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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 67, Number 2, December 1977 

ON CONTRACTIONS SATISFYING Alg T = { T}' 

PEI YUAN WU1 

ABsTRACT. For a bounded linear operator T on a Hilbert space let { T)', 
{ T)" and Alg T denote the commutant, the double commutant and the 
weakly closed algebra generated by T and 1, respectively. Assume that T is 
a completely nonunitary contraction with a scalar-valued characteristic 
function PA(). In this note we prove the equivalence of the following 
conditions: (i) I4'(e"')I = I on a set of positive Lebesgue measure; (ii) 
Alg T= {T}'; (iii) every invariant subspace for T is hyperinvariant. This 
generalizes the well-known fact that compressions of the shift satisfy Alg T 
= {T}'. 

For an arbitrary operator T on a Hilbert space it is easily seen that the 
inclusions Alg T C { T}" C { T}' hold. Let H2 be the usual Hardy space and 
let 41 be a scalar-valued inner function. Consider the compression of the shift 
T defined on the space H2 e lH2 by 

(Tf)(eit ) = P [ei'f(ei')] forf E H2 e 41H2, 

where P denotes the (orthogonal) projection onto the space H2 e 41H2. It 
was shown by Sarason [3] that Alg T = { T}'. (In fact, he showed more than 
this. He proved that every operator in { T}' is of the form U(T) for some 
U E H '.) Note that here T is a completely nonunitary (c.n.u.) contraction 
whose characteristic function 4, is scalar-valued and satisfies 4,(ei9) = 1 a.e. 
In this note we give necessary and sufficient conditions that a c.n.u. 
contraction with a scalar-valued characteristic function satisfy Alg T = { T}'. 
Indeed, we want to prove 

THEOREM. Let T be a c.n.u. contraction with a scalar-valued characteristic 
function 4,. Then the following conditions are equivalent to each other: 

(i) 14(ei)l = 1 on a set of positive Lebesgue measure; 
(ii) AlgT= { T}'; 
(iii) every invariant subspace for T is hyperinvariant. 

Thus Sarason's result follows from the implication (i) =X (ii) of our 
Theorem. It is interesting to contrast our result with the fact, due to Sz.-Nagy 
and Foia? [6], that a c.n.u. contraction T with the scalar-valued characteristic 
function 4, satisfies { T}" = {T}' if and only if 4A(X) 5 0. Note also that 
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ON CONTRACTIONS SATISFYING Alg T = { T} 261 

whether (ii) and (iii) are equivalent for an arbitrary operator T is still an open 
question (cf. [1]). 

In the proof of our Theorem we will extensively use the functional model 
for c.n.u. contractions. The readers are referred to [5] for the basic definitions 
and terminologies. Throughout this note results from [5] will be used without 
specific mentioning. 

Let T be a c.n.u. contraction with the scalar-valued characteristic function 
41. Consider the functional model for T, that is, consider T being defined on 
the space H _ [H2 E AL 2] e {i4w e Aw: w E H2) by 

T(f E g) = P(e'Ef ) ei"g) forf E g E H, 

where A = (1 - 1412)1/2 and P denotes the (orthogonal) projection onto H. 
Let Lat T denote the lattice of invariant subspaces for T, and let T(n) denote 
the operator T E ... ED T acting on the space H E ED * H. Note that 

n n 
the characteristic function of T(n) is the n x n matrix-valued function 

Let K E Lat T(n) and let 4 = 12(1 be the corresponding regular 
factorization. We first prove the following 

LEMMA. If I4(e")I = 1 on a set of positive Lebesgue measure, then () and !12 

are n x n matrix-valuedfunctions. 

PROOF. Assume that (1 and 02 are, respectively, m x n and n x m 
matrix-valued functions. Let 

A(e ') = (1 -(e')*!D(et))1/2 

and 

A (eit) = (1 - 0j(ei")*0j(ei"))1/2, j = 1, 2. 

Let 8 (e") = dim A(e"')Cn, 1(eit) = dim A,(ei,)Cn and 
82(e") = dim A2(ei)Cm, where C denotes the complex plane. Since 1 = (2(1 
is a regular factorization, we have 

(1) 8(e"') = 81(e") + 82(e') a.e. 

(cf. [5, Proposition VII. 3.3]). Since 141(e")l = 1 on a set of positive Lebesgue 
measure, say a, it follows that A(e ') = 0 on a. Hence 8(e ") = 0 on a. If 
m > n then 02(e") cannot be isometric from Cm to Cn. Thus 62(e') > 0 a.e., 
which contradicts (1). On the other hand, if m < n, then 1)1(e ') cannot be 
isometric from C' to Cn. Then 8#(e1') > 0 a.e. and we also have a contra- 
diction. This proves that m = n. 

PROOF OF THE THEOREM. If 4 _ 0, then, by the previously mentioned result 
of Sz.-Nagy and Foia? [6], it is easily seen that none of the three conditions is 
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262 PEI YUAN WIU 

satisfied. Hence we may assume hereafter that 41 i 0. 
(i) => (ii). Let S be an operator in { T}'. To show that S E Alg T it suffices 

to show that Lat T(n) C Lat S(n) for all n > 1 (cf. [2, Theorem 7.1]). Let 
K E Lat TO) and 4 = 4241 be the corresponding regular factorization. As 
proved in the Lemma, 4, and O2 are n x n matrix-valued functions. In the 
functional model of TO) 

K={ 42u E Z-'(Au E v): u E H2 (Cn), vE A,L2(Cn)} 

e {Ow Aw: w E H2(Cn), 

where Z denotes the unitary operator from AL2(Cn) to A&L2(Cn)EAjL2(Cn) 
defined by 

Z(Av) = A421v E AIV, v E L2(Cn). 

Let 4)2u E t be an element in K, where u = (u,)i E H2(gj)_and 
t = (ti)i E AL2 (C") satisfy Z(t) = A2u E v for some v = (vi)i E A,L2(C"). 
Here we use the symbol ( )i to denote the components of a vector. We want 
to show that S (")(42U eD t) E K. Note that S is of the form 

(B C)' 

where A e HI and B, C E L?? satisfy Bip + CA = AA a.e. (cf. [6]). Assume 
that 4), = (t) and ?2 = (4i,). Since 

2 E t = ( kuj) e Q), 

we have 

SW ~~A 02 lyu 

SOD(<2U (D t) P (B C)-l | | 

(2) = p ti i U 
B > 4gy~+ Ct1 

n 
A E 4-y uw 

j=1 
n 
j=l B sm 4w1 A + Ct1, - Ave, 

j=1 

for somen, we E-H2i 1= 12,..., n. Since 4) = 40240P,we have 
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ON CONTRACTIONS SATISFYING Alg T = { T ) 263 

n I[, ifj = i, 
O iik$kj i,j = 1 n. 

k=1 0, otherwise, 

Using Cramer's rule to solve this system of equations for 'Pik, we obtain 

(det 0I)0ik = %kik i, k = 1, ... ., n, 
where Tik is the determinant, multiplied by (_ l)i+k, of the matrix obtained 
from 41 by deleting its ith column and kth row. It follows that 

n n n 
(det 4,)B , %ijuy= B , rqjuj= A(A - C) , qu1j. 

j=I 1=1 j=1 

Hence (det 40I)B(,21..1 I4 %uj)j is an element of AL2(C,). Thus we have 

Z [(det (?,)B( =iju j Z A(A -C) (_ 

- )(,= j j)]1 e (A C)( ?%UI)] 

= 2I(A - C)[ ( 2 n, Ij1), j @[jI(A -AC)(l2 (7ACf)j . 

Since 

n n n n 

I iik 2 71kjj =i f 2 &ik /k, U, 
k-I j4( j) 1 k=1 

n 

= 2 (det 10)6,,uj (6, the Kronecker 8) = (det F1)u1, 
j=1 

the above becomes 

[42(A - C)((det4l)ui).] @[DA(A - C)( 2 m%Uj 

=[(A- C)(det I)u] @E 1(A - C)( 2 )1-uj 
On the other hand, 

Z [(det 4.1)B ( 4 (fu)] = (det 41)Z [(B i 

= (det F1)(X E Y), 

say, for some element X ED Y in A2L2(Cn) ED ZIL2(C0). Equating the first 
components in (3) and (4) we obtain 
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264 PEI YUAN WU 

(5) (A- C)(det 4)1)u = (det 4)1)X. 

Since 4 X 0, we have det 4) i 0, and hence det 4l & 0. By the F. and M. 
Riesz theorem, (5) yields that A2(A -C)u = X. Thus 

Z [B 2 ~Vu + ct,) Z (B 2 4'vuj) + Z ((Ct,)) 
j=1 J - j t(J=-1 ) j 

= (X ED Y) + Z(Ct) =[2(A - C)u ED Y] + C(Au $ v) 

= A2Au ED (Y + Cv). 

Hence (2) can be written as 

S(n) OD2U ED t) = {42Au ED Z -'[A2Au $ (Y + Cv)] (}(w $ Aw), 

where w = (wi)i E H2(Cn). This shows that S(n) (Q2U $ t) E K as asserted 
and completes the proof of the implication (i) =X (ii). 

(ii) =X (iii). This is trivial. 
(iii) =X (i). Assume I4(e")I < 1 a.e. It was proved in [7] that the 

hyperinvariant subspaces for T are of the form {f f$E g E H: - Af + 4g E 
L2(E) andf E IH2}, where E is a measurable subset of the unit circle and I 
is an inner divisor of 4i where 4' denotes the inner factor of 4. By Proposition 
7.2 of [4], invariant subspaces of this form are precisely those arising from 
scalar regular factorizations of 4. However, since 141(eit)l < 1 a.e., it is known 
[5, p. 301] that nontrivial vector regular factorizations of 4 exist. By the 
uniqueness of the correspondence between regular factorizations of 4 and 
invariant subspaces for T, the invariant subspace corresponding to any such 
vector regular factorization of 4 cannot arise from a scalar regular 
factorization, and hence is not hyperinvariant. Thus we obtain a contra- 
diction of (iii) and complete the proof. 

COROLLARY. Let T be a c.n.u. contraction with a scalar-valued inner 
characteristic function. Then Alg T = { T}'. 

We are grateful to the referee for making the proof of (iii) =X (i) of our 
Theorem more conceptual and less computational. 
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