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Nonparametric Bayes Risk Estimation for
Pattern Classification
ZEN CHEN AND KING-SUN FU. FELLOW, IEEE

Abstract-The performance of a pattern classification system is
often evaluated based on the risk committed by the classification
procedure. The minimum attainable risk is the Bayes risk. Therefore,
the Bayes risk can be used as a measure ofthe intrinsic complexity of
the system, and it also serves as a reference of the optimality measure
of a classification procedure. There are many practical situations in
which the nonparametric methods may have to be called upon to
estimate the Bayes risk. One of the nonparametric methods is via the
probability density estimation technique. The convergence properties
of this estimation technique are studied under fairly general assump-
tions. In the computer experiments reported, the estimate of the
Bayes risk is taken as the sample mean of the density estimate by
making use of the leave-one-out method. The probability density
estimate used is the one proposed by Loftsgaarden and Quesenberry.
This estimate is shown to be, in general, superior to the risk
associated with a Bayes-like decision rule based on the error-counting
scheme. This estimate is also compared experimentally with the risk
estimate associated with the nearest neighbor rule.
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I. INTRODUCTION

ASSUME there exists a class of conditional probability
densities F {f,, f2, A ftM in a probability space

{S,B,P}, where S is the sample space, B is a a-algebra of
subsets of S, and P is a probability measure on B. Let q l 2,
*** mj Ii > 0, EM 1 qi = 1, be the prior probabilities of
occurrence of theM pattern classes. Also let L(i,j) be the loss
incurred by classifying a sample from class i into class j. A
pattern classification procedure is to assign a new sample in
the sample space (usually in the form of measurement
vectors) to one of theM pattern classes. The performance of
a pattern classification system is properly evaluated based
on the risk (i.e., the expected value of the loss due to
misclassification) committed by the classification
procedure. The minimum attainable risk is the Bayes risk.
Therefore, the Bayes risk can be used as a measure of the
intrinsic complexity of the system, and it also serves as a
reference of an optimality measure of a procedure.
The Bayes risk is a function of a priori probabilities and

the underlying conditional probability densities. In the case
where {ri} and {ffi are known completely, it is well known
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[21] that the following randomized decision rule dB attains
the Bayes risk:

1,

0,

Oj(x) =

Xj,

M
if Z tli L(i,j).f(x)

i =1

M
< min L qiL(i,k)fi(x)

k;j i= 1
M

if Z q1iL(i,j)J;(x)
i=1

M
> min E qiL(i,k)fi(x)

k:t j i= 1
M

if E qj L(i,j)f (x)
i-

Mv
= min I qiL(i,k)fi(x)
kj i= 1

where x is the observable measurement of the new sample X,
and

M
L xj= 1,

j= 1

oti 0

The Bayes risk RB is given by

M
RB- S r1jEjyB(i,X),

it=

M

YBQ,X) = E L(i,j)d (X),
j=1

where YB(i,x) is the risk associated with class i committed by
the decision rule dB, given that the random vectorX takes on
the value x, and El is the expectation taken over S with
respect tofi E F.

In the real world, there is often a lack of the exact

knowledge of {i} and {tfi; instead only partial information
is available. For instance, there are situations in which only
the parametric forms of the underlying distributions and/or
a set ofcorrectly classified samples from the distributions are

known. Based on this partial information, parametric and
nonparametric methods have been studied by many resear-

chers to solve the pattern classification problem. Nonpar-
ametric methods are used under the condition that no

parametric forms of underlying distributions are known or

can be assumed, [1]-[11].
In this paper the focus is placed on the nonparametric

Bayes risk estimation via the sample mean ofan estimator of
the conditional Bayes risk which, in turn, employs the
density estimation technique. Various asymptotic proper-
ties of the above conditional risk estimator are studied under
fairly general assumptions. The nonparametric Bayes risk
estimation is implemented with the given correctly classified
samples on a digital computer. The experimental results are

then discussed.

Il. NONPARAMETRIC CLASSIFICATION PROCEDURE
WITH DENSITY ESTIMATION

In classifying a new sample into one of the MI possible
pattern classes, there are two categories of nonparametric
classification procedures. On the one hand, there are
procedures which do not involve the use of any form of the
underlying probability densities. Under this category there
are i) the nearest neighbor decision rule [1], [2], [4]-[7]; ii)
classification procedures based on statistically equivalent
blocks [3], [18]; iii) the classification by linear or piecewise
linear discriminant functions [19]; and others. On the other
hand, there are procedures which employ density estimation
techniques [8]-[10]. These procedures are conceptually
simple and are analogous to those parametric methods in
statistical decision theory. To facilitate later discussion, one
of the general forms of these procedures is given here.
Assume that the density functions E F, i = 1, 2, M,

are estimated from the training sample sets by making use of
some density estimation technique. Let ,,, (x) denote the
estimate offi(x), i 1, 2, , M from a set of training samples
{jyY), , f()}, i- 1, 2, , M. Let XA, A {X(l',I'(,1,
x() ...', X(M)} - {X1, X2, , X, tl t

+ n11E , and
let j

- ni n, i - 1, 2, , M. Based on these estimates, a
decision rule, denoted by d°(x), which is directed by the
Bayes rule, is defined as follows:

i 1,

I,
(x) = 0

aXi,

M

if j
,) L(i,j) fi n,(X)i=t

M

<mmin E tL(i,k)fjni(x)
k4tj i =1

if E i L(i,j)fJ,n,(x)

> min E tj L(i,k)fi.n,(X)
k t j i = I

if 5 r1L(ij)finj(x)

mmin 5 rjL(i,k)fJ,ni(x)
kj:j i I

(2)

where j > 0,j = 1, 2, ,M, and j' 1 1.

III. ESTIMATION OF BAYES RISK

Once the classification procedure is devised, the perfor-
mance is mainly evaluated by the misclassification com-

mitted by the procedure. In certain cases the estimation of
misclassification can be related to the Bayes risk and is

therefore used to estimate the latter. It was shown [4] that in
a two-class problem, the risk of the 1-nearest neighbor rule
R with the (0,1)-loss function is related to the Bayes risk R*
by R* < R < 2R*(1 -R*). Let Sn/n be an estimate of R,
then the interval [(1 1- 2Sn/n) 2, S,1n] is an estimate
of R*.
The risk associated with the decision rule do given by (2)

using the error-counting scheme was indicated to converge
to the Bayes risk in quadratic mean [9].
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A different estimation of the Bayes risk can be built upon
an estimator of the conditional Bayes risk. The conditional
Bayes risk YB(X) corresponding to (1) is given by

M
YB(X) = min L(i,j)pi(x)}

je{, .,M}b i=

Pj(x) = njfj(x)l/ E qi fi(x))

Now define

pj,n(X Xn) = {ij fj,nJ}E(j i'ini(X)

and

y~n(X Xn) = min
jcti .. I1ml**M}

M

E L(inj)pi,n(X Xn ) |*
= 1

Notice that fpj,n(x Xn) and yn0(x Xn) are conditioned on Xn
and, therefore, are random variables.

It will be shown that y0(x Xj) is a consistent estimator of
YB(X). Consequently, RB can be inferred by an estimator of
Exy7n(X Xn)

IV. ASYMPTOTIC PROPERTIES OF y°(X Xn)
Before the asymptotic properties of -yn°(X Xn) are studied,

some assumptions and notations will be introduced first. In
the following it will be assumed that the conditional probab-
ility densities f1, i = 1, 2, ..., M, are absolutely continuous
and bounded from above, and that their estimatesfn,(x),
i= 1, 2, , M, are nonnegative. In addition, assume
J,ni(x) P4f(x), i = 1, 2, , M; namely,fn(x) converges to
f(x) in probability for i = 1, 2, , M. Also assume that the
loss functions L(i,j), i, j = 1, 2, , M, are nonnegative and
finite. Let the notation ni -+ oo indicate ni -*oo, for i= 1, 2,
* M. Besides, EX y°(x Xn) means the expectation is taken
with respect to allX1, X2,. , Xn. Analogous interpretations
apply to ExyT(X IXn) and Ex7EX/n(X IXn). Finally define

Rn = Exj{ExnY(X Xn)}-Xn |Y(x Xn) [E 1ifi(x) dx}.

Lemma 1:

i)'no (XI|Xn)
P

B(X)
and

ii) lim E.y (x|Xf)=yB(x).
nio

Proof: Since ,j -- t, i = 1, 2, , M, almost everywhere
(a.e.) by the law of large numbers [17], this, together with
f,i(x)Afi(x), i- 1, 2, M, implies p Xn)- px),
j = 1, 2, M, and, therefore, y7n(x Xn) YB(X).

Furthermore, for every n (kn), with probability 1,

1yn (X Xn) = Em L(i,j)Pi,n(X Xn)
je1, M} i= 1

< min LEE (x Xn)j = L < oo

where L is the maximum value of L(i,j), i, j = 1, , M.
By Lebesgue's dominated convergence theorem,

lim Ex4?n (X Xn) = YB(X)
ni-o0

Vx except for a set of points with zero probability measure.
Theorem 1: R° converges to the Bayes risk RB in the

ordinary sense, as ni -* cx.
Proof: Since Ex, y0(x Xn) < L almost everywhere and

Vn by Lebesque's dominated convergence theorem,

lim R° = lim ExExy (XIXn)
ni-+ cc ni- 0o

-Ex lim E.yn(X Xn)

= EXVB(x) = RB.
Theorem 2:

y°(x |Xn) -*E'+y°(xE X4

Proof:

Iyot(xI Xn) Exn y(X Xn)I
= yo(x Xn) - lim Exnyo(x Xn) E7(x) n)

ni-oo

+ lim EXyYno(x| Xn)

< yo°(x Xn) - lim EXnYno(X |Xn)
nin -0

+ jEx/yn(xXn)- lim Ex yV(IX|)I.
ni - oc

Given £ > 0 we can find i1 > 0 and 82 > 0 such that
8 = + 82. By Lemma 1,

lim Pr {yo(xIXn)- lim E .2}1=
ni-oo ni- c°

and there exists mi, i= 1, 2, ,M, if ni mi, i= 1, 2, *,M,

Ey0yn(x Xn)- lim Ex"7no(x Xn) |l< cx

lim Pr { yn° (xj|Xn)-Exnyn°(x|Xn)XX. <8}
fl1 -i0ili>r70(XimPr El°x,0n)-Xlm )E;,n°xln)

ni nio

+ IEPrA °(x IXn)- lim Ex .7n(X )I .n<8}
ni-oo

> lim Pr {y10(xIXn)- lim E nyn(xfXn)j .8-81}
ni - o ni-+o

= 1

i.e., 7n (X Xn) E+ E n°(X Xn)-
Corollary 1: y0(IXn) Ex2(xIXE) in the kth mean(k > 0). n

Proof: Since In(x Xn) < L < oo, a.e., Vn, the conver-
gence in probability implies the convergence in the kth mean
[17]. Therefore, Corollary 1 follows from Theorem 2.

653



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, \OL. SMc-7. NO. 9, SLIPIEMBI1R 1977

Theorem 3: Ex7y(X Xn) P EX{EXn y2(X Xn)}
Proof: For any E > 0, by the Markov inequality [17],

lim Pr { ExTy(X Xn)-Ex(Ex70(X Xn)) 2
ni- oo

K lim {Ex, EX7J(X Xn) - EX(Exy y (X Xn)
ni-oo

(im|Ex, ({c l°(x I Xn)- Ex,Y(x IX)Idx) 8
where c is a constant such that

M

f(x)= E fi(x)<c
it=1

for every x except for a set of points with zero probability
measure, since

Ex7y(X Xn) - ExExnyn(X Xn)
. Exjy0(X Xn) - Ex,yO(X Xn)

= F 7(x Xn)- Ex 7y5(xI | f(x) dx

. { cIy,¶'(xlXn)-Exyn°(xIXn)I dx.

Now Ex,, y°(x IXn)-EE. 70(xI Xn) < c' < so, a.e., Vn, by
Corollary 1,

lim Exj yo(x I Xn)-Ex,,y°(xI Xn) 0.
Mni - oo

By Lebesgues's dominated convergence theorem,

lim Pr { Exyo(X Xn) - Ex(EX") Y(X Xn)) . £n,r~~~ni- cc

< c JXlim E,, yn°(x Xn) -Ex.7°(x Xn) dx /8-O<c(J ur ~n n 8=

i.e.,
ExaT(X Xn) - Ex{Exnyo(X Xn)}

Corollary 2: Exy°(X X1) Ex{Ex, 7y(X Xn)} in the kth
mean.

Theorem 4: Ex TO(X IXn) RB.
Proof: From above,

RB = lim Ex,xnyo(X Xn)

and
Exy°(X Xn) 4 ExtExnyno(X Xn)}

By a technique similar to the one used in the proof of
Theorem 2, it can be shown that

Since Ex,y(XI Xj) < L < oo, a.e., val, the following
corollary can be shown.

Corollary 3: Ex-o(X X)-*RB in the kth mean. In
particular,

< Ex(Exy(X Xn)) -RB < EyXE,,Ex'(X Xj)-RBIO 0

as ni XC and ExnIExy(XIXn)-R12-0 as ii- oo Vi.
The previous theorems and corollaries are the foundation

for yT(X Xn) to be used in the Bayes risk estimation. The
expectation of y°(X Xn) is shown to converge to the Bayes
risk in probability as well as in the kth mean, in contrast to
the convergence of the risk of the nearest neighbor rule
which is only to a bound on the Bayes risk. This result
indicates the use of a sample mean of j!°(X Xn) as a desirable
estimation of the Bayes risk. The empirical comparison of
this estimator with the other estimators will be given in the
next section.

V. UTILIZATION OF GIVEN SAMPLES
IN ESTIMATION

In order to estimate the risk by using the correctly
classified samples, two things must be decided. One is to
choose a probability density estimation technique and the
other is to decide on a method to effectively utilize the
available labeled samples to carry out the estimation
scheme. As far as the first problem is concerned, the density
estimator proposed originally by Parzen [13] and extended
later by Cacoullos [14], the one by Murthy [15], and the one
by Loftsgaarden and Quesenberry [12] all meet the consist-
ency requirement of the density estimation. It is the latter
one which was employed in the computer experiments
reported.

In utilizing given labeled samples to carry out the risk
estimation, there are mainly three methods. They are i) the
resubstitution method; ii) the holdout method, or H
method; and iii) the leave-one-out method, or the U method
[16]. Generally speaking, the first method gives an overly
optimistic estimate, while the second method gives an overly
pessimistic estimate. The third method yields an estimate
with a small amount of bias compared with those of the
previous two methods, although it suffers from requiring
more computation time. It is the third method which was

used in the computer experiments.
The application of the leave-one-out method to the

estimation of the Bayes risk discussed previously leads to an
estimator A°(Xj) which is given by

M

,k°(Xn) = lln >; I°l(Xi X 1, *.* I Xi- 11 Xi+ 1~' *'' Xn).
it-

The use of R°(Xn) in estimating the Bayes risk is justified
by the following convergence theorem.

Theorem 5: R°(X11) converges to the Bayes risk RB in
probability as well as .in the kth mean (k > 0).
From Lemma 1, it can be shown that

0n l(Xil Xi_ 1 Xi+ li ' ' Xn)

A nO (xl ATn1 0) .AExyo(X Xn) 4 RB
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By the Markov inequality,
n n

Pr 1)- 1(~< n£)1 XiJXn - ( X)B(Xi)
i=l i=1

By the convergence theorem in the kth mean [17],

n n

<1/n E Yn°_AXijXn- 1)/_ E YB(Xi).
i= 1 i= 1

n

Because the Xi are i.i.d., the yB(X-) are also i.i.d. By
Bernoulli's law,

(1/n) E YB(Xi) - EXYB(X) = RB.
i= 1

Thus
n

(1/n) E y0_j(XijXn_j-+RB
i = 1

in probability as well as in the kth mean.
An interesting remark is in order. Experimental results

indicate that R2(Xn) has a smaller variance than does the
Bayes risk estimate by the risk associated with the
classification procedure obtained from the error counting
method. The reason may lie in the fact that R&(Xn) is a
smoother function compared with the error counting risk
estimate. Therefore, R°(Xo) converges to the Bayes risk more
rapidly.

VI. COMPUTER EXPERIMENTS

The estimation of the Bayes risk discussed above is
implemented on a digital computer. In the following, the
constant {kn} is referred to as the sequence of positive
integers of the Loftsgaarden and Quesenberry estimator of
the density estimation. Let R°, RE, and Rk be the estimators
of the Bayes risk by three different models, namely, those
based on Exy°(X Xn), the risk associated with the decision
rule d°(x), and the k-NN decision rule, respectively. The data
used in the experiments are bivariate Gaussian data
N(yi,i) i = 1,2, where

3.08 - 3.0\
81 = \1.0} I2 - .0)

and

E m = (20 02)
Experiment 1: Five sets of samples were generated with
= n2 = n = 100, 150, 200. R° is obtained by the leave-

one-out method and the holdout method. The holdout
sample sizes corresponding to n = 100, 150, and 200 are 25,
50, and 75, respectively. The results are shown in Table I. As
the results indicate, the U method is better than the H
method.

TABLE I
AVERAGE AND STANDARD DEVIATION FOR

R° WITH kn = (n)0.55

n

n U Method H Method

Avg. SD Avg. 1 SD
100
150
200

0. 1363
0.1275
0 . 1 2 48

0. 0259
0. 0067
0. 0067

0. 1472
0. 1406
0.1357

0.0461
0.0357
0. 0271

TABLE II
AVERAGE AND STANDARD DEVIATION FOR
R° AND RE WITH n1 = n= 150, kn

Rn (U Method) RE

' Avg. SD Avg. SD

0.45 0.1168 0.011J 0.0760 0.0134

0.50 0.1242 0.0113 0.0733 0.0139

0.55 0.1275 0.0067 0.0700 0.0139

TABLE III
AVERAGE AND STANDARD DEVIATION FOR

R° RE, ANDR3 WITH kn =(n)
.10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rn(U Method) RE R3

1l=n2 Avg. SD Avg. SD Avg. SD

50 0.1562 0.0126 0.060 0.0316

75 0.1320 0.0152 0.0653 0.0152 0.0627 0.2433

100 0.1363 0.0259 0.064 0.0297 0.079 0.0222

150 0.1275 0.0067 0.070 0.0139 0.0733 0.0238

200 0.1248 0.0067 0.066 0.0133 0.077 0.0124

Experiment 2: Five sets of samples were generated with
n, = n2 = n 150. R° is obtained for three different values
of kn i.e., kn =na, i=1,2,3, with aI = 0.45, a2 = 0.5, and
O3= 0.55. The results are summarized in Table II. R° is
much closer to the true risk (RB= 0.134) than RE. For the
sample sizes under consideration, R° is superior to RE.

Experiment 3: For n1 = n2= 25, 50, 75, 100, 150, 200, five
sets of training samples were generated. The three Bayes risk
estimates R0', RE, and R3 are computed. The experimental
results are shown in Table III and Fig. 1. We can find that R°
is better than RE and R3. Both RE and R3 are optimistic risk
estimates.

It is important to know that the ability of R°(Xn) in
estimating the Bayes risk well relys on the appropriate
choice of the constant kn. An improper choice may lead to
poor results [20].

VII. CONCLUSIONS
In this paper focus is placed on the nonparametric Bayes

risk estimation. The estimate based on the conditional Bayes
risk estimator is employed by making use of the density
estimation. Various asymptotic properties of this estimate
are studied under mild assumptions.
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