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Abstract

Forecasting volatility plays .an important: role in financial market, because
volatility predictions are crucial forl- the successful implementation of risk
management. The use of high frequency data approximately renders volatility from a
latent to an observable quantity, and opens the new field of visions to forecast future
volatilities. Use of realized volatility constructed from high-frequency intraday returns,
in contrast, permits the use of traditional time-series methods for modeling and
forecasting. Main goals of this thesis are to find general and powerful forecasting
procedures for volatilities based on Taiwan high frequency data, to evaluate the
predictive potential of volatility forecasts for the true latent volatility, to analyze the
impact of more reliable volatility predictions on the quality of three widely used risk
measures, and to test for parameter changes in the GARCH(1,1) models. For that
purpose, this thesis explores some statistical models for predicting the daily volatility

of financial time series.
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1. Introduction

The explosive growth of applications of econometrics to finance is due primarily
to the increased availability of financial data, increased computer power and the
greater interest in the performance of financial markets in current economic
discussions. Asset returns volatility is a central feature of many financial market
problems such as risk management and option pricing. However, it is still an
ambiguous term because of different concepts and definitions.

Up to now, many literatures have focused on the parametric approach
considering volatility as an unobservable variable and using a fully specified
functional model for the ex-ante expected volatility. Modeling the volatility was one
of the most common topics in the financial literature by using all ARCH types models
and stochastic volatility models. With respect to. financial econometrics, Bollerslev
(2001) declares that the development -of -ARCH' has been one of the two most
important devel opments in this field over. the past two decades.

However, realized volatility affords the empirical measurement of the latent
notional volatility on the discrete time interval [t-h, t]. Similar to the instantaneous
volatility measures, realized volatilities may be classified according to whether the
estimation of the notional volatility only uses returns observations falling in the
interval [t-h, t], which we call “local”, or also incorporates returns outside [t-h, t]. The
most obvious local measure for daily volatility is the daily absolute return. More
recently a series of papers (Andersen, Bollerslev, Diebold and Labys 200la and
Barndoff-Nielsen and Shepard 2002a, b, ¢) has formalized and generalized this
intuition by applying the quadratic variation theory to the broad class of special (finite
mean) semi-martingales.

To make clear the purpose and main theme from the very beginning, the main
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goal of this thesis is to find general and powerful forecasting models for volatilities
based on high frequency data. Particularly, we will use Taiwan high frequency data to
fit in-sample volatility, and to find more reliable volatility predictions. The problem of
testing for a parameter change has been an important issue in statistics. It started in
the quality control context and then moved rapidly to other fields. Finally, we will
check whether the results (our expected volatilities) are consistent with the actual
volatilities (realized volatility). This will be a powerful method to examine our
well-done forecasting models.

The change point issue has attracted much attention from lots of researches in
time series analysis. In the thesis, we applied some tests to a real data set. Since the
data set suffered from a period of SARS, it may detect structural changes owing to
changes of events or policy. Ignoring it can lead to.a false prediction.

The rest of the thesis proceeds as follows: In Chapter 2, we describe data types.
Chapter 3 establishes every volatility.notation-and illustrates some models we used in
this thesis. Particularly, there are some.special methods to detect structural change.
Chapter 4 reports some definitions of evaluating volatility measures and uses these
measures to assess performance of each model theoretically. In Chapter 5, we try to
summarize empirical analysis, and propose some interesting issues. Chapter 6

concludes the discussion.



2. Data

The data used in this thesis are indices of the Taiwan Stock Exchange (TAIEX)*
and the Taiwan Stock Exchange option (TXO) obtained for the period from Jan. 2,
2003 to Aug. 29, 2003, and 163 days in the aggregate. We chose this period because it
was the period of initial and terminal stages when epidemic SARS spread globally.
Figure 2.1 shows the daily probable amount of SARS cases happened in Taiwan from
Feb. 25, 2003 to Sep. 4, 2003. According to Figure 2.1, epidemic SARS reached the
high summit during the period from the middle of April to the middie of May. It
means that high level infection of SARS coronaviruses lasted for more than one

month.

2.1 TAIEX

TAIEX is the comprehensive index of-all-companies entered the market in
Taiwan Stock Exchange Corporation,-andthe method to calculate depends on market
value of weighted-average. Taiwan Stock-Exchange Corporation provided data banks

of theindex TAIEX since Aug. 8, 1998.

There are three types of indices in calculating methods: price-weighted,
value-weighted, and equal-weighted. TAIEX belongs to type two and is common in
global financial markets. Value-weighted is calculated by total market value in the
current period (outstanding shares* closed stock price)/total market value of base
period. Therefore, at the same level of advance-decline, companies with great market

value have much more influence than that with small ones.

1 At present, the most commonly used index is Taiwan weighted index. It includes more
than six hundreds stocks of listed companies in Taiwan, and it is also the most famous index
in Republic of China. The code of Taiwan weighted index in quote systemsis TWII.



The plot of stock prices from Feb. 25, 2003 to Sep. 4, 2003 isgiven in Figure 2.2.

2.2TXO

Option of Taiwan Stock Exchange Capitalization Weighted Stock Index (TXO)
is afinancia derivative started on Dec. 24, 2001.This option is European style, thus
there is no possibility of early exercise. Trading hours are 08:45AM - 1:45 PM
Taiwan time Monday through Friday of the regular Taiwan Stock Exchange business
days. This option product belonged to the new financial derivative, so people were not
familiar with it at beginning. However, many stock trading companies tried to
promote TXO. Therefore, it is quite popular today. We can see the detailed description

inTable2.1.



3. Volatility Notations and Illustration of Models

A special feature of stock volatility is the fact that it is not directly observable.
For example, consider the daily logarithmic rate of returns of Taiwan Stock Exchange
Capitalization Weighted Stock Index (TAIEX). The daily volatility is not directly
observable from the returns because there is only one observation in atrading day. If
intraday data of the stock, such as 5-minute returns, are available, then one can
estimate the daily volatility by realized volatility. The accuracy of such an estimate
deserves a careful study. Throughout this thesis, we try to do research in volatility.

We will first start with theoretical illustration of GARCH model that has been

popular in financial time series analysis.

3.1 General Autoregressive Conditional’ “Heteroscedastic (GARCH)
Model

We assume there is an asset guaranteeing an instantaneously risk-free rate of

interest. We have the following characterization of the logarithmic asset price, p,,
where 0<t<T . The continuously compounded return over the time interval
[t—ht] is

r.t,h: pt_pt_h) 0<h<t<T (31)

or isdirectly written as

fon = log(—). (3.2)

t-h

The discrete-time models, at a minimum, assume that the correct specification of the

h-step ahead conditional mean and variances are known up to a low-dimensional

parameter vector.



The general autoregressive conditional heteroscedastic model, in brief,

GARCH(m,s) model (Bollerslev, 1986), can be expressed as follows,

m S
2 2 2
O h=0Q +Zaj[rt—j-h,h _:ut—j-h,h] +2ﬂi0 t-i-hhe
j=1 i=1

o, +a(L,h)r, _:ut,h]z + B (L, h)GZt,h!

(3.3)

max(m,s)

where a,>0,¢; 20, fori >0, 5,20, >

i=1

(o, + ) <1, and L stands for lag

operator. For example, L(r,)=r, .

In most applications, only lower order GARCH models are used frequently, such
as GARCH(1,1), GARCH(2,1), and GARCH(1,2) models. We will use the
GARCHY(1,1) process of Duan(1995) for daily returnsin this thesis. The GARCH(1,1)

model lists as follows,
1
n=H%JH—§h+a,aﬁ4~Nth

2 2 2
h =0y =&+ aga+hor,,

where a,>0,0,>0,4,>20. We ‘use.the maximum likelihood (ML) method to

(3.4)

estimate the parameters «,,a,, 5,4, where A is the constant unit risk premium.

(Under conditional lognormality, one plus the conditionally expected rate of return

equals exp(r + A,/h)).

3.2 Redlized Volatility

Andersen et a.(2001a, b) propose the sum of squared returns daily realized

volatility estimator which sums the squares of intraday returns.

Let r,,, where O<i<n, represent a set of n+1 intraday returns for day t, and

when i =1 represents the five minutes commencing at the open, and concluding with



the five minutes at the end when i =n.

The realized volatility for trading day t, from the close on day t-1 to the close on
day t, is defined by

5=z, (35)
i=0

where 0<i<n. Therealized volatility is ssmply the second sample moment of the
log return process over afixed interval.

We use a sampling frequency of 5-minute returns, which is high enough such

that our daily realized volatilities are largely free of measurement error. We show in

Figure 3.1.

3.3 Change Point Detection with Methods in Quality Control

In 2003, the most influential” event globally is'SARS, especially in Asia. The
peak period of the high infectious disease-is-from-April to June. Consequently, we
must pay attention to the event. However, ifiwe ignore structural change on purpose,
in other words, do not readjust the estimation of all parameters in time series models,
it is not a reasonable forecasting at all. For this reason, we hope that methods in
quality control can help detect some change points. We can then cut a complete period
into several subperiods in accordance with these change points. In order to ensure the
candidates of change points to be accepted statistically, we will utilize the likelihood
ratio test for this purpose in the next section. Once the change points are identified,

we estimate parameters and calculate volatility for each subperiod.

Quality control plays an important role in industries of manufacturing. Quality

control is a process that measures output relative to a standard, and take action when



output does not meet the standard.

A control chart is essentially a picture of a sampling distribution. That is, it
consists of a series of sample values or “statistics’ which, if they were gathered
together instead of being plotted in sequence, would form a distribution. A natural
pattern has three characteristics simultaneously. They can be summarized as follows:

1. Most of the points are near the solid centerline.

2. A few of the points spread out and approach the control limits.

3. None of the points (or at least only a very rare and occasional point) exceeds

the control limits.

If any characteristic stated above is missing, the pattern will look unnatural. A
control chart may indicate out of statistical control either when one or more points fall
beyond the control limits or when.the plotted points exhibit some nonrandom patterns
of behavior. The Western Eleciric.Handbook: (1956) suggests several decision rules
for detecting nonrandom points on-control-charts. It shows that the unnatural
consecutive pattern is out of control-if there.isany one listed below:

1. One point plots outside the 3 sigma control limits;

2. Two out of three consecutive points plot between a distance of 2 sigma and 3
sigma;

3. Ten out of eleven consecutive points plot on one side of the centerline;

4. A run® of five consecutive points plots on one side of the centerline;

or

5. Five consecutive pointsare in arising or falling trend.

%A run is a sequence of observations with a certain characteristic.
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Under models with Markov properties, each innovation of afinancial time series
can be treated as independent. Therefore, it is natural to assume that quality control
may be a good tool to find nonrandom and unnatural points. We can use it to find

candidates of change points, which will be the subject of the next section.

3.4 Likelihood Ratio Test (LRT)

After using several methods of quality control, we can find some candidates of
change points. If the Xth day is a candidate, the interval between the first day and the
(X-1)st day is period one and interval between the Xth day and the nth day is period
two.

Consider the following testing hypothesis prablem.

period one and period twe have the same data structure,

period one and period two have different data structures.

For a GARCH(1,1) model, the likelihood function (L) is given by

_ T 1 _(rt _:ut)z
L_E N exp[ 207 ]. (3.6)

Rej ect Hy if

L(periodl+ period?2) %

A=-2lo =9.488, 3.7
o L(periodl)L(period?2) 4,1-0.05 (3.7)

where yZ, o4 isthe upper 100(1-0.05)% point of the chi-square distribution with

4 degrees of freedom®.

® The degree of freedom is the amount of difference between parameters under Ho and
H;. For instance, there are 4 parameters under Ho and 8 parameters under H; in the
GARCH(1,1) model. Thus, the degree of freedom here equalsto 4.



When it comes to the end of hypothesis testing, we can conclude whether the
candidates are change points or not from the LRT. Once the change points are

established, we estimate the parameters of the GARCH(1,1) model in each subperiod.
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4. Evauating Volatility Measures

It is amost impossible to describe an evaluation criterion that is commonly
acceptable. However, given our objective of measuring the general degree of
predictability of the volatility theoretically and practically, we will avoid using very
sophisticated evaluation criteria. Hence, we will stay with the statistical tradition of
reporting summary statistics based directly on the differences between forecasts and

realizations.

Standar d accuracy measures

Three criteria are used here to. evaluate the,accuracy of the forecasts. root mean
squared error (RM SE), mean absolute error (MAE) and logarithmic error (LE).

Mean squared error provides a quadratic |oss function which disproportionately
weights large forecast errors more heavily relativeto mean absolute error, and hence
the latter (MAE) may be particularly useful in forecasting situations when large
forecast errors are disproportionately more serious than small errors. Finally,
logarithmic error was employed in Pagan and Schwert (1990) and Andersen et a.
(1999).

Root mean squared error:

RMSE =[= Y. (G o V. (4.1)
Mean absolute error:
MAE = %ZI&;ARCH |- (4.2)
Logarithmic error:
LE = %Zuog((}";"w]2 . (4.3)

GARCH

11



In measures of (4.1), (4.2), and (4.3), Ggmey are the volatilities estimated by the
GARCH(1,1) model, and o, arerealized volatilities.

With the accuracy measures of RMSE, MAE, and LE, it is easier to judge which
model is more consistent with “true” volatility. The next chapter will provide results

of empirical analysis for each criterion under the GARCH mode!.
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5. Empirical Analysis

Estimation of the parameters and volatilities in a GARCH(1,1) model could be
based on data from the entire period. However, if we do not consider some
extraordinary events occurring during the period while estimating the parameters, the
estimates so obtained may not be meaningful. Hence, we want to detect some change
points and find severa such events according to historical incidents. Consequently,
we will divide 163 days into several subperiods. We then estimate the parameters of
the GARCH(1,1) model for each subperiod. At the same time, we hope that
volatilities estimated with change points can have better performance than those
ignoring such changes. That is, volatilities with change points will yield smaller

values of accuracy measures.

5.1 Empirical Volatility Measurement

By using methods in the Western ‘Electric ' Handbook (1956) (see methods 1 to 5
in section 3.3), we find some candidates of change points.

Since there is no point exceeding the 3-sigma limit from Figure 5.1, we say that
the whole pattern is random by method 1 of Western Electric rules. In Table 5.1, there
are two candidates of change points by using method 2 but the LRT values are less
than 9.488. That means the candidates of change points can not change data structure.
By method 3, as indicated in Table 5.2, there is only one candidate with the LRT
value less than the critical value. Absence of change points detected by method 5
(Five consecutive points are in arising or falling trend) produces a natural pattern. It
is much similar to the result of method 1 above.

We can observe from Table 5.3 that when period 1 (Jan. 2, 2003 to May 14, 2003)

13



and period 2 (May 15, 2003 to Aug. 29, 2003) had been decided, the value of the

likelihood ratio test is bigger than 9.488.

L( periodl+ period?2) 1> 42

A=2lo =9.488
o L(periodl)L(period?2) 41-0.05

According the LRT, the only change point occurred on May 14, 2003. The LRT
statistic yields a value bigger than the critical value of 9.488. However, other
candidate points are not change points according to the LRT. Our finding coincides
with the news announcement on May 14, 2003 that the epidemic SARS had reached
the countryside of Mainland China* Hence, we can separate 163 days into two
subperiods.

From Figure 5.2, it is clear and observable that the 87 th point is a possible
change point of events. Before the 87 th day, the returns had more substantial
variations than the remainder.” The  epidemic 'SARS has since subsided and
consequently the stock market became more stable.

After making sure of the ‘thange point,-we 'can rewrite separate formulae for

separate subperiods as follows:
r, = 0.014-1.79319,/h —%n +a,
h = 62 = 0.0003956 + 0.0044637a2, + 0.72666157,, (5.1)
for the GARCH(1,1) model of period 1, and
r, = 0.014-1.50269,/h —%n +a,
h = o7 =0.00015201+ 0.0173133a/, +0.133665/, , (5.2

for the GARCH(1,1) model of period 2. These formulae indicate that the parameters

change significantly. Meanwhile, if we ignore the change and fit the GARCH(1,1)

4 Data source: http://sars.health.qov.tw/article.asp?channelid=H& serial=189& click=

14



model for the entire period, we have
r, = 0.014-1.57103,/, —% h+a,
h = o? = 0.0006657 +0.0043164a’ , + 0.48087907 , (5.3)

whichis quite different from either (5.1) or (5.2). The estimates of parameters for
different models are shown in Table 5.4.

For an GARCH model, the standardized shocks

ét:

BRI

areiid and N(0,1). And the Ljung-Box (1978) Q-statistic is expressed as below

m ~2
P

QM) =T(T+23 £,

where p, isthelag-l sample autocorrelation of & or &°.Table 5.7 showsthe value

of the Ljung-Box Q-statistic for the sguares.of the standardized shocks. It is aso
noted that the Q-statistic has also been computed for the standardized shocks
themselves and the adequacy of“the models has been established as well. We can
check thistable and find the fitted models are al adequate.

Table 5.5 reports the in-sample forecasting accuracy criteria RMSE, MAE, and
LE, respectively. It compares the performance of the fitted models. The RMSE
criterion is not very robust, and in practice easily influenced by a few large values.
The MAE criterion is less susceptible to these values.

Under the accuracy measures for the GARCH(1,1) model, we find higher values
for RMSE, MAE and LE when no change point was detected. For example, RMSE
for the GARCH(1,1) model with change point is 0.0190417 versus 0.0234972 without
change point. Thus, detecting structural change is meaningful in fitting the

GARCH(1,1) modelsto financial data.

15



5.2 Some I'ssues of Interest

There are some interesting issues derived from the empirical results. We will
illustrate them as follows.

Besides estimating volatility, GARCH types of models have some interesting and
useful properties. If we standardized the return,

Z =—, (54)
then z will be distributed as N(0,1) when the normality assumption is reasonable
for r.. We can verify this by calculating some statistics, such as mean, standard
deviation, skewness and excess kurtosis, as given in Table 5.6. Skewness
characterizes the degree of asymmetry, of. a distribution around its mean. Positive
(Negative) skewness indicates .a distribution. with an asymmetric tail extending
towards more positive (negative) values. The skewness of normal distribution is zero.
A significant degree of asymmetry ~(skewness regardless of sign) is bigger than 2
standard errors of skewness (ses). The'ses can be estimated by using the following
formula (Tabachnick & Fidell, 1996):

-2,
N
where N is the number of observations.
The excess kurtosis of a standard normal random variable is zero. A distribution with
positive excess kurtosis is said to have heavy tails. It implies that the distribution has
more mass on the tails than a normal distribution. A significant degree of mass tail
(kurtosis regardless of sign) is bigger than 2 standard errors of kurtosis (sek). The sek

can be estimated roughly using the following formula (Tabachnick & Fidell, 1996):

e [
N

where N is the number of observations.
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From Table 5.6, it is clear that the GARCH(1,1) models have heavy tails due to
positive excess kurtosis. Hence, the GARCH(1,1) models are not reasonable for
modeling volatilities. Since no proper detection of change point is done, the
GARCH(1,1) model without change points can be affected by the oscillation of prices
coming from some unusual events. In order to get more insight, we combine Table 5.6,
Figure 5.3.1 and Figure 5.3.2. Figure 5.3.1 and Figure 5.3.2 are the quantile-quantile
(g-9) plots. The g-q plot is a graphical technique for determining if the data have
come from a certain distribution. Realized volatility may be fitted with standard
normal distribution as shown in Figure 5.3.2. However, it will provide only daily
reference and will have no capability of prediction. Meanwhile, it seems that the
GARCH(1,1) models are fitted somewhat poorly with the standard normal
distribution as shown in Figure 5.3.1. From Table 5.6, we see that the GARCH(1,1)
models with or without change points have positive skewness. That means that
standardized returns under the GARCH(1,1)-models are dlightly skewed to the right.
The values of Jague-Bera (JB) test® in.Table 5.6 show that the GARCH(1,1) model
with change points is fitted better with standard normal distribution than the
GARCH(1,1) model without change points. Furthermore, the volatilities under the
GARCH(1,1) models are overvalued because their variances of standardized returns
are less than 1, as shown in Table 5.6. In short, the GARCH(1,1) models with change

points will be a useful model for our purpose, even though it is not perfect.

> Jarque and Bera (1980,1987) showed the Jaque-Bera (JB) test of normality:

S K?
__l__
6 24

2

JB=n ~ X

, where S = skewness coefficient and K =excess kurtosis coefficient. For anormally
distributed variable, S= 0 and K = 0. Therefore, the JB test of normality isatest of the joint
hypothesisthat S and K are 0 and O, respectively.
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6 Conclusion

Throughout the thesis, the period of the data is from Jan. 2, 2003 to Aug. 29,
2003. It is the period of initial and termina stages when epidemic SARS spread
globally. During this period, many events related to SARS deserve some discussions.

In chapter 5, the LRT was applied to the TAIEX data and detected several change
points. We deeply hope that ignoring the change points will lead to a wrong
conclusion. As a matter of fact, it is important to detect change points. Overall, we
believe our test constitutes a functional tool for testing for a parameter change in the
GARCH(1,1) models. We anticipate that methods in the Western Electric Handbook
that combined with the LRT can be extended to other types of time series models.

Finally, empirical results are consistent with our expectation. We should attach
importance to structural change in time series models which will lead to better
prediction. However, overvalued-volatility is a defect of GARCH models. Perhaps,
realized volatility mixed with GARCH model can be a useful model. We leave the

task of extension to other types of GARCH models for future research.
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Tables

Table 2.1 TAIEX option

Underlying Index

Taiwan Stock Exchange Capitalization Weighted Stock Index
(TAIEX)

Ticker Symbol TXO
Exercise Style European
Multiplier NT$ 50 (per index point)

Expiration Months

Spot month, the next two calendar months followed by two
additional months from the March quarterly Cycle (March,
June, September, and December)

Strike Price Interval

100 index points in spot month, the next two calendar months

200 index points in the additional two months from the March
quarterly Cycle

Strike (Exercise) Price

When listing series of new expiration months, one series with
at-the-money.strike-price is listed based on the previous day's
closing price of the underlying index rounded down to the
nearest multiples of 100.

1. For the spot month and the next two calendar months:
Three other series each with in-theemoney and
out-of-the-money strike prices with price interval of 100
points are listed.

2. For the next two quarter-months: Two other series each
with in-the-money and out-of-the-money strike prices with
price interval of 200 points are listed.

Up to the 5th business days before expiration,

1. For the spot month, and the next two calendar months:
additional series are added when the underlying trades
through the third highest or lowest strike prices available,
to maintain at least 3 in- and 3 out-of-the-money strike
prices

2. For the next two quarter-months. additional series are
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added when the underlying trades through the second
highest or lowest strike price available, to maintain at least
2 in-and 2 out-of-the-money strike prices

Premium Quotation

< 10 points: 0.1 point (NT$5)

>=10 points,<50 points: 0.5 point (NT$ 25)
>=50 points, <500 points: 1 point (NT$ 50)
>=500 points, <1,000 points: 5 point (NT$ 250)
>=1,000 points: 10 point (NT$ 500)

Daily Price Limit +/- 7% of previous day's closing price of the underlying index
Individuals: 8,000contracts on either side of the market.
Institutional Investors; 16,000 contracts on either side of the
market.

Position Limit

Institutional investors may apply for an exemption from the
above limit on trading accounts for hedging purpose.
Exemptions’are allowed for Future Proprietary Firms.

Trading Hours

08:45AM - 1:45 PM Taiwan-time, Monday through Friday of
the regular Taiwan Stock Exchange business days

Last Trading Day

The third' Wednesday-of the delivery month

Expiration Date

The first business day following the last trading day

Final Settlement Price

The final settlement price for each contract is computed from
the first fifteen-minute volume-weighted average of each
component stock's prices in that index on the final settlement
day. For those component stocks that are not traded during the
beginning fifteen-minute interval on the final settlement day,
their last closing prices would be applied instead

Settlement

Cash settlement. An option that is in-the-money and has not
been liquidated or exercised on the expiration day shall, in the
absence of contrary instructions delivered to the Exchange by,
the Clearing Member representing the option buyer, be
exercised automatically

Data source: http://www.taifex.com.tw/
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Table 5.1 Candidates of change points by method 2

(Two out of three consecutive points plot between a distance of 2 sigmaand 3 sigma)

Candidates Date LRT value Testing
Change point= 72 Apr. 22, 2003 LRT=4.51952<9.488 Accept Hp
Change point= 73 Apr. 23, 2003 LRT=5.19142<9.488 Accept Ho

Table 5.2 Candidates of change points by method 3

(Ten out of eleven consecutive points plot on one side of the centerline)

Candidates Date LRT value Testing

Change point= 101 Jun. .3, , 2003 L RT=7.5551<9.488 Accept Ho

Table 5.3 Candidates of change points by'method 4

(A run of five consecutive points of returns plot on one side of the centerline)

Candidates Date LRT vaue Testing
Change point= 36 Mar. 3, 2003 LRT=3.31969<9.488 Accept Ho
Change point= 37 Mar. 4, 2003 LRT=3.21291<9.488 Accept Ho
Change point= 87 May 14, 2003 LRT=10.75551>9.488 Regect Hy

Change point=106 Jun. 11, 2003 LRT=5.44082<9.488 Accept Ho
Change point=107 Jun. 12, 2003  LRT=5.24297<9.488 Accept Ho
Change point=119 Jun. 30, 2003 LRT=2.92873<9.488 Accept Ho

Change point=120 Jul. 1, 2003 LRT=2.83138<9.488 Accept Ho

24



Table 5.4 Parameter estimates of GARCH (1,1) model

Parameters Alpha0 Alphal Betal

GARCH(L 1) model of period 1  0- 00039566 0.00446372 0. 72666151
(0.0000432084) (0.002081046) (0.0004901274)
GARCH(L 1) model of period2 ~ 0-00015201  1.01731336 2. 13366277
(0.0000383383) (0.0029162786) (0.0688668976)
GARCH(L 1) model of period 1+2 0- 00066570 1.00431641 2. 48087834
(0.0016216986) (0.0208480670) (1.1261979466)

The numbers in parentheses are the standard errors of the parameters.

Table 5.5 The calculations of accuracy measures in every model

Volatility of GARCH(1,1) model Volatility of GARCH(1,1) model

with change point without change point
RMSE 0.01904166569 0.02349722250
MAE 0.01433519575 0.02296283234
LE 0.81310630801 1.254419791781
Table 5.6 Some statistics of standardized returns
GARCH(1,1) with  GARCH(L,1)
RV
C.p.* without c. p.
Mean 0.130611159 0.05201497 0.041427136
Standard deviation 0.745337197 0.450746075 1.180303863
Skewness 0.662977222 0.454234493 -0.318000015
Excess kurtosis 1.399504106 2.020160196 0.542824948
JB test 25.24304206 33.32238285 4.748427444

* C.p. means change point



Table 5.7 The Ljung-Box Q-Statistic

Ljung-Box Q-Statistic Q(10) Q(20)
GARCH(1,1) model of period 1 5.5473 13.6110
(0.85175957)  (0.84966122)
GARCH(1,1) model of period 2 11.7482 19.5059
(0.30225856)  (0.48919712)
GARCH(L,1) model of period 1+2 68301 11.6695

(0.74137724)  (0.92698101)

The numbers in parentheses are p value of the test statistic. Thus, these models appear

to be adequate.
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Figures

Figure 2.1 The SARS daily probable cases happened in Taiwan from Feb. 25,
2003 to Sep. 4, 2003.
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Figure 2.2 Stock prices
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Datasource Taiwan Stock Exchange Capitalization Weighted Stock Index from
2003.1.2 to 2003.8.29, 162 days in theaggregate. [t comes from Taiwan Stock
Exchange Corporation. Website: http://www.tse.com.tw/
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Figure 3.1 Realized volatility of TAIEX during Jan.2, 2003 to Aug. 29, 2003 with
5-min intraday returns.
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Figure5.1 Log returnsunder 6 sigmacriterion
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Figure 5.3.1 QQ-plots of the GARCH(1,1) models versus standard normal

distribution
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Figure5.3.2 QQ-plot of realized volatility versus standard normal distribution
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