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In  contrast to  the  screens  considered  by Lang [ 3 ] ,  those 
, forming  our  complementary  structures  must have  resistivities 

and  conductivities  satisfying  (10)  or  (1 5 )  at  all  pairs of 
corresponding  points.  Resistive  sheets  having  (normalized) 
resistivities up to  about 3 are  readily  available  and have found 
useful  application  for  cross  section  reduction  purposes. A 
purely  conductive  sheet  would  be  more  difficult t o  realize, 
but  it  is  possible  that  this  could  be  done  over  a  limited 
frequency  range  at  least. 

Though  it  would  be  natural  to  seek a  Babinet  principle  for  a 
combination  sheet  (which  includes  an  impedance  sheet  as  a 
particular  case),  it  seems  unlikely  that  such  a  principle  exists. 
The  resulting  scattered  fields  no  longer have the  symmetry 
properties  that  characterize  individual  electric  and  magnetic 
current  sheets,  and  as  regards  the  type of proof  presented  here, 
the  procedure fails  in  the  deduction of E(1) and  from 
their  values in the half space z > 0. This is not surprising  since 
an  impedance  sheet is opaque  whereas resistive and  conductive 
ones  are  not. 
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Abstract-The transient  dyadic  Green’s  function  for a perfectly  con- 
ducting wedge is expressed in terms of differentiation  and  integration 
operations on the scalar  Dirichlet  and Neumann Green’s functions. For 
the  special  case of a half  plane,  this  general  form is shown to reduce to 
a previously  derived  elementary result. 
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I .  INTRODUCTION 
The  problem of diffraction of the  pulsed  field  from  an 

arbitrarily  oriented  electric  or  magnetic  dipole  by  a  perfectly 
conducting  wedge  has  recently  been  solved [ 1 1 .  The  solution, 
constructed  by  an  image  representation in an  infinitely  ex- 
tended  angular  space.  was  obtained  in  closed  form in terms of 
elementary  functions  similar to  those  appearing  in  the  result 
for  diffraction of pulsed  scalar  point  source  fields.  In  the  fol- 
lowing,  we  show  that  from  this  solution,  it is possible t o  derive 
a  representation  for  the  diffracted  pulsed  vector  field in terms 
of the  Dirichlet  and  Neumann  Green’s  functions  characterizing 
the  scalar  pulse  problems.  The  axial  Hertz  potential  generated 
by  an  electric  dipole  oriented  parallel  to  the  edge of the wedge 
is proportional to the scalar  Dirichlet  Green’s  function.  How- 
ever,  a  dipole  directed  transverse to  the edge  generates  a  trans- 
verse Hertz  vector  which is obtainable  from  the scalar  Green’s 
functions  only  by  operations  involving  both  differentiations 
and  integrations  with  respect to certain  space  and  time  coor- 
dinates. A compact  operator  form of the  solution is presented. 

When the general  solution is specialized to   the case  of a 
half  plane,  it is  possible t o  reduce  the  result so that  each  com- 
ponent of the transverse  Hertz  vector is proportional  to a 
scalar  Green’s function  plus  an  explicit  remainder  term  devoid 
of integrations.  The  remainder  terms  are  required t o  satisfy 
the  edge  condition  for  the  vector  field,  as  noted  by  Mohsen 
and  Senior  [2]  who derived the half  plane  result  directly. 
Our  form of the wedge  solution  may  be  regarded as a  gener- 
alization  of  the  half  plane  solution of  Mohsen  and  Senior, 
whereby  the  dyadic Green’s function is expressed  in  terms  of 
the scalar  Green’s  functions,  albeit via differentiations  and 
integrations. We have note  been  able  to  eliminate  the  integral 
operations  in  the general  case. 

While we  present  only  the  electric  dyadic  Green’s  function. 
(electric  dipole  excitation),  the  same  procedure  can  be  followed 
for  the  magnetic  dyadic  Green’s  function  (magnetic  dipole 
excitation).  Moreover,  because of the trivial  scalarizability  of 
the  longitudinal  dipole  problem [ 3 ] ,  we  deal  only  with  trans- 
verse  dipole  orientation. 

In  Section 11, the previously  obtained  Hertz  vector  ex- 
pression [ 11 is manipulated so as to exhibit  explicitly  its de- 
pendence  upon  the scalar  Green’s  functions.  The  reduction  of 
the general  formulas  for  the  case  of  a  half  plane is presented 
in  Section 111. 

11. GENERAL  SOLUTION 

The  solution  for  the  time-dependent transverse Hertz 
vector  generated  by  a  transverse  electric  dipole  with  impulsive 
dipole  moment p o 6 ( t )  is given as follows [ 11 : 

n(r, r‘; r )  = ng(r, r’;  r )  + r’;  t), r’ = ( p ’ ,  G’, 0 )  (1) 

where +(r,   r‘;  t )  is the  geometric-optical par,t 
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with U(x)  denoting  the Heaviside unit  function  and in = 
(p‘, F,, 0). The  diffracted  part Ire' is  given by 

where I = [ ( p  f P ’ ) ~  + z 2 ] 1 / 2  and 

I p + i p + n  

2a/n 
- cos (9 + ip + n) cot 

- sin (9 + ip + n) cot 
p + i p + n  

2aln 

The  dipole  with  unit  strength  moment p o  lies in the  z = 0 
plane  .at  the  point r’ = (p ‘ ,  @’, 0) in the presence of  a perfectly 
conducting  wedge  composed of two intersecting  half  planes a t  
Q = 0 and Q = a in a (p, 9, z )  cylindrical  coordinate  system 
(Fig. 1). p n  and p,, denote image  sources  which  lie on  the 
circle p = p’ and  decompose  into  two  sets  with  angular  coor- 
dinates Qn = 2na + @’ and F, = 2na - Q’, respectively,  where 
n = 0, f 1, 2 2, ... and 0 < Q’ < a. An  image at  Qn has  the 
orientation 

p n  = x. cos (2na + v) + y o  sin (2na + V )  ( 6 4  

while an  image  at &, has  the  orientation 

p, = -x0 cos (2na - v) -yo sin (2na - v) (6b) 

where E ,  and  subsequently 1-1, are  the  permittivity  and  per- 
meability  in  vacuum. 

We shall now turn our  attention to the  diffracted  field. 
It  can  be  shown  from (5) that 

I 
/ 

/ 
/ 

/ 
/ 

Fig. 1. Wedge configuration  with  point dipole excitation. 

- [-Re Q&) cos Y + Re Q1 (Y) sin V I  
2a 

71 

where 
r 

a 
I 

Substituting  Re Ql and  Re Q2 from ( 7 )  into  (4a)  and  (4b), 
one  obtains, 

Re A ,  (9, 9’ ; io) 

= cosh B[-COS (Q - Q’ + v).Re B(Q - 4’; ip) 

= cosh p [-sin ($J - 9’ + Y )  Re B(Q - @‘;io) 
+ sin (Q + 9’ - v) Re B(Q + Q’ ; io)] 
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Recognizing  that Re B(q;  io) is an  even function  of q, one  may 
write 

Re A ,  (9, Q'; $1 

= - COS (4' - V) cos @ cosh @(Q, #r; 0) 
- sin (9' - v) sin @ cosh PB"(@, @'; 0) 

- sin (4' - v) cos @ sinh 

-2 cos (9' - Y) sin @ sinh 0 dQ Re B(@; $) ( loa)  

where 

B'(Q, 9'; 0) = Re B(@ - Q'; io) - Re B(Q + 9'; io) (1 Ob) 

B"(@, 9'; 0) = Re B(@ - @'; io) + Re B(@ + @'; $3). (1Oc) 

A similar  expression is obtained  for  Re A , .  From  (3)  and 
(1 Oa) the transverse  Hertz  vector  can  then  be  written  as 

-mxd(r ,  t-'; t )  

-sin r d @  sinh 0) Gd'(@, 9') 
30 0 

dQ sinh /3 Gd"(@, 0) 

and  similarly  for n y d .  Here, 

( l 2b )  

are  the  diffracted  parts of the scalar  Green's  functions  for the 
Dirichlet  and  Neumann  boundary  conditions,  respectively, 
[3, p. 6681. The  dependence  on p ,  p', z, z ' ,  and r has  not  been 
explicitly  indicated in the  arguments of Gd' and Gd". 

Introducing  the  operators 

L z 2  = sin @ CoSh/3 + COS @- dQ sinh 0 
a i  6" ( 1 3 ~  

a 0' 
L I 2  = sin @- d@ sinh /3 

a0 d ( 1 3 4  

,521 = -COS @- dQ sinh 0 a I"' ( 1 3 4  
a0 0 

and  also 

cos (@' - V) =ao  - po = a. [xo cos Q' + y o  sin 4'1 (14a) 

sin (4' - V I =  a, - (-do) = a. * [xo sin 9' - y o  cos 9'1 

(14b) 

where a. is the  unit  vector  along  the  direction of the  dipole 
while P O ,  $0 and XO, YO are unit  vectors  along  the Cartesian 
and  cylindrical  coordinates,  respectively,  one  reduces  (1  1)  and 
its  counterpart  for nYd to  the  dyadic  form 

nd(r , r ' ; t )=ao  - i ;d(r , r ' ; t )U t - -  ( I) (1 5 )  

where 

-$(r, r'; t )  

= [(x0 COS 9' + Y o  sin @')(XoL,, + Y o L ~ ~ ) G ~ ' ( @ ,  #'I 

+ (x0 cos @' + Y O  sin Q'l(x0L12 +YoL~I)G~"(@, 0 )  

+ (x0 sin 9' -YO cos O ' ) ( ~ J L Z Z  - YOL,  I IGd''(9, 9'11. 

(1  Sa) 

This is the desired  representation which expresses the  Hertz 
vector  in  terms of the scalar  Green's  functions. While the 
elementary  formula in (3) is more  convenient  for  actual  com- 
putation of the  field,  the  result in (15)  shows  how  the  dyadic 
Green's  function  can be obtained  from  the  scalar  Green's 
functions.  When  dyadic  Green's  functions  are  formulated 
directly,  such  relations  between  the  fundamental  scalar  and 
vector  problems  are  usually  obscured. 

The  vector  electromagnetic  fields  (and  hence  the  dyadic 
Green's  functions)  are  derived  from  the  Hertz  potential in (1) 
by  the  conventional  equations 

a2  

at2 
E(r, rl; t )  = vv n(r. rl; t )  -pe- n(r, r'; t )  (1.64 

a 
at 

H(r, i ; r )  = ED X - a(r, r' ; t )  (16b) 

and  the  potential  itself  satisfies  the  scalar wave equation 

(V2 -puf $) n(r, r'; t )  = - - p o  &(r - rJ)6( t ) .  (17) 
1 

E 
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111. SPECIAL CASE OF A HALF PLANE When  these  are  now  substituted  into ( 1  5), one  obtains  after 

When the wedge degenerates  into  the  half  plane a = 277, 
straightforward  but  tedious  manipulations, 

2 2 

whence 

P d+Q‘ 
cosh - -t sin - 

1 2 2 
1 

- c o s - s m - c o s v ] ~  Q 2 2  . 9’ u (*-;) 

=-sinh: I( 
This agrees  with  the  result of Mohsen  and  Senior [ 21. 

1 1 1 

4 
- 

P , @kQ’ P 9 * 9’ 
2 2 2 2 [ I ]  L. B. Felsen,  “Diffraction of the pulsed  field from an arbitrarily 
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