at the end of its return stoke. The whole system
includes 7 input sensors corresponding to 6 limit switches and one push button for
starting the system, and 6 output actuators corresponding to 6 solenoid valves. In the
stamping process, pusher A moves the workpiece from a store onto the worktable. Then,
the workpiece is stamped by stamper B and afterwards is ejected by thrower C. The
logical sequence of the stamping-system is A+; B+, {A-, B-}, C+, and C-, where {A-, B-}
represents two concurrent actions: as’ the pistons ‘of both pusher A and stamper B
perform return stokes simultaneously. Five sequences with increasing complexity are

considered here as follows:
Sequence 1: START, A+, B+, {A-, B-}, C+, C-

Sequence 2: START, A+, B+, 10 sec, {A-, B-}, C+, C-
(Sequence 1 with one 10-sec timer added)
Sequence 3: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-]

(Sequence 2 with one 3-time counter added)
Sequence 4: START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-], 30 sec, 2 [A+, B+, 10 sec,

{A-, B-}, C+, C-]

(Sequence_ 3 with one 30-sec timer and one 2-time counter added)
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Sequence 5: Sequence 4 with one emergency stop added.

The complexity of these five sequences increases as specified above.

Stamper_B

Pusher_A

Thrower_C E

Pusher_A Stamper_B Thrower_C

I I I [ I I
al a0 b1 b0 ci c0

AR PR CEXTRT

®
Fig. 2.3/ The stamping system.

2.3.2 Sequence Controller Design

In order to solve the interlock problem, the LLD programs are usually developed with
the assistance of the cascaded method which divides the required sequence into groups
(Pessen, 1989). Possible contradictory solenoid signals can be thus avoided. On the other
hand, since PN is a concurrent operation, it can be verified to avoid the interlock logic
problem via the simulation (Zhou and Venkatesh, 1998). The LLD and PN for the
Sequence 1-Sequence 5 are shown in Fig. 2.4-2.8. Although the sequences compared
here only consider a typical cylinder-actuating system, similar analysis can be extended

to general industrial applications such as motors, pumps, heaters and conveyors.
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2.3.3 Comparison of LLD and PN
Table 2.4 shows the IF-THEN formats of the LLD and PN in Fig. 2.4-2.8. The

required basic elements in the basic element approach, and the required rules and logical
operators in the IF-THEN transformation for the five sequences are shown in Fig.
2.9-2.10, separately. For these five sequences, the increase ratio, which is the normalized
measure based on Sequence 1 corresponding to the increasing sequence complexity, is
also shown in Fig. 2.11-2.12 for the two approaches. In general, a larger ratio indicates
that the design is less flexible when subjected to changes in sequence control. All results
indicate that the PN is superior to LLD in terms of design simplicity, response time and

flexibility responding to the specification changes.
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Sequence 1:
START, A+, B+, {A-, B-}, C+, C-

LLD
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il A
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R3 G

Basic element: Nodes = 30, Links =43

(@)

PN

a0

T T
Q

c0

End {B+}

23 Do {A-,B-}

Efid {A-B-}

Pb@

« _ Push Pb

A+

D)

—— End {A+)

1 Da—
O Y

Do {B+}

B+

b1()

Do {C+)}
C+

End {C+}

End {C-}

Basic element: Nodes = 26, Links = 34

(b)

Fig. 2.4. LLD and PN for Sequence 1.
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Sequence 2:

Pb
START, A+, B+, 10 sec, {A-, B-}, C+, C-
(Sequence 1 with one 10-sec timer added) Push Pb
a0
— > R1
LLD PN O
Do {A+}
_PIE a0 IE/Z A+
—] H—®D—
R3 c0 End {A+}
- JePOr=
R1 b0
” Do {B+}
i A¥ B+
1 al
—H—/\B;— End {B+}
R1 b1 R“; i} b1 l
| 2 (R2 ” TIM1, 10sec
tI)IO_“O_ T o | | {A-B-)
¢ | 10 sec i ‘ H 3
R2 = ‘ J
” - o e e ‘| | End {A-,B-}
R2 P
I /\/_
1 /
al /\A}— 'k
VN
R2 c1 IE) End {C+}
[l
||_|| Al @_ c0 ¢l
R3
| Do {C}
R
”3 C- C-
11
End {C-}
Basic element: Nodes = 33, Links = 47 Basic element: Nodes = 26, Links = 34

(@) (b)

Fig. 2.5. LLD and PN for Sequence 2.




Sequence 3:

START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-]

(Sequence 2 with one 3-time counter added)

LLD
JP_b a0 I}Zlﬁﬁ
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R3 C-
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(l:O
| CNT1 .
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Basic element: Nodes = 40, Links = 56

(@)

End {A+}
al °
O o

Do {B+}

B+

End {B+}

Ehd {A-B-}

Do {C+}
C+

+ End {C+}
e

| Do {C-}

co(®)

C-

End {C-}

Basic element: Nodes = 27, Links = 36

(b)

Fig. 2.6. LLD and PN for Sequence 3.
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LLD Sequence 4:
START, 3 [A+, B+, 10 sec, {A-, B-}, C+, C-],

Pb
| j‘lo ;@?“fﬁ &) 30 sec, 2 [A+, B+, 10 sec, {A-, B-}, C+, C-]
R3c0 (Sequence 3 with one 30-sec timer and one 2-
[ time counter added)
ﬁs
%1 PN Pb
R1 A Push Pb
+ 3
| ; /\/ 29 Nt
a B+ R1
‘J\/ i oo
R1b1 R3R4R6 A*
—AHH 1w —®&2— End {A+}
b0 cO
-l 1

End {B+}

# % 10 sec a o) —
ﬁz Do {B+} ;
R2
H - /y::— -
] 3 5

b1
TIM1, 10sec i
B-

R2c1 R1R4R6 Do {A-,B-}
b e n
End {A-,B-}\Té
R C- J
I T R2
cOR5 2T Do {C+}
i

% |5imes —C9]  Dolay Qe
— TIM2,—%— l End {C+}

R4 30sec
— w2 ® 3+ c0
P_/b 30 sec @ l

1 .
R5 th:‘:r'{:s CNT2

Basic element: Nodes = 54, Links =75 Basic element: Nodes = 29, Links = 40

(a) (b)

End {C-}

Fig. 2.7. LLD and PN for Sequence 4.
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Sequence 5:
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Fig. 2.8. LLD and PN for Sequence 5.
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Table 2.4. IF-THEN formats of LLD and PN in Fig. 2.4-2.8.

1.Pb— R1,
1. (PbNa0)U(R3NcO)URT)NR2 — R1, 2.20NR1 — A+,
2.R1— A+, 3.A+— al,
3.R1Nal— B+, 4.a0MNb0 — B+,
4. ((R1Nb1)UR2)NR3 — R2, 5.B+— b1,
Seq. 1 5.R2 > B-, 6.b1— A-NB-,
q-_ 6.R2Nal — A, 7.A-NB-— a0NbONR2,
7.R2Nb0Na0 — C+, 8.R2Ma0Mb0NcO — C+,
8. ((R2Nc1)UR3)NRT — R3, 9.C+—c1,
9.R3 > C-. 10.¢1— C-,
11. C-— a0NbONcONR1.
Rules =9, Operators = 31 Rules = 11, Operators = 23
1. (PbNa0)U(R3NcO)URT)NR2 — R1, 1.Pb— R1,
2.R1—> A+, 2.a0NR1 — A+,
3.R1Nal— B+, 3.A+— al,
4. (R1Nb1NTIM1)UR2)NR3 — R2, 4.a0Mb0 — B+,
Seq. 2 5.b0’Nc0’ — (RST)TIM1, 5.B+— b1,
4. 6.R2—> B-, 6.b1NTIM1 — A-NB-,
7.R2Nal— A-, 7.A-NB-— a0NbONR2,
(Seq._1 with 8.R2Nb0Na0 — C+, 8.R2Ma0Mb0NcO — C+,
one timer 9. (R2Nc1)UR3)NRT — R3, 9.C+—cl,
10.R3 — C-. 10.¢1— C-,
added) 11. C-— a0Nb0ONCcONR1.
Rules = 10, Operators = 34 Rules = 11, Operators = 24
1. ((PbNa0)U(R3NcO)URT)NR2’ NR4 — R1, 1.Pb— R1N(SET)CNT1,
2.R1—> A+, 2.a0NR1NCNT1 — A+,
3.R1Nal— B+, 3. A+ —ail,
4. (R1Nb1NTIM1)UR2)NR3' MRS & R2, 4.20Mb0 — B+,
Seq. 3 5.b0'Nc0’ — (RST)TIM1, 5.B+— b1,
q-— 6.R2—> B-, 6.b1NTIM1 — A-NB-,
7.R2Nal— A-, 7.A-NB-— a0NbONR2,
(Seq._2 with 8.R2Nb0Nad — C#, 8.R2Na0Nb0NcO — C+,
one counter 9. (R2Nc1)UR3)ART NR4 — R3, 9.C+—cl,
10.R3 - C-, 10.¢1— C-,
added) 11. cONCNT1 R4, 11. C-— a0NbONcONR1.
12. Pb’ — (RST)CNT1.
Rules = 12, Operators'= 40 Rules = 11, Operators = 26
1. ((PbNa0)U(R3MNeO)URT)AR2’NR4'NRE" — R1; 1.Pb— R1N(SET)CNT1,
2.R1— A+, 2.a0NR1NCNT1 — A+,
3.R1Nal— B+, 3.A+—al,
4. ((R1Nb1NTIM1)UR2) RS (NR4' ARG’ — R2, 4.20Mb0 — B+,
5.b0’NcO’ — (RST)TIMA, 5.B+— b1,
6.R2 > B-, 6.b1NTIM1 — A-NB-,
Seq._4 7.R2Natl — A, 7.A-NB-— a0NbONR2,
8.R2MNb0ONa0 — C+, 8.R2Ma0Mb0NcO — C+,
. 9. (R2Nc1)UR3)NRT' NR4NRE’ — R3, 9.C+—cl,
(Seq._3 with 10.R3— C-, 10.¢1 - C-,

one timer and
one counter
added)

11.cONR5NCNT1 — R4,
12. Pb’ — (RST)CNT1,
13. R4NTIM2 - R5,

14. Pb’ — (RST)TIM2,

15. R5MNc0NCNT2 — R6,
16. RS’ — (RST)CNT2.

Rules = 16, Operators = 52

11. C-—a0Nb0NcONR1N(SET)CNT2,

12. CNT2NTIM2 — (SET)CNT1.

Rules = 12, Operators = 29

Seq._5

(Seq._4 with
one emergency
stop added)

1. ((PbNa0)U(R3NcO)URT)NR2' NR4'NRE'NR7 — R1,
2.R1— A+,

3.R1Nal— B+,

4. (R1Nb1NTIM1)UR2)NR3'NR4' NRE'NR7’ — R2,
5.b0'NcO’ — (RST)TIM1,

6.R2— B-,

7.R2Nal— A,

8.R2Nb0Na0 — C+,

9. ((R2Nc1)UR3)NR1'NR4' NRE'NR?’ — R3,
10.R3—C-,

11.cONR5NCNT1 — R4,

12. Pb’— (RST)CNT1,

13. R4NTIM2 — RS,

14. Pb’ — (RST)TIM2,

15.R5Nc0NCNT2 — R6,

16. R5' — (RST)CNT2,

17.ES—R7.

Rules = 17, Operators = 56

1.Pb— R1N(SET)CNT1,
2.a0NR1NCNT1NES'— A+,
3.A+NES’ — a1,
4.a0NbONES’ — B+,
5.B+NES’ — b1,
6.b1NTIMINES’ — A-NB-,
7.A-NB-NES’ — a0NbONR2,

8.R2Na0Nb0NCONES’ — C+,

9.C+NES’ —c1,

10.c1NES’ — C-,

11. C-NES’ — a0NbONcONR1N(SET)CNT2,
12. CNT2NTIM2 — (SET)CNT1.

Rules = 12, Operators = 39
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2 _ Increase Basic element approach LLD 192

Seq._1 Seq._2 Seq._3 Seq._4 Seq._ 5

Fig. 2.11. The increase ratio for the basic element approach.

2 _Increase IF-T.HEN-transformation
18 ratio LLD 1.83

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

Fig. 2.12. The increase ratio for the I[F-THEN transformation.

2.4. Discussions

This chapter presents a novel and unified approach for evaluating the computational
burden and complexity subject of sequence programming for different structures.
Because the basic elements for LLD and PN structures posses different physical
meanings, results using the basic element approach are not adequate to conclude which

design structure is more efficient. By applying the proposed IF-THEN transformation
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approach, we obtain the same IF-THEN rules and logical operators for both LLD and PN
structures, and thus the results in Fig. 2.10 show conclusively that the PN structure
design is more efficient.

Furthermore, by applying the IF-THEN transformation, results indicate that the PN
structure also leads to a lower increase ratio than the LLD structure, as shown in Fig.
2.12. Thus, design via the PN structure is more flexible when the specification changes.
Similar trend can also be observed using the basic element approach as shown in Fig.
2.11. Therefore, the PN structure for sequence control design will become more valid for
large-scale processes.

Although both the basic element approach and the IF-THEN transformation present
similar results in terms of increase ratios for given sequence changes as shown in Fig.
2.11-2.12, a comparison indicates that the basic element approach overestimates the
complexity of LLD, and underestimates; that of PN. For example, comparing Sequence 1
with Sequence 2, which adds a’timer tojpSequence 1, results of the basic element
approach indicate that both sequences require’the-same number of basic elements by
using the PN, as shown in Fig.-2.9. This-is obviously misleading. On the other hand,
evaluation results with the present IF-THEN transformation properly indicate that the
complexity of PN increases from 34 to 35, as'shown in Fig. 2.10. Therefore, the proposed
IF-THEN transformation is more realistic for evaluating sequence control design than the

basic element approach.

2.5. Summary

In this chapter, we have proposed a unified comparison approach to adequately
evaluate the LLD and PN by using the IF-THEN transformation. Thus, more realistic and
reasonable results can be obtained to analyze the design complexity and flexibility to
specification changes for different structures. Results show that the PN is simpler and
more flexible than LLD in realization of sequence controllers. Hence, based on the given

example, PN might be a promising solution for modern industrial control systems.
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Chapter 3
Design of the Sequence Controller in Manufacturing

Systems

In the previous chapter, a comparison between the ladder logic diagram (LLD) and
Petri net (PN) has been provided. However, in real industrial environments, most
industrial PLC users still prefer to program in LLD. Hence, this chapter presents a
systematic approach to the LLD implementation of the sequence controller in
manufacturing systems. Basically, the simplified Petri net controller (SPNC) is employed
in the present approach (Lee, 1999). By employing the IDEF0, the SPNC model can be
built through the material flow diagram and thé,information flow diagram. Then, the
LLD can be transformed from the SPNC -through the token passing logic (TPL). The
proposed approach, including the TDEF0, SPNC, and TPL tools, leads to the standard
IEC1131-3 LLD for PLC implementation.Finally; an'application of a stamping process is

provided to illustrate the design procedure of the developed approach.

3.1. Simplified Petri Net Controller

In this section, we propose a simplified Petri net controller (SPNC) by introducing
sensor states into the ordinary PN. The SPNC is applied to simulate the manufacturing

system and to lead the IDEFO to LLD in the proposed IDEFO/SPNC/TPL/LLD approach.

3.1.1 Formal Definition

Fig. 3.1 (a) shows an ordinary PN model for pushing a button to trigger a process. By
using the ordinary PN approach in controlling manufacturing processes, to deal with
multiple sensor readings makes the net structure become more complicated and difficult

to analyze. Therefore, by introducing the sensor state into the PN to form an SPNC, the
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net structure becomes more simplified for implementation. From the control point of
view, as shown in Fig. 3.1 (b), the sensor state in the SPNC replaces the reading sensor
model such as push buttons or limit switches within the ordinary PN. Note that the
condition of sensor states may change depending on the practical situation. Thus, as
sensors increase in processes, the net structure of the SPNC is greatly simplified, as
shown in Fig. 3.1 (c¢). Then, it becomes easy to model and implement the sequence

controller through the SPNC defined as:

SPNC = (P,T, A4,S,Mo) (3.1)
where,

P = {p1, pa,..., pm} 1s a finite set of places, where m >0;

T = {t, t5 ..., t,} is a finite set of transitions with PUT #J and PNT = ,
where 7>0;

Ac{PxT}U{T x P} 1is the set of ares between the places and transitions,

S ={s1, 52, ..., s»} 1s the set of sensor states, and

Mo: P —1 is the initial marking.

Start_sensor
= Start_sensor
Q-

Idle Working

O Stop_sensor
(b)

N Elements PN SPNC
H Place 8 2
i Transition 6 2
: Arc 16 6
i Sensor state — 2
! Total 30 12

Stop_sensor

(@ ©

Fig. 3.1. The comparison between the PN and the SPNC via a simple process. (a)
Ordinary PN. (b) SPNC. (c) Comparison results.
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3.1.2 Graphical Representation

As shown in Fig. 3.2, the SPNC consists of three kinds of nodes: 1) the place, drawn
as a circle, 2) the transition, drawn as a bar, and 3) the sensor state, drawn as a smaller
circle with a hidden arrow. The arcs, represented by directed arrows, are either from a
place to a transition or from a transition to a place. In modeling, the marking conditions
of places represent the status of the system and the transitions represent events. A
transition has a set of input and output places, which represent the pre-conditions and
post-conditions of the event, respectively. A sensor state, associated with its transitions,
represents the sensor readings as a firing condition which triggers a manufacturing
sequence. The sensor state is a Boolean variable that can be 0 in which case the related
transition is not fired, or 1 in which case the related transition is fired if it is enabled. The
marking of the SPNC is represented by the number of tokens in each place, drawn as
black dots. The presence of a token in.a given place means that the associated condition

is true or that the actions associated with-this place are taken.

O == N P

Place Transition Token Arc Sensor state

Fig. 3.2. The icon definition of the SPNC.

3.1.3 Dynamic Behavior

The dynamic behavior of a system is simulated by the distribution of tokens in places
as the enable transitions fire. The flow of tokens in the SPNC is governed according to
the following rules:
1) Enabling rule:

A transition is said to be enabled, if all its input places are marked.

2) Firing rule:
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Furthermore, the enabled transition is fired if all its sensor states are true. When an
enabled transition fires, it removes one token from all its input places and deposits

one token into all its output places at the same time.

3.1.4 Comparison with Other Models

The behavior of the proposed SPNC is similar to the sequential function chart (SFC).
However, since SFC is derived from PN with some modifications and simplifications,
theoretical results of PN cannot be directly applied to SFC (Miyazawa et al., 1997). Since
the present SPNC is an extension of the PN by introducing sensor states, SPNC allows
formal analysis of various properties, such as the safety, liveness, and reversibility for the
process (David and Alla, 1994). Moreover, SFC only offers the method for depicting
sequences of control system without providing any mechanisms to perform the functional
analysis. Note that in the present IDEFO/SPNC/TPL/LLD approach, by applying the
IDEFO for functional analysis and information flow design, the SPNC model can be
transformed from the information flow diagram.

Furthermore, compared with other. extended PN applications such as Interpreted PN
(Moalla, 1985), Automation PN (Uzam and Jones, 1998), or Signal Interpreted PN (Frey,
2000), which use external events to model sensor readings, the present SPNC simply
applies the sensor states to model the firing conditions. Also, the present
IDEFO/SPNC/TPL/LLD approach obtains the PLC programs systematically, from the
design specifications through the SPNC, and to the final LLD. Since the PN model is
inherently concurrent, whereas the LLD is typically scan-based, the sequential
specification must be determinate and deterministic in the present approach. Also, the
mono-marked restrictions design is required in the proposed SPNC to guarantee the

safety of the sequence in practice.

3.2. The IDEFO/SPNC/TPL/LLD Approach
In this section, the integrated IDEFO/SPNC/TPL/LLD approach, including the IDEFO,
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SPNC, and TPL tools, is proposed to systematically obtain the LLD for PLC
implementation. The design procedure of the IDEFO/SPNC/TPL/LLD approach, depicted

in Fig. 3.3, consist of five stages and each stage is described as follows.

Functional
Analysis

Y

Y
Information
Flows
Design

\ 4

A 4

A 4

Dynamic
Verification

No

\ 4

Layout

\ 4

A 4

A\ 4

Impementation

No

IDEFO0
(Material Flow)

IDEFO

(Information Flow)

SPNC

TPL

LLD

Fig. 3.3. Design procedure of the IDEFO/SPNC/TPL/LLD approach.
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3.2.1 Functional Analysis Stage: IDEF0

With the given specifications, the purpose of functional analysis is to realize the
functions and operations of the system and then generate the control signals for the next
stage. At this stage, each function of the manufacturing system has to be specified with a
top-down hierarchically decomposing process by using the IDEFO (Prabhaka, 1993).
IDEFO is an activity-oriented modeling approach and its representation of a
manufacturing process consists of an ordered set of boxes representing activities
performed by the system. The inputs are those items transformed by the activity and the
outputs are the results of the activity, as shown in Fig. 3.4. The mechanisms, drawn as
supporting arrows, represent resources such as machines, computers and operators, etc.
The decomposition process continues until there is sufficient in detail on the basic
activities to serve the purpose of sequénce control. A functional model of the material

flow diagram is obtained at this stage.

Control
Parameters/ Rules

|

Input ——| Activity —— Output
Material/ Information Material/ Information
flows ‘[ flows

Mechanism

Machines/ Computers/ Operators

Fig. 3.4. The IDEFO scheme.

3.2.2 Information Flow Design Stage: IDEF0

At this second stage, the information flow is used to control the material flow in a
manufacturing system. The information flow diagram is constructed from the material
flow diagram with static analysis, again using the IDEFO0. In the information flow

diagram, the input and output commands are designed to enable the activity and to
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change the machine status after firing, respectively. Because the mechanisms will be
assigned within the I/O ports at the layout stage later, the supporting arrows for
mechanisms are omitted here to simplify the information flow design. The sensor
readings representing the conditions to fire the activity are drawn as control signal arrows.

A controllable model of the information flow diagram is obtained at this stage.

3.2.3 Dynamic Verification Stage: SPNC

The information flow diagram only represents system activities and their
interrelationships. Since it does not show direct logical and dynamic dependencies
between activities, a dynamic SPNC model, transformed from the information flow
diagram, is applied to verify the dynamic behavior of the system. The transformation
from the information flow diagram into the SPNC model is based on the following steps:

Step 1) An activity box in thesinformation. flow diagram is transformed into a
transition of the SPNC.

Step 2) The input and output commands are transformed into input and output
places, respectivelys

Step 3) The control signals “of the sensor teadings are transformed into sensor
states.

Step 4) The initial marking of the SPNC is set according to the initial condition of
the system.

An example is shown in Fig. 3.5. The activity of the information flow diagram is
transformed into the transition T1. The input command I1 and output command I2 are
transformed into the input place P1 and output place P2, respectively, and the control
signal control is transformed into the sensor state S1. When the SPNC model is obtained,
the correctness of the sequence order can be verified by studying the behaviors via
computer simulations. Also the properties of the PN such as the safety, liveness, and

reversibility can be analyzed to identify the dynamic behavior.
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control

st
oN
11— 8CtVity (5 Q_:|_>Q
P1 T P2

IDEFO — SPNC

Fig. 3.5. The transformation from the IDEFO0 to the SPNC.

3.2.4 Layout Stage: TPL

To simplify the conversion of the SPNC into the LLD, the token passing logic (TPL)
is employed in this stage (Uzam and Jones, 1998). The attractive feature of the TPL is
that it facilitates the direct conversionof @ SPNC into a generic form of control logic,
which may be implemented with:low-level languages such as LLD, or with high-level
languages such as C. This is achieved by adopting the-SPNC concept of using tokens as
the main mechanism for controlling the 'flow of the control logic. At this stage, the SPNC
model is transformed into the TPL.model to assign the I/O ports for actions and sensor
readings. For applications in a variety of industrial PLC hardware, the TPL is defined as

follows:

TPL = (M, T, A, in, out, time) (3.2)
where,
M = {M, M, ..., M,,} is a finite set of memory bits,.
T=A{T\,T, ..., T,} is a finite set of transitions,

Ac{M x T} O{T x M} 1is the set of arcs between the memories and transitions,

in ={iny, iny, ..., in,} is the set of sensor inputs,
out ={outy, out,, ..., outy,} is the set of actuator outputs, and
time ={time,, time,, ..., time ,,} is the set of delay timers.
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The transformation from the SPNC model into the TPL form is based on the following
steps:

Step 1) The transition of the SPNC is transformed into a transition of the TPL.

Step 2) The place is transformed into a memory bit.

Step 3) The sensor state is transformed into a sensor input.

Step 4) For the action with a place, besides the memory bit, an actuator output is

assigned.
Step 5) For the delay time with a place, besides the memory bit, a delay timer is

assigned.

in1
out1

o’ o
OO  @—-m
P1 T1 P2

T1

SPNC — TPL

Fig. 3.6. The transformation-from the SPNC to the TPL.

An example is shown in Fig. 3.6. The places P1 and P2 are transformed into the
memory bits M1 and M2, respectively, and the sensor state S1 is transformed into the
sensor input inl. Assume there is an action with P2, the actuator output outl is assigned.
Hence, each place whose capacity is limited to one within the SPNC corresponds to a
memory bit in the TPL. The token flow is then simulated by setting and resetting these
memory bits. Thus, each place within the SPNC has at least one associated memory bit in
the TPL. The sensor state within the SPNC corresponds to a sensor input contact in the
TPL. To simulate the firing of a transition, if the memory bits associated with input
places are set and the sensor inputs of the transition yield “true”, the memory bits at the
input places are reset and the memory bits at the output places are set simultaneously.

Moreover, the actions and delays within the SPNC are assigned to appropriate memory
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bits within the TPL by using the actuator outputs and delay timers, respectively. By using
the TPL, the I/O ports for the sensor readings and actuator outputs are assigned and the
layout for implementation in LLD can be completed. The TPL bridges the gap between
SPNC and LLD and provides a simple way of developing PLC controllers.

3.2.5 Implementation Stage: LLD

In order to convert the TPL model into LLD code for real time implementation, a
direct mapping is used from the TPL to the LLD by maintaining the enabling and firing
rules at this stage. The transformation from the TPL model into the LLD format is based
on the following steps:

Step 1) Initial condition setting: the token in the SPNC is mapped to the
corresponding internal relay with the SET command.

Step 2) For each transition, the ihput memeory is mapped to a conditional contact
and an internal relay with the RST command and the output memory is
mapped to an internal relay with-the SET command.

Step 3) The sensor input is' mapped to a conditional contact for the associated
transition.

Step 4) The output relay is assigned to send the command to perform the operation.

Step 5) The delay timer is assigned to perform the delay.

An example is shown in Fig. 3.7. For transition T1, the input memory M1 is mapped
to a conditional contact and an internal relay M1 with the RST command and the output
memory M2 is mapped to a internal relay M2 with the SET command. The sensor input
inl is mapped to a conditional contact X1 and the actuator output outl is mapped to the
output relay Y1. By integrating initial condition and setting all transitions, the LLD for

sequence control is thus completed.
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TPL — LLD

Fig. 3.7. The transformation from the TPL to the LLD.

In the proposed IDEFO/SPNC/TPL/LLD approach, the material flow diagram and the
information flow diagram are obtained by using the IDEFO technique for functional
analysis and information flow design. Then, the information flow diagram is transformed
into the SPNC model to verify its dynamic behavior. Subsequently, the SPNC model is
converted into a TPL model for implementation layout. Finally, the IEC1131-3 LLD for
implementation on PLC controller:is ebtained using a direct mapping from the TPL into

LLD. Fig. 3.8 summarizes the transformations in the proposed IDEFO/SPNC/TPL/LLD

approach.
. T, x1 M1
control OS1 O'm — SET[ M2
11 —] activity |~ |, O—:|—>© @—q—»@ "2 RST[MT]
P11 P2 T —O v1
IDEFO — SPNC — TPL — LLD

Fig. 3.8. The transformations of the IDEFO/SPNC/TPL/LLD approach.
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3.3. Example: A Stamping Process

To demonstrate the viability of the developed approach, an application to a stamping

process is provided.

Stamper_B I:I PC

Pusher_A @ LLD
sensor input

| !

Thrower_C E actuator output PLC

Pusher_A Stamper_B Thrower_C

| | I I | I
a1l a0 b1 b0 cil c0

MRS PREXTTRT CWRXT

®

Fig. 3.9. The stamping system.

3.3.1 System Description

As shown in Fig. 3.9, a stamping system consists of three cylinders which are
operated by four-port and two-way solenoid valves. Each cylinder has two normally open
limit switches. For example, when the end of pusher A contacts limit switch a0, a0 is
then closed. This indicates that pusher A is at the end of its return stoke. The whole
system has 7 input sensors corresponding to 6 limit switches, one push button for starting
the system and 6 output actuators corresponding to 6 solenoid valves. In the stamping
process, pusher A moves the workpiece from a store onto the worktable. Then the
workpiece is stamped by stamper B and afterwards is ejected by thrower C. Thus, the
sequence of the stamping system is A+, B+, {A-, B-}, C+, C-, where the plus and the

minus signs mean a piston performing forward strokes and return strokes, respectively.
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{A-, B-} represents two concurrent actions as the pistons of both pusher A and

stamper B perform return stokes simultaneously.

3.3.2 Sequence Controller Design

Through the use of the proposed IDEFO/SPNC/TPL/LLD approach, as shown in Fig.
3.10, the LLD code for real time implementation on PLC controllers was systematically
generated. First, by using the IDEFO technique, the material flow diagram and the
information flow diagram were obtained. Then, to verify its dynamic behavior, the
information flow diagram has transformed into the SPNC model. Subsequently, the
SPNC model was converted into a TPL model for layout. Finally, the LLD for
implementation with PLC controllers was obtained by a direct mapping from the TPL.
This LLD code is written for Mitsubishi FX2 PLCs which meet IEC1131-3. Table 3.1
gives the notations used in the IDEFO/SPNC/TPL/LLD together with their descriptions.

3.4. Summary

In this chapter, we have proposed a.systematic IDEFO/SPNC/TPL/LLD approach to
the PLC-based sequence controller design in manufacturing systems. To obtain the LLD
for PLC implementation, the SPNC is defined by introducing the sensor states into the
ordinary Petri net and leads to meaningfully simplified process modeling. Moreover, the
IDEFO0 technique is employed to construct the SPNC model through the material flow
diagram and information flow diagram. Starting from the basic sequential specification,
the proposed approach includes IDEF0, SPNC, and TPL, and systematically leads to the
standard IEC1131-3 LLD for PLC implementation. An application of a stamping process

is provided to demonstrate the viability of the developed approach.
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Table 3.1. Notations for the stamping process.

SPNC element TPL element [ LLD element Description
P1 M1 M1 Ready
P2 M2, outl M2,Y1 Holding {A}
P3 M3, out2 M3,Y2 Stamping {B}
P4 M4, out3 M4,Y3 Releasing {A}
P5 M35, out4 M5, Y4 Releasing {B}
Po6 Mé6 M6 --
P7 M7 M7 --
P8 M38, out5 M8, Y5 Throwing {C}
P9 M9, out6 M9, Y6 Resetting {C}
T1 T1 -- Push in and Hold on {A+}
T2 T2 -- Stamp down {B+}
T3 T3 -- Release workpiece {A-, B-}
T4 T4 -- --
TS TS -- --
T6 T6 -- Throw out {C+}
T7 T7 -- Reset {C-}
T8 T8 -- Repeat {A+}
S0 in0 X0 Push button {ON}
S1 inl X1 Sensor al {ON}
S2 in2 X2 Sensor bl {ON}
S3 in3 X3 Sensor a0 {ON}
S4 in4 X4 Sensor b0 {ON}
S5 in5 X5 Sensor c1 {ON}
S6 in6 X6 Sensor c0 {ON}
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Chapter 4

Remote Supervision for Human-in-the-Loop Systems

In remote-controlled processes, human operations may violate desired safety
requirements and result in catastrophic failure. For such human-in-the-loop systems, this
chapter proposes a systematic approach to develop supervisory agents that guarantee that
remote manual operations meet safety specifications. The PN is applied to model, design,
and verify a supervisory controller that prevents human errors. Then, the Java technology
is adopted to implement the supervisor as an intelligent agent for on-line supervision of
the remote control system. To demonstrate the feasibility and practicability of the
proposed approach, the developed supervision:system is applied to a rapid thermal

process (RTP).

4.1. A Novel Supervisory Structure

Typically, an Internet-based control system (remote access using IP-based networks)
is a “human-in-the-loop” system since people use a general web browser or specific
software to monitor and control remotely located systems. As shown in Fig. 4.1 (a), the
human operator is involved in the loop and sends control commands according to the
observed status displayed by the state and/or image feedback. Research results indicate
that approximately 80% of industrial accidents are attributed to human errors, such as
omitting a step, falling asleep and improper control of the system (Rasmussen et al.,
1994). However, the Internet-based control literature provides few solutions for reducing
or eliminating the possibility of human errors. In this chapter, we propose applying a
supervisory design to the present remotely controlled, human-in-the-loop system so as to
prevent abnormal operations from being carried out. Fig. 4.1 (b) shows the proposed

supervisory control scheme for a remotely located system with the human in the loop.
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First, the supervisory agent acquires the system status and makes the decision to
enable/disable associated events to meet the required specifications, typically safety
requirements. The human operator is then only allowed to perform the enabled events to
control the system. The role of a supervisory agent is to interact with the human operator
and the controlled system so that the closed human-in-the-loop system meets the required

specifications and to guarantee that undesirable executions do not occur.

| Internet | Internet

i Control Action

Control Action |

Human
i Operator |
Human I Controlled E"a';"%gzab'e I Controlled
Operator | System | System
uperviso
| Supanieory| |
: . Agent .
tatus Feedbacl
Status DlsplayI . |S Feedback

(@) (b)
Fig. 4.1. (a) Typical remote control system. with the human in the loop. (b) The proposed

remote supervisory control scheme.

4.2. Design of the Supervisor Using PN

This section first shows the required control modes and specification types for remote
supervisory control. Then, the PN-based procedure for designing the supervisor is

described with a simple door-valve system for a RTP.

4.2.1 Control Modes

For remote control via the Internet, we are interested in the following two control

modes:
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1) Automatic control mode: When the system is in automatic control mode, the
automatic controller autonomously controls the manufacturing process without user
intervention (the human operator only needs to push a button to start the control cycle).
Generally, an active sequence controller is used to automatically complete several
operations in a certain order.

2) Manual control mode: A system often must be open to manual control for various
purposes, such as for test runs and fault diagnosis. Here, we examine the case in which
the user can directly perform each operation. To ensure that safety constraints are not
violated, the supervisory agent is on-line executed to acquire the system status and decide

to either enable or disable specific operations.

4.2.2 Specification Types

The objective of the supervisor issto restrict' the behavior of the system so that it is
contained within the set of admissible-states; called the specification. Two types of
specification are classified as follows:

1) Explicit specifications for.control sequences: Generally, these specifications are
“recipe-dependent”. They are enforced by a sequence controller in automatic mode or by
a human operator in manual mode so as to ‘accomplish certain tasks in a desired logical
order.

2) Implicit  specifications for safety requirements: These specifications are
“recipe-independent” and thus must always be obeyed throughout operation of the system.
Basically, these specifications are required to satisfy safety and liveness constraints. The
safety specification prevents the system from performing undesirable actions, while the
liveness specification ensures that a given behavior is repeatable. In automatic mode,
these specifications can be effectively dealt with by the sequence controller. In manual
mode, the supervisor enforces these specifications by restricting the commands available

to human operators.
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4.2.3 PN-Based Design for the Supervisor

PNs have been used to model, analyze, and synthesize control laws for DES. Zhou
and DiCesare (1991), moreover, addressing the shared resource problem recognized that
mutual exclusion theory plays a key role in synthesizing a bounded, live, and reversible
PN. In mutual exclusion theory, parallel mutual exclusion consists of a place marked
initially with one token to model a single shared resource, and a set of pairs of transitions.
Each pair of transitions models a unique operation that requires the use of the shared
resource.

Definition 4.1: Given two nets Gi=(Pi,T,[1,01) and G2=(P2,T2,12,02) with
initial marking M) ; and M, ,, respectively. The synchronous composition of G| and G is

anet G=(P,T,I,0) with initial marking Mj:

G=G| G2, 4.1)
where,
P=PiuUP:;
T=T\UT>;

I(p,t)=1(p,t) if (Fie{l,2})[pePinteTli],else I(p,t)=0;
O(p,t)=0:dp,t) if Fie{l,2})[pePinteT],else O(p,t)=0;

Mo(p)=Moi(p) if pePi,elseMop)=Mo2p).

An agent that specifies which events are to be enabled and disabled when the system
is in a given state is called a supervisor. For a system with plant model G and
specification model H, the supervisor can be obtained by synchronous composition of the

plant and the specification models:
Se=G| H, (4.2)

where the transitions of H are a subset of the transitions of G, i.e. Tu € Tc. Note that Sg

obtained through the above construction, in the general case, does not represent a proper
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supervisor, since it may contain deadlock states from which a final state cannot be
reached. Thus, the behavior of § should be further refined and restricted by PN analysis.

In this chapter, we adopt mutual exclusion concept to build the PN specification
model and then compose it with the plant model to design the supervisor. Moreover, the
PN plant model is constructed using the task-oriented concept. Each operation is modeled
as a task with a start transition, an end transition, a progressive place and a completed
place. Note that the start transition is a controllable event as “command” input, while the
end transition is an uncontrollable event as “response” output. The supervisor design
procedure consists of the following steps:

Step 1) Construct the PN model of the plant using the task-oriented approach.

Step 2) Construct the PN model of the specifications using the mutual exclusion

concept.
Step 3) Compose the plant and specification.models to yield the supervisor model.
Step 4) Verify and refine the supervisor-model to obtain a live, bounded and

reversible model.

4.2.4 Example: A Door-Valve‘System

Consider a simple example of the interaction for the chamber door-gas valve system
in a rapid thermal processor. The general PN model, shown in Fig. 4.2 (a), can be used to
describe the open/close tasks for both the door and valve. The initial states of the door
and valve are both closed. Assume that one basic safety specification is that the door and
valve must not be open at the same time. A PN model for this specification constructed
using the mutual exclusion concept is shown in Fig. 4.2 (b). In this model, the
start open _door and start open valve commands are mutually exclusive. Intuitively,
performance of the start open valve command is only allowed if the door is closed and
the start open door event has not yet been fired. If the start open door command has
been fired, the start open valve command cannot be executed until the end close door
response is given to signal that the door has been closed. The composed PN model of the

door-valve system with the safety specification is shown in Fig. 4.2 (c). The supervisory

49



arcs are shown with dashed lines and the place ps showing the supervisor position is
drawn thicker than those showing the task positions. In this approach, the supervisor
consists only of places and arcs, and its size is proportional to the number of

specifications that must be satisfied.

Command: Response: open/close door
start_open end_open
end_close e
— — — ~
~
opening \\
closed closing closed closing start_close I
opening open /
/
Response: Command: /
end_close start_ close N\ /
start_open \ end_open ,
(a) _7
ps -0
opéniclose valve TTTTS
Response: Response: / N
end_close_door end_close_valve start_open Y end_open \\
\
opening open \\
closed closing start_close )
/
-
~ - —_—_—— - -
Command: Command: end_close
start_open_door start_open_valve
(b) (c)

Fig. 4.2. (a) A general model for door and valve components. (b) The mutual exclusion

specification model. (c) The composed supervisor for the door-valve system.

4.3. Implementation of the Supervisor Using Java

This section first describes the agent concept, and then shows the implementation
architecture and interactive modeling of the hierarchical supervisory control system.
Finally, the reasons of choosing implementation methods in Java technology are

mentioned.

50



4.3.1 Agent Technology

The agent technology is a new and important technique in recent novel researches of
the artificial intelligence. Using agent technology leads to a number of advantages such
as scalability, event-driven actions, task-orientation, and adaptivity (Bradshaw, 1997).
The concept of an agent as a computing entity is very dependent on the application
domain in which it operates. As a result, there exists many definitions and theories on
what actually constitutes an agent and the sufficient and necessary conditions for agency.
Wooldridge and Jennings (1995) depicts an agent as a computer system that is situated in
some environment, and that is capable of autonomous actions in this environment in
order to meet its design objectives. From a software technology point of view, agents are
similar to software objects, which however run upon call by other higher-level objects in
a hierarchical structure. On the contrary, imsthe narrow sense, agents must run
continuously and autonomously.«In addition, the distributed multiagent coordination
system is defined as the agents that share the desired tasks in a cooperative point of view,
and they are autonomously exécuting-at different 'sites. For our purposes, we have
adopted the description of an agent as a software program associated to the specific
function of remote supervision for the manufacturing system. A supervisory agent is
implemented to acquire the system status and then enable and disable associated tasks so

as to advise and guide the manager in issuing commands.

4.3.2 Client/Server Architecture

Fig. 4.3 shows the client/server architecture for implementing the remote supervisory
control system. On the remote client, the human operator uses a Java-capable web
browser, such as Netscape Navigator or Microsoft Internet Explorer, to connect to the
web server through the Internet. On the web server side, a Java servlet handles user
authentication, while a Java applet is provides a graphical human/machine interface
(HMI) and invokes the supervisory agent. In this chapter, we use Java technology to

implement the supervisory agent on an industrial PLC, with a built-in Java-capable web
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server assigned to handle the client requests.

Remote Client Industrial PLC
(with Java-capable Web browser) (with built-in Java-capable Web server)
» Java Servlet:

|;| - E@ooooo ; ¥ for user authentication

» Java Applet:
1/0 Bus for graphical HMI and to
invoke supervisory agent

Controlled * Ladder Logic Diagram:

Internet for direct sense and control
ol System of I/O devices

Fig. 4.3. Implementation architecture of the remote supervisory control system.

4.3.3 Interactive Modeling

A sequence diagram of the UML (Booch et al., 1999) is applied to model client/server
interaction in the remote control system. Within a’sequence diagram, an object is shown
as a box at the top of a vertical dashed line, called the object’s lifeline and representing
the life of the object during the interaction. Messages are represented by horizontal
arrows and are drawn chronologically fromthe-top of'the diagram to the bottom.

Fig. 4.4 shows the sequence diagram of the implemented remote supervisory control
system. At the first stage, the Remote Client sends a hypertext transfer protocol (HTTP)
request to the Web Server. Next, the Web Server sends an HTTP response with an
authentication web page, on which the Remote Client can login to the system by sending
a request with user/password. The Web Server then invokes a Java servlet to authenticate
the user. If the authentication fails, the Java servlet will respond with the authentication
web page again. On the other hand, if the authentication succeeds, the Java servlet’s
response will be a control web page with a Java applet. The Java applet first builds a
graphical HMI and constructs a socket on the specified port to maintain continuous
communication with the server. Then, the Java applet acquires the system status through
the constructed socket and displays it on the control web page iteratively by invoking the
Device Handler to fetch the sensor states of Device objects. Finally, the supervisory agent

is called by the Java applet and run to enable/disable associated control buttons on the
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HMI according to the current system status so as to meet the required specifications. Thus,

the Remote Client can send an action command by pushing an enabled button to control

the remote system through the constructed socket.

. Device
Web Device -
Server Handler (sensor/
I - actuator)
Remote
Client
HTTP request _
P HTTP response (authentication page)
Time HTTP request (Login request) ‘_i

o Check user by

[Faill HTTP response (authentication page) Java Servlet

< Iteration

[Success] HTTP response’(control page) *getSensor

1. Build graphic HMI by:Java Applet: - getSensor

2. Build socket-communication. 'L

3. Acquire and display system status via return(data) e Teturn

socket iteratively.
4. Run supervisory agent (enable/disable
control buttons).
Request via socket (action command) o setActuator

=L_| setActuator

Fig. 4.4. Interactive modeling with sequence diagram for the remote supervisory control

system.

4.3.4 Java Implementation

In this thesis, we have employed the Java servlet for authentication and Java applet

for graphical HMI. A Java servlet (Hunter and Crawford, 1998) is a compiled code,

dynamically loaded to process requests from a Web server. It does not depend on browser

compatibility due to running on the server side. Moreover, a Java server page (JSP) is a

script and compiled into Java servlets during its first invocation and may call JavaBeans

to perform processing on the server. A JavaBean is a portable, platform-independent

component model, developed in collaboration with industry leaders. Since JSP with
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JavaBean requires the script translation, Java servlet has been selected for
implementation due to its faster performance and easier debugging. On the other hand, a
Java applet (Campione and Walrath, 1995) is a widely used program that can be
embedded in a Web page. When you use a Java-enabled browser to view a page that
contains an applet, the applet’s code is transferred to your system and executed by the
browser’s Java virtual machine (JVM).

This thesis has adopted the Java applet for graphical HMI due to its plentiful
availability of application programming interfaces (API). Also, most Web browsers
(Navigator or Internet Explorer) provide the JVM to support Java applets. Moreover, as
shown in Fig. 4.4, the TCP socket communication is used for data transmission due to its
easier implementation. For distributed application development, the Java remote method
invocation (RMI) or interface definition language (IDL) can be further applied (Hunter
and Crawford, 1998). Moreover, Java sobjectforiented programming is one where each
small part of the program is considered asrasseparate, object that can interact with other
objects. The advantage of object-oriented software-is that blocks of code can easily be
reused in different parts of the -program;-or even in different programs. This reduces

development time and therefore costs (Rumbaugh et al, 1991).

4.4. Example: A Rapid Thermal Process

This section demonstrates a practical application of the remote monitoring and

supervisory control to a rapid thermal process (RTP) via the Internet.

4.4.1 Description of the RTP System

A rapid thermal processor is a relatively new semiconductor manufacturing device
(Fair, 1993). A schematic diagram of the RTP system is shown in Fig. 4.5, which is
composed of 1) a reaction chamber with a door, 2) a robot arm for wafer
loading/unloading, 3) a gas supply module with a mass flow controller and pressure

controller-1, 4) a heating lamp module with a temperature controller, and 5) a flush
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pumping system with a pressure controller-II.

Reaction
Exhaust Chamber Temperature
\‘ Controller
Pressure
Controller-Il
Flush Pump J i
Heating
T Bypass Lamp
Gas Supply i
Mass Flow
Controller
Pressure \ Chamber
Controller-I Door
Source Gases Wafer /
(e.g. H2, N2, O2)
Robot
Arm

Fig. 4.5. Schematic¢ diagram of the RTP system.

A realistic “recipe” of the hydrogen baking process, i.e. the explicit specification as

mentioned in Section 4.2.2, is as follows:

Step 1)
Step 2)
Step 3)

Step 4)
Step 5)

Step 6)
Step 7)

Load the raw wafer.

Close the chamber door.

Open the gas valve to supply gases with a desired gas flow rate and
pressure of 2.8 liters per minute (Ipm) and 0.5 Torr, respectively.

Close the gas valve.

Turn on the heating lamp to bake the wafer with a desired baking
temperature and duration of 1000 °C and 4 seconds, respectively.

Turn off the heating lamp.

Turn on the flush pump with a desired pressure of less than 0.05 Torr.
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Step 8)  Turn off the flush pump.
Step 9)  Open the chamber door.
Step 10) Unload the processed wafer.

The initial state of the components in the RTP is either closed or off, except that the
door is open. The following safety specifications, i.e. the implicit specification mentioned
in Section 4.2.2, must be enforced throughout system operation.

Spec-1: Wafer Loading is allowed only when no wafer is in the chamber.

Spec-2: Wafer Loading/unloading is allowed only when the door is open.

Spec-3: The gas valve must be closed when the flush pump is applied to the

chamber.

Spec-4: The gas valve, heating lamp, and flush pump cannot be started when the

door is open.

4.4.2 Design of the Sequence Controller

As mentioned in Section 4.2.2, the, speeifications can be satisfied and involved in the
sequence controller in automatic control'mode. By applying the task-oriented concept, the
PN model for the automatic control mode of the RTP is constructed as shown in Fig. 4.6,
which consists of 26 places and 20 transitions, respectively. Corresponding notations are
described in Table 4.1. Transitions drawn with dark symbols are events that are

controllable by remote clients via the Internet.

56



p1

Load Wafer

+ Controllable event via Internet

Close Door

1
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p5
]
1
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Fig. 4.6. The PN model for automatic eontrol of the RTP system.

1 —>I—* Controllable event via Internet A: load wafer F: turn off heating lamp
@7 B: close chamber door  G: turn on flush pump
A B C: open gas valve H: turn off flush pump
D: close gas valve I: open chamber door
t p2 t2 p3| B p4 t p5 E: turn on heating lamp  J: unload wafer

t13

/

I

/
| ps2 p16 t12
|
|
I p15
|
|
|
| 7
| G /
I 1,7
|
|
|
|
|
|
|

Fig. 4.7. The composed PN model for manual control of the RTP system.
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Table 4.1. Notations for the PN of the RTP system in Fig. 4.6.

Place Description Transition Description

pl |Raw wafer buffer tl Cmd: start loading wafer

p2 |Loading wafer t2 Re: end loading wafer

p3 |Loading wafer completed t3 Cmd: start closing chamber door

p4 |Closing chamber door t4 Re: end closing chamber door

p5 |Closing chamber door completed t5 Cmd: start opening gas valve

p6 |Opening gas valve t6 Re: end opening gas valve

p7 |Mass flow controller ready t7 Cmd: start closing gas valve

p8 |Pressure controller-I ready t8 Re: end closing gas valve

p9 |Opening gas valve completed t9 Cmd: start turning on heating lamp
pl0 [Closing gas valve t10 Re: end turning on heating lamp
pl1l |Closing gas valve completed tl1l Cmd: start turning off heating lamp
pl2 [Turning on heating lamp t12 Re: end turning off heating lamp
p13 |Turning on heating lamp completed t13 Cmd: start turning on flush pump
pl4 |Temperature controller ready t14 Re: end turning on flush pump
pl5 [Turning off heating lamp t15 Cmd: start turning off flush pump
pl6 |Turning off heating lamp completed tl6 Re: end turning off flush pump
pl7 |Turning on flush pump t17 Cmd: start opening chamber door
p18 |Turning on flush pump completed t18 Re: end opening chamber door
p19 |Pressure controller-II ready t19 Cmd: start unloading wafer

p20 [Turning off flush pump 20 Re: end unloading wafer

p21 |Turning off flush pump completed

p22 |Opening chamber door

p23 [Opening chamber door completed

p24 |Unloading wafer

p25 [Unloading wafer completed

p26 |Processed wafer buffer

4.4.3 Design of the Supervisor

For manual control mode, the plant model is formed by unconnecting each pair of
transitions for the tasks in Fig. 4.6. In the specification model, Spec-1 and Spec-2 are
modeled as the pre-conditions of the associated operations, while Spec-3 and Spec-4 are
built by using the mutual exclusion concept. The composed PN model of both the plant
and specifications is shown in Fig. 4.7, where A-J represent ten remote controllable tasks
for the RTP system. The supervisory places ps1-7 (ps1 for Spec-1, ps2-3 for Spec-2, ps4
for Spec-3, ps5-7 for Spec-4) are used to prevent undesired and unsafe operations on the
part of the human operator. Corresponding notations for the supervisory places are

described in Table 4.2. At this stage, the software package ARP (Maziero, 1990) is
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chosen to verify the behavioral properties of the composed PN model due to its graphical
representation, ease of manipulation, and ability to perform structural and performance
analyses. The ARP uses the reachability analysis to validate the PN properties. Results
reveal that the present PN model is live and bounded. The liveness property means that
the system can be executed properly without deadlocks, while the boundedness property

means that the system can be executed with limited resources (e.g., limited buffer sizes).

Table 4.2. Notations for supervisory places of PN in Fig. 4.7.

Place Description
psl [Spec-1: chamber is empty
ps2 [Spec-2: chamber door is open
ps3 |Spec-2: chamber door is open
ps4 |Spec-3: gas is closed/pump is off
ps5 |Spec-4: door is closed/lamp is off
ps6 |Spec-4: door,is closed/gas is closed
ps7 |Spec=4:door is closed/pump is off

4.4.4 Implementation with Java Technology

The system modeling and design developediin previous stages provide supervisory
control models for implementation of the présént remote monitoring and control
technology. To implement the supervisory control, we wuse Java due to its
object-orientation, portability, safety, and built-in support for networking and
concurrency (Hoshi, 1999; Bertolissi and Preece, 1998). The developed supervisory
agent is implemented on the Mirle SoftPLC (80486-100 CPU), an advanced industrial
PLC with built-in Web server and Java virtual machine so that it can interpret the LLD,
HTTP requests, and Java programs (Mirle Automation Corporation, 1999; SoftPLC
Corporation, 1999).

The developed HMI, shown in Fig. 4.8, is carefully designed to make its web pages
more user friendly and also to increase download speed by avoiding unnecessary images.
Since the client users will be mainly operators and engineers, they will want effective
information delivery and will not be interested in flashy graphics (Shikli, 1997). The

current system status is placed on the left, the system message is in the center, and the
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button control area is on the right. Fig. 4.8 also shows that the system is in automatic
control mode, and thus only the Auto-Control button has been enabled by the
supervisory agent. The human operator can only push this button which starts automatic

process control by the sequence controller.

G ol of the Rapid Thermal

Eile Edit ¥iew Go Communicator Help
< ¢ A 4 = =N
Back  Forward Relead  Home  Search  Netscape  Print Security  Jiop

I W Bookmarks & Go to:[hup://140.113.150 28/Rip him v | 97 What's Relatad

Remote Supervisory Control of the Rapid Thermal Processor

OFF  command: Turn on heating lamp.
Gas Valve: Besponse: Heating lamp 1s turp om.

Message- Current temperature is 20.0

Heating Lamp: ON Message: Start heating... — Turn ON Lamp Turn OFE Lamp) |

OFF < »

System Status System Message Button Contrl Area
680.0 oo Automatic v
Temperature (T}: Start loading the wafer. =] controi Mode: :I
TR : =n;ing_mynt ‘:.S :nsy,,,
. : Wafer is in chamber_
Pressure (Torn): e i ianber. e ———
- Loading wafer is finished. Auto-Control Reset System
Mass Flow (fpm): u.0 Command: Close chamber door._
Response: Chamber door is closed.
INSIDE  |command- | Open gas valy Lioad Wafer: | Unload $afer
ion: pen gas valve.
‘Wafer Location: Eosponse: Gas valve is open.
Message: Current gas flow is 2.8 lpm.
IDLE Message: Current pressure is 0.1 Torr.
Rohot Arm: Message: Yaiting for desired pressure_. Open Door: Close Door
Message: Current pressure is 0.55 Torr_
Chamber Doar: |L0%ED Command: Close gas valve.
Ecsponse: Gas valve is closed. B Tz Close Valve

Tirn ON Pump,

Tnrn OFE Bamp, |

Fig. 4.8. Interactive web page for remote control of the RTP system by a Java applet

(only Auto-Control button is admissible in the automatic control mode).

Fig. 4.9 shows the web pages for manual control mode after the Open Valve button
has just been pushed (Step 3 in Section 4.4.1). In this situation, since one wafer is already
in the chamber and the door is closed, the Load Wafer and Unload Wafer buttons are
both disabled by the supervisory agent to meet Spec-1 and Spec-2. Moreover, the
Turn_On Pump and Open Door buttons are disabled to meet Spec-3 and Spec-4,
respectively. Thus, the safety requirements of the RTP processing are guaranteed as
human operations are conducted. Fig. 4.10 shows the hardware setup during prototype

development.
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Fig. 4.10. The hardware setup during prototype development.
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4.5. Summary

This chapter presents a framework for designing and implementing a PN-based
supervisor for Internet-based control systems with the human in the loop. The supervisor
is systematically designed by applying the mutual exclusion concept and is then
implemented using the Java technology. To demonstrate the practicability of the proposed
remote supervisory approach, an application is provided in which an simulated RTP
system with an industrial PLC is controlled over the Internet. According to the feedback
status of the remotely located system, the developed supervisor provides allowable
commands for human operators while disabling operations that violate safety

specifications.
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Chapter 5

Hierarchical Supervision for Manufacturing Systems

In the previous chapter, a supervisory structure has been proposed to prevent the
abnormal human commands from being carried out for remote control systems. However,
the supervisor synthesis algorithm has computational complexity that is exponential in
the state-space size of the system. In addition, communication delays and packet loss in
the Internet are unavoidable. This chapter proposes a hierarchical supervisory scheme
resulting in a smaller state-space size in supervisor synthesis. Moreover, fewer packet
transmissions are required so that the effects of time delays and packet loss could be
moderated. An application to a three-récipe .flexible manufacturing system (FMS)

controlled over the Internet is provided to_illustrate the developed approach.

5.1. Proposed Hierarchical Structure

Hierarchical control is a familiar approach to the design of large-scale DES in order
to reduce design complexity (Zhong and Wonham, 1990; Wong and Wonham, 1996;
Tittus and Lennartson, 1999; Charbonnier et al., 1999). This chapter applies such
hierarchical scheme to design the supervision systems for remote-controlled processes.
As shown in Fig. 5.1, we use a three-level architecture. In the command level, the
abstract model is a simplified representation of the controlled system and is employed by
the remote manager to make decisions for task allocation. Here, a task is a group of
certain steps and the manager can send task requests to control the remotely located
processes according to the displayed status. In this way, the manager exercises “virtual”
control over the behavior of the abstract model. Actually, the manager sends a request for
a decided task to the local controller, which really regulates the detailed operations of the

task with event feedback in the control level. State changes in the system will eventually
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be conveyed in a summary form to the abstract model via the response channel. To avoid
resource conflicts and deadlock, an agent is designed to acquire the system status and
then enable and disable associated tasks so as to advise and guide the manager in issuing
commands at the supervisory level. Thus, the manager is only allowed to issue the
enabled tasks, and the hierarchical loop is closed in this way.

As compared with the traditional scheduling and planning architecture for
manufacturing systems (Gershwin, 1989), the proposed hierarchical scheme specifically
designed by applying the virtual control concept is more suitable for the remote
supervision. Moreover, the proposed supervisor guarantees that remote human-issued
commands lead to normal operations without deadlocks. In addition, as compared with
direct remote control of each step (Kress et al., 2001), the proposed approach not only
guarantees deadlock-free operation, it also moderates the effects of time delays and
packet loss across the Internet since fewer packet transmissions are needed to complete a

task.

Supervisory
Command Agent Status Supervisory
Advice Feedback [|evel
Status 77— TT T~
Remote Display | Abstract
Manager Model Command
Level
Virtual Control |
Internet Request ' Response
Real
Local Control | Controlled Control
Controller System Level

Event Feedback

Fig. 5.1. Proposed three-level architecture for hierarchical supervision.
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5.2. Design of the Hierarchical Supervision System

This section first introduces multi-recipe processes, and then, shows the separated
specifications for the command level and control level in remote supervisory control

design. Finally, the PN-based design for the supervisor and the controller is introduced.

5.2.1 Multi-Recipe Processes

For multi-recipe systems with parallel or concurrent activities, each recipe describes a
number of alternative desired paths through the plant. A recipe specifies the sequence of
tasks to be executed and all possible ways the plant can be utilized in order to produce
the desired product. Note that our recipe definition here corresponds to the master recipe
in the batch control standard, ISA-S88.01 (ANSI/ISA, 1995). The master recipe is that
level of recipe that accounts for equipment capabilities and may include process
cell-specific information. It is thus natural to view a recipe as a specification on the plant
to exhibit a certain task-sequence. However, there can be several independent recipes
using the plant simultaneously, and“all of these together form a non-deterministic joint
specification on the overall system behavior: Since more than one recipe may be required
to access the same resource, and each resource ean only serve one recipe at a time,
deadlock between different recipes may thus occur. The remote control problem then is
to design a system that:

1) coordinates the resources for different recipes in order to ensure that the specified

tasks in all recipes are executed correctly without deadlock occurring, and

2) regulates the execution of each task in detailed operations.

5.2.2 Separated Specifications

The objective of the hierarchical supervision is to restrict the behavior of the system
so that it is contained within the desired states, called the specifications. The
specifications are separated into two levels as follows:
1) Command-level specifications for recipes, resources, and liveness: These

specifications require that the logical order of each recipe, resource constraints, and
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liveness requirement are satisfied throughout all operations of the system. The recipe
specification indicates the sequence of tasks to be executed, and it can be modeled as a
sequential flow. The resource specification presents the physical constraints of the
limited resources, and shared resources can be adequately expressed in terms of mutual
exclusion conditions. The liveness specification ensures that a given behavior is
deadlock-free and repeatable, and it can be preserved by deadlock analysis with
avoidance policies (Fanti et al., 2000). In the proposed hierarchical architecture, the
supervisory agent enforces these specifications by restricting the task commands
available to the remote manager.

2) Control-level specifications for detailed operations: These specifications are the
detailed logical operations of each task. In the proposed hierarchical architecture, the
control-level specifications are enforced by a local controller which accomplishes certain
operations of the requested task for the physicdlplant in a desired logical order.

To summarize, the system requirements-are S$eparated into the command-level
specification, which results in non-deterministic.sequences of tasks, and the control-level
specification, which leads to detatled deterministic operations of each task. The proposed
separation not only reduces the design complexity. of the supervisor synthesis, as shown
latter, it also makes the system design more flexible, since it avoids the need to redesign

the local controller, as only the command-level specification varies.

5.2.3 Design of the Supervisor
In this chapter, we first build the resource specification models and then compose
them with the recipe models to design the supervisor. The supervisor design procedure
consists of the following steps:
Step 1) Construct the Petri-net model of the recipe specifications in command level
using the task-oriented approach.
Step 2) Build the Petri-net model of the resource specifications using the mutual
exclusion concept.

Step 3) Compose the recipe and resource models to yield the basic supervisor model.
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Step 4) Analyze and refine the supervisor model to obtain a deadlock-free, bounded,

and reversible model.

The PN recipe model is constructed using the task-oriented concept. Each task is
modeled with a start transition, an end transition, a progressive place, and a completed
place. Note that the start transition, as the “command” input is a controllable event, while
the end transition, as the “response” output is an uncontrollable event. Obviously, the
presented hierarchical scheme is endowed with task-based modularity in the command

level.

5.2.4 Design of the Local Controller

The logical behavior of each task in the control level is a deterministic process. For
the local controller design, the detailed PN models of each controllable task in the recipe
are built to describe the detailed operations and follow the deterministic sequences in this
stage. Applying the PN to design the controller leadsto a unified PN-based approach to
develop the hierarchical supervision, and thus facilitates the use of established PN

analysis and implementation methods.

5.3. Example: A Three-Recipe Flexible Manufacturing System
5.3.1 Description of the System

Fig. 5.2 shows the remote-controlled FMS, which is composed of 1) three processing
machines, 2) three raw material suppliers, and 3) six automated conveyers. It is assumed
that the raw materials are provided infinitely. The FMS corresponding to different
products are specified in terms of recipes, i.e. the sequences of tasks to be carried out on
discrete amounts of materials by employing all or part of the machines. This particular
FMS is a multi-recipe system with three recipes for three different products described as
follows:

Recipe 1) Product x-y: Load materials x and y to Machine 1 for processing. Then, convey

x-y to Machine 3. After processing x-y in Machine 3, unload the product.
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Recipe 2) Product x-z: Load materials x to Machine 1 and z to Machine 2 for processing,
and then convey x and z to Machine 3. After processing x-z in Machine 3,
unload the product.

Recipe 3) Product y-z: Load materials y to Machine 1 and z to Machine 2 for processing,
and then convey y and z to Machine 3. After processing y-z in Machine 3,

unload the product.

Conveyer_X1

X

Raw
Material Supplier

. Conveyer_13
Machine 1

Export x-y,

y X-Z, Or y-z
Conveyer_Y1 Machine 3
Conveyer_3
z Machine 2
Conveyer_23

Conveyer_Z2

Fig. 5.2. Schematic diagram of the three-recipe FMS.

By applying the task-oriented concept, the PN model for the three recipes is
constructed as shown in Fig. 5.3, which consists of 19 places and 22 transitions,
respectively. Transitions drawn with dark symbols are events that are controllable by

remote managers via the Internet. Corresponding notation is described in Table 5.1.

5.3.2 Design of the Supervisor

The three machines represent resources shared between the different recipes. Since
more than one recipe may require access to the same resource, but each resource can only
serve one recipe at a time, deadlock between different recipes may thus occur. The
required specifications are as follows.

Spec-1: Raw material loading of x and y is allowed only when Machine 1 is available.
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Spec-2: Raw material loading of z is allowed only when Machine 2 is available.
Spec-3: Material conveying to Machine 3 is allowed only when Machine 3 is available.

Spec-4: Liveness, i.e. no deadlock states, must be enforced throughout system

operation.
—>I—> Controllable Event via Remote Manager
Xx-y Load x-y to M1 Convey x-y to M3 Process x-y
t1 p1 t2 p2 t3 p3 t4 p4 t17 p17 118
I ,< ) , ,< ) I ,< ) , ,< ) ;I ,( ja— X-y
X Load x to M1 Conveyx to,M3
15 5 6 06 7 08 -
Process x-z
. 19 p1g 120
= } "‘,.:_ . 2 X-Z
z Load z to M2 * .Conyey z to-M3

t11:

t9 p9 t10 p10 t12 p:‘z'“
I C D O ’ 7 Process y-z

t22

21
y Load y to M1 Convey y to M3 >I—’O—’D y-z
p19

t 6 p16

t13 p13 t14 p14 15 p15 t1

Fig. 5.3. Preliminary PN model of the three-recipe FMS.
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Table 5.1. Notations for the PN of the FMS in Fig. 5.3.

Place Description Transition Description
pl |Loading x-y to M1 tl Cmd: start loading x-y to M1
p2 |Loading x-y to M1 completed 2 Re: end loading x-y to M1
p3 |Conveying x-y to M3 t3 Cmd: start conveying x-y to M3
p4 |Conveying x-y to M3 completed t4 Re: end conveying x-y to M3
p5 |Loading x to M1 t5 Cmd: start loading x to M1
p6 |Loading x to M1 completed t6 Re: end loading x to M1
p7 |Conveying x to M3 t7 Cmd: start conveying x to M3
p8 [Conveying x to M3 completed t8 Re: end conveying x to M3
p9 |Loading z to M2 t9 Cmd: start loading z to M2
pl0 |Loading z to M2 completed t10 Re: end loading z to M2
pll [Conveying z to M3 t11 Cmd: start conveying z to M3
pl12 [Conveying z to M3 completed t12  |Re: end conveying z to M3
pl13 |Loading y to M1 t13 Cmd: start loading y to M1
pl4 |Loading y to M1 completed tl4  |Re: end loading y to M1
pl5 |Conveying y to M3 t15 Cmd: start conveying y to M3
pl6 [Conveying y to M3 completed t16.7. |Re: end conveying y to M3
pl7 |Processing x-y in M3 t17 ~ }JCmd: start processing x-y
p18 [Processing x-z in M3 tI8 - |Re: end processing x-y
p19 |Processing y-z in M3 t19 Cmd: start processing x-z
20 Re: end processing x-z
21 Cmd: start processing y-z
t22." |Re: end processing y-z

In the specification model, Spec-1 and Spec-3 are built by using the mutual exclusion
concept, while Spec-2 is modeled as the precondition of the associated tasks. The
composed PN model of both the recipe and specifications is shown in Fig. 5.4. The
supervisory arcs are shown with dashed lines and the places showing the supervisory
positions are drawn thicker than those showing the task positions. The supervisory places
ps1-4 (psl for Spec-1, ps2 for Spec-2, ps3-4 for Spec-3) are used to prevent the remote
manager from issuing undesired commands leading to resource conflicts on the part of the
system. Corresponding notation for the supervisory places is described in Table 5.2.

At this stage, the software package ARP (Maziero, 1990) is used again to verify the
behavioral properties of the composed PN models. The validation result (without ps5)

shows that one deadlock occurs with the places p2, p10, p12, and ps3 marked only. The

70



physical meaning of the deadlock state is that if both Machine 2 and Machine 3 are

occupied with z for Product x-z or y-z, while Machine 1 is loaded for the Product x-y,

then no product can be completed and the system is deadlocked. Hence, for Spec-4, the

psS is further designed and added to the PN model, as shown in Fig. 5.4. Validation

results (with ps5S) reveal that the present PN model is live, bounded, and reversible. The

liveness property means that the system can be executed properly without deadlocks,

while boundedness indicates that the system can be executed with limited resources, and

reversibility implies that the initial system configuration is always reachable. In this

approach, the supervisor consists only of places and arcs, and its size is proportional to

the number of specifications that must be satisfied.

—>I—> Controllable Event via Remote Manager

X-y
t1 p1 t2 p2 t3 p3 t4 p4 t17 p17 t18
,!\—»( >—>H—>< ) —I—»( >—{ X-y
I s
1 o [~ e “1
| peitge- L PP
\ _ - \ ’// N “/ |
X\\ P 7'\:;\\ e |
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t5 p5 tG\\ {6\ |/ t7 \\/ p7 t8 p8’ \\ \\\ ’,
/ -
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/AN \ / t19 2o
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Fig. 5.4. Composed PN model of the three-recipe FMS.
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Table 5.2. Notations for supervisory places of the PN in Fig. 5.4.

Place Description
psl  [Spec-1: M1 is available for x-y, x, or y.
ps2  |Spec-2: M2 is available for z.
ps3  |Spec-3: M3 is available for x-y, X, ory.
ps4  |Spec-3: M3 is available for x-y, or z.
psS  |Spec-4: One token means x-y is not in M1 and
(2-bound) |z is not in M3. Another means x or y is in M3.

5.3.3 Design of the Local Controller

As mentioned in Section 5.2.4, the detailed operations of each task can also be
designed and constructed with PN models. Fig. 5.5 (a)-(c) shows the PN model of the
tasks Loading (from raw material supplier to M1 or M2 with processing), Conveying

(from M1 or M2 to M3), and Processing (processed by M3 and unloaded), respectively.

Loading: t1-t2 Conveying: t3-t4, t7-t8, Conveyer_13fortl, {7, t15.
Conveyer_23 for t11.
Conveyer_X1:on Conveyer_X1: off t11-1 2, t15-t16
Command: Response: Command: Response:
start loading x-y start work finished endloading x-y start conveying in M3 end conveying

I-O+4—0—]

Conveyer: on  Conveyer: off

Place: Actuator

Conveyer_Y1: on Conveyer_Y1: off Transition: Sensor (b)
Loading: t5-t6, t9-t10 Conveyer_X1 fort5. M1 for t5, t13. Processing: t17-t18, t19-t20, t21-t22
9 13 t:|4 ’ Conveyer_Y1 fort13. M2 for t9. 9 ’ ’
Conveyer_22 for t9. Command: Response:
Comman_di Response: start processing  finished start upload finished end processing
start loading  in M1 or M2 start work finished end loading I : C C C
I D M3: on M3: off Convey_3:on  Convey_3: off
Conveyer: on  Conveyer: off M1orM2:on M1 or M2: off
(a) (c)

Fig. 5.5. PN models of (a) loading, (b) conveying, and (c) processing tasks for FMS.

5.3.4 Implementation of Remote Hierarchical Supervision

The system modeling and design developed in previous stages provide supervisory

and control models for implementation of the present remote hierarchical supervision.
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The developed local controller and supervisory agent are implemented on the Mirle
SoftPLC. Fig. 5.6 shows the developed HMI. By pushing the enabled buttons, the remote
manager can issue commands to start tasks operated by the local controller. It also shows
that Machine 1 is available, and both Machine 2 and 3 are occupied with material z (the
pre-state of the mentioned deadlock in Section 5.3.2). In this situation, buttons Load X to
M1 or Load Y to M1 are enabled to meet Spec-1, while the Load X-Y to M1 button is
disabled by the supervisory agent to satisfy Spec-4, and the other buttons are disabled to
meet Spec-2, Spec-3 and recipe specifications. The remote manager can only push the
buttons Load X to M1 or Load Y to M1 to generate Product x-z or y-z, respectively.
Thus, the desired requirements of the three-recipe FMS are guaranteed as the commands

issued by the remote human manager are conducted.

g} Remote Hierarchical sion of a 3-Machine Manufac
File Edit ¥iew Go Communicator Help
[ & @ B 4 » wW S & @
Fack  Forward  Reload  Home  Search  Netscape  Print  Secunty  Ziop
I a# Bockmarks B Go to:[http://140.113.150.28 ierSupervision him = | €0 What's Related
[
Remote Hierarchical Supervision of a
Three-Machine Flexible Manufacturing System
System Status System Message Button Conitrl Area
. IDLE
Machine 1: Al Load 3-Y to M1 | | Comvey X-¥.to M3 |
In Marhine 1: "2 Command - Load X-¥ to W1
Response: M1 is loaded with X-Y.
Machine 2: |V ING ooalel Wy S ennoand 1o uii Load X to ML | Convey X ta M3 |
. ; eten.
In Machine 2: posponss: Treten I3 eset
. gu““d_}:;d: {D =Z,i - Load Zto V2 | Convey Zito V5 |
Machine 3 |"OREING u2§§23§?'uz,i;“‘mﬁzeisi:; P
Message: Z is processed by W21
In Machine 3: |- e N Load Y to ML | Conyey. ¥ to M3 |
2 with Z
Command: Load = to 2.
Response: M2 is loaded with z. Process KoY. | Process X7 |
Message: M2 is processing z___
Message: Z is processed by N2!
-
il 4 Process Y-7i | Reset System
=]
] SR e e

Fig. 5.6. Interactive Web page for remote supervision of the FMS by a Java applet (only

three buttons are admissible).
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5.4. Discussions

In the proposed hierarchical framework, the supervisor turns out to be more compact
and simple, since it deals only with the command-level tasks, i.e. groups of operations.
This greatly simplifies analysis and validation of the supervisor. The implementation of
several elementary operations can be grouped into a single task performed by the local
controllers. Separation of detailed control and supervision enables us to increase the
conciseness of our design problem and makes the complexity manageable. By
comparison, as shown in Table 5.3, using a conventional nonhierarchical approach to the
present three-recipe FMS, verification of the supervisor has to resolve all deadlock
situations by searching the whole reachability graph, with the detailed control-level
operations in a 2228-state space. However, by applying the proposed hierarchical
framework, the supervisor design has-a more compact model with a 248-state space.

Moreover, to produce thirty products (ten X-y, X-z, y-z each), 560 request/response
transmissions over the Internet are consumed in the nonhierarchical approach, while only

260 ones are required using the proposed hierarchical scheme.

Table 5.3. Comparison between the nonhierarchical and hierarchical schemes.

Conventional Proposed
Index nonhierarchical | hierarchical
scheme scheme
Places 50 23
Transitions 48 22
State space 2228 248
Reg/Resp
transmissions for 30 560 260
products (10 each)
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5.5. Summary

This chapter has presented a unified Petri-net framework to design and implement a
three-level hierarchical supervisory system for remote-controlled processes over the
Internet. The supervisor in the upper level is systematically synthesized, using PNs, to
enforce the command-level specifications of resource constraints and liveness for the
processes, and then is implemented with Java technology. The local controller in the
lower level is also designed with PNs to meet the control-level specifications and is
implemented by the LLD. An application to a three-recipe FMS with an industrial PLC
controlled over the Internet is provided to illustrate the proposed approach. According to
the feedback status of the remotely located system, the designed Java-based supervisory
agent guarantees that all requested commands from the remote manager satisfy the
requirements for multiple recipes, resource sharing, and deadlock avoidance, while the
developed local controller performs the corresponding operations to meet the requested
tasks.

Moreover, results show that-the supetvisor.synthesis of the presented hierarchical
scheme is less complex than the conventional nonhierarchical one, and fewer packet
transmissions are consumed so that the effects of time delays and packet loss across the

Internet can be moderated.
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Chapter 6
SNMP-Based Management System

For large-scale and distributed systems, a management system is crucial to manage
diverse network elements and handle their messages for remote supervision. One
approach is to use the simple network management protocol (SNMP). However, in real
industrial applications, many basic and major components such as sensors, actuators, and
PLC still do not support SNMP function for remote applications. Therefore, this chapter
presents a systematic design to embed SNMP agents into PLC for those devices so as to
achieve remote monitoring and control through such a standard network protocol. Then,
the standard unified modeling language (UML) is adopted for modeling the system, and
the PN model is applied to analyze the dynamic behavior of the system. The developed
system has been used successfully in a-mobile switching center (MSC) of Taiwan
Cellular Corporation for the remote supervision, throtigh the Internet, to monitor and
control its environmental conditions ‘including-the témperature, humidity, power, and

security, with a total of 316 sensors‘and 140 actuators.

6.1. Integration of UML and PN

The UML is a language for specifying, constructing, visualizing, and documenting
the elements of a software-intensive system (Booch et al., 1999). It defines the notation
and semantics to describe systems using object-oriented and meta-modeling concepts in
the spirit of the multi-paradigm modeling (Mosterman et al., 2004). Each model in the
UML describes one aspect of a system, and the combination of the various models
adequately describes the entire system. However, although UML is convenient for
modeling a complex system, UML is not equipped with the necessary techniques for
analyzing a system’s qualitative and quantitative properties (Jeng and Lu, 2002). One of

the major problems in using UML for the formal specification of systems is that the
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semantics of UML are imprecise and vague. Particularly, the UML has no execution
semantics and the current behavioral specifications in UML are primitive. UML also
lacks tools and analysis support for behavioral models (Bernardi et al., 2002; Bordbar et
al., 2000).

On the other hand, the PN is a graphical-mathematical tool used to model and analyze
various systems, especially for systems with parallel and concurrent activities. PN
provides qualitative analysis for system properties such as reachability, liveness,
boundedness, and conservativeness. Moreover, by introducing time functions into the PN
to form a timed PN, quantitative analysis can then be performed. PN complements the
UML in a number of ways. First, it provides a powerful and rich visual formalization for
specifying behavior in general, and concurrent behavior in particular. Second, it provides
an executable notation, something that UML currently lacks. Statechart is the model that
most closely resembles PN in the UML. However, Statechart describes state machines
that are, in general, finite state systems whereas PN can be extended to present infinite
state systems. Furthermore, PN has,| in- contrast to UML Statechart, dynamic
representation (i.e. the token flow mechanism) and powerful analytical methods. This is
why, in this chapter, the PN is adopted to-obtain a'dynamic and analyzable model for
large-scale and long-distance distributed systems..With this approach, both qualitative
and quantitative analyses can be applied to achieve reliable remote monitoring and

control.

6.1.1 Design Procedures

A remote monitoring system consists of the agent and manager sides. The present
approach develops SNMP agents based on the UML modeling with PN analysis. As
shown in Fig. 6.1, the use-case diagram and sequence diagram in UML are used to
capture the SNMP requirements corresponding to the monitoring and control
specifications at the stage of functional and interactive analyses. Then, at the stage of
static structural modeling, the class diagram is applied to describe the static relationships
of the system. Subsequently, the PN model is constructed according to the above models
such that both qualitative and quantitative analyses of the system’s dynamic behavior can

be performed. Finally, at the architectural design stage, the deployment diagram is
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modeled to capture the physical relationships among software and hardware components,
and the obtained models are implemented using Java and ladder diagrams on the
industrial PLC. The design procedure in Fig. 6.1 is a type of ‘round-trip’ engineering, in
which all models may be developed in an iterative and incremental way through a
repeated cycle of analysis, design, implementation and testing. Therefore, the proposed
approach is quite flexible and it allows making some alterations, such as changing the
requirements or fixing a design flaw. A case study of an environmental monitoring
system for the mobile switching center is provided in this chapter to illustrate the

proposed approach.

6.2. Requirements of SNMP Agents

The SNMP is an application-level protocol that offers network management services
in the transmission-control protocel/internet protocol (TCP/IP) suite. It is based on a
client/server relationship in which the client issues requests to the server and the server
processes requests and responds-to the client. The SNMP network management system
includes four key components:~1) 'management ‘station, 2) management agent, 3)
management information base (MIB), and-4) management protocol. A management
station uses the management protocol to request management agents performing
management operations on MIB objects. Essentially, each MIB object is a data variable
that represents the manageable attribute. A management station can monitor and control
remote elements by retrieving or changing the value of MIB objects of the management
agent via the SNMP protocol. The management agent synchronously responds to requests
from the management station and may further asynchronously provide important but
unsolicited information (e.g. the alarm conditions) to the management station in the

monitoring and control center.
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Fig. 6.1. The systematic development procedure for SNMP agents.

In the management station as shown in Fig. 6.2, three basic types of SNMP messages

are issued on behalf of a management application:

® GetRequest

® (GetNextRequest

® SetRequest
where the first two are variations of the get function. All three messages are transmitted
with protocol data units (PDU) and acknowledged by the agent in the form of
GetResponse message passed to the management application. In addition, an agent may
issue a trap message in response to an event that affects the MIB and the underlying

managed resources. Since SNMP relies on user datagram protocol (UDP) which is a
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connectionless protocol and has high transmission efficiency for small data packets,
SNMP is itself connectionless. No ongoing connections are maintained between a

management station and agents.

SNMP Management Station SNMP Management Agent
1 [ Managed Resources
Management Application T SNMP Managed Objects
Application — %
? manages objects B
O] @ B O [0] k7
= | 2| 2 2] O x | 2| @ 7] O X
2 8| S| § 3 2 2l 8| S| § 2 2
g%g%@d%% new addition 2l €8 ¢/ 8| 8%
ol sl 2| F| % = o slE| 2| F| % =
235 |&° 2\ 23| %| |E"
8] 3”& = SNMP 3| 3 I
Messages
SNMP Manager < > SNMP Agent
User Datagram Protocol (UDP) User Datagram Protocol (UDP)
Internet Protocol (IP) Default Port: Internet Protocol (IP)
Requesti 161
Network-dependent Protocols Trap:-162 Network-dependent Protocols

network or
Internet

Fig. 6.2. The simple network management protocol (an extension of Stallings, 1993).

Moreover, in the standard SNMP, since traps from the agent are not acknowledged by
the manager, there must be a mechanism to ensure that conditions in devices requiring
attention are not missed. Therefore, we further design and implement the following two
messages based on SetRequest to respond to traps:

® TestRequest

® TrapAck
When an alarm condition occurs, the designed SNMP agent will send the corresponding
trap message to the manager periodically. The TestRequest message is used to check the
alarm conditions in order to avoid false alarms, while the TrapAck message is used to
confirm alarms. When an alarm is reported to the manager, the manager may use
TestRequest to reset the alarm. If the physical input for such an alarm is still high, the

same alarm trap message will be sent again. On the other hand, after an alarm trap is sent,
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the manager may use the TrapAck message to confirm the alarm and the SNMP agent
will then be disabled to send the same trap message periodically.

Two major advantages are obtained due to the utilization of SNMP for remote

monitoring and control as follows.

1) De-localization of the monitoring stations: the management stations can be
arbitrarily located anywhere through the Internet. Also, integration of a large
number of monitoring devices in a given station becomes possible.

2) Ease of Access: the remote manager can access the local industrial devices easily

via the standard SNMP protocol.

6.3. UML-Based Modeling for SNMP Agents

In the proposed approach, UML modeling and PN analysis are used to develop
SNMP agents for remote monitoring and_control. Then, the Java language and ladder

diagrams are adopted to implement the system'on an industrial PLC practically.

6.3.1 Functional Analysis with the Use-€Case Diagram
A use-case diagram is used to capture the basic functional requirements of the system.

As shown in Fig. 6.3, it consists of three actors and nine use cases. The actors, drawn as
stick figures, represent users and other external systems that interact with the described
system. The use cases, drawn as ellipses, represent the scenarios of the system. A scenario
is a sequence of steps describing interaction between a user and a system. Basically, an
SNMP Manager can perform the following five use cases:

® GetRequest

® (GetNextRequest

® SetRequest

® TestRequest

® TrapAck
where GetNextRequest is an extension of GetRequest; TestRequest and TrapAck are

specialized from SetRequest. Any one of the above five requests will cause the SNMP
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Agent to carry out HandleRequest, including GetResponse, to result in a response to the
request. On the other hand, as soon as Managed Device lies in the AlarmCondition, the
SNMP Agent will perform SendTrap to report the alarms. Then, the SNMP Manager can
carry out TestRequest to check the alarm conditions in order to avoid false alarms, and

may perform TrapAck to confirm the alarm and then take the necessary control actions.

)

SNMP
Agent

SNMP-Based Remote Monitoring System
Use case \

«use»
GetRequest  }-----1---2 HandleRequest
Actor A T
i «extend» i
\ E «include»
GetNextRequest )-----
GetResponse

SNMP SetRequest -
Manager ~ SendTrap
«generalize»
TestRequest \«check» I «use»
~~~~~~~~~ > g
—‘_?AlarmCondltlon Managed
ol Device
«confirm»

Fig. 6.3. Functional analysis with the use-case diagram.
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Fig. 6.4. Interaction analysis with the sequence diagrams for (a) the Request scenario and

request(pdu) X

(b) the Trap scenario.
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6.3.2 Interactive Analysis with the Sequence Diagram

A sequence diagram shown in Fig. 6.4 is used to model the object interaction in a
system. Whereas the use-case diagram enables modeling of scenarios, the sequence
diagram indicates details of the scenario including the objects and classes used to
implement the scenario and messages passed between objects. Within a sequence diagram,
an object is shown as a box at the top of a vertical dashed line, called the object’s lifeline,
representing the life of the object during the interaction. Messages are represented by
horizontal arrows and are drawn chronologically from the top of the diagram to the
bottom.

Fig. 6.4 (a) shows the sequence diagram for the Request scenario, which includes the
five types of requests (GetRequest, GetNextRequest, SetRequest, TestRequest, and TrapAck)
described in the use-case diagram in Fig. 6.3. At the first stage, the SNMP Manager may
send a request to the SNMP Agent. Then, the SNMP Agent will invoke the Request
Listener to create a threaded object, Request Handler, to carry out the request. The
Request Handler then performs the specified actions oh the Managed Device through the
Device Handler, and then sends.a response to the SNMP Manager. After finishing the
request, the threaded object Request Handler will delete itself so as to release resources
for the system.

For the Trap scenario as shown in Fig. 6.4 (b), the Condition Checker iteratively scans the
status of the Managed Device through the Device Handler and checks its condition (the asterisk
indicates the iteration in UML). If the condition is undesirable or faulty, Condition Checker will
send a requestTrap message to the SNMP Agent. Then, SNMP Agent will invoke the Trap
Listener to create a Trap Handler, a threaded object which carries out the request. The Trap
Handler sends the trap to SNMP Manager asynchronously (the half-arrowhead symbol indicates
an asynchronous message in UML), and then deletes itself to release the resources for proceeding
use. When SNMP Manager receives the trap message, it will send a request of 7estRequest to

check the alarm condition, or perform 7rapAck to confirm the alarm.
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6.4. Example: A Mobile Switching Center

In wireless cellular communication systems, the service area is generally covered by
many cells with base stations, and the clusters of cells are connected to mobile switching
centers (MSCs). Each MSC receives encoded speech and data packets transmitted from
the traffic channels in the base stations and provides call control, processing, and access
to the public switched telephone network (Vucetic and Kline, 1998). Since the remote
MSC plays an important role in mobile communications, the environmental conditions,
emergency management, and safety of such large-scale and long-distance distributed
systems are essential considerations. In the present design, an SNMP-based remote
monitoring and control system, as shown in Fig. 6.5, is developed to provide real-time
data on device status and environmental conditions in the MSC. Also, the embedded
SNMP agents detect abnormal conditions in the MSC and report alarms to three
de-localized management stations. Furthermore, necessary control actions may be taken
through the Internet.

We choose a building complex as our'target system. In this system, 24 temperature
sensors, 24 humidity sensors, 4 power sensors, 4 current sensors, 4 voltage sensors, and
256 binary sensors for security (e.g. burglar-alarms)-are connected to two PLCs in the
MSC to be monitored. Twelve alarm‘conditions are¢ considered in the present monitoring
system:

Fire alarm

Wateriness alarm
Burglar alarm
Temperature alarm
Humidity alarm
Electric voltage alarm
Electric current alarm
Power equipment alarm
Power supplier alarm

Dynamo alarm

Uninterruptible power supply (UPS) alarm
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® Air conditioner alarm

Moreover, six control actions can be operated remotely if specific alarm signals are

1ssued:
Emergency door control (open/close)
® Dynamo control (power on/off)
® UPS control (power on/off)
® Air conditioner control (off/wind/low/middle/high)
® Setting limitations of temperature and humidity

® Enable/disable alarms
Under normal operation, air conditioners are locally controlled to achieve desirable
temperature and humidity within the specified ranges. As faults occur and are detected,
corresponding control actions are taken by a total of 140 actuators. The actions that can
be performed in the present remote monitoring and control system include 1) open
emergency door, 2) adjust air conditioner, 3) power.on dynamos, and 4) power on UPSs.
Moreover, the hardware specifications provide three management stations and two PLC

controllers for safety in case of ctashes among local agents and remote managers.

Management Management Management
Station #1 Station #2 Station #3

Fig. 6.5. The SNMP-based remote monitoring and control system.
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6.4.1 Static Structural Modeling

The class diagram shown in Fig. 6.6 provides the main static structural models of the
system. It is developed using information collected in the use-case diagram and sequence
diagram discussed in Section III. A class diagram describes the types of objects in the
system and the various kinds of static relationships that exist among them. It also shows
the attributes and operations of a class and the constraints on how objects are connected.

Fig. 6.6 is a class diagram of the SNMP-based monitoring and control system. It
represents the static structure and object relations of SNMP agents for remote monitoring
and control of the MSC. The SnmpManager class has five operations corresponding to
the five types of requests as depicted in the use-case diagram. The SnmpAgent class has
the composition relation (represented as a black diamond) with three classes:
RequestListener, TrapListener, and ConditionChecker. The composition relation
indicates that the composite is explicitly responsible for the creation and destruction of
the contained objects. RequestListener can create.a RequestHandler, which has five
operations for the five types of requests,in order.to process the request and respond to the
SnmpManager. TrapListener may create a frapHandler, which gets the IP addresses of
trap managers, sets the hosts, ports of trap managers; and sends the Trap to report alarms
to trap managers. The ConditionChécker.uses the DeviceHandler to access the managed
devices through the DataTable which reflects the real I/O status of managed devices and
saves system variables, such as MIB mapping information and required limits (e.g.
limitations as to temperature and humidity).

After real-time status checking, ConditionChecker obtains either the Normal or Alarm
condition. As noted in Fig. 6.6, the Alarm object has twelve sub-objects, such as
FireAlarm, WaterinessAlarm, etc. As soon as an alarm condition occurs, SnmpAgent is
requested to create a TrapHandler to send a trap to the managers. The MgdDevice has a
generalized relation with the Semsor and Actuator. In the present case, the remote
controllable actuators are emergency doors, dynamos, UPSs, and air conditioners. In
addition, certain system variables such as limitations on temperature and humidity can be
set remotely, and all alarms can also be remotely enabled and disabled. The Sensor class
is ‘inherited’ by the BinarySensor and AnalogSensor, the latter of which includes

TemperatureSensor, HumiditySensor, etc. The class diagram can be developed and
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modified in an iterative fashion, through a repeated cycle of analysis, design and
implementation, and then returning to the first stage of the cycle, as shown previously in

Fig. 6.1.

 requests
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Fig. 6.6. The class diagram of the SNMP-based monitoring and control system.
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6.5. PN Modeling and Analysis

In order to obtain a verifiable dynamic model for real applications, we use the PN
model replacing the Statechart in UML. This allows us to perform both qualitative and

quantitative analyses on the developed remote monitoring and control system.

6.5.1 Dynamic Behavioral Modeling

Based on the sequence diagram and class diagram constructed using UML,
information can be extracted to build a PN model. The simplified PN of the remote
monitoring and control system for the mobile switching center is shown in Fig. 6.7. It
consists of 30 places and 28 transitions. Corresponding notations are described in Table
6.1. For example, the dynamic behavior of the RequestHandler in Fig. 6.4 (a) and Fig. 6.6
is modeled as p9-p15 and t6-t13 inFig. 6.7. The software package ARP (Maziero, 1990)

is adopted again to verify the qualitative and quantitative properties of the PN model.

6.5.2 PN Analysis

In our qualitative analysis, validation results via the PN modeling show the present
design to be live and bounded. The liveness property means that the system can be
executed properly without deadlocks, while the boundedness property means that the
system can be executed with limited facilities (e.g., limited request buffer size). For
quantitative analysis, appropriate parameters such as the time period and the probability
of an alarm occurring are assigned for the timed PN modeling. Simulation results show
that tl, t12, t13, and t25, drawn with dark symbols in Fig. 6.7, are critical timed
transitions of the system. These critical time delays are dependent on the transmission
rate between the manager and agent. For example, if the data rate on the line is 512K bps,
i.e. 64K characters per second, then the delay is 1/64K second per character. Since the
SNMP rides over UDP/IP, of which the maximum packet size is 64K, the delay will be 1
second if there is no significant network congestion. On the other hand, the delay time of

t20 can be chosen to avoid sending a great number of traps to managers in a short time
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interval for the same alarm condition. In our case, we choose a delay of 30 seconds for
t20. That means that if an alarm is reported to the manager but the agent does not receive
an acknowledgement within 30 seconds from the manager (i.e. TestRequest or TrapAck),
the designed agent will send the trap again for this alarm condition.

In addition to finding the critical timed transitions, the PN model can also be used to
decide time periods, such as t14 (time period in which to scan the real I/O status) and t16
(time period in which to check the data in DataTable), by performing sensitivity analysis

based on the p-invariant or static cycle methods (Zuberek, 2001; Srinivasan, 1998).
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Table 6.1. Notations of the PN for the SNMP-based management system in Fig. 6.7.

Place Description Transition Description
pl New request tl Send request
p2  |MIB browser ready t2 Report result
p3 Waiting for response t3 Report error
p4 Receiving result message t4 Invoke request listener
pS Receiving error message t5 Finish request handler creation
p6 Request buffer t6 Decode request PDU
p7 Creating request handler t7 Error occurs
p8 Request listener available t8 Finish decoding
p9 Request handler ready t9 Start processing request
pl0 |Decoding request PDU t10 Error occurs
pll |MIB of objects available tl1 End processing request
pl2 |Decoded commands and variables t12 Send error message
pl3  |Processing request t13 Send result message
pl4 |Collecting error message t14 Access devices
pl5 |Collecting result message t15 End handling devices
pl6 |Device handler available tl6 Start checking states
pl7 |Handling devices (get/set status) t17 Normal level-condition
- Abnormal level-condition
p18 | Condition checker ready k18 (Trigger/Hold timer to generate impulse)
pl9 |Processing level-check t19 Normal impulse-condition
p20  |Processing impulse-check 20 Abnormal impulse-condition
p21 |Trap buffer t21 Invoke trap listener
p22 |Creating trap handler t22 Finish trap handler creation
p23  |Trap listener available t23 Encode alarm to trap PDU
p24  |Trap handler ready t24 Finish encoding
p25 |Encoding trap PDU t25 Send trap to managers
p26  |MIB of traps available t26 Process trap
p27 |Trap PDU ready t27 Answer TestRequest (check alarm)
p28 |Receiving trap message 28 Answer TrapAck (confirm alarm)
p29  |Trap browser ready
p30 |Deciding response for trap
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6.6. Architecture Design and Implementation

A deployment diagram is used to model the physical relationships among software
and hardware components in the deployed remote monitoring and control system, as
shown in Fig. 6.8. It includes a set of nodes (drawn as cubes) to represent the
computational units and relationships among three main machines: (1) the management
station, (2) management agent, and (3) managed devices. The management station uses
the SNMP Manager to communicate with the SNMP Agent through an Ethernet
connection, while the management agent uses the Device Handler to communicate with
the managed devices such as sensors and actuators through PLC I/O connections or the
industrial network Modbus.

The system modeling and analysis developed in previous stages provide standard
models for implementation of the present remote monitoring and control technology.
Although UML modeling is not restricted to.any particular language in implementation,
Java is preferred due to its object-orientation, portability, safety, and built-in support for
networking and concurrency. In*the implementation of the present design, we need to
translate information from multiple UML-and PN medels into the code and database
structure. This translation is “mot~ straightforward. However, there is a close
correspondence between Java and “UML;-and “a standard mapping is described in
(Greenfield, 2001). Also, a mapping between PN and Java is described in (Conway et al.,
2002). Moreover, since Java cannot directly control the I/O devices, the ladder diagram
implemented on the PLC is applied to make the SNMP agent access the low-level sensors
and actuators. The developed SNMP agent is implemented on the Mirle SoftPLC. Fig.
6.9 shows the hardware setup during prototype development.

The developed SNMP-based remote monitoring and control system in this chapter is
now operating at an MSC belonging to Taiwan Cellular Corporation. A total of 316
sensors and 140 actuators are handled by two PLCs with 189 rungs in each ladder
diagram. Under normal operation, the desirable temperature and humidity of the MSC are
locally controlled by air conditioners and only remote monitoring is needed. As any
faults occur in the MSC, the SNMP agents will immediately send alarm signals to the

three remote management stations, and proper control actions will then be taken to
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correct the faults. Thus, environmental conditions in the MSC are supervised by the local
SNMP agents and can be further monitored and controlled by the remote manager from

great distances through the Internet.

6.7. Discussions

This chapter integrates the PN into UML modeling to achieve design, modeling,
analysis, verification, and implementation of remote monitoring and control systems
within a systematic framework. The results of this study lead to the following discussion.
1) The models developed here for application to SNMP-based remote monitoring and

control of mobile switching centers are general models. Since the UML is based on the

object-oriented concept, reusable models can be grouped into a library to make the
design process more efficient when similat SNMP applications are encountered.

2) Basically, if SNMP traps are allowed to go_ unacknowledged, SNMP agents cannot
guarantee that a critical message definitely reaches the management station. In this
chapter, TestRequest and TrapAck are further proposed to respond to the traps and thus,
the present SNMP agents ensure that. conditions Tequiring attention in the monitored

systems or processes are not missed.
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Fig. 6.8. Architectural design with the deployment diagram.
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SHMP
Manager

Temperature/Humidity Sensors

Fig. 6.9. The hardware setup during prototype development.

6.8. Summary

This chapter presents a systematlcal dBSlgn and implementation of SNMP agents for
device management systems. In the UML blsedﬂdemgn of the SNMP agents, the use-case

diagram and the sequence dlagram are pp wdf to “describe the functionalities and

interactions, respectively. Then, a class‘l "B;gram 18 used to describe static structures, and
the PN model is further applied fo v"". fy ’the d“‘ armq Behav1or of the system. In addition,
the deployment diagram is used to r;lodel ‘the distribution of physical components in the
system. Implementation is then accomplished using the Java language and ladder
diagrams on the PLC. For the management of large-scale and distributed systems, the
proposed multi-paradigm approach provides systematic design and implementation of
SNMP agents to achieve remote monitoring and control by integrating UML modeling

and PN analysis.
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Chapter 7
CONCLUSION

7.1. Summary of Contributions

For remotely monitored and controlled processes, a series of design and

implementation results of the sequence controller, the supervisor, and the device

management system are proposed in this thesis. In the current e-automation world, the

techniques developed in this thesis are useful for industrial applications. The

contributions of this thesis are summarized into five aspects:

1)

2)

3)

Rule-based evaluation of the ladder logic diagram (LLD) and Petri net (PN)

To verify the potential of PN in the sequence control applications, this
work presents a rule-based comparison to adequately evaluate the LLD and
PN. An example of-five sequences with increasing complexity for a
stamping process is- provided to illustrate the proposed approach. The
results indicate that the proposed-evaluation approach is more reasonable

(Lee and Hsu, 2004a).

PN-based design for LLD implementation

Since the LLDs are still widely used today in real industry projects,
this thesis proposes a PN-based design to the final LLD implementation for
sequence control. Starting from the basic sequential specification, the
proposed approach combines integration definition language 0 (IDEFO),
simplified Petri net controller (SPNC), and token passing logic (TPL), and
systematically leads to the LLD for PLC implementation. An application of
a stamping process is provided to illustrate the developed approach (Lee

and Hsu, accepted).

Supervisory control of human behaviors

To prevent abnormal operations of humans, a remote supervisory
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scheme is proposed so that undesirable human operations are prohibited.
According to the feedback status of a remotely located system, the
developed supervisory agent provides allowable commands for operators
by disabling those operations that violate safety specifications. The
possibility of human errors can be thus either reduced or fully eliminated.
An example of rapid thermal processor in semiconductor manufacturing is

provided to illustrate the proposed approach (Lee and Hsu, 2003b).

4) Hierarchical supervision of manufacturing systems

To reduce the complexity of supervisory system design, this thesis
proposes a hierarchical structure to synthesize subsystems for remote
monitored and controlled processes. A three-recipe flexible manufacturing
system is also provided to illustrate the developed hierarchical design. The
results show that the developed. hierarchical design leads to a smaller
state-space size. Also, fewer request/response transmissions are consumed

resulting in less transmission faults (Lee and Hsu, 2003a).

5) Realization of simple network management protocol (SNMP)-based device

management system

To manage diverse network elements, this thesis integrates the PN into
the unified modeling language (UML) to achieve modeling, design,
analysis, verification, and implementation of SNMP agents within a
systematic framework. The developed system has been successfully used
in a mobile switching center of Taiwan Cellular Corporation for the
remote supervision and management of its various environmental devices

(Lee and Hsu, 2004b).

7.2. Future Research

Through the study of applying the PN for remote supervision systems, there are

several directions in which this work can be extended in the future as follows:
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1)

2)

3)

4)

5)

Time-based constraints

The discussed supervisory control framework in this thesis is restricted
to purely logical system models (Giua and DiCesare, 1991; Moody and
Antsaklis, 1998) For applications with time-based constraints (e.g.
communication delays), it is necessary to extend the present model with

time-related specifications (Cofer and Garg, 1996; Caramihai et al., 1998).

Automatic model transformations

This work provides the design approach by integrating
IDEFO/SPNC/TPL/LLD to systematically achieve the sequence controller.
Furthermore, the approach by applying the UML with PN is also employed
to develop an SNMP-based management system. However, the model
transformation between these two approaches is still achieved manually in
the present study. Design .of .computer programs could be the future

research to transform the models automatically (Mosterman et al., 2004).

Access security

Security is a prime concern for network systems with remote access
and only basic user/password and IP-access policies are adopted in this
thesis. Several solutions have been proposed for SNMP to improve the
access-control policy, such as Secure-SNMP (S-SNMP) and SNMPv3
(Zeltserman, 1999). Improving the security of the present remote systems
by applying the new SNMP policies is considered in the future

implementation.

Multiple-user conditions

The remote control scheme presented in this thesis is focused on the
condition of single-user access at a time. Future work should study the

conditions of multiple-user access.

Error recovery mechanisms

For the remote supervision systems, the missing message and channel

99



disconnection are unavoidable in Internet. Moreover, process errors or
device faults may also occur during the operations. Thus, error recovery
mechanisms for the present remote supervision systems can be further

investigated (Jeng, 1997; Zhou and Dicesare, 1989).
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