
國 立 交 通 大 學

電機與控制工程學系

博士論文

多媒體系統晶片平台設計與應用

Design and Application of Multimedia
System-on-Chip Platform

研 究 生：鍾 仁 峯

指導教授：林 進 燈

中 華 民 國 九十五 年 三 月

多媒體系統晶片平台設計與應用

Design and Application of Multimedia System-on-Chip Platform

研 究 生：鍾仁峯 Student：Jen-Feng Chung

指導教授：林進燈 Advisor：Chin-Teng Lin

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

March 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五 年 三 月

i

多媒體系統晶片平台設計與應用

學生：鍾仁峯 指導教授：林進燈 博士

國立交通大學電機與控制工程學系

摘 要

 多媒體訊號處理涵蓋兩大核心領域，一為影像及視訊處理，另一為語音及音效

處理。它的應用適合於家庭娛樂系統中及資訊科技產業，具體的產品包括寬頻網路

影音系統、數位廣播系統、多聲道視聽系統、及高音質隨身音樂媒體等。這些系統

為了滿足人類聽覺的需要，即時運算是必須的。然而，多媒體處理計算的需求是由

訊號處理的工作分配，若執行高的取樣頻率也就是處理較大的資料量，則需要複雜

運算。以多媒體的角度而言，它必須處理多不同類型的數據，但使得處理的工作變

得複雜化。本論文針對特別利用在語音與音訊處理上的計算特性，開發出一種新型

的多媒體處理的架構來解決快速驗證平台的問題。

 多媒體系統晶片平台的開發以聲音為導向，針對消費性 3C 產品做整合性的開

發設計，它不僅適用多聲道音源輸入與不同喇叭或耳機輸出都可以增強音效的 SoC

雛型設計環境，以便對所需求的規格來確定主系統的架構。在這個規劃中我們提出

了三階段的週期:系統規劃週期、系統設計週期、及系統驗證週期。多媒體系統處理

核心為模組控制，模組控制就像是一個軟體的智財 (IP) 插座，可以透過相同的電

子設計自動化 (EDA) 平台環境進行整合，以微處理器來分配系統資源，提供數位

訊號處理器執行所需的功能。系統匯流排依循 AMBA 匯流排的時序設計，並提供

IP 標準的的介面，充分發揮系統執行的效能。用傳統微處理器和數位訊號處理器的

ii

相互搭配架構，是未來數位電子的趨勢，亦是降低硬體成本的考量。

 本論文中的多媒體系統晶片平台提出了一個 FPGA 的設計與驗證方法，系統晶

片設計部分包含了系統匯流排、微處理控制器、周邊數位 I/O、16 位元空間迴響器、

及 24 位元適用於音訊系統之數位訊號處理器等。可程式化微處理控制器負責系統

晶片內部的流程處理和周邊 I/O 控制；24 位元數位訊號處理器因其架構與指令集是

特別針對音訊系統的主要演算法做考量；16 位元空間迴響器則是一個即時 3-D 音效

處理的智財 (IP)，這兩個處理器分別並連接於高速及周邊匯流排上。系統晶片驗證

部分包含語音線性估測編碼的參數求取、音高位置估測、和空間迴響器等演算法的

資料測試與訊號驗證。此平台搭配處理器指令與 gated-clock 的方法，可適應性的

調整算數邏輯單元的使用，具有省功率運作的特性，非常適合音訊多媒體系統中可

攜式與低功率要求的應用。使用 FPGA 經過驗證與測試整個系統的執行效能平均達

80MIPS，功率消耗在 90mW。此設計是跨平台的實現方法，未來可整合到任意單一

矽晶片之中。

iii

Design and Application of Multimedia
System-on-Chip Platform

Student：Jen-Feng Chung Advisor：Chin-Teng Lin

Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

Multimedia signal processing involves two important fields: one is image and video

processing; the other is speech and audio processing. It is suitable to be applied into the

system of home entertainment and the industry of information technology, for example,

the concrete products such as a wide-band video-audio system of networks, a digital

broadcast system, a multi-channel video-audio system, a high-quality walkman, etc. To

satisfy the requirement of human hearing, it is necessary for real-time processing.

However, the assignment of multimedia signals depends on the requirement of

computational power. If a system has to process mass data, i.e., high operating frequency,

it should perform complex operations. Because data is composed of different signals in

the multimedia world, the work of signal processing becomes complication. In this thesis,

we make use of computational characteristics of speech and audio processing and design

a new architecture of multimedia processing in order to solve the problem of verification

quickly.

Based on the conception of sound processing, a multimedia System-on-Chip (SoC)

platform, which can integrate 3C consumer products, is designed. It is not only suitable

for multi-channel sound input or output such as speakers or headsets, but also achieves

iv

the effect of virtual sound. We are in accordance with three phase cycles as specification,

design, and verification for assisting the platform design. The kernel of the SoC platform

is like a module control. The module control is just like as the software socket of

intelligence property (IP). Thus, we can integrate with IPs via the environment of

electronic design automation (EDA). In the platform, a microprocessor is as the master to

assign system resources. The system bus meets the timing of AMBA and offers the

standard AMBA interface to promote performance and to reduce hardware costs. The

architecture of traditional microprocessor and digital signal processor (DSP) is the trend

of digital circuit design in the future.

In this thesis, we present design and verification of the multimedia SoC platform.

The platform design integrates the system bus, microprocessor, memory controller,

peripheral I/O, 16-bit reverberator, 24-bit DSP, etc. The programmable microprocessor

manages internal data flow and digital I/Os. The 24-bit DSP is specified as its

architecture and instruction set for sound algorithms. The 16-bit reverberator is 3-D

virtual sound IP performed in real time. The two processors are connected to the

high-performance bus (AHB) and the peripheral bus (APB), respectively. The platform

verification includes the speech parameters of linear predictive coding, pitch estimation,

and reverberation. These algorithms are used to test data flows and to verify functionality

for the proposed SoC platform. By using the gated-clock scheme, the platform has

reducing power characteristics so that it can adaptively adjust the usage of parallel ALUs.

Finally, under FPGA verification and testing, on average the whole performance obtains

80MIPS, and power consumption is about 90mW. Due to a cross-platform implemented

scheme, it can be applies into an embedded and portable multimedia system and can also

be integrated to a single silicon chip.

v

誌 謝

在交大電機與控制工程系攻讀博士的期間，似乎都在和時間競逐下過日

子，不但修課考試要花時間，想研究內容也要花時間，實驗與寫作更花時間。

不論何時何地，都和時間在競賽，這些都在磨練我的體力與耐力，雖然心力

交瘁，最後還是走完這一段人生重要的過程。

首先要感謝我的指導教授—林進燈教授，因為我遇到一個優秀的，並給

了我彈性與自治，他的精闢見解與專業知識適時地修正我的方向，給予寶貴

的建議，彌補我研究經驗的不足，使我省下不必要的時間浪費；他的治學態

度嚴謹又不失務實，不僅在學業方面的悉心指導，更在爲人處世及求學態度

上給予啟蒙及悉心指導，讓我學習到許多寶貴的知識與經驗，使得本論文能

順利完成。另外也要感謝口試委員們的建議與指教，使得本論文更為完整。

其次，感謝曾提供我相當多協助實驗室的學長：勝富、得正、鶴章，與

學弟妹們建志、龍吉、亙志、長茂、朝暉、世安、育緯、晴慧、家昇、經翔、

峻谷、紹航等，以及我身邊的好朋友們，在研究過程中所給我的鼓勵、協助

與支持；其實該感謝的人很多，無法一一道盡，只有將感激收藏在心裡。

最後，更要感謝我的父母親對我的教育與栽培，給予我一切鼓勵與協助，

使我能安心無負擔的完成博士學業。僅將本論文獻給我的家人所有關心我的

師長與朋友們，願他們共享這份榮耀。

仁峯 於交通大學電控系資訊媒體實驗室

2006.3.15

vi

TABLE OF CONTENTS

摘 要 ... I

ABSTRACT... III

誌 謝 ..V

TABLE OF CONTENTS.. VI

LIST OF TABLES .. IX

LIST OF FIGURES ..X

LIST OF FIGURES ..X

CHAPTER 1 INTRODUCTION TO MULTIMEDIA PROCESSING...................................1

1.1 INTRODUCTION ...1

1.2 MOTIVATION...2

1.3 OBJECTIVES..4

1.4 ORGANIZATION OF THE THESIS ..8

CHAPTER 2 MULTIMEDIA IN SOUND PROCESSING..9

2.1 INTRODUCTION ...9

2.2 ARTIFICIAL REVERBERATION..9

2.2.1 FILTERS..11

2.2.2 FIR EARLY REFLECTION..12

2.2.3 REVERBERATOR ..13

2.3 SPEECH PROCESSING ...17

2.3.1 LINEAR PREDICTIVE CODING..17

vii

2.3.2 PITCH ESTIMATION ..19

CHAPTER 3 DESIGN OF APPLICATION-DRIVEN DIGITAL SIGNAL PROCESSOR

..21

3.1 INTRODUCTION ...21

3.2 MICRO-ARCHITECTURE...22

3.3 INSTRUCTION SET...27

3.3 ADDRESSING MODES ...28

3.4 MATRIX PROCESSING TECHNIQUE ..30

3.5 VECTOR PROCESSING TECHNIQUE ..32

3.6 DMA AND INTERRUPT INTERFACE ...34

3.7 POWER OPTIMIZATION ..37

3.8 COPROCESSOR: REVERBERATOR..39

3.9 DEVELOPMENT SOFTWARE..43

CHAPTER 4 SIMULATION RESULTS ...48

4.1 SPEECH PROCESSING ...48

4.1.1 LPC AND PITCH ESTIMATION ...48

4.1.2 MELP CODING ..51

4.1.3 POWER ANALYSIS ...54

4.2 REVERBERATION ALGORITHM..56

4.2.1 DSP PROGRAMMING...56

4.2.2 IMPLEMENTATION OF APPLICATION-SPECIFIC REVERBERATOR59

viii

4.3 PERFORMANCE ANALYSIS OF LASP24 ...61

CHAPTER 5 THE INTEGRATED PLATFORM FOR MULTIMEDIA PROCESSING ..63

5.1 INTRODUCTION ...63

5.2 SOC PLATFORM..64

5.3 INTELLECTUAL PROPERTY DESIGN ...67

5.3.1 MICROPROCESSOR ...67

5.3.2 INTER-IC SOUND INTERFACE...69

5.3.3 SERIAL COMMUNICATION DESIGN...72

5.3.4 WRAPPER AND INTERRUPT DESIGN...74

5.3.5 SPECIALIZED HARDWARE FOR SYSTEM VERIFICATION.........................76

5.4 SYSTEM PROTOTYPE..78

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS..81

BIBLIOGRAPHY..85

APPENDIX A LASP24 INSTRUCTION SET AND EXAMPLES..92

APPENDIX A LASP24 INSTRUCTION SET AND EXAMPLES..92

APPENDIX B ADDRESSING MODES...96

VITA..97

PUBLICATION LISTS ...98

ix

LIST OF TABLES

TABLE 3-1. THE MATRIX COORDINATE FOR THE MATRIX ADDRESSING MODE, WHERE AR0L

AND AR1L REPRESENT THE LOWER FOUR BITS OF AR0 (AR0[3:0]) AND AR1

(AR1[3:0]), RESPECTIVELY... 31

TABLE 3-2. THE FORMAT OF THE VECTOR ADDRESSING MODE AND THE REPRESENTATION OF

VECTOR ADDRESSES IN LASP24, WHERE OP INDICATES OPERATION; VA, VB, AND

VC REPRESENT VECTOR REGISTERS. THE SYMBOLS, FIL, EXT, WIN, RAM0, AND

RAM1, ARE MEMORY SYMBOLS. .. 33

TABLE 4-1. SIMULATION RESULTS OF LPC CALCULATIONS IN DIFFERENT FLOATING-POINT

PRECISION... 49

TABLE 4-2. TIMING SIMULATION RESULTS. THE TIME UNIT OF EXECUTION IS MICROSECOND

(MS), AND THE TOTAL TIME OF EXECUTION IS THE SUM OF LPC AND PE

COMPUTATION TIME. .. 50

TABLE 4-3. BIT ALLOCATION FOR THE MELP CODER ... 53

TABLE 4-4. POWER DISSIPATION ANALYSIS OF LASP24. ... 55

TABLE 4-5. ALLPASS FILTER COEFFICIENTS. ... 58

TABLE 4-6. COMB FILTER COEFFICIENTS. ... 58

TABLE 4-7. COMPARISON OF DIFFERENT FIR SCHEMES FOR EARLY REFLECTION

IMPLEMENTATION. .. 60

TABLE 4-8. COMPLEXITY COMPARISON BETWEEN LASP24 AND MEMORY WITH OPTIMIZATION

CODES... 62

TABLE 5-1. MODULE DESIGN OF THE SOC PLATFORM.. 65

TABLE 5-2. MICROPROCESSOR’S ALTERNATE FUNCTIONS. .. 69

TABLE 5-3. THE FPGA SYNTHESIS RESULTS OF AUDIO SOC DESIGN. ... 78

x

LIST OF FIGURES

FIG. 1-1. COMPONENTS OF A TYPICAL MEDIA PROCESSING SYSTEM. .. 5

FIG. 2-1. IDEAL IMPULSE RESPONSE OF AN ACOUSTIC ROOM. ... 10

FIG. 2-2. (A)ALL-PASS FILTER AND (B) MODIFIED COMB FILTER, WHERE M, G, A REPRESENT THE

DELAY LENGTH, THE GAIN FACTOR, AND THE COEFFICIENT, RESPECTIVELY. 12

FIG. 2-3. IMPULSE RESPONSE WITH EARLY REFLECTIONS. .. 12

FIG. 2-4. IMPULSE RESPONSE WITH EARLY REFLECTIONS. .. 13

FIG. 2-5. THE PROPOSED ARCTICTURE OF REVERBERATOR. .. 14

FIG. 2-6. (A) FIR MODELING WITH EXPONENTIALLY-DECAYING PSEUDO-RANDOM COEFFICIENTS;

(B) ADDITIONAL COLORING PHENOMENON OF A COMB FILTER; AND (C) COLORING

REDUCTION. .. 15

FIG. 2-7. THE UN-WEIGHTED PSEUDO-RANDOM FIR SEQUENCE OF 1'S, 0'S, AND -1'S WITH 4,000

(LEFT) AND 14,400 (RIGHT) DENSITIES PER SECOND OF NON-ZERO FILTER TAPS,

RESPECTIVELY... 17

FIG. 3-1. HARDWARE/SOFTWARE DEVELOPMENT FLOW FOR LASP24.. 22

FIG. 3-2. THE BLOCK DIAGRAM OF THE PROPOSED DIGITAL SIGNAL PROCESSOR. 24

FIG. 3-3. PIPELINING OPERATIONS... 25

FIG. 3-4. BRANCH OPERATIONS. .. 26

FIG. 3-5. MEMORY ACCESSING OPERATIONS. .. 27

FIG. 3-6. ILLUSTRATION FOR COMPUTING A MATRIX ADDRESS WITH THE VECTOR ADDRESSING

MODE. ... 31

FIG. 3-7. AN EXAMPLE OF MEMORY OPERATIONS IN LASP24, WHERE OP INDICATES THE VECTOR

MULTIPLICATION. VA, VB, AND VC REPRESENT DIFFERENT MEMORY BANKS. THEY ARE

DEFINED IN TABLE TABLE 3-2... 32

xi

FIG. 3-8. GENERATION OF LASP24’S INTERRUPT FOR A SINGLE PERIPHERAL DEVICE VIA

INTERRUPT REQUEST FLAG.. 36

FIG. 3-9. THE GATED-CLOCK SCHEME IN (A) PARALLEL ARITHMETIC UNIT, (B) CLOCK GATING,

AND (C) POWER SAVING PARALLEL ARCHITECTURE. .. 38

FIG. 3-10. THE PROPOSED PSEUDO-RANDOM FIR ARCHITECTURE WITH TWO-STAGE PIPELINE. THE

ADDER IS A 2’SC ADDITION OPERATION. THE MULTIPLIER LIMITED BY THE NON-ZERO

CONTROL IS A UNIT MULTIPLICATION OPERATION. .. 40

FIG. 3-11. THE COMPUTATIONAL DIAGRAM OF THE CIRCULAR BUFFER WHEN THE ADDRESSING

INDEX INDICATES (A) J=0, (B) J=510, AND (C) J=2000. ... 42

FIG. 3-12. FULLY FSM CONTROL FLOWS FOR TWO-STAGE ARCHITECTURE. 42

FIG. 3-13. THE STRUCTURE OF DEFY-I FOR LASP24. .. 43

FIG. 3-14. OPERATION OWS OF THE EMULATOR... 44

FIG. 3-15. THE HARDWARE EMULATOR. .. 45

FIG. 4-1. THE MICROPROGRAMMING FLOW IN THE PROGRAM ROM OF LASP24. 49

FIG. 4-2. PERFORMANCE COMPARISONS OF LASP24 AND TMS320C3X. 51

FIG. 4-3. THE ORIGINAL AND RESULTING WAVEFORMS AFTER THE REVERBERATION ALGORITHM:

(A) IS A SIMULATED IMPULSE RESPONSE WITH EARLY REFLECTION IN FIR; (B) IS FIR

COEFFICIENTS USING A PSEUDO RANDOM METHOD; (C) AND (E) ARE ORIGINAL AUDIO

MUSIC AND FEMALE SPEECH WITH 44.1 KHZ SAMPLING RATE AND 16-BIT DATA FORMAT;

(D) AND (F) ARE THE SIGNALS AFTER PROCESSING (C) AND (E). 59

FIG. 4-4. FULLY FSM CONTROL FLOWS FOR TWO-STAGE ARCHITECTURE. 59

FIG. 4-5. SOUND WITH 2,0282 DIGITAL SAMPLES AFTER FIR PROCESSING: (A) DESIRE RESULTS

AND (B) DESIGN RESULTS. (C) AND (D) ARE THE RESULTS OF FREQUENCY DOMAIN

ANALYSIS WITH HAMMING WINDOW FOR (A) AND (B). ... 61

FIG. 5-1. MULTIMEDIA SOC PLATFORM: (A) SOC ARCHITECTURE AND (B) THE PROPOSED

PROTOTYPE SYSTEM. .. 67

xii

FIG. 5-2. THE BASIC INTERFACE TIMING OF I2S. .. 70

FIG. 5-3. THE BLOCK OF AUDIO I2S CONFIGURATION (SCK=64×FS AND WS=FS=48KHZ)........... 71

FIG. 5-4. FPGA SIMULATION OF I2S TRANSMISSION.. 72

FIG. 5-5. THE BLOCK DIAGRAM OF UART (BAUD RATE AT 9,600 B/S). 73

FIG. 5-6. FPGA SIMULATION OF UART (A) RECEIVER AND (B) TRANSMITTER. 74

FIG. 5-7. FPGA SIMULATION OF DATA TRANSFER FOR 8051 WRAPPER.. 75

FIG. 5-8. COMPLETE STAT MACHINE FOR 8051 WRAPPER.. 76

FIG. 5-9. EMULATION TESTBENCH... 77

FIG. 5-10. SHARE MEMORY: (A) THE DATA FORMAT AND CONTROL OF AUDIO STREAMING AND (B)

SIMULATION RESULTS OF PROCESSING THREE-CHANNEL DATA IN THE DUAL-PORT

SRAM... 79

FIG. 5-11. (A) THE FINAL DEMO BOARD AND (B) THE INITIAL DEVELOPMENT ENVIRONMENT. 80

1

CHAPTER 1

INTRODUCTION TO MULTIMEDIA PROCESSING

1.1 Introduction

Multimedia signal processing, which represents a major part of the latter category,

involves the joint processing of digital information in various representations. It covers a

very broad spectrum of applications:

● Audio and speech processing: audio compression, Dolby surrounding;

● Image and video processing: resolution conversion, image enhancement, image

restoration, image and video compression;

● Content-based indexing and retrieval: feature extraction, pattern recognition, face

detection/recognition, fusion of multi-modality;

● 2-D and 3-D graphics: volume rendering, modeling transformation,

computer-assisted animation, virtual reality, etc.

As speech, audio, image, and video are playing increasingly dominant roles in multimedia

information processing, content-based retrieval has a broad spectrum of application.

Processing the signal using a filter circuit can remove or at least reduce the unwanted part

of the signal. Increasingly nowadays, the filtering of signals to improve signal quality or to

extract important information is done by digital signal processing techniques rather than by

analog electronics.

2

1.2 Motivation

Multimedia systems [1] have attracted considerable media attention because of their

promise to transform ordinary personal computers into entertainment centers that also

function as powerful business tools. However, applications for these systems also present

major design challenges to processor developers because multimedia applications such as

video games, Dolby AC-3, and MPEG-2 video [2] have a mix of processing requirements

that go beyond the capabilities of general-purpose processors. Multimedia applications [8]

must not only meet stringent specifications including real-time processing, low-power

dissipation, and small die size, but also be inexpensive for access to the consumer market.

For the multimedia market, processor developers must have the utmost sensitivity

toward the processors effect on the final product’s price. Because of this, the processor

must reach a balance where hardware utilization is maximized while at the same time

allowing for enough throughputs to be achievable for several applications. A number of

standards have been proposed in the field of audio and video compression [3].

Communication applications, such as video telephony, are covered by the ITU-T standards

H.261 and H.263 [61]-[62]. Playback of video stored on CD-ROM, TV broadcast, and

video-on-demand are applications aimed by the ISO standards MPEG-1 and MPEG-2.

Other important multimedia signal processing algorithms beside compression deal with

content-based indexing and retrieval, speech analysis and synthesis, 2- and 3-D image

animation, or scene modeling and understanding. The growing complexity of the

algorithms, often associated with real-time constraints, leads to increasing computational

demands. Having to deal with multiple streams of different data types further complicates

the processing in a multimedia environment.

Multimedia processing requests extreme demands on computing-, transmission-, and

3

storage-devices. Especially video consists of large data volumes, which makes it difficult

to handle the data in their raw form. Therefore, compression is a key technology for

multimedia applications. Thus, it is necessary for a powerful digital signal processor (DSP).

Like a general-purpose microprocessor, DSP is a programmable device, with its own native

instruction code. DSP is the capable of carrying out millions of floating point operations

per second, and like their better-known general-purpose cousins, faster and more powerful

versions are continually being introduced. It can also be embedded within complex

“system-on-chip” devices, often containing both analog and digital circuitry. To perform

multimedia tasks, many companies develop dedicated hardware such as hardwired

solutions customized for a given application [2]-[8], or specialized processors that appear

to be hardwired solutions [9]-[10]. These designs work well for their intended purposes but

their inherent inflexibility forces developers to make modifications for each new

application. Furthermore, dedicated hardware means that design engineers must

refamiliarize themselves with a new architecture for each new system they develop.

While complexity and sophistication of multimedia algorithms continue to grow,

commercial success of multimedia applications essentially relies on efficient VLSI

implementation [60]. Today’s standard processing devices are generally not able to fulfill

the demands of multimedia processing without special adaptation. Programmable high-end

general-purpose processors, as designed for the PC and workstation market, are typically

weak at signal processing and moreover too expensive and power-consuming for

standalone multimedia applications. Conventional digital signal processors, although

optimized for processing of speech and audio signals, still lack the required high

performance for video signal processing. In consequence, special architectural approaches

are required to deliver sufficient multimedia processing performance at low cost.

Currently available standard processing devices are not able to fulfill the requirements

4

of multimedia processing without special adaptation. Architectural enhancements have

therefore been introduced aiming to exploit the special algorithm characteristics. Current

processors, however, mainly rely on massively available data parallelism and highly

predictable program flow to achieve performance gains. While this approach is feasible for

algorithms dominated by block-based processing style, as encountered, e.g., in traditional

video compression schemes, it will not be sufficient for emerging applications

characterized by higher complexity and decreasing computational predictability. This

thesis discusses innovative architectural approaches that promise a more exhaustive

exploitation of parallelism and a more flexible utilization of processing resources. First,

computational characteristics of current and future multimedia algorithms are analyzed.

Then, architectural enhancements employed - by state-of-the-art multimedia processors

with multi-core architecture [75], mainly targeting compression schemes, are shortly

reviewed. The remaining part of the thesis presents reconfigurable computing,

simultaneous multi-threading, and associative controlling as three promising architectural

concepts able to deal with the future demands of emerging multimedia applications.

1.3 Objectives

Consider the components of a typical media processing system, shown in Fig. 1-1.

Here, an input source presents a data stream to a processor’s input interface, where it is

manipulated appropriately and sent to a memory subsystem. The processor core(s) then

interact with the memory subsystem in order to process the data, generating intermediate

data buffers in the process. Ultimately, the final data buffer is sent to its destination via an

output subsystem.

5

Input
Subsystem

Core
Processing

Output
Subsystem

Memory
Subsystem

Input Source Destination

Fig. 1-1. Components of a typical media processing system.

Multimedia processing is that the actual work done by the media processor core. The input

data varies widely in its bandwidth requirements. Raw audio might be measured in tens of

kilobits/second (kb/s), and raw video could entail tens of megabytes per second (Mbytes/s).

Then, it is clear that the media processor needs to handle different input formats in

different ways

The computational requirements of multimedia processing are dominated in the first

place by the signal processing tasks, requiring complex operations to be performed on

large data volumes at high sample rates. Typically, real-time constraints arise from the

need to satisfy human sound perception demands. Having to deal with multiple streams of

different data types further complicates the processing task. State-of-the-art multimedia

architectures employ a number of architectural measures in order to exploit the

computational characteristics of speech and audio processing algorithms in particular. So

far, the design focus has been on efficient implementation of the computation-intensive

low-level parts of the algorithms-as dominating in frame-based schemes. Depending on the

targeted application field, dedicated and programmable approaches can be distinguished.

The design of dedicated VLSI implementations for selected multimedia processing

schemes is driven by the need for inexpensive, highly integrated systems targeting the

consumer market. This goal is achieved by deep adaptation of modules to special

6

algorithms and algorithm classes. Programmable architectures, on the other hand, provide a

more general platform, offering the flexibility to allow various algorithms being executed

on the same hardware by only software modifications.

To achieve computing performance, the application-driven necessity to provide

processors with both microprocessor and DSP functionality enforces new architectures and

approaches. Simply using two cores—a microprocessor and a DSP core—is

multitasking-effective as resources are often doubled. The 24-bit architecture presented

here provides general purpose micro-processing as well as DSP functionality through a

single-core and a unified architecture, respectively. The optimal solution is an

application-oriented processor core [69], [70], having a lower cost than a general-purpose

DSP. The parallel architecture of DSP can efficiently execute vector and matrix operations

without extra overhead. In order to implement an application-driven DSP, we use a

methodology for hardware/software (HW/SW) co-verification [71] and optimize the

processor architecture and instruction sets. High flexibility in use, small area on silicon,

high data throughput, and fast portability to a wide range of technologies are our main

targets in the core development.

The modern embedded system has moved toward the target of system integration and

implementation. Reuse [50] is done at the chip level called intellectual property (IP) core

which represents the functions of specification domains like multimedia applications.

These modules are integrated into System-on-Chip (SoC) [72] which is a typical

architecture. We investigate architectural techniques to facilitate analysis and integration

for heterogeneous and general/complex SoC applications in this thesis. We use a

microcontroller and digital signal processor application to validate the embedded platform

prototype. The concept of platform refers to a family of architectures satisfying ARM

defined constraints [54], and allowing customizations and substantial re-use of hardware

7

and software modules. We developed a base architecture with customization or

parameterization options to speed-up derivative implementations while reducing the

HW/SW overhead. The definition of the SoC platform IP is the result of a trade-off process

involving reusability, overall SoC integration effort [67], performance [68] and power

optimizations [77]. Our focus is on efficiency of the hardware and software resources in

the context of a self-adapting architecture with autonomic features. The motivation for

developing such IP is to facilitate integration of SoCs. Because the platform is meant to be

easily customized, it is essential to meet stated resource-efficiency goals.

The SoC integrated platform provides multi-function system backbone for various

multimedia applications. The new proposed SoC integrated platform which combines

microprocessor, digital signal processor (DSP), memory, and other functional modules

such as GPIO (General-Purpose Input/Output), I2S (Inter-IC Sound), and communication

(UART) into a single IC is popular recently. To verify these functions of the proposed

platform for audio and speech processing, the FPGA (Field Programmable Gate Array)

rapid prototype approach will be used. FPGA were primarily used for prototyping and

lower volume applications in years and custom ASICs were used for high volume,

cost-sensitive designs. In the thesis, we will describe the proposed platform, IP reuse

design experiment based on a methodology in [66].

The contribution of this thesis is to propose a multimedia SoC platform, which can

integrate 3C consumer products, for sound processing. The platform can solve low-cost

consideration and construct quickly the components of multimedia signal processing in the

standard bus. The platform using two cores, a microprocessor and a DSP core, can promote

computational performance. Especially DSP, it is designed as the sound signal processor

for the consideration of architecture and instruction set, and has low-power characteristics

with gated-clock technology [37]. Due to their high capacitive load which makes them a

8

major contributing factor to the overall power consumption of the SoC device, we take

advantage of instruction or control types to decide which component needs to be disabled.

In addition, bus encoding techniques [77] can reduce the power consumption on a bus by

mapping the information conveyed on the bus to a form which has less transition activity

than the original. This is to reduce the consumption of the electric current. Due to

cross-platform design which is not limited by any synthesis tool or FPGA, this method can

be easily verified and fabricated as ASIC.

1.4 Organization of the Thesis

In this thesis, the rest of the dissertation is organized as follows. Chapter 2 describes

in multimedia the application of sound signal processing including artificial reverberation

and speech compression. These three sound processing will be applied to the SoC platform.

According to the reverberation principle, we design a real-time reverberator with the

pseudo-random coefficient method. Afterward, Chapter 3 would implement an

application-driven digital signal processor. We consider for special addressing modes,

matrix and vector processing, power optimization, and the architecture of reverberator.

Continuously, the experimental results and comparison would be illustrated in Chapter 4.

In order to be able to apply into the SoC platform for sound signal processing, Chapter 5

constructs a multimedia integrated platform. The platform is controlled by a built-in

microprocessor, and it can capture and play sound through the standard inter-IC sound

interface. Hence, the multimedia platform can call a programmable SoC platform. Finally,

conclusions and future works are made the last chapter.

9

CHAPTER 2

MULTIMEDIA IN SOUND PROCESSING

2.1 Introduction

Sound processing is one of the many applications of digital signal processing.

Three-dimensional (3-D) sound is becoming increasingly important in scientific,

commercial, and entertainment systems [8] for human life. It can greatly enhance auditory

interfaces to computers, improve the sense of presence for virtual reality simulations, and

add excitement to computer games. Recent extensions of physical and behavioral studies

have revealed that the external ear plays an important role in spatial hearing. Due to the

rapid growth in computational power, many new virtual auditory systems could be

implemented in real time. In the Section, we introduce two techniques of 3-D sound

processing as artificial reverberation and one basic speech processing as linear prediction

coding (LPC) and pitch estimation (PE), respectively.

2.2 Artificial Reverberation

Today, a multichannel [9] playback system has been frequently used in cinema or

home video. In this thesis, a stereo-channel multiband room effect simulator [81] with

friendly control interface is presented. In order to obtain different music quality, we design

a new room simulator to be suitable for the multichannel surround sound system [10].

The impulse response for room simulation is the result of the many reflections of a

sound that occur in a room. The response consists of direct sound, early reflection, and

fused reflection. In 1961, the first room effect algorithm was proposed by Schroeder [11].

10

Then Schroeder’s algorithm was extended by Moorer [12] in 1978. The room effect

introduces a spatial dimension to a piece of recorded sound, which means that it can be

used to model a specific acoustic environment in which to affect a dry unaltered signal.

Long reverberation times provide the feeling of a large hall, and short reverberation times

(RT) give the impression of smaller rooms. We refer to Moorer’s reverberator using FIR

and IIR filters to design artificial reverberation called a reverberator. The impulse response

for an acoustic room is depicted in Fig. 2-1. This response includes direct sound, early

reflections, and late reverberation. The main contribution of this thesis should be a

specification of the requirements made on the reverberation algorithm, which will be

preparing for real-time processing and multichannel outputs. The reverberation algorithm

is based on an exponentially-decaying pseudo-random FIR filter [13] to represent the early

reflections segment, with a feedback delay path to create the dense reverberant field. In

addition, an equalizer offers the capability of both compensating for defects and fine tuning

the system. With an equalizer, certain frequency ranges can be either increased or cut. We

also design a 10-band equalizer as like Winamp2 to control how finely the frequency

pattern can be amplified or attenuated and setup several selective modes for selection.

Finally, the output of the room simulator can be connected to modified 5.1-channel Dolby

surround decoder with [14].

Early
Reflections Late Reflections

Early
Reflections Late Reflections

time
Fig. 2-1. Ideal impulse response of an acoustic room.

11

Reverberation [15] is probably one of the most heavily used effects in music.

Reverberation effects can be achieved by using any combination of filter techniques. The

FIR filter, comb filter, and all-pass filter are the basic structures that have been combined

in different ways in an attempt to imitate the effects of various rooms.

2.2.1 Filters

Filtering techniques are used to perform convolution with input sound sources. A FIR

filter is used to model the segment of early reflection. This is because each reflected signal

could be distinguished by human ears in this segment. The parallel comb filters and

cascade all-pass filters are added to generate its late reverberation segment. In order to

increase the echo density, the output of the parallel comb filters is fed into one or more

all-pass filters (Fig. 2-2(a)) in series. Each all-pass filter has a multiplicative effect on the

number of echoes, but prevents coloration due to the all-pass filter’s flat frequency

response.

In general, a high order FIR filter is considered to model the early reflection segment,

but it would take too much execution time for computation. To improve this problem, a

simple delayed feedback loop around the FIR early segment is used to reduce the FIR

order. The order of the FIR filter is decided by the first comb filter delay and the

reverberation length in our system. However, room impulse responses consist of very

dense series of echoes that cannot be practically realized using this architecture. Since the

eigenfrequencies of rooms have a rapid decay for high frequencies, and a

frequency-dependent reverberation time can be implemented with a low-pass filter. Moorer

suggested a modified comb filter with a low-pass filter (Fig. 2-2(b)) in feedback loop to

take frequency-dependent decay into consideration to solve this problem.

12

a

)(nx mZ −)(ny

-a

a

)(nx mZ −mZ −)(ny

-a

(a)

g

)(nx mZ −)(ny

1−Z a

g

)(nx mZ −mZ −)(ny

1−Z 1−Z a

(b)

Fig. 2-2. (a)All-pass filter and (b) modified comb filter, where M, g, a represent the delay
length, the gain factor, and the coefficient, respectively.

2.2.2 FIR Early Reflection

The impulse response of sound consists of direct sound, early reflections shown as Fig.

2 and exponentially decaying late reverberation (with an IIR filter to reduce computational

complexity).

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0

G
ai

n

Time (sec)
0.05 1 2 2.51.50 3

Fig. 2-3. Impulse response with early reflections.

13

The early reflections often derived from a room model, e.g., as reflections caused by

an image source. Reflections during about 20~80ms after sound is triggered are heard

together with the direct sound as one single auditory event. An FIR filter is used to

generate these early reflections. Since the early reflections are relatively sparse and span a

relatively short time, they can be implemented using tapped delay lines (Fig. 2-4). This

idea was apparently first suggested by Schroeder in 1970 [11] and evidently first

implemented by Moorer [12]. A key parameter in determining the quality of the

reverberation is the echo density. In the case, to increase echo density, the FIR order will

be large. Of cause, this causes long computing time. Hence, we can increase non-zero

values with pseudo-random coefficients and select suitable for memory spaces to reduce

the FIR order but not affect sound qualities.

+ +

1Mz− 1Mz−)(12 MMz −−)(12 MMz −−

α0 α1

)(23 MMz −−)(23 MMz −−

α2

+

α2

)(nx

)(ny

)(1Mnx −)(2Mnx −)(3Mnx −
.
. .

.
.
.

Fig. 2-4. Impulse response with early reflections.

2.2.3 Reverberator

Different audio effects can be performed by designing and implementing suitable

filters. The proposed reverberator shown in Fig. 2-5 is composed of a FIR filter with

pseudo-random coefficients (Fig. 2-6(a)), 10 parallel comb filters, 4 cascade all-pass filters,

and a pair of late low-pass filters. The FIR filter models the segment of early reflection.

The parallel comb filters and cascaded all-pass filters model the segment of late

reverberation, and late low-pass filters are to produce the feeling of the distance from

14

sound source. Note that the delay length of comb filters must be carefully chosen to avoid

the coloring phenomenon shown as Fig. 2-6(b) and (c), respectively.

The input of the room simulation is the mono signal xR(n) and xL(n) respectively.

These two mono input signals are added to the left and the right room signals after going

through a delay line Del2, and then go through another delay line (FIR filter). The total

sum of the early reflections made by FIR filter then goes to parallel circuit of comb filters

and cascade all-pass filters which implements subsequent reverberation. The generated

reverberant signals eL(n) and eR(n) are added to the direct signals (xL(n) and xR(n)) and

early reflections (ERL(n) and ERR(n)).

Ref_Scale: Reverberation length
BW : Bandwidth of low-pass filters
Del2 : First reflection arrive time

All-pass
1

Comb1
filter

Ref_scale

BW

Del2

)(neL)(neL

)(neR)(neR

Input parameters

)(nERL

)(nERR

FIR
filter
FIR
filter

Comb2
filter

Comb3
filter

Comb4
filter

Comb10
filter

)(nyL

)(nyR

)(nxL

)(nxR

D
el2

All-pass
3

All-pass
2

All-pass
4

Low-pass
filter

Low-pass
filter

Low-pass
filter

Low-pass
filter

Fig. 2-5. The arcticture of reverberator [24].

In order to obtain a high quality spatial impression, it is not necessary to correlate the room

signals eL(n)+ERL(n) and eR(n)+ERR(n). In Fig. 2-5, these input parameters are Ref_Scale,

Del2, and BW. Ref_Scale denotes the reverberation length. It will effect the order of FIR

filter and the delay lengths of comb filters and all-pass filters, Del2 denotes the first

reflection arrival time, and BW denotes the bandwidth of the late low-pass filters.

15

(a)

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

1

2

3

4

5

6

7

Additional
coloring

 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

1

2

3

4

5

6

7

(b) (c)

Fig. 2-6. (a) FIR modeling with exponentially-decaying pseudo-random coefficients; (b)
Additional coloring phenomenon of a comb filter; and (c) Coloring reduction.

The identification process is based on the knowledge of the input x(n) and the output

y(n) of the 1024-tap FIR as

 ∑
=

−⋅=
1023

0

)()()(
i

inxihny , (2.1)

where n is the number of infinite sequences, and h(i) represents pseudo-random

coefficients. The FIR requires 1024 MAC operations. We use two circular buffers for input

and output sequences to perform 1024-tap operations. According to the function of FIR

early reflections, Eq. (2.1) can be changed as

16

[])()2()1()(delayxihjyjy ⋅−−= , 10240 ≤≤ i , (2.2)

⎩
⎨
⎧

−
<−−

=
otherwise ,2

2 if),2(
ij

ijjiblock
delay , (2.3)

where block represents the length of a spatial circular buffer, and j is equal to block. The

spatial buffer is larger than the FIR order. Due to random coefficients, sound reflections

can be represented by impulse responses from any direction in a room. The pseudo-random

coefficient is generated by

)2),1()1(()(-p/Lerandp=floorih ⋅+ , (2.4)

where the parameter p is equal to 2×(the density of non-zero filter taps)/(sampling rate

(Hz)) and Le=ceil(sampling rate × reverb time). These two signals (p and Le) indicate the

probability of non-zero filter taps and the length of FIR filter (in samples), respectively.

We use two different densities per second of non-zero filter taps, 1.92s reverb time, and

44,100Hz sampling rate to generate the FIR coefficients shown in Fig. 2-7. The generated

sound quality and effect using coefficients in Fig. 2-7(right) are better than those of Fig.

2-7(left). These coefficients are only 0, 1, and -1. For a multi-tap FIR implementation, it

can reduce MAC operations and even not need multiplication. To avoid too large

accumulated values, a shifting operation is added into Eq. (2.2) after multiplication as

[] 32/)()2()1()(delayxihjyjy ⋅−−= , 10240 ≤≤ i . (2.5)

In order to simply design complexity for implementing reverberation, hence, we reduce

FIR orders and the numbers of comb filters. The FIR filter uses pseudo-random

coefficients sequence of 1's, 0's, and -1's, and the tap is less than 1024 orders. We

recommend that Schroeder proposed the architecture of four-parallel comb filters and

17

two-cascade all-pass filters as the implementing method on hardware.

Fig. 2-7. The un-weighted pseudo-random FIR sequence of 1's, 0's, and -1's with 4,000
(left) and 14,400 (right) densities per second of non-zero filter taps, respectively.

2.3 Speech Processing

One of the powerful speech analyses is Linear Prediction Coding, or LPC analysis as

it is commonly referred. In the LPC analysis, the short-term correlation between speech

samples (formants) is modeled and removed by a very efficient short-order filter. Another

equally powerful and related method is pitch estimation (PE). The long-term correlation of

speech samples are analyzed in PE. A vocal tract model, as described in [30] can be

estimated using LPC analysis and approximated by an all-pole filter. We shall describe

briefly the ways for finding LPC coefficients and pitch information as follows.

2.3.1 Linear Predictive Coding

In order to model the time-varying nature of the speech signal whilst staying within

the constraint of our LPC analysis, i.e., stationary signal, it is necessary to limit our

analysis to short-time blocks of speech. This is achieved by summations over finite limits,

18

i.e.,

),(jinφ = E{s(n − i)s(n − j)}

 =∑
m

nn (m - j)(m - i)SS , (2.6)

where E is the mean squared error, the waveform segment, Sn(m), is assumed to be zero

outside the interval 0 ≤ m ≤ N −1, and N is the length of the sample sequence. We use the

auto-correlation method to approach the interpretation of Eq. (2.6). Since, for N ≤ m ≤ N+p,

we are trying to predict zero sample values (which are not actually zero), the prediction

error for these samples will not be zero. Assuming that we are interested in the future

prediction performance, the limits for Eq. (2.6) can then be expressed as

,)()(),(
1

0
∑

−+

=

−−=
pM

m
nnn jmSimSjiφ (2.7)

or

,)()(),(
)(1

0
∑

−−−

=

−+=
jiN

m
nnn jimSmSjiφ (2.8)

for 1 ≤ i ≤ p and 0 ≤ j ≤ p. Equation (2.8) can be reduced to the short-time auto-correlation

function, as given by

),(),(jiRji nn −=φ for ,,,1 pi L= ,,,0 pj L= (2.9)

where .)()()(
1

0
∑

−−

=

+=
jN

m
nnn jmSmSjR Using the auto-correlation method, ∑

=

p

j
nj ji

1
),(φα

can therefore be expressed as

,1),()(
1

piiRjiR n

p

j
nj ≤≤=−∑

=

 α (2.10)

or in normal matrix form given by

19

,

)(

)2(
)1(

)0()1(

)2()1(
)1()1()0(

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

pR

R
R

RpR

pRR
pRRR

n

n

n

nnn

nn

nnn

MM

LL

MMMM

LL

L

α

α
α

 (2.11)

where αj represents the estimate parameters on aj , j = 1,...,p. The above matrix has the

property that it is symmetrical and all elements along a given diagonal are equal, i.e., it is a

Toeplitz matrix [18]. Equation (2.10) can be solved by the simple inversion of the p × p

matrix; however this is not usually performed since computational errors such as finite

precision tend to accumulate. By exploiting the Toeplitz characteristic, however, very

efficient recursive procedures have been devised. The Levinson-Durbin’s algorithm [33] is

used to compute the prediction coefficients for LPC analysis of the auto-correlation

sequence of samples. It provides solutions to the linear equations through recursive

procedure that exploits the symmetry property.

2.3.2 Pitch Estimation

Accurate estimation of the pitch period or the lag τ in the speech coding is very

important. The direct distance measurement is the most popular criterion, examining the

similarity between two waveforms which can be expressed as

[] ,)()(1)(
21

0
∑
−

=

+−=
N

n
nsns

N
E τβτ (2.12)

where β is a scaling factor, or the pitch gain, controlling the changes in signal level. Under

the assumption that the signal is stationary, the error criterion of Eq. (2.12) can be written

as

[] ∑
−

=

+=−=
1

0

).()()(,)()0()(
N

n

nsnsRRRE ττττ where (2.13)

20

Speech in the long term is a non-stationary signal, and the direct similarity criterion may

exhibit large errors, implying fewer similarities in position where the shift is equal to the

real pitch period. Equation (2.13) is the direct auto-correlation which indicates more

similarities in triple pitch period as the amplitude is increasing. The normalized similarity

criterion in Eq. (2.12) is derived under the consideration of such a non-stationary process.

Setting ∂E(τ, β)/∂β = 0 of Eq. (2.12), the optimum normalization coefficient (pitch gain)

can be calculated using

.
)(

)()(

1

0

2

1

0

∑

∑
−

=

−

=

+

+
= N

n

N

n

ns

nsns

τ

τ
β (2.14)

By substituting the optimum gain back into the error function of Eq. (2.12), the pitch can

be estimated by minimizing

.
)(

)()(
)(),(

1

0
1

0

2

21

02∑
∑

∑−

=
−

=

−

=

+

⎥
⎦

⎤
⎢
⎣

⎡
+

−=
N

n
N

n

N

n

ns

nsns
nsE

τ

τ
βτ (2.15)

This is equivalent to maximizing the square of the normalized auto-correlation function

given by

∑

∑
−

=

−

=

+

⎥
⎦

⎤
⎢
⎣

⎡
+

= 1

0

2

21

02

)(

)()(
)(N

n

N

n
n

ns

nsns
R

τ

τ
τ . (2.16)

The pitch period can be determined from Eq. (2.16). The normalized auto-correlation

method shows a much better performance than direct (un-normalized) auto-correlation

method.

21

CHAPTER 3

DESIGN OF APPLICATION-DRIVEN DIGITAL

SIGNAL PROCESSOR

3.1 Introduction

The proposed application-driven digital signal processor (DSP) [85]-[87], called

LASP24 (Low-cost Application-driven Speech Processor, 24-bit data width), is constructed

as a reduced instruction set computer (RISC) architecture with vector and matrix

operations and power optimization. An effective verification is used to subserve the

hardware design and to decrease debugging time during the development of hardware and

software. High performance is achieved by vector and matrix operations that are not

usually supported by general-purpose DSPs. The parallel architecture of LASP24 can

quickly execute vector and matrix operations without extra overhead. High flexibility in

use, small area on silicon, high data throughput, and fast portability to a wide range of

technologies are our main targets in the core development.

The development of the digital signal processor shown Fig. 3-1 is to meet the system

demands that are based on sophisticated arithmetic algorithms and that emphasize on both

hardware and software solutions. The verified tools offer the opportunity to trade off

between software (for flexibility) and hardware (for performance and power optimization).

The development flow consists of two parts: hardware implementation and software

development. Software includes two development tools: the assembler and the emulator.

The assembler can translate assembly language into binary codes (or called machine codes).

Simultaneously, the initial ROM file is generated for the processor emulator and the HDL

22

simulator. The emulator can emulate the computations of the processor hardware and

verify the precision of different floating-point formats such as 32- or 24-bit. In hardware

design, using the hardware description language (HDL) implements the processor and

improves performance and power dissipation for speech/audio algorithms. The processor

can be regarded as an embedded DSP processor.

Fig. 3-1. Hardware/Software development flow for LASP24.

3.2 Micro-architecture

The RISC-type [31] processor has traditionally enhanced performance by the reduced

instruction set to maximize the throughput, and most of them access rather a large program

memory at every clock cycle to fetch each instruction. Thus, application-driven design can

reduce complexity and is greatly enhanced at performance. For an embedded DSP, it is

necessary that the architecture should support effective data communication between

memory system and execution units, low-overhead loop control, and accumulator-based

23

instruction set architecture.

An efficient method of data representation and a hardware implementation is

proposed to utilize a smaller program memory, while maintaining other merits of the RISC,

such as simple decoding, fixed instruction size, and high performance. LASP24 is a 24-bit

DSP processor with a floating-point unit and is ease of use. The DSP processor has the

architecture of a 24-bit single-instruction/multiple-data (SIMD) instruction set with five

addressing modes, and a five-level pipeline executing engine, which is Instruction Fetch

(IF), Instruction Decode (ID), Execution (EX1, EX2), and Write Back (WB). It is

important to perform parallel multiplication and arithmetic operations in a single cycle.

This allows instruction execution to overlap. Thus, the effective execution time for most

instructions is one cycle. Some key features of LASP24 are listed below:

 24-bit fixed length instructions which support 2- and/or 3-operand.

 Five pipeline stages to improve throughput.

 Five addressing modes and one control mode. Up to the support of 32

instructions.

 Two bank internal memories for use of vector addressing.

 24 address stacks and 70 data stacks.

 Block repeat capability.

 Zero-overhead loops with a single-cycle branch.

 Branch conflict with hardware detection and solution.

 Power saving consideration.

Floating-point operations provide fast, accurate, and precise computations. The 24-bit

floating-point format is compatible with IEEE-754 standard [32]. Specifically, LASP24

facilitates floating-point operations at high speed for speech/audio signal processing, which

offers addition, subtraction, multiplication, and simulated division.

24

The block diagram of proposed LASP24 is shown in Fig. 3-2. LASP24 is functionally

partitioned into the following major blocks: a computation unit, which indicates ALU,

multiplier, and accumulators, a program control unit, an external bus control dictating

LASP24 external buses, a vector address generator computing the addresses which are

used in vector operations. The program control unit performs instruction fetch, decoding,

exception handling, and wait state supports. The PCU generators the next address to the

program memory and controls hardware loops.

Fig. 3-2. The block diagram of the proposed digital signal processor.

LASP24 includes four register groups. The eight general-purpose registers (Register

File) are capable of storing and supporting operations on 24-bit floating-point numbers.

The two 8-bit auxiliary registers can be accessed by the processor and modified by the

auxiliary register arithmetic unit. The primary function of the auxiliary registers is the

generation of 8-bit addresses. They can also be used as loop counters or as matrix point

register. The status registers contain information relating to the state of ALU and parallel

multiplication. When the status registers is loaded, LASP24 sends out a busy signal, and

25

executes the selected function. The two 8-bit repeat counters which used to specify the

number of times are to be repeated when performing a block repeat.

LASP24 uses a five-stage pipelined structure, and the pipelined operation is shown in

Fig. 3-3. The Instruction Fetch (I) stage fetches the instruction words from instruction

ROM and updates the program counter (PC). The Read and Decode (R) stage decodes the

instruction word and performs address generation. Also, it controls the modification of the

AR0 and AR1 registers in the matrix and vector addressing modes, and if required, reads

the operands from memory or general registers. The Execution (E) stage is divided into

two stages and performs the necessary operation, such as floating-point addition,

subtraction and multiplication. The Write Back (W) stage, if required, writes results to the

register file and memory.

Fig. 3-3. Pipelining operations.

The pipelined control exists the problems of conflicts (or hazards). The conflicts can be

grouped as branch, memory, and register conflicts. The branch and register conflicts are

described in [58], and the concept of its solution to these conflicts is applied to our design.

The register conflicts arise when an instruction depends on the results of a previous

instruction in a way that is caused by the overlapping of instructions in the pipeline. Using

the forwarding way can solve the problem of register conflicts. The branch conflicts arise

from the pipelining of branches and other instructions that change the PC. The condition of

26

a branch conflict is shown in Fig. 3-4. The (i+2)th instruction will return to the jth

instruction, but the pipeline register has fetched the (i+2)th instruction. For the branch

taken, the (i+2)th instruction is not used and replaced by the “NOP” instruction. This

Fig. 3-4. Branch operations.

change solves the branch conflict, but the pipeline causes overhead. Hence, we modify the

way of branch conflicts in Fig. 3-4 to avoid NOP operation and to reduce time overhead.

The branch conflict in LASP24 does not exist because the PC is changed in the I stage and

the R stage, not in the E stage. Before the next cycle, the indicated branch instruction will

be ready in the I stage. That means the program control is free of branch conflicts, and

there is zero overhead for a branch instruction. The memory conflicts arise from resource

conflicts when the hardware cannot support all possible combinations of instructions in the

simultaneous overlapping. As shown in Fig. 3-5, this type of conflicts may happen. The ith

instruction does not yet write R1 to the location of RAM0[r], but the (i+1)th instruction

reads data from the location of RAM0[r]. At this time, a memory hazard occurs in the

pipeline. The (i+2)th instruction is reading data from the locations of RAM0[r] and

RAM1[r], but the ith instruction is writing R1 to RAM0[r]. This is seriously conflicts for

memory data buses. The solution is to assign the priority of writing memory higher than

27

that of reading. The above condition similarly occurs between two internal RAMs and one

external bus. In the other way, the software codes can also avoid this type of conflicts.

Fig. 3-5. Memory accessing operations.

3.3 Instruction Set

The processor instruction sets have been designed with two goals in mind: 1) to make

maximum use of the processor’s underlying hardware, thus increasing efficiency and 2) to

minimize the amount of memory space required to store DSP programs, since DSP

applications are often quite cost-sensitive and the cost of memory contributes substantially

to overall chip and/or system cost. To accomplish these two goals, it is necessary to reduce

the number of bits required to encode instructions and to offer fewer registers and

addressing modes than other types of processors. Thus, the architecture of LASP24 is

defined as a fixed instruction length at 24 bits. A 24-bit instruction uses five bits each for

addressing 8 general-purpose registers. LASP24 instruction set includes five addressing

modes and is classified into three groups as data transfer, arithmetic, and control

instructions. The total of defined instructions is about twenty-five (see Appendix A in

details). Some representative instructions are listed as follows.

28

Instruction Descriptions and Examples
Load and Store Instructions

MOV Load, store and move data
1. General data moves
EX: MOV RAM0[address], R0; R0=RAM0[address]
2. Data moves for the matrix addressing mode
EX: MOV RAM1[AR1L+1, AR0L], R3; R3=RAM1[AR1L+1, AR0L],
where AR0L and AR1L are defined as AR0[3:0] and AR1[3:0]).

LD Load fixed values as follows:
0.0, 0.75, 1.0, and
2.0 - A (the floating-point value from 2.0 leaves operand A)

Arithmetic Instructions
ADD Add floating-point values

EX: ADD R0,R1,R2; R2=R1+R0
SUB Subtract floating-point values

EX: SUB R0,R1,R2; R2=R1-R0
MPY 1. General multiplication

EX: MPY R0,R1,R2; R2=R1×R0
2. Matrix multiplication
EX: MPY R3,RAM0[1110,AR0L-AR1L];
R3=RAM0[1110,AR0L-AR1L]×R3

VMPY Vector multiplication
EX: VMPY EXT[j],WIN[j],RAM0[j],RAM1[j];
{RAM0[j],RAM1[j]}=EXT[j]×WIN[j]

MAC Multiplication-and-accumulation
EX: MAC RAM0[j], RAM1[j], R3; R3=RAM0[j]×RAM1[j]+ACC,
where ACC is an accumulator.

DIVEXP Re-scale after division
EX: DIVEXP R0,R3; R3=DIVEXP(R0)

NORM Normalize floating-point value
EX: NORM R0,R1; R1=Norm(R0)

Program Control Instructions
NOP No operation
LDC Load AR0 and AR1 value

EX: LDC AR0,#14; load 14 to AR0
RPB Begin repeat block

EX: RPB RC0, 255; for (r=0; r<=254; r++)
RETB Return repeat block of instruction

EX: RETB AR0, label; if AR0=RC0, goto label
END End of programs (halt)

3.3 Addressing Modes

Most of speech and audio processing is related with auto-correlation, convolution, and

FIR calculation. Hence, addressing modes are to enhance the hardware computing

29

capability for the algorithms. Five types of addressing modes allow access of data and

instruction words from memory and registers: register, direct, indirect, immediate, and

vector addressing modes. These detailed addressing formats are described in Appendix B.

The register addressing mode offers internal accessing operations of general-purpose

registers. In this addressing mode, an ALU register contains three operands, as shown in

this general operation: “RA Operation RB ⇒ RC.” The destination operand is RC and the

source operands are RA and RB. The direct addressing mode offers an immediate value as

an index of memory address to access memory data. In this addressing mode, the data

address is formed by 0-7 bits in the instruction. Because the length of instruction is short,

the direct addressing mode only supports RAM block 0. The matrix addressing mode is

designed for Durbin's algorithm [33] and used to compute matrix multiplication. For

example, there is a 10×10 matrix multiplication. To access data in the matrix fast, the

auxiliary registers (AR0 and AR1) are used to assist addressing the coordinate (X, Y) in

the matrix. In matrix addressing, a three-operand instruction can be used in the indirect

addressing mode. The vector addressing mode is used in data computation between

memory and memory. This mode provides 512-data-length vector operations and can also

execute parallel instructions that make auto-correlation function operate faster than the

general-purpose DSPs.

Additionally, a control mode is defined to control data paths in the processor design.

Programmers can use this mode to control their program flow and/or to easily set of repeat

counters. Through two auxiliary registers (AR0 and AR1), the processor can execute

two-level nested program. The function-finishing instruction and holding status are also in

the control mode. The loop control is very useful for auto-correlation function in Durbin's

algorithm [33] because they are all two-level nested programs. The mode is very efficient

to handle the program flow without any additional instructions, which might be necessary

30

to other general-purpose DSPs.

3.4 Matrix Processing Technique

Particularly, we design an auto-index method which uses auxiliary registers to address

memory data as shown in Fig. 3-6. This method called matrix addressing can easily get

memory data in a single multiplier instruction. When the instruction decoder gets the

vector address, the address would represent the coordinate of the matrix. Matrix

multiplication is based on the operation of RAM0 and R3 (the third general-purpose

register). The results are stored to the R3 register. An example for the equation of matrix

multiplication is as

∑
−=

+−=
0

1
],1[],[

rj
rjhjrkxy . (4.1)

We can replace the above with the following LASP24 micro codes:

 RPB j, #r-1 // set repeat block counter
L1: MOV WIN[j+1, r], R3; // move a coefficient to R3

 MPY R3, RAM0[AR0, r-j], R3 // matrix multiplication
 ADD R1, R3, R1 // R1=R1+R3
 RETB j, L1 // if j≠0, return to L1

The index of a matrix coordinate is defined by auxiliary registers (AR0 and AR1). The

address index can automatically increase so that the pointer indicates the next matrix

address. Hence, this addressing method enables a single-instruction matrix computation so

that the size of program memory and the number of program memory access can be

reduced.

31

Fig. 3-6. Illustration for computing a matrix address with the vector addressing mode.

In Fig. 3-6, the instruction decoder gets the matrix position with four bits listed in

Table 3-1 and then transfers them to the address processing unit. The processing unit can

analyze and calculate the matrix address (X, Y) in RAM0. Table 3-1 shows the coordinate

table of two matrix addressing modes. One is the indirect addressing mode as RAM0[AR0];

the other is the matrix addressing mode as RAM0[AR0L+1, AR0L+1]. The matrix

coordinate is defined in AR0 and AR1. The index automatically adds one so that the

pointer indicates the next matrix address. The vectors {0000, 0001} and {1110, 1111} are

two special coordinates which can directly access the start and the end of row location in

the matrix. Hence, the proposed matrix addressing method enables a single-instruction

matrix computation so that the total number of program instructions can be reduced.

Table 3-1. The matrix coordinate for the matrix addressing mode, where AR0L and
AR1L represent the lower four bits of AR0 (AR0[3:0]) and ar1 (AR1[3:0]),
respectively.

CODE Addressing Mode CODE Addressing Mode
0000 RAM0[AR0] 1000 RAM0[AR0L-AR1L, AR0L]
0001 RAM0[AR1] 1001 RAM0[AR1L+1, AR0L+1]
0010 RAM0[AR0+AR1] 1010 Reversed
0011 RAM0[1111, AR0L] 1011 Reversed
0100 RAM0[AR1L+1, AR0L] 1100 RAM0[0000, AR0L]
0101 RAM0[1110, AR0L-AR1L] 1101 RAM0[1110, AR0L]
0110 RAM0[1110, AR0L+1] 1110 Reversed
0111 RAM0[AR0L+1, AR0L+1] 1111 RAM0[0001, AR0L]

32

3.5 Vector Processing Technique

The SIMD-style vector processing scheme provides an approach to accelerating the

processing of data streams. This technique can provide a significant speedup for

communications, multimedia, and other performance-driven applications by using

data-level parallelsim. In the vector processors [34], [35] the design can provide high-level

operations that work on vectors － linear arrays of numbers. The vector processing unit

supports both intra- and extra-memory operations. In the operation, elements work in

parallel on the corresponding elements from multiple intra- or extra-memory sources and

place the results in the corresponding fields in the destination operand memories. An

operation example is the vector multiplication (VMPY) instruction shown in Fig. 3-7, and

the instruction format and addressing representation are shown in Table 3-2.

VA (Source Memory 1)

VB (Source Memory 2)

VC (Destination Memory)

OP OPOP OP

．．．．．．．．．．．

．．．．．．．．．

．．．．．．．．．

Fig. 3-7. An example of memory operations in LASP24, where OP indicates the vector
multiplication. VA, VB, and VC represent different memory banks. They are
defined in Table Table 3-2.

33

Table 3-2. The format of the vector addressing mode and the representation of vector
addresses in LASP24, where OP indicates operation; VA, VB, and VC
represent vector registers. The symbols, FIL, EXT, WIN, RAM0, and RAM1,
are memory symbols.

VC ⇐ VA[AR_A] OP VB[AR_B]
23 ~ 19 18~16 15~14 13~12 11~10 9~8 7 ~6 5~4 3~2 1~0

OPCODE 011 NU FIL EXT RAM0 RAM1 VC VA VB

FIL EXT RAM0 RAM1 VC VA VB
VL 13~12 11~10 9 ~ 8 7 ~ 6 5 ~ 4 3 ~ 2 1 ~ 0
00 FIL EXT AR0 AR0 RAM0 RAM0 RAM0
01 FIL+AR0 EXT+AR0 AR1 AR1 RAM1 RAM1 RAM1
10 FIL+AR1 EXT+AR1 AR0+AR1 AR0+AR1 EXT EXT WIN
11 FIL-AR0 EXT-AR0 AR1-AR0 AR1-AR0 R3 - FIL

The vector multiplier has several important properties that solve most of the above

problems as explained below.

1. The computation of each result is independent of the computation of previous

results, allowing a pipelined operation without generating any data hazards.

2. A single vector instruction specifies a great deal of computation work. It is

equivalent to executing an entire loop. Thus, the number of instruction fetch is

reduced, and the bottleneck is considerably mitigated.

3. The vector instruction has a known memory access pattern. If the vector's elements

are all adjacent, then fetching the vector from a set of heavily interleaved memory

banks works very well. The high latency of initiating a main memory access versus

accessing an instruction ROM is rather high, because a single access is initiated for

the entire vector rather than for a single element. Thus, the cost of the latency to

memory is seen only once for the entire vector, rather than once for each element of

the vector.

34

4. Because an entire loop is replaced by a vector instruction whose behavior is

predetermined, control hazards that would normally arise from the loop branch are

nonexistent.

To illustrate the above features, we compare performance with a general-purpose DSP

in computing the vector multiplication of 100 points. A vector multiplication instruction

fetches data from RAM0 and RAM1 and feeds into ALU. ALU executes the “MAC”

operation and adds the result to the accumulating register. The final results are stored to the

external memory. An example of vector processing (100 points) is shown as follows.

L1: MPY RAM0(r), RAM1(r), EXT(r); // EXT(r)= RAM0(r)× RAM1(r)
 RETB r, L1 // r=r+1. if r=100, then jump to L1

The total execution time is about 200 clock cycles. Hence, we use a single instruction

within a repeat block to execute the parallel multiplication-and-accumulation in the

auto-correlation operation. The above example demonstrates that LASP24 has higher

performance in vector computation than the general-purpose DSPs such as the TI

TMS320C3X series.

3.6 DMA and Interrupt Interface

LASP24 needs the interrupt and direct memory access (DMA) to process data

transformation. The interrupt is to tell LASP24 that peripheral devices are to be active.

DMA is to free the bus control and to deal with the operation of I/O-to-memory or

memory-to-memory data moving. There is a control interface for interrupt and DMA. We

take advantage of a simple finite state machine (FSM) to implement its circuit. Each state

35

is described as follows in detail.

S0: monitor mode, the state is to initialize parameters and to detect interrupt and/or

DMA in one instruction cycle.

S1: DMA mode.

S2: interrupt mode, in the state, the controller will save the program counter and all

status into data memory. If data memory is not ready, stay in S2; otherwise go to

S3.

S3: accepted mode, the state sends interrupt acknowledge and goes to S4.

S4: get vector mode, the state receives an interrupt from LASP24’s data bus and sends

a read signal to main memory. If main memory is not ready, stay in S4; otherwise

go to S5.

S5: interrupt mode, after complete interrupt processing, the state switches the

subroutine return address, and then goes to S6.

S6: rally normal mode, the state performs nothing and then goes to S0.

Polling of peripheral service requests monopolizes a significant amount of processing

time. This service reduces system throughput, useful information processed or

communicated during a specified time period. Therefore, it is advantageous, in terms of

increasing throughput as well as reducing program complexity; if a peripheral device

demands service directly from LASP24. Interrupts provide this capability. Essentially,

LASP24’s interrupt is a subroutine function call initiated by external hardware. A simple

structure that allows a single device to interrupt LASP24 is shown in Fig. 3-8.

36

LASP24
Processor

INTRINTR
INTAINTA

CLRCLR

Q

SETSET
D

CLK
Interrupt request from peripheral devices

VCC

Fig. 3-8. Generation of LASP24’s interrupt for a single peripheral device via interrupt

request flag.

 When a peripheral device requires service, the interrupt controller sets its

corresponding register which is connected to an interrupt pin of LASP24. Thus, the register

records the interrupt request until it is acknowledged by LASP24. Because the request is

asynchronous, it may occur at any time when a program is executed. In order to resume

program execution at the proper point, when the interrupt subroutine is finished, the return

address is automatically restored to the program counter from data memory. Notice that

when LASP24 handles an interrupt, it can not accept other interrupt requests at the time. A

multiple loop interrupt mode is not supported at present. In response to an interrupt, the

processing operations occur as follows.

1. The processing of the current instruction is completed.

2. An interrupt machine cycle is executed during which the program counter is

saved and the flow control is transferred to an appropriate memory location.

3. A subroutine is executed.

4. When the subroutine is finished, the state of LASP24 is saved; otherwise goes to

Step 3.

5. The saved state of LASP24 is restored.

6. The flow control is returned to the instruction which follows the interrupted

instruction.

37

3.7 Power Optimization

For many consumer electric applications, low average power dissipation is desirable

and for certain special applications low power dissipation is of critical importance. Most of

power reduction techniques emphasize on reducing the level of activity in some portion of

the circuit. Since LASP24 has high activity, it must include a power management

mechanism. The power management means to analyze and realize substantial power saving

[36] by stopping the clock during proper time period. Clock power reduction is important

in a synchronous design, since as was noted earlier, it can contribute to a large portion of

the overall power budget. Minimization of clock power falls in to several categories

including clock distribution optimizations, clock gating, and low-swing clocking

techniques. An analysis methodology operating at register transfer level (RTL) is a key

factor to obtain early estimation results, while maintaining an acceptable level of accuracy

in the results.

The control unit and the arithmetic unit dissipate most of the power since they are

usually active. Hence, our power saving design focuses on these two units. In the control

unit, a modified finite state machine (FSM) is designed for power saving. This design is to

use the knowledge of the next state function to generate an activation signal only when the

system control unit needs to perform a state transition. This scheme makes the modified

system control unit functionally equivalent to the original system control unit, with a

reduction in power dissipation and a small increase in area and critical path delay.

The arithmetic unit is designed as a parallel architecture as shown in Fig. 3-9(a). In

this architecture, the three arithmetic units (integer, floating-point, and vector) have the

same inputs but operate independently. Hence, when the input signals (A and B) are

changed, all of these units always re-compute their outputs, and a multiplexer is then used

to select the final result. This architecture wastes most of dynamic power, since the parallel

38

architecture only processes one instruction during a cycle. Gated clocking [37] is a

commonly applied technique used to reduce power by gating of clock signals to registers

or latches. Gating may be done when there is no required activity to be performed by logic

whose inputs are driven from a set of storage elements. Since new output values from the

logic will be ignored, the storage elements feeding the logic can be blocked from updating

to prevent irrelevant switching activity in the logic.

System
Clock

System
Clock

Floating-Point Unit

Integer Unit

Vector Unit

Mux

Instruction
control

pipeline
data path activity
pipeline
data path activity

lock
signal

other
signal

external
clock

final
result

 (a) (b)

pipeline

data path activity
register

data path inactivity

System
Clock

System
Clock

Mux

Instruction
control

lock
signal

Floating-Point Unit

Integer Unit

Vector Unit

final
result

(c)

Fig. 3-9. The gated-clock scheme in (a) Parallel arithmetic unit, (b) Clock gating, and (c)
Power saving parallel architecture.

39

To reduce dynamic power by the system clock, it is important to minimize the switching

activity by powering down the arithmetic unit when they are not performing “useful”

operations. Thus, we apply the gated-clock scheme to reduce the dynamic power. Fig.

3-9(c) shows the parallel architecture controlled by the gated-clock scheme.

3.8 Coprocessor: Reverberator

Based on the description of the multi-tap FIR filter in Chapter 2.2, we propose the

pseudo-random FIR architecture using two-stage pipeline to perform convolution

computation. The two-stage FIR shown in Fig. 3-10 can independently perform different

channels (left and right) at the same time. The resulting signals are summated together and

stored into the circular buffer.

In Fig. 3-10, real-time audio signals via the I2S (Inter-IC Sound) interface are stored

into the FIR circular buffer (FCB) in order. After one cycle latency, the first signal is

loaded and fed into the first stage (MAC1). In next cycle time, the second signal is loaded

and fed into the second stage (MAC2), and the first stage has begun to perform

convolution using the input signal from FCB and a random coefficient from the pipeline

register. Each MAC block performs the total of 256 loops at most due to generating

non-zero and zero coefficients. The FIR state machine can search a non-zero value

beforehand and quickly load it to the MAC block during the same cycle. Although input

and output signals are all 16 bits, to avoid the overflow condition in accumulation, the

input signal is scaled. All adders are set to 20-bit complement operations.

40

P
seudo-random
coefficients

1024x1
registers

I2 S
 d

at
a

bu
ffe

r

2500 spatial
circular buffers

for FIR

2500 spatial
circular buffers

for FIR

r_addrw_addr

2500 spatial
circular buffers

for Comb

2500 spatial
circular buffers

for Comb

ACC (20-bit)

{1,0,-1}

+

x

MAC

Shifting (>>5)

+

x

MAC

Shifting (>>5)

P
ipe registers

Unit multiplierx Unit multiplierx

ACC (20-bit)

Initial load

Initial load

Non-zero
control1616

{1,0,-1}

+

x

MAC

Shifting (>>5)

+

x

MAC

Shifting (>>5)

Adder
F-tap

Fig. 3-10. The proposed pseudo-random FIR architecture with two-stage pipeline. The

adder is a 2’sc addition operation. The multiplier limited by the non-zero
control is a unit multiplication operation.

The delay effect of early reflections is based on Eq. (2.3) to generate the memory

address. The address is used to access FIR and comb circular buffers. Each value in the

comb circular buffer (CCB) will be accumulated with the previous computational result.

Fig. 3-11 shows the operation diagram in the circular buffer when the block index is equal

to 0, 510, and 2000, respectively. The convolution operation is based on Eq. (2.2). Each

input signal x(n) has to perform 256-tap FIR (possible less than 256 times), then the result

of adding to y(n-1) is stored to y(n).

The two-stage architecture as Fig. 3-12 uses the finite state machine (FSM) to control

active flows. There are five states shown in Fig. 3-12 and described as follows. First the

sequence of 1’s, 0’s, and -1’s is generated by the random coefficient generator, and then

they are loaded into 1024 by 1 registers. There is a parameter Finish which determines to

41

turn on or off the FSM operation. When Finish=1 (Step 5), FIR results are restored into

CCB. Step 2 can set a loop counter and calculate the delay address for two circular buffers

(FIR and comb). The calculation of CCB address is based on Eq. (2.3). At the same time,

the state does not check coefficient registers unit finding a non-zero value. Note that the

operation should be finished in one machine cycle. In Step 3, the state can get the input

signal and previous MAC result from two circular buffers respectively. Finally, MAC and

acclamation operations are performed by Eq. (2.2) in Step 4. The whole flow will

repeatedly perform convolution operations of 512 times under the half of a sampling time

(i.e., 44.1 kHz in one cycle per 22.68ms).

• • • • • •• • • • • •

• • • • • •• • • • • •
0 2499

0

MAC

+

MAC

+

MAC

+

MAC

+

)(jy

)(jx

MAC

+

MAC

+

1473

MAC

+

MAC

+
• • •

Stage 1 Stage 2Stage 2Stage 1

(a)

• • • • • • • • •

• • • • • • • • •
0 2499

0

MAC

+

MAC

+

)(jy

)(jx

MAC

+

MAC

+

Stage 2Stage 1 Stage 1

510 1990

MAC

+

MAC

+
• • •

1988

MAC

+

MAC

+

Stage 2

(b)

42

• • • • • • • • •

• • • • • • • • •
0 2499

MAC

+

MAC

+

)(jy

)(jx

MAC

+

MAC

+

Stage 2 Stage 1Stage 2

20001998

MAC

+

MAC

+

978

• • •

(c)

Fig. 3-11. The computational diagram of the circular buffer when the addressing index
indicates (a) j=0, (b) j=510, and (c) j=2000.

Definition

FIR coefficient
registers

coeff = 0

Finish=1

Get audio signal
from

FIR circular buffer

Ready

Store results to
Comb circular buffer

Finish=0

Step 1

Step 1

Step 3

Step 4

Step 5

Random coefficient
generator{0,1,-1}

Step 2

Load previous
result from

Comb circular buffer

MAC operation
(ACC)

Fig. 3-12. Fully FSM control flows for two-stage architecture.

43

3.9 Development Software

In order to verify and debug the DSP programs, a tool called DEFY-I is developed for

functional emulation. The DEFY-I is an instruction-set-level hardware emulator for the

processor core. With the emulator, the instructions could be taken out from the program

memory and put into the instruction register for instruction analysis and execution. Finally,

the execution results are written back to the register file or data memories. The flowchart

of DEFY-I is shown in Fig. 3-13. The whole emulator is constructed as the functional

simulation kernel and could connect to other peripheral devices to perform the memory

and display functions.

Functional Simulation KernelFunctional Simulation Kernel Filter
parameters

and

window
coefficients

Filter
parameters

and

window
coefficientsExternal

memory
External
memory

RAM0
Internal
memory

RAM0
Internal
memory

RAM1
Internal
memory

RAM1
Internal
memory

General-
purpose
Registers

General-
purpose
Registers

Functional Simulation KernelFunctional Simulation Kernel Filter
parameters

and

window
coefficients

Filter
parameters

and

window
coefficientsExternal

memory
External
memory

RAM0
Internal
memory

RAM0
Internal
memory

RAM1
Internal
memory

RAM1
Internal
memory

General-
purpose
Registers

General-
purpose
Registers

Program counter
generator

Program counter
generator

011001000000010111100101
100010011110000000000000
100001111000000000000000
011001000000010111100101

011001000000010111100101
100010011110000000000000
100001111000000000000000
011001000000010111100101

Instruction fetch

Instruction Code

Program Memory

Instruction analysis and execution

100001111000000000000000100001111000000000000000

Display

Memory contents

Register contents

Programs

Fig. 3-13. The structure of DEFY-I for LASP24.

44

The high-level algorithm model with the LASP24 assembly language is translated

into the machine language by the developed translator, and then a conversion table of

mnemonic and an operation code is generated. For the software development, the tool of an

effective functional simulation supports software developers so that the software

application can be embedded into the tool to verify its function. The tool, named hardware

emulator, can help software developers to simulate and debug developing applications. The

emulator is an instruction-set-level hardware emulator based on an application-specific

speech processor. With the emulator, the basic operation of LASP24 is to take out the

instruction from the program memory first, set it to the INST register, decode the

instruction, execute the decoded instruction, and finally write back the operation results to

the register file (RF) or data memories (RAM0, RAM1, EXT RAM). The operation flow of

the hardware emulator is shown in Fig. 3-14 with C pseudo codes, and its structure is

shown in Fig. 3-13. The whole emulator is constructed as the functional simulation kernel

and connects to other peripheral devices as memories.

Initial memory
data

RAM
ROM

Instruction decode & execute
switch (OPCODE)

case ADD:
switch (addressing mode)

case REG:
RF[d]=RF[s1]+RF[s2];

case INDIRECT:
...

default: undefined modes.
case SUB:

switch (addressing mode)
case REG:

RF[d]=RF[s1]+RF[s2];
case INDIRECT:

...
default: undefined modes.

...
default: undefined OPCODE.

IF (REG mode)
write to Register File (RF)
with destination address.

else
switch (MEM_Style)

case RAM0:
write to RAM0.

case RAM1:
write to RAM1.

case EXT:
write to EXT_RAM.

default: undefined memory.

Write back (MEM or RF)

INST=MEM[PC]
If (branch taken)

PC=jump address;
else

PC=PC+1;

Instruction fetch

Initial memory
data

RAM
ROM

Instruction decode & execute
switch (OPCODE)

case ADD:
switch (addressing mode)

case REG:
RF[d]=RF[s1]+RF[s2];

case INDIRECT:
...

default: undefined modes.
case SUB:

switch (addressing mode)
case REG:

RF[d]=RF[s1]+RF[s2];
case INDIRECT:

...
default: undefined modes.

...
default: undefined OPCODE.

Instruction decode & execute
switch (OPCODE)

case ADD:
switch (addressing mode)

case REG:
RF[d]=RF[s1]+RF[s2];

case INDIRECT:
...

default: undefined modes.
case SUB:

switch (addressing mode)
case REG:

RF[d]=RF[s1]+RF[s2];
case INDIRECT:

...
default: undefined modes.

...
default: undefined OPCODE.

IF (REG mode)
write to Register File (RF)
with destination address.

else
switch (MEM_Style)

case RAM0:
write to RAM0.

case RAM1:
write to RAM1.

case EXT:
write to EXT_RAM.

default: undefined memory.

Write back (MEM or RF)
IF (REG mode)

write to Register File (RF)
with destination address.

else
switch (MEM_Style)

case RAM0:
write to RAM0.

case RAM1:
write to RAM1.

case EXT:
write to EXT_RAM.

default: undefined memory.

Write back (MEM or RF)

INST=MEM[PC]
If (branch taken)

PC=jump address;
else

PC=PC+1;

Instruction fetch
INST=MEM[PC]
If (branch taken)

PC=jump address;
else

PC=PC+1;

Instruction fetch

Fig. 3-14. Operation ows of the emulator.

45

For the hardware emulator to be useful for effectively improving the flow of software

development, we identify the following functions and requirements:

● Step execution: The emulator can execute one-by-one instruction so that the

programmer can trace the execution result in an instruction or clock cycle.

● Free run: When a program prototype is finished, we can use the free-run way to

simulate the program. Through this way, an expected result will be estimated.

● Set breakpoint: Users can press the breakpoint value based on the program

counter. Until the program count is equal to the breakpoint value, the program

always runs.

● Displays: The screen of the emulator is shown in Fig. 3-15. It can display

information as the program counter (PC) in the region D, general-purpose

registers (R0_R7) in the region A, a source program in the region C, auxiliary

registers (R, J, M, N, R EXT, R FIL), status registers (TC, NTC, Z, NZ) in the

region E, and the contents of memory banks (RAM0, RAM1, ROM, EXT RAM)

in the region B, where RAM1 and RAM2 indicate the internal memory, ROM

indicates filter and window ROMs, and EXT RAM indicates the external (or

on-chip) memory.

A

B

C

D

E

Fig. 3-15. The hardware emulator.

46

● Debug information: When the emulator loads the object codes, the related debug

information is read as well. At the same time, the emulator can show the

executing instruction located in the source code to suit debugging for

programmers.

● Emulator initialization: When the emulator is enabled, it can search related

initial files in the current working directory. If these initial files including the

filter parameters, window coefficients, and initial values of the external memory

exist, the emulator can auto-load them and finish initialization.

When design is completed, we check them against the specifications for completeness

and correctness. The co-verification method is created, and a script file is described as

follows:

load (analyzed sources);
load (target library);
load (debugging information);
while ((read (instruction) != NULL) or (!finish))

execute the instruction from HW simulator;
check (debugging information);
match the results;
if (mismatch)

printf (show messages and different values);
errcount++;

endif
end
if (errcount != 0)

printf (“Here are %d errors between HW and SW”, errcount);
else

printf (“Maching is finished. No error found.”);
endif

The automatic verification can help us to check whether the specifications of the

47

hardware/software co-design are correct. If any violation, the output information show

immediately the location which indicates the error. Thus the debugging time can be

reduced, and the functional design can quickly meet our requirements.

48

CHAPTER 4

SIMULATION RESULTS

These two algorithms, speech coding and audio enhancement processing of

reverberation, are performed on the proposed digital signal processor, LASP24. They are

implemented with LASP24’s assembly language and can be performed in real time. Finally,

the performance result is compared with TI TMS320C3X.

4.1 Speech Processing

4.1.1 LPC and pitch estimation

Fig. 4-1 shows the microprogramming flow for performing three kernel functions

(LPC, PE, and test mode) analyzed in Chapter 2. The C program was used to verify the

speech processing algorithms and to test the floating-point precision. According to the

experimental results, Table 4-1 shows the 10-order LPC coefficients in different bit

numbers (24-bit and 32-bit) of floating-point precision. The maximal error occurred at the

frequency 18.52 Hz, and the error of the two different bit numbers of floating-point

precision in Table 4-1 is maximal when the LPC order is equal to 4. When precision or

iterations of divider were not high enough, the reconstructed speech signals would be

unnatural. After we listened to the synthesized speech, the 24-bit floating-point precision

appeared to be good enough.

49

Initialize
Memory data

Load speech
signals from
external RAM

Start
pitch estimation

01
Start built-in
Testing program

10
Start
calculation of
i-order LPC
coefficients

00

P1
tau=15 to 76

P2
tau=77 to 152

Test all
instructions and
pipeline hazards

1 frame speech
signal*Hamming
window

END

Calculate
auto-correlation

Use of Levinson-
Durbin method
To solve LPC
coefficients

Finish?
(loop < M)

no

Function Selection

START

Fig. 4-1. The microprogramming flow in the program ROM of LASP24.

Table 4-1. Simulation results of LPC calculations in different floating-point precision.

LPC Order 32-bit Floating Point 24-bit Floating-Point
1 -1.948923 -1.954345
2 0.923492 0.913543
3 -0.052776 0.017284
4 0.841343 0.730545
5 -1.204289 -1.122589
6 -0.476735 -0.426231
7 -0.280020 -0.223022
8 -0.945771 -0.904251
9 -0.968852 -0.966308
10 0.296600 0.302504

The RTL codes were written by Verilog language and simulated. Design Compiler

was used to transfer the RTL codes to gate-level codes. In RTL simulation, we obtained

the execution time of the realized speech processing algorithms in Table 4-2, where Pitch 1

50

(P1) performs τ=15 to 76 and Pitch 2 (P2) performs τ=77 to 152 in Eq. (2.13).

Table 4-2. Timing simulation results. The time unit of execution is microsecond (ms),
and the total time of execution is the sum of LPC and PE computation time.

Algorithms Execution
(cycles)

Vector operation
Rate (%)

Execution Time (ms)
 25 MHz 33 MHz 40 MHz

LPC 3,298 2,348 (71) 0.13 0.1 0.08
P1 14,346 13,698 (95.5) 0.57 0.43 0.35
P2 17.424 16,680 (95.7) 0.70 0.52 0.44
Total 35,068 32,736 (93.3) 1.40 1.05 0.87

These simulations were executed with the operating frequency of 25 MHz, 33 MHz, and

40 MHz, respectively. The time for vector and matrix operations was about 93.3% of the

whole algorithm; that is, the rate of chip running at optimal condition was 93.3%. The

chip’s internal driving ability between cells to cells was simulated in gate level simulations,

too.

After the timing simulation, the post-layout simulation was performed. Final power

dissipation and maximal operating frequency could be estimated at this stage. The

LASP24’s performance in typical (33 MHz), best (40 MHz), and worst (25 MHz) cases

had also been simulated. In the typical case, LASP24 can provide the computation

capability of 66.6 MFLOPS (Million Floating-point Operations per Second) and 33.3

MIPS (Million Instructions per Second). The best condition was achieved at 80 MFLOPS

and 40 MIPS in a single cycle. In the worst case, the computation power is 50 MFLOPS

and 25 MIPS. At the room temperature 23 (25◦C ∼ 27◦C) and 5 V, the current requirement

was 4 mA, about 20 mW, and the maximal frequency is 28.5 MHz which was lower than

the gate level simulation result. At the worst case, 85◦C and 4.5 V, the current requirement

is 3.2 mA, about 14.4 mW, and the maximal frequency was 20 MHz. Even in the worst

51

case, LASP24 still could provide 50 MFLOPS and 25 MIPS computation power that was

higher than that of TMS320C30.

We compared the performance of the LASP24 processor to that of TMS320C3x series,

which are floating-point general-purpose DSPs. Fig. 4-2 shows the floating-point operation

ability of each processor and the comparisons of vector operation ability. At the best case,

LASP24 at 40 MHz provided 80 MFLOPS that was much better than TMS320C31 at 50

MHz did. In the vector operation mode, we set the vector processing ability of LASP24 at

25 MHz as index 100 and compared it with other processors. In the figure, higher value

indicates higher performance. At the best case, LASP24 at 40 MHz was about 4.75 times

higher than TMS320C30 and about 3.2 times higher than TMS320C31.

0 20 40 60 80 100 120 140 160 180

LASP24 40MHz

TMS320C31 40MHz

LASP24 33MHz

TMS320C30 40MHz

LASP24 25MHz

TMS320C30 33MHz

Ability

Vector
MFLOPS

Fig. 4-2. Performance comparisons of LASP24 and TMS320C3x.

4.1.2 MELP Coding

The MELP coder is divided into an encoder and a decoder module. The frame size is

22.5ms (180 samples) with a sampling frequency of 8000Hz. The MELP coder is based on

the traditional Linear Prediction Coding (LPC) parametric model, but also includes five

52

additional features: mixed excitation, aperiodic pulses, adaptive spectral enhancement,

pulse dispersion, and Fourier magnitude. The encoder uses 10th order LPC coefficients,

which are transformed into line spectral frequencies or quantization and transmission. For

each voiced and unvoiced frame, the parameters computed are listed in Table 4-3.

Line spectral frequencies are computed from the prediction coefficients, which uses

Chebyshev polynomials. A fast numerical method is used for implementation on the

proposed processor. Final pitch is computed using an autocorrelation analysis on the low

passed residual signal:

),()0,0(
),0(

)(
ττ

τ
τ

ττ

τ

cc
c

r = , (4.1)

and

⎣ ⎦

⎣ ⎦

∑
+−

−−
++=

792/

802/

),(
τ

τ
τ nkmk ssnmc , (4.2)

where τ is the lag. The computation of the autocorrelation sequence is centered on the last

sample of the past frame. Band pass voicing strengths are computed using autocorrelation

analysis about the pitch lag for each of the bands. Gain is computed twice per frame using

an adaptive window size, which is a multiple of the pitch period. A residual signal is

obtained by filtering the input speech using the set of de-quantized LPC coefficients. An

FFT is performed on this residual signal and a search is performed selecting 10 Fourier

magnitudes.

53

Table 4-3. Bit allocation for the MELP coder

Parameters

Per Frame Voiced Un-voiced

LSFs 10 25 25

Pitch 1 7 7

Band pass voicings 5 4 -

Aperiodic flag 1 1 -
Fourier magnitudes 10 8 -
Gain 2 8 8
Error protection - 13
Sync bit 1 1
Total 54 54

We provide the instruction set for matrix operations which reduce the size of program

memory to 12K Bytes. For example, the autocorrelation operation of (4.2) is optimized and

implemented by LASP24’s instructions as follows:

//input R1 = s[0]
//input R2 = x
//input R4 = n-m

 FIX R2, R7
 SHF R7, +1
 FLOAT R7, R2

 ADD R2, ROM[&80.0]

 SUB R2, R1, R1

 ADD R3, R1, R1

 FIX R1, R7

 LDE R_EXT, R7

 RPB j, #160

L1: MOV EXT[R_EXT+j], RAM0[j]

 RETB j, L1

Variable definition

Set initial address

For input signals

Data moving from external
RAM to RAM0(A)

54

CMPR R4, ROM[&0.0]

 BCND NZ, P1

 RPB j, #160

L2: MOV RAM0[j], RAM1[j]

 RETB j, L2

 BCND Z, P2

P1: ADD R4, R1, R1

 FIX R1, R7

 LDE R_EXT, R7

 RPB j, #160

L3: MOV EXT[R_EXT+j], RAM1[j]

RPB j, L3

P2: MOV FIL[&0.0], R3

 RPB j, #160

COR_MAC: MAC RAM0[j], RAM1[j], R3

 RETB j, COR_MAC

4.1.3 Power Analysis

To achieve power saving, LASP24 was also designed with a gated-clock architecture.

The power dissipation of the LASP24 is summarized in Table 4-4, which includes average

dynamic power dissipation and power reduction. Power reduction compared the average

power dissipation of the gated-clock design and the original implementations. It was

expressed as a percentage by the following equation:

Power reduction = (1 − power ratio) × 100, (4.3)

where the power ratio is Pgatedclock/Poriginal, and the ratio is the average dynamic power

dissipation. Table 4-4 lists the power dissipation of three parts including the ALU unit, the

system control, and the whole design in different operation frequencies and processes. The

results indicate that ALU unit wastes more power than the other units. The reason is

possibly that the parallel processing components are all enabled in the ALU unit. After

Calculate Cx(m,n) and
store in R3

Data moving from external
RAM to RAM1 (B)
If m≠n, the A≠B

Data moving from external
RAM to RAM1 (B)
If m=n, the A=B

55

power optimization, average power reduction is about one-fourth at 33 MHz and 40 MHz,

but can be reduced by 60% at 25 MHz. We find that the power dissipation rate is reduced

to about 3/4 of the total power for the whole arithmetic unit shown in Table 4-4.

Table 4-4. Power dissipation analysis of LASP24 between different processes.

Before/After gated-clock design (0.6um)
(5V supply voltage, unit mW)

Frequency ALU
unit

Control
unit

Average
power

Power
reduction

25 MHz 61.39/30.14 2.63/1.52 46.72/16.22 66%
33 MHz 97.55/72.33 5.51/3.50 68.16/51.32 25%
40 MHz 117.02/80.17 4.22/3.83 84.95/63.51 24.7%

Before/After gated-clock design (0.35um)

(3.3V supply voltage, unit mW)
Frequency ALU

unit
Control

unit
Average
power

Power
reduction

25 MHz 59.13/25.84 2.01/0.93 43.18/15.71 64%
33 MHz 82.61/70.19 4.83/2.87 66.43/49.22 26%
40 MHz 108.62/78.30 3.76/3.15 84.95/55.75 34%
80 MHz 138.47/91.05 9.92/8.85 102.40/89.56 12.5%

Before/After gated-clock design (0.18um)

(1.8V supply voltage, unit mW)
Frequency ALU

unit
Control

Unit
Average
power

Power
reduction

25 MHz 50.37/22.31 2.01/1.02 39.92/14.83 63%
33 MHz 84.27/68.20 4.18/2.50 65.88/48.13 26.9%
40 MHz 105.85/80.28 4.00/2.93 78.05/52.60 32.6%
80 MHz 127.56/90.63 9.21/7.84 97.69/89.92 7.95%
100 MHz 181.35/137.72 15.02/11.50 166.67/128.45 22.9%

56

Before/After gated-clock design (Cyclone FPGA)
(3.3V supply voltage, unit mW)

Frequency ALU
unit

Control
unit

Average
power

Power
reduction

25 MHz 58.67/26.11 2.24/1.07 40.92/17.04 58%
33 MHz 81.43/69.33 4.77/2.61 67.13/45.28 32.5%
40 MHz 100.72/75.20 3.15/2.53 83.72/56.06 33%
80 MHz 140.13/89.27 10.13/7.39 109.86/90.32 17.8%
100 MHz 172.16/112.94 13.76/11.53 138.34/98.74 28.6%

4.2 Reverberation Algorithm

4.2.1 DSP Programming

Digital reverberation algorithms tried to mimic a room reverberation by using

primarily two types of infinite impulse response (IIR) filters, so that the output would

gradually decay. One such filter is the comb filter, which gets its name from the comb-like

notches in the frequency response. The other primary filter is the allpass filter. The allpass

filter has the nice property that all frequencies are passed equally, reducing a coloration of

the sound.

Much of the early work on digital reverberation was done by Schroeder, and one of

his well-known reverberation designs uses four comb filters and two allpass filters. More

advanced algorithms can be developed to model specific room sizes. With chosen room

geometry, source, and listener location, ray tracing techniques can be used to come up with

a reverb pattern. By modifying Schroeder’s algorithm, a finite impulse response (FIR)

filter is used to create the early reflections, and then IIR filters are used to create the diffuse

reverberation. Low pass filters may be used to model the air absorption. Reverberation

designs can be obtained as shown in Fig. 3-12.

57

Performing designs and real-time prototyping of digital reverberation algorithms is

based on random FIR filters, as presented in [13] to construct artificial early reflection. The

four parallel comb filters and four cascade all-pass filters are to model the late

reverberation and to increase echo density. Consider a modified comb filter in the

frequency given by:

M

M

zzgH
zzH −

−

−
=

)(1
)(

1

 (4.4)

and

11 1
1)(−−

=
az

zH , (4.5)

where M is the delay length, and (4.5) is a low pass filter. Combining (4.4) and (4.5), we

can obtain (4.6):

M

M

M

M

gzaz
azz

az
gz

zzH −−

−−

−

−

−

−−
−

=

−
−

= 1

1

1

1
)1(

1
1

)(. (4.6)

Here four cascade all-pass filters are used to increase echo density and disperse the phase.

Each all-pass filter has its own delay length Di and coefficient ai. Hence the total transfer

function will be

4

43

2

2

1

1

4

4
3

3

3

2

2

1

1

1111
)(D

D

D

D

D

D

D

D

za
za

za
za

za
za

za
za

zH −

−

−

−

−

−

−

−

−
+−

⋅
−

+−
⋅

−
+−

⋅
−
+−

= (4.7)

The algorithm is run on a single 80MHz (about 80MIPS) where each instruction cycle

is 12.5ns. The original and processed sound is stored in the external RAM. For each filter,

2500 memory locations are used as a spatial buffer. The parameters of four comb filters

and four all-pass filters are listed in Table 4-5 and Table 4-6, respectively. Simulated

waveforms are shown in Fig. 4-3.

58

Table 4-5. Allpass filter coefficients.

 Parameter
Filter

Di ai

Allpass-1 22 0.45
Allpass-2 36 0.45
Allpass-3 23 0.45
Allpass-4 33 0.45

Table 4-6. Comb filter coefficients.

 Filter
Parameter

Comb-1 Comb-2 Comb-3 Comb-4

a 0.25 0.27 0.28 0.29
g 0.7 0.680 0.674 0.654
m 37 40 41 43

 (a) (b)

L

R

 (c) (d)

59

L

R

 (e) (f)

Fig. 4-3. The original and resulting waveforms after the reverberation algorithm: (a) is a
simulated impulse response with early reflection in FIR; (b) is FIR coefficients
using a pseudo random method; (c) and (e) are original audio music and female
speech with 44.1 kHz sampling rate and 16-bit data format; (d) and (f) are the
signals after processing (c) and (e).

4.2.2 Implementation of Application-Specific Reverberator

The multi-tap FIR filter constructed as two-stage pipeline architecture for audio

reverberation applications is designed in HDL and C simulation. It consists of pipeline

registers, two circular buffers, 16-bit carry look-ahead adders, shifters, and the fast state

machine controller. Due to pseudo-random coefficients (existence of many zero values)

based on (2.4), the executing time and computational consumption of FIR is reduced. Fig.

4-4 shows the results of desire and HDL FIR over 1,000 FIR orders. These two results are

quite similar, but exist on 2% inaccuracy at the location of the 800th samples. This is

because of the effect truncation errors.

-200

-100

0

100

200

1 101 201 301 401 501 601 701 801 901 1001

Desire

HDL

Fig. 4-4. Fully FSM control flows for two-stage architecture.

60

A given music as input sources via the I2S interface is fed into the spatial circular buffer.

After the FIR processing, the results are shown in Fig. 4-5. The circular buffer is set to

2,500 blocks. The test is to process single channel, 20,282 samples of input, which is about

0.5 ms of samples with 44,100 Hz sampling rate and 16-bit data width. The desire result

shown in Fig. 4-5(a) is similar to the result of HDL simulation shown in Fig. 4-5(b).

Table 4-7 shows the comparison of different FIR schemes for implementation of early

reflection. The number of adders, multipliers, and shifters and delay latency is estimated

and compared. The different FIR style includes in terms of Direct Form (DF), Distributed

Arithmetic (DA) [38], Canonic Sign Digit (CSD) [39], Digital Signal Processor (DSP) [40],

and our proposed method. The delay latency is defined as the output of the first data. As

can be seen in Fig. 4-5, the proposed method can greatly save multiplication power. Most

of MAC instruction in DSP needs two or higher clock cycles to accomplish operations.

Although DA and CSD do not need any multiplier, their delay latency is more than 1 stage

due to bit and table operations. For the proposed two-stage FIR design, the number of

adders and shifters is reduced to be 1/2 orders for each stage, and it is suitable for audio

reverberation.

Table 4-7. Comparison of different FIR schemes for early reflection implementation.

Schemes
Items

DF
(TDF)

DA
[38]

CSD
[39]

DSP
[40]

Proposed

Adder Order Order/2 2*Order Order Order/2
Multiplier Order None None Order None
Shift None Order/2 Order/6 None Order/2
Delay latency None 16 32 None 1

61

 (a) (b)

 (c) (d)

Fig. 4-5. Sound with 2,0282 digital samples after FIR processing: (a) Desire results and
(b) design results. (c) and (d) are the results of frequency domain analysis with
Hamming window for (a) and (b).

For multi-tap filter implementation, parallel architecture and random coefficients are

not only computation reduction, but also can save multiplication power. At the same time,

the circular buffer can effectively be used as a spatial size. Thus, the proposed two-stage

architecture can be effectively used in FIR filter hardware implementation for the audio

reverberator system. In the future, the adaptive pseudo-random FIR coefficient generator

can be implemented by hardware according to the feature parameters of non-zero filter taps,

sampling rate, and time variance.

4.3 Performance Analysis of LASP24

Complexity is measured using million instructions per second (MIPS), random access

memory (RAM) and read only memory (ROM) measurements. MIPS are measured using

the execution time and instruction counts. Linker memory maps are obtained with required

62

sizes. As Table 4-8 shows MELP complexity exceeds LPC and CELP in both processor and

memory requirements. Additionally, the total performing cycles is listed for MELP, CELP

(TI DSP [84]), and reverberation algorithms.

Now LASP24 can perform the two practice applications in real time. We analyze the

performance between them. For the MELP coder, the program performs 1,338,280 cycles

in 60 MHz. The frame size is 22.5ms (180 samples) with a sampling frequency of 8000 Hz.

Hence, the latency is about 21 ms (1,338,280×16.67 ns) for the encoder. As the result for

the decoder, the latency is about 9.1ms. Due to many filters used in the reverberation

algorithm, the required execution time is larger. The program performs 1,574,430 cycles at

80 MHz. The frame size is 22.7 us (stereo channels) with a sampling frequency of 44,100

Hz. The latency is about 19.67 us. Anyway, LASP24 can operate max frequency at 100

MHz. By the above analysis, it is able to satisfy all conditions with operating frequency

80MHz.

Table 4-8. Complexity comparison between LASP24 and memory with optimization
codes.

RAM ROM Items
DSP Algorithm

MIPS
Unit: byte

Total
Cycles

MELP Decoder 40 96K 10K 546449
MELP Encoder 60 96K 26K 1338280
CELP Decoder
(TI 320C3X)

30 14.8K 128K 364299

Reverberation 80 96K 30K 1574430

63

CHAPTER 5

THE INTEGRATED PLATFORM FOR

MULTIMEDIA PROCESSING

5.1 Introduction

Today, the VLSI growing gap between the silicon gate capacity and the engineering

productivity has lead to the advance of System-on-Chip (SoC) designs and the need for

new forms of design reuse and methodologies [50]. With the rapid progress of

semiconductors, SoC is very popular recently. Reuse is done at the chip level called Virtual

Component (VC) or intellectual property (IP), which represents functions of specification

domains like DSP or multimedia modules. In order to connect each IP on SoC, the

standardized bus is indispensable [55].

Several bus protocols enjoying a certain degree of popularity are currently used in

SoC design. IBM’s CoreConnect [51] is supported by a vast set of tools that allow the

automatic generation of many parts of the system. The Wishbone specification [52] offers a

set of guidelines for a basic, simple bus structure. This protocol has been selected by

OpenCores organization [53] as the standard based on [52] to follow for the development

of the free IP library. Advanced RISC Machines Inc. (ARM) developed the very popular

AMBA AHB/APB protocol [54] and it has been used in many products. This protocol is

also adopted in this thesis to develop the SoC platform and audio IPs.

A single proposed SoC platform [80] which combines microprocessor, memory, and

other functional modules such as GPIO (General-Purpose Input/Output), I2S (Inter-IC

64

Sound), and communication (UART) into a single IC is popular recently. To verify these

functions [73] of the proposed platform for audio processing, the FPGA rapid prototype

approach is used. FPGA were primarily used for prototyping and lower volume

applications in years and custom ASICs were used for high volume, cost-sensitive designs.

Today, state-of-the-art wafer fabrication finds that FPGAs are an excellent mechanism for

testing new wafer technology because of their reprogrammable and high volume natures.

Hence, more and more designers use platform FPGA technology [56] to develop and verify

their SoC design quickly. In this thesis, we offer a way to develop low cost SoC products

within the FPGA environment for fast design and verification, and the SoC integration

platform for digital audio applications as reverberation and speech processing has also

been presented in Chapter 2 for demonstration.

5.2 SoC Platform

The proposed SoC platform is shown in Fig. 5-1 for speech/audio processing. The

primitive prototype is constructed in two platforms: FPGA Integration Platform (FIP) using

Altera Cyclone Edition and DSP Verification Platform (DSPVP) using the Analog Devices

DSP KIT [59] evaluation system for Blackfin embedded media processors [76].

FIP has a full implementation of AMBA AHB and APB on-chip buses. A flexible

configuration scheme makes it simple to add new IP cores. Also, all provided peripheral

units implement the AMBA AHB/APB interface making it easy to add more of them, or

reuse them on other components using AMBA. In the SoC platform, the 8051

microcontroller is used as a main resource dispenser. Due to timing request, the 8051

microcontroller can not directly connect to AHB. It is necessary to be packed by a wrapper.

Likewise, the wrapper is required if a DSP processor is added to AHB. In the case, the DSP

65

wrapper is not shown due to the use of the DSP evaluation system. An on-chip memory

called dual-port synchronous static RAM (SSRAM) is embedded into the system. The

SSRAM, which store multi-channel audio streaming, is defined as a share buffer between

FPGA and DSP. Four peripheral devices as GPIO (General-Purpose I/O), I2S (Inter-IC

Sound), Interrupt Controller, and UART (Universal Asynchronous Receiver Transmitter)

are hanged on APB. These modules are listed in Table 5-1 and explained in detail in the

next section.

Table 5-1. Module design of the SoC platform.

Module Design/BUS Technology Description

Dual-port SSRAM
Controller (AHB)

Dual port synchronous static RAM: offer general-purpose
memory accessing interface.

8051 wrapper
(AHB)

Offer the conversion of 8051 signals into AHB. It is an
interface and buffer devices. In the platform, it is a main
control center, i.e., Master.

UART
(APB)

A device, usually an integrated circuit chip, which performs
the parallel-to-serial conversion of digital data to be
transmitted and the serial-to-parallel conversion of digital data
that has been transmitted.

GPIO (APB) It can be individually configured through software as either an
input or output, and provide additional control and monitoring
when the microcontroller or chipset has insufficient I/O ports,
or in systems where serial communication and control from a
remote location is advantageous. In this platform, GPIO
provides a little as 4 ports and up to 24 ports.

I2S
(APB)

It provides digital sound processing interface, which is serial
communication to connect digital sound devices. In the
peripheral bus, if processing multi-channel sound, we can put
one or more I2S groups.

66

Module Design/BUS Technology Description

Interrupt Controller
(APB)

The interrupt allows edge or level triggers to handle interrupt
routines with the programmable method. It provides 8-bit or
16-bit data width for fast and general interrupt as input.

APB Bridge
(between AHB and
APB)

Handle signal transformation between high-speed bus and
low-speed bus. The bridge can maintain devices between two
buses at the same time.

AHB Decoder
(AHB)

Offer interconnection and mechanism that uses the bus
between master and slave devices in AHB, i.e., bus arbiter.

DSP (LASP24) 24-bit floating-point digital signal processor described in
Chapter 3.

DSPVP performs given 3-D audio algorithms such as reverberation in real-time, but

these two audio algorithms are not shown in this thesis. Audio streaming via SSRAM is fed

into DSP. Processed audio streaming is exported to stereo speakers via the audio codec. In

the developing process, DSPVP is an auxiliary platform to cooperate with the verification

of the designed SoC system.

80C51
Std.

WAPPER for AHB

status

data

command

interrupt/UART

For I2S
Data register

For GPIO

(16-bit)P2

P1

P2

A
H
B

data

ctl.

SRAM controller
for AHB

(Sliding window
Algorithm)

data

ctl.

Dual-port SRAM

32Kx16-bit data

addr

addraddr

ctl.

P3

UART

Bridge

A
P
B

GPIO

I2S

I2S

I2S

In
cr

em
en

t m
od

e
Si

ng
le

 tr
an

sf
er

32
-b

it

32
-b

it

16-bit

16-bit16-bit

(a)

67

BridgeBridge AHBAHB
ArbiterArbiter

AHB

APB

ADSPADSP--
BF531 DSPBF531 DSP

UARTUART

SoCSoC PlatformPlatform

FlashFlash
1MB1MB

DualDual--Port Port
SSRAMSSRAM

Share memory bus80518051
WrapperWrapper

SSRAMSSRAM
ControllerController

UARTUARTGPIOGPIO II22SS

80518051
ICE /ICICE /IC

IBMIBM
PCPC J

T
A
G

SDRAMSDRAM
16MB16MB

6 channels

INTINT
controllercontroller

9600bps
8-bit

AudioAudio
CodecCodec

DSPDSP
WrapperWrapper

CodecCodec
Sound output

USB

ReverbReverb DualDual--Port Port
SRAMSRAM

LASP24LASP24
DSPDSP

(b)

Fig. 5-1. Multimedia SoC platform: (a) SoC architecture and (b) the proposed prototype
system.

5.3 Intellectual Property Design

5.3.1 Microprocessor

The microprocessor is compatible with the MCS-51 family, originally designed in the

1980's by Intel. The processor has gained great popularity since its introduction and is

estimated it is used in a large percentage of all embedded system products. It features are

8-bit CPU, on-chip memory which has separated Data and Program (read-only) memory,

two 16-bit timer/counters and four 8-bit I/O ports including two interrupts. There are 64K

bytes of off-chip program memory and up to 4K bytes of on-chip program memory.

Remaining part of the program memory is external and can be reached with a specific

signal EA. The some features of the 8051 IP core referred to Opencores [53] are described

as follows.

68

 8-bit CPU optimized for control applications

 Extensive Boolean processing (single-bit logic) capabilities

 64K program and data memory address space

 32 bidirectional and individually addressable I/O lines

 6-source/5-vector interrupt structure with two priority levels

 Up to 4K bytes of on-chip program memory

 Two 16-bit timer/counters

The instruction set of the 8051 core is already said optimized for 8-bit control

applications. This optimization shows in a variety of fast addressing modes for accessing

the internal RAM to facilitate byte operations on small data structures. The instruction set

is also good for systems that require a lot of Boolean processing because it has an

extensive support for one-bit variables as a separate data type (that makes direct bit

manipulation a lot easier). The total of addressing modes is five kinds, which include direct,

indirect, register, register-specific, immediate, and index addressing.

The 8051 core contains four I/O ports. All four ports in the 8051 core are bidirectional.

Each port has SFR (Special Function Registers P0 through P3) which works like a latch, an

output driver and an input buffer. Both the output driver and the input buffer of Port 0, and

the output driver of Ports 2 are used for accessing the external memory. It works like this:

Port 0 outputs the low byte of the external memory address (which is time-multiplexed

with the byte being written or read) and Port 2 outputs the high-byte of the external

memory address (this is only needed when the address is 16 bits wide). If the address in

question is 8 bits wide the Port 2 pins are not needed in this application. The Port 3 pins are

multifunctional. Their alternate functions are listed in Table 5-2. The alternate functions

are activated with the 1 written in the corresponding bit latch in the port SFR.

69

Table 5-2. Microprocessor’s alternate functions.

P3 Port Pin Alternate Function
PIN 2 0INT (external interrupt)
PIN 3 1INT (external interrupt)
PIN 4 T0 (timer/counter 0 external input)
PIN 5 T1 (timer/counter 1 external input)
PIN 6 WR (external data memory write strobe)
PIN 7 RD (external data memory read strobe)

The new value arrives at the latch during the last phase (Phase 2), of the final cycle of the

instruction that changes the value in a port latch. Because the port latches are sampled by

their output buffers only during Phase 1 of any clock period (during Phase 2 the output

buffer holds the value it saw during the previous Phase 1), the new value in the port latch

won’t actually appear at the output pin until the next Phase 1, which will be at the

beginning of the following machine cycle.

5.3.2 Inter-IC Sound Interface

The I2S is used only to handle audio serial data. To minimize the number of pins

required and to keep wiring simple, a 3-line serial bus consisting of a line for two

time-multiplexed data channels, a word select line (WS), and a clock line (SCK) is used.

Serial data (SD) is transmitted in two’s complement with the MSB first. A simple

configuration and the basic interface timing are illustrated as Fig. 5-2. The MSB is

transmitted first because the transmitter and receiver may have different word lengths. The

WS indicates the channel being transmitted: when WS=0, SD belongs to the left channel;

conversely, SD belongs to the right channel. The WS line changes one clock period before

the MSB is transmitted. This allows the slave transmitter to derive synchronous timing of

the serial data that will be set up for transmission. Serial data sent by the transmitter may

70

be synchronized with either the trailing (high-to-low) or the leading (low-to-high) edge of

the clock signal. However, the serial data must be latched into the receiver on the leading

edge of the serial clock signal, and so there are some restrictions when transmitting data

that is synchronized with the leading edge.

Invalid Valid Invalid InvalidValid

Cycle time
Setup time

Hold time

SCLK

SD/WCLK

44.1kHz

3.072MHz

Invalid Valid Invalid InvalidValid

Cycle time
Setup time

Hold time

SCLK

SD/WCLK

44.1kHz

3.072MHz

Fig. 5-2. The basic interface timing of I2S.

The hardware configuration of I2S transmitter and receiver are shown in Fig. 5-3. At

each WS-level change, a pulse WSP is derived for synchronously parallel-loading the shift

register. For the transmitter, the output of one of the data latches is then enabled depending

on the WS signal. Since the serial data input is zero, all the bits after the LSB will also be

zero. For the receiver, following the first WS-level change, WSP will reset the counter on

the falling edge of SCK. As the counter increases by one every clock pulse, subsequent

data bits are latched into the 16-bit shift register.

71

(a) Transmitter

(b) Receiver

Fig. 5-3. The block of audio I2S configuration (SCK=64×fs and WS=fs=48kHz).

In the I2S format, any device can act as the system master by providing the necessary

clock signals. A slave will usually derive its internal clock signal from an external clock

input. This means, taking into account the propagation delays between master clocks and

the data and/or word-select signals, that the total delay is simply the sum of the delay

between the external (master) clock and the slave’s internal clock; and the delay between

the internal clock and the data and/or word-select signals. For data and word-select inputs,

the external to internal clock delay is of no consequence because it only lengthens the

72

effective set-up time (see Fig. 5-2). The major part of the time margin is to accommodate

the difference between the propagation delay of the transmitter, and the time required to set

up the receiver. All timing requirements are specified relative to the clock period or to the

minimum allowed clock period of a device. This means that higher data rates can be used

in the future. Fig. 5-4 shows the operation of audio data transmission from the I2S interface

to the internal system high-speed bus (indicated by arrowheads). Then audio data is stored

into the share memory.

Fig. 5-4. FPGA simulation of I2S transmission.

5.3.3 Serial Communication Design

UART (Universal Asynchronous Receiver/Transmitter) is designed to make an

interface between a RS-232 line and an AMBA bus. It works fine connected to the standard

serial port of any device for data exchange with custom electronic. It was built in the

perspective to be very small, but efficient. It has to fit in a small FPGA. It is not suited to

73

interface a modem since there is no control handshaking (CTS/RTS). It integrates two

separate clocks, one for AMBA bus and the other for bitstream generation. This has the

advantage to let the user bring own desired frequency for the baud rate. The baud rate,

however, is defined as 9,600 bps in the case.

The core implements the AMBA SoC bus interface for communication with the

platform. It has an 8-bit data bus, even parity, and 1 stop bit for compatibility reason. The

core requires one interrupt. It requires 2 pins in the chip (serial in RX and serial out TX).

The block diagram of the core is shown in Fig. 5-5. The line control register assigns one of

operations between the transmitter and receiver. If the received operation is active, serial

data (RX) is fed into the receiver shift register. When the action is finished, the receiver

logic will send an interrupt signal to the microprocessor. Conversely, if the transmitted

operation is active, 8-bit data is fed into TX from the transmitter shift register.

Fig. 5-5. The block diagram of UART (Baud rate at 9,600 b/s).

The UART simulation is shown in Fig. 5-6. For the receiver (Fig. 5-6(a)), after SRX

has received 8-bit data, data is then stored into the data_out_reg register. This monmentm,

74

an interrupt is triggered by INTn in order to info the master device. Hence, the master

device can obtain data from the peripherial bus. Note that when the bus is selected

(apb_sel=1), the interrupt signal INTn has to be disabled. The received data is stored into

apb_rdata. For the transmittor (Fig. 5-6(b)), it is very easy. STX first sends a start bit (=0),

then sends 8-bit data from LSB to MSB in order. Follow the parity and stop bits.

(a)

(b)

Fig. 5-6. FPGA simulation of UART (a) receiver and (b) transmitter.

5.3.4 Wrapper and Interrupt Design

Since 8051 I/O signals can not directly meet AHB timing constraints, it is necessary

for the 8051 wrapper design. The interface is prepared for 8-bit accesses. In each read or

Start bit
8-bit data

75

write access to the AMBA AHB will not require wait state cycles. Thus, all AMBA AHB

single transfer modes are supported in the 8051 wrapper design. The simulation of single

transfer mode is shown in Fig. 5-7.

Fig. 5-8 shows the complete state machine for the 8051 wrapper design. The structure

of the state machine is divided into three main parts: I2S data processing,

user-programmable inputs via GPIO registers, and UART communication. When an

interrupt occurs, 8051 can handle corresponding procedures via the wrapper. Note that the

wrapper spends most of the term in I2S data communication. In other words, each time the

wrapper must access three-channel data when the sampling rate starts.

Fig. 5-7. FPGA simulation of data transfer for 8051 wrapper.

76

Fig. 5-8. Complete stat machine for 8051 wrapper.

Due to 8051 accepted only two interrupts, in order to handle more interrupts for the

system, the interrupt controller can decide the priority of all interrupts. Of course, GPIO

has the highest priority. The following is UART and I2S, respectively. The interrupt

controller supports up to 16 interrupts: 3 interrupts from the internal APB devices and other

reserves.

5.3.5 Specialized Hardware for System Verification

To realize the benefits of emulation, virtually all of the circuit and testbench for the

design must run on the emulator. This means that the testbench should be synthesizable.

One approach would be to make the testbench synthesizable from the beginning, and to use

the same testbench for both RTL verification and emulation. The bus functional models

(BFM) used in the SoC platform are common method of creating testbenches. Typically

they are written in the register-transistor level (RTL), a testbench automation tool, or in

C/C++, and use some form of command language to create sequences of transactions on

the system bus. The intent of the methods is to model only the bus transactions of an agent

77

on the bus. They do not model any of the functionality of an agent on the bus; each read

and write transaction is specified by the test developer explicitly. Because of their

simplicity, these bus models place little demand on simulator performance; simulation

speeds are mostly determined by the macro itself.

Many testbemchs require multiple BFMs, as in the SoC platform above. In this case,

it is best to use a single command file to coordinate the actions of the various models as

AHB and APB. The models must be written so that they can share a common command

file. Many commercial BFMs offer this capability. If we take our canonical design, the

following approach seems reasonable. In Fig. 5-9, the software for the processor is

compiled and loaded into memory in the emulator. This allows the processor and

peripherals to perform at full emulation speed. The stimulus for the data transformation

block is also loaded into memory on the emulator. We can store a bit stream that represents

audio data through the I2S interface. A simple state machine transfers data from the

stimulus memory to the I/O interface. Similarly, the serial data from the output of the SoC

platform is sent to a response capture memory in the emulator. Another simple state

machine handles the handshake for the data transfer.

AHB
Arbiter

(RTL)

AHB

APB

Dual-Port
SSRAM

8051
Wrapper

SRAMC
(RTL)

UART
(RTL)

GPIO
(RTL)

INTC
(RTL)

Wrapper
DSP

Stimulus
Memory

S
M

Stimulus
Memory

S
M

Stimulus
Memory

S
M

Stimulus
Memory

S
M

R
S-232 IBM PC

R
S-232 IBM PCI2S

(RTL)

Bus
Bridge
(RTL)

Memory
C/C++ Complier

Application
Control/

Algorithm

8051 In-Circuit
Emulator

Hardware DesignHardware Design

Fig. 5-9. Emulation testbench.

78

5.4 System Prototype

The proposed SoC platform design for audio applications has been synthesized on the

Altera FPGA. In particular, the EP1C20F400 Cyclone FPGA has been employed to carry

out all the synthesis and place-and-route processes. The synthesis results are shown in

Table 5-3. By using Altera QuartusII, it is mapped, placed, and routed in less than a minute.

The basic system occupies 1 block RAM about 65536 bits, 837 logic cells, 470 registers,

452 LUTs (look-up table), and 100 available pins. The SoC platform consumes just 5% of

the logic resources, one of the smallest devices in that product family. LASP24 and

reverberator consume 618 registers and 3,796 LEs. These two IPs can be performed on

100MHz frequency.

Table 5-3. The FPGA synthesis results of audio SoC design.

 Results
Components

FSM
(states)

Registers Sizes
(LEs)

Operating frequency

8051 wrapper (AHB) 40 125 322 40 MHz above
I2S (APB) ×3 - 231 264 3.072 MHz
GPIO (APB) 3 29 97 20 MHz
UART (APB) 10 53 92 Fixed baud rate: 9.6k bps
SSRAM controller
(AHB)

4 15 29 40MHz for read and write
operations

Interrupt controller
(APB)

- 8 17 20MHz

Clock generator for I2S
design
(Independent module)

- 9 16 Input clock: 18.432 MHz
Bit clock: 3.072 MHz
Sampling rate: 48 KHz

LASP24 17 1,835 22,747 Up to 100MHz
Reverberator (APB) 25 287 7,049 Up to 100MHz

The operating frequency of the AMBA system and 8051 is at 40 MHz and 12 MHz,

respectively. The 8051 transducer (1251 cycles) allows fetching the wrapper data and

providing these data to each component in AMBA. In other words, it executes the 8051

79

simple handshake enable. The dual-port memory contains 4096 with 16-bit width

6-channel audio streaming data, and the data format is shown in Fig. 5-10(a). The sync

signal is used as an interrupt to trigger DSP. It is important for the synchronous problem of

audio data. When the microprocessor receives audio data via an interrupt, data is then

written into the dual-port SRAM shown in Fig. 5-10(b) by using Fig. 5-10(a) format.

(a)

(b)

Fig. 5-10. Share memory: (a) The data format and control of audio streaming and (b)
simulation results of processing three-channel data in the dual-port SRAM.

80

As a result, we can be able to test quickly the prototyping system (Fig. 5-1) in the

development kit environment. The SoC system can perform with accuracy and control

DSP operations of optimized audio algorithms as well as high-quality sound in real-time.

The development environment and the final demo board for audio processing are shown in

Fig. 5-11.

FPGA DSP

6-channel
output

Power
DC 9V

FPG
A

 test pins

Share
memory

DSP JTAG

FPGA JTAG

Monitor
UART FlashLink

Audio codec

Flash

FPGA
AS

Function
button

I2S-0I2S-1
I2S-2

SDRAM

FPGA DSP

6-channel
output

Power
DC 9V

FPG
A

 test pins

Share
memory

DSP JTAG

FPGA JTAG

Monitor
UART FlashLink

Audio codec

Flash

FPGA
AS

Function
button

I2S-0I2S-1
I2S-2

SDRAM

SoundSound
outputoutput

DSP JTAGDSP JTAG

SDRAMSDRAM Fl
as

h
Fl

as
h

DSPDSP

FPGAFPGA

SoCSoC PlatformPlatform

Pu
sh

Pu
sh

B
ut

to
n

B
ut

to
n

UARTUART

SRAMSRAM

DC INDC IN

FP
G

A
 T

es
t P

in
s

FP
G

A
 T

es
t P

in
s

II22SS--22
II22SS--11

II22SS--00

(a)

USBUSB
Sound InputSound Input

UARTUART

UARTUART

Sound OutputSound Output

ResetReset

FunctionFunction

Share MemoryShare Memory
DualDual--port SSRAMport SSRAM

Cyclone FPGACyclone FPGA
ADI DSP BoardADI DSP Board

Drive BuffersDrive Buffers

II22S InputsS Inputs

HRTFHRTF

ReverberatorReverberator

NormalNormal

USBUSB
Sound InputSound Input

UARTUART

UARTUART

Sound OutputSound Output

ResetReset

FunctionFunction

Share MemoryShare Memory
DualDual--port SSRAMport SSRAM

Cyclone FPGACyclone FPGA
ADI DSP BoardADI DSP Board

Drive BuffersDrive Buffers

II22S InputsS Inputs

HRTFHRTF

ReverberatorReverberator

NormalNormal

(b)

Fig. 5-11. (a) The final Demo board and (b) the initial development environment.

81

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

This thesis has proposed a new low-cost application-specific processor (LASP24) for

sound processing in multimedia. High performance is achieved by vector and matrix

operations that are not usually supported by general-purpose DSPs. The LASP24 has

precise 24-bit floating-point arithmetic units. This processor makes the speech coding

algorithms ready to run in real-time operations. In addition to the LPC calculation and

pitch estimation built-in to the LASP24 core, the other algorithms such as a codebook

search can also be implemented in the designed processor. Furthermore, a technique of

gated clocks on power optimization of sequential circuits was involved in this design to

reduce power dissipation. Based on these features, LASP24 can share huge calculations in

real-time speech coding. It can also reduce power consumption: 25.75% at 100MHz, 12.75

at 80MHz, 31.1% at 40 MHz, 27.6% at 33 MHz, and 62.75% at 25 MHz. The performance

of LASP24 was about 4.75 times higher than TMS320C30 and about 3.2 times higher than

TMS320C31. Several experimental tests have been done, and the performance

comparisons to a series of TMS320C3x processors are also presented in the thesis. As

these testing results, we can find that LASP24 for sound processing has a very satisfactory

performance, and it has also verified all the designed functions.

Finally, a SoC platform design for digital sound processing by using FPGA

development environment is presented. Through the 8051 embedded microcontroller, we

can easily program two audio processing and completely control all actions of the audio

system. The platform has been verified and performed in the Altera Cyclone FPGA, and it

can control the DSP processor to execute speech coding such as MELP and audio

82

enhancement such as Reverberation as well. The proposed SoC integration platform offers

outstanding performance and flexibility at very low cost for a wide range of multi-channel

audio applications. In the future, the DSP processor for audio processing will be developed

such that it can be integrated into the proposed SoC platform design to perform a complete

audio SoC system. Under FPGA verification and testing, on average the whole

performance obtains 80MIPS and 90mW power consumption. Due to a cross-platform

implemented method, it can be applies into an embedded and portable multimedia system

and can also be integrated to a single silicon chip.

 The modern day computing technology ought to be one supporting interactive and

intelligent processing [74] that transforms and transfers information ubiquitously and in

real-time speed. The future computing must provide both economic bandwidth utilization

and efficient information extraction. More importantly, the industry must be prepared for

the inevitable trend that (1) computing (2) control and (3) users will be separated by long

distances. As a result, the users can anticipate the near-future convergence of computing

and communication. A truly integrated media system must connect with individual users

and content addressable multimedia databases. This new trend bring about a great

technological challenge as

● Future multimedia technologies will need to handle information with an

increasing level of intelligence, i.e., automatic extraction, recognition,

interpretation, and interactions of multimodal signals, and the ability to seamlessly

handle different representations. This will lead to what can be called intelligence

multimedia processing technology, and integrated into the SoC platform.

● We envision a major impact by integrating adaptive neural processing into the

state-of-the-arts multimedia technologies. The main power of neural networks

hinges upon their adaptive learning capability [57], which enables machines to be

83

taught to interpret possible variations of the same object or pattern, e.g., scale,

orientation, and perspective.

● The system integration will also be a challenging task as it involves complex

tradeoff in integrating subsystems into a functional SoC system. For example, we

need to estimate the necessary storage space for application codes (such as

adaptive on-the-fly incremental training). The objective is to have the total system

implemented under the specified power, size, weight, and cost constraints.

In the future, General-purpose workstations and PCs are already equipped with

powerful programmable microprocessors; these processors, however, have not been able to

perform image and video processing tasks efficiently as the special algorithm

characteristics are not exploited. Therefore, a special class of programmable multimedia

processors [64] has evolved that incorporate architectural enhancements to increase their

multimedia processing capabilities. These enhancements include as follows.

● Subword parallelism: A number of lower-precision data items are processed in

parallel on the same ALU (split-ALU). This enables to exploit data parallelism in

highly regular low-level algorithms involving identical operations executed on

large data volumes.

● Very long instruction word (VLIW) [82]: Several operations are specified within a

single instruction word for concurrent execution on multiple function units.

Instruction level parallelism available in image and video algorithms can thus be

exploited. Code scheduling has to be performed statically by the compiler.

● Coprocessor architecture: By incorporating one or more separate modules adapted

to specific tasks, highly regular program parts with high processing requirements

can be executed on dedicated hardware, while more irregular but less

84

computationally intensive control tasks can be performed on a programmable

processor core.

● Memory system design: Due to the high data volumes encountered particularly in

video processing, the memory system has a significant impact on overall

performance. Stream caches have been proposed that employ prefetching

techniques to access shortly needed data in advance. Data structures of static nature,

such as filter coefficients or look-up tables, can be placed into on-chip SRAMs

where they are always accessible within shortest times. For instruction memory

design, conventional cache strategies may prove useful for speeding up instruction

access, provided the cache is large enough and mutual code replacement can

effectively be prevented.

The architectural enhancements of current multimedia processors alone, targeting almost

exclusively audio enhanced algorithms, will not be sufficient for the emerging multimedia

applications. With increasing sophistication of multimedia algorithms and less predictable

program flow, new concepts are required.

85

BIBLIOGRAPHY

[1] S. Barua, “An interactive multimedia system on computer architecture, organization,

and design,” IEEE Transactions on Education, vol. 44, pp. 41-46, Feb. 2001.

[2] A. Werf, F. Briils, R. Kleihorst, and E. Waterlander, “McIC: A Single-Chip MPEG2

Video Encoder for Storage,” In Proceedings of the 1997 IEEE International

Solid-State Circuits Conference (ISSCC 1997), pp. 254-255, February 6-8, 1997.

[3] B. G. Haskell et.al., “Image and Video Coding-Emerging Standards and Beyond,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 7, pp.

814-837, Nov. 1998.

[4] Y. Okada, T. Nakamoto, H. Gunji, and M. Hase, “An 80mm2 MPEG2 Audio/Video

Decode LSI,” In ISSCC, pp. 264-265, February 6-8, 1997.

[5] M. Toyokura, M. Saishi, S. Kurohmaru, and K. Yamauchi, “A Video DSP with a

Macroblock-Level-Pipeline and a SIMD Type Vector-Pipeline Architecture for

MPEG2 CODEC,” In ISSCC, pp. 74-75, February 16-18, 1994.

[6] G. Pachanek, C. Glossner, W. Lawless, and D. McCabe, “A machine organization

and architecture for highly parallel, scalable, single chip DSPs.” In Proceedings of

the 1995 D S F Technical Program, pp. 42-50, May 15-18, 1995.

[7] G. Pachanek, M. Stojancic, S. Vassiliadis, and C. Glossner, “M.F.A.S.T.: A Single

Chip Highly Parallel Image Processing Architecture,” in International Conference on

Image Processing, pp. 69-72, Oct. 1995.

[8] D. R. Begault, 3-D Sound for Virtual Reality and Multimedia, Academic Press, Inc.,

1994.

[9] E. Torick, “Highlights in the history of multichannel sound,” J. Audio Eng. Soc.,

vol.46, Jan. 1998.

[10] C. Kyriakakis, “Fundamental and technological imitations of immersive audio

systems,” Proceedings of the IEEE, vol. 86, pp. 941-951, May 1998.

[11] M. R. Schroeder, “Natural sounding artificial reverberation,” J. Audio Eng. Soc., vol.

10, pp. 219, 1962.

86

[12] A. J. Moorer, “About this reverberation business,” Comput. Music J., vol. 3, pp.

13-28, 1979.

[13] P. Rubak, L.G. Johansen, “Artificial reverberation based on a pseudo-random

impulse response,” the AES 106th Convention, Munich, Germany, Paper No.

4900(G6), May 8-11, 1999.

[14] D. Carugo, “Development of a surround encoding algorithm,” Proceedings of the

COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy,

December 7-9, 2000.

[15] U. Zoler, Digital Audio Signal Processing, John Wiley & Sons, 1997, Ch6.

[16] M. J. D. Powell, Radial Basis Functions for Multivariate Interpolation, Edited by J. C.

Mason, M. G. Cox, pp. 143-166, 1987.

[17] C. P. Brown and R. O. Duda, “A structural model for binaural sound synthesis,”

IEEE Trans. on Speech and Audio Processing, vol. 6, pp. 476-488, Sep. 1998.

[18] P. S. Ray, “Characteristic properties of some integer Toeplitz matrices,” in

Proceedings of Information, Decision and Control (IDC 99), pp. 177-179, Feb. 1999.

[19] F. L. Wightman and D. J. Kistler, “Headphone simulation of free field listening- I:

Stimulus synthesis,” J. Acoust. Soc. Am., vol. 85, pp. 858-867, 1989.

[20] F. L. Wightman and D. J. Kistler, “Headphone simulation of free field listening- II:

Verification,” J. Acoust. Soc. Am., vol. 85, pp. 868-878, 1989.

[21] E. A. G. Shaw, “Transformation of sound pressure level from the free field to the

eardrum in the horizontal plane,” J. Acoust. Soc. Am., vol. 56, pp. 1848-1861, 1975.

[22] K. J. Arnold, On Spherical Probability Distributions, Ph.D. Thesis, Massachusetts

Institute of Technology, 1941.

[23] N. I. Fisher, T. Lewis, and B. J. J. Embleton, Statistical Analysis of Spherical Data,

Cambridge University Press, Cambridge, 1987.

[24] K. C. Chen, Multi-Band Room Effect Emulator for 5.1 Channel Sound, Master thesis,

Department of Electrical and Control Engineering, National Chiao Tung University,

June 2001.

[25] R. L. Jenison, R. A. Reale, J. E. Hind, and J. F. Brugge, “Modeling of auditory

spatial receptive fields with spherical approximation functions,” American

Physiological Society, pp. 2645-2656, 1998.

87

[26] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. of IEEE,

vol. 78, pp. 1481-1496, Sep. 1990.

[27] A. Kulkarni et al., “On the minimum-phase approximation of head-related transfer

functions,” IEEE ASSP Workshop on Applications of Signal Processing to Audio and

Acoustics, 1995.

[28] S. Chen, S. A. Billings, and W. Luo, “Orthognal least-squares methods and their

application to non-linear system identification,” Int. J. Control, pp. 1873-1896, 1989.

[29] S. Chen, P. M. Grant, and C. F. N. Cowan, “Orthogonal least squares learning

algorithm for radial basis function networks,” IEEE Trans. on Neural Networks, vol.

2, pp. 302-309, 1991.

[30] B. Gold and N. Morgan, Speech and Audio Signal Processing, John Wiley & Sons

Inc., 1999.

[31] G. Kane and J. Heinrich, MIPS RISC architecture, Englewood Cliffs, N.J., Prentice

Hall Publishing Company, 1992.

[32] ANSI/IEEE-754-1985, IEEE standard for binary floating-point arithmetic, SIGPLAN

Notices, 1985.

[33] J. D. Markel, and A. H. Gray, Linear Prediction of Speech, New York: Springer

Verlag, 1976.

[34] C. G. Lee and M. G. Stoodley, “Simple vector microprocessors for multimedia

applications,” in Proc. 31th Annual ACM/IEEE International Symposium, pp. 25-36,

1998.

[35] D. Spaderna, P. Green, K. Tam, T. Datta, and M. Kumar, “An integrated floating

point vector processor for DSP and scientific computing,” in Proc. IEEE

International Conference Computer Design: VLSI in Computers and Processors, pp.

8-13, 1989.

[36] L. Benini, P. Siegel, and G. De Micheli, “Saving power by synthesizing gated clocks

for sequential circuits,” IEEE Design & Test of Computers, vol. 11, 1994, pp. 32-41.

[37] Oh Jaewon and M. Pedram, “Gated clock routing for low-power microprocessor

design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

vol. 20, Issue 6, pp. 715-722, June 2001.

88

[38] M. Mehendale, A. Sinha, S. D. Sherlekar, “Low power realization of FIR filters

implemented using distributed arithmetic,” in Proc. of the Asia and South Pacific on

Design Automation Conference, pp. 151–156, 1998.

[39] Y. Jang and S. Yang, “Low-power CSD linear phase FIR filter structure using vertical

common sub-expression,” Electronics Letters, vol. 38, pp. 777-779, Jul. 2002.

[40] A. T. Erdogan, T. Arslan, “Low power FIR filter implementations based on

coefficient ordering algorithm,” in Proc. of the IEEE Computer Society Annual

Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04), pp.

226-228, 2004.

[41] Federal Information Processing Standards Publication (Draft), Specifications for the

Analog to Digital Conversion of Voice by 2,400 Bit/Second Mixed Excitation Linear

Prediction, Jan 1998.

[42] M. R. Schroeder and B. F. Logan, “Colorless Artificial Reverberation,” J. Audio

Engineering Society, vol. 9, 1961.

[43] M. Dolle, S. Jhand, W. Lehner, O. Müller, and M. Schlett, “A 32-b RISC/DSP

Microprocessor with Reduced Complexity,” IEEE J. Solid-State Circuits, vol. 32, pp.

1056-1066, Jul. 1997.

[44] J. Nurmi, V. Eerola, E. Ofner, A. Gierlinger, J. Jernej, T. Karema, and T. Raita-aho,

“A DSP core for speech coding applications,” in Proc. ICASSP, vol. 2, pp. 429-432,

1994.

[45] J. Eyre and J. Bier, “The evolution of DSP processor: From early architectures to the

latest developments,” IEEE Signal Processing Magazine, March 2000.

[46] H. R. Jang, S. H. Kim, and Y. H. Chang, “A Digital Signal Processor for Low

Power,” in Proc. AP-ASIC, pp. 42-45, 1999.

[47] E. A. Lee, “Programmable DSPs: A brief overview,” IEEE Micro, vol. 10, pp. 14-16,

Oct. 1990.

[48] E. Zwicker and H. fastl, Psychoacoustics: Facts and Models, New York: Springer

Verlag, 2nd Ed., 1998.

[49] 余建政等編著, MATLAB 6.X使用入門, 新文京開發圖書公司, 2003.

[50] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip

Designs, Kluwer Academic Publishers, 3rd Edition, 2002.

[51] IBM Inc., The CoreConnect Bus Architecture, website available at

89

http://www3.ibm.com/chips/products/coreconnect.

[52] Silicore Inc., WISHBONE System-on-Chip Interconnection Architecture for Reuse

IP Cores, Oct. 2001, website available at http://www.silicore.net/wishbone.htm.

[53] Opencores Organization, website available at http://www.opencores.org.

[54] ARM Inc., AMBA Specification Rev. 2.0, ARM Document NO. ARM IHI0011A,

website available at http://www.arm.com, May 1999.

[55] P. J. Aldworth, “System-on-a-chip bus architecture for embedded applications,”

IEEE International Conference on Computer Design, pp. 297-298, Oct. 10-13, 1999.

[56] E. Hwang, “Building a custom system-on-a-chip,” International Conference on

Computer Sciences, pp. 1-8, 2004.

[57] S. Haykin, Neural Networks: A Comprehensive Foundation, New York: Macmillan

College Publishing Company, 1994.

[58] L. John and A. David, Computer architecture a quantitative approach, Morgan

Kaufmann Publishers, Inc., Second Edition, 1996.

[59] Analog Device Inc., ADSP Blackfin DSP Hardware Reference, Nov. 2002.

[60] Inho Lee, et al., “A hardware-like high-level language based environment for 3D

graphics architecture exploration,” Proceedings of the 2003 International Symposium

on Circuit sand Systems (ISCAS2003), vol. 2, pp. II-512-II-515, 25-28 May, 2003.

[61] G. Cote, B. Erol, M. Gallant, and F. Kossentini, “H.263+: video coding at low bit

rates,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, pp.

849-866, Nov. 1998.

[62] T.R. Gardos, “H.263+: the new ITU-T Recommendation for video coding at low bit

rates,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 6, pp. 3793 – 3796, 12-15 May, 1998.

[63] M. Hans, R.W. Schafer, “Lossless compression of digital audio,” IEEE Signal

Processing Magazine, vol. 18, pp. 21-32, July 2001.

[64] L.-H. Chen; O.T.-C. Chen, R.-L. Ma, “A high-efficiency reconfigurable digital signal

processor for multimedia computing,” Proceedings of the 2003 International

Symposium on Circuits and Systems (ISCAS2003), vol. 2, pp. II768-II771, 25-28 May,

2003.

[65] P. Coussy, A. Baganne, E. Martin, “Platform-based design for digital signal

processing systems: a case study of MPEG-2/JPEG2000 encoder,” Proceedings of

90

the 2002 International Symposium on Communications, Circuits and Systems and

West Sino Expositions, vol. 2, pp. 1361-1366, 29 June-1 July, 2002.

[66] M. Keating and P. Bricaud, Reuse Methodology Manual (RMM) for

System-on-a-Chip Designs, Second Edition, Kluwer Academic Publishers, 1999.

[67] P. Nsame, “Building on innovation: The dynamics of SoC design methodologies and

application-specific platforms”, SoC Conference, 2001.

[68] P. Nsame, Y. Savaria, “Virtualising on-chip bus interfaces for improved embedded

processor system performance,” IP Based Design 1999, December 1999.

[69] J. Nurmi, V. Eerola, E. Ofner, A. Gierlinger, J. Jernej, T. Karema, and T. Raita-aho,

“A DSP core for speech coding applications,” in Proc. ICASSP, vol. 2, 1994, pp.

429-432.

[70] J. F. Wang, L. Y. Liu, C. H. Cheng, M. H. Sheu, Y. L. Jeang, and J.Y. Lee, “An

ASIC design for linear predictive coding of speech signals,” Euro ASIC ’92,

Proceedings, 1992, pp. 288-291.

[71] R. Gumzcj and M. Colnaric, “HW/SW components for real-time systems co-design,”

in Proc. the 23rd International Conference on, 2001, pp. 455-460.

[72] S. Furber, ARM System-on-Chip Architecture, Addison Wesley Publishing Company,

Second Edition, 2000.

[73] Andrew Nightingale, Platform Validation Methodology, ARM technology report, Oct.

2002.

[74] S. Y. Kung and I. J. Lin, “Intelligent multimedia signal processing: technology

application and challenge,” The IEEE 3rd Workshop on Multimedia Signal

Processing, pp. 629-640, Sept. 1999.

[75] H.-J. Stolberg, M. Berekovii, L. Friebe, S. Moch, M. B. Kulaczewski, A. Dehnhardt, and P.

Pirsch, “HIBRID-SOC: a multi-core soc architecture for multimedia signal

processing,” IEEE Workshop on Signal Processing Systems (SIPS 2003), pp. 189-194,

Aug. 2003.

[76] D. J. Katz and R. Gentile, Embedded Media Processing, Elsevier Inc., pp. 1-35,

Chapter 1, 2005.

[77] S. Osborne, A.T. Erdogan, T. Arslan, and D. Robinson, “Bus encoding architecture

for low-power implementation of an AMBA-based SoC platform,” IEE

Proc.-Computer Digital Technology, vol. 149, July 2002.

91

[78] M. S. McCorquodale, E. D. Marsman, R. M. Senger, F. H. Gebara, M. R. Guthaus, D.

J. Burke, and R. B. Brown, “Microsystem and SoC design with UMIPS,” Technology

Report, Center for Wireless Integrated Microsystems, University of Michigan, 2003.

http://www.eecs.umich.edu/~brown/Publications/VLSI-SoC-McC.pdf

[79] Y. L. Jeang, G. Y. Wu, and L. B. Chen, “A Microcontroller IP generator for SOC

platform,” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits

(APASIC2004), pp. 46-49, Aug. 2004.

[80] J. F. Chung and C. T. Lin, “A Low-Cost and Application-Driven Digital Signal

Processor for Speech/Audio Processing,” IEEE Asia-Pacific Conference on Circuits

and Systems (APCCAS 2004), pp. 373-376, Dec. 2004.

[81] J. F. Chung, C. T. Lin, and D. J. Liu, “Multiband Room Effect Simulator for

5.1-Channel Sound System,” IEEE International Symposium on Circuits and Systems

(ISCAS 2005), pp. 2859-2862, May 2005.

[82] S. Agarwala, et. al, “A 600-MHz VLIW DSP,” IEEE Journal of Solid-State Circuits,

vol. 37, no. 11, Nov. 2002.

[83] J. Edwards, “Technical discussion of parallel DSP on the TI TMS320C40,” IEE

Colloquium on General-Purpose Signal-Processing Devices, pp. 7/1-7/5, May 1993.

[84] G. Hui, W. Tian, W. Ni, and D. Wang, “Real-time implementation of 16 kb/s

low-delay CELP speech coding algorithm on a TMS320C30,” IEEE Region 10

Conference on Computer, Communication, Control and Power Engineering, pp.

283-286, Oct, 1993.

[85] C. T. Lin and J. F. Chung, “Design of a Low-Cost and Application-Driven

Speech/Audio Embedded Digital Signal Processor,” WSEAS Transactions on Circuits

and Systems, vol. 3, pp. 1427-1435, Aug. 2004.

[86] C. T. Lin, J. F. Chung, and D. J. Liu, “A Programmable DSP Core Design for

Speech/Audio Codec SoC,” The 2nd International Conference on Circuits and

Systems for Communications (ICCSC 2004), Moscow, Russian, June 29-July 1, 2004.

[87] J. F. Chung and C. T. Lin, “A Low-Cost and Application-Driven Digital Signal

Processor for Speech/Audio Processing,” The 2004 IEEE Asia-Pacific Conference on

Circuits and Systems (APCCAS 2004), vol. 1, Tainan, Taiwan, Dec. 6-9, pp. 373-376,

2004.

92

APPENDIX A

LASP24 Instruction Set and Examples

Notice that the symbol { } represents an optional set. In the set, only choose a term as
operand.

Operand：
 R{0..7}, R{0..7}
 R{0..7}, RAM{0, 1}[#direct]
 RAM{0, 1}[#direct], R{0..7}
 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J,

R+J, J-R}]}
 {FIL[{R_FIL，R_FIL+R, R_FIL+J, R_FIL-R}], EXT[{R_EXT, R_EXT+R,

R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, R+J, J-R}]}, R{0..7}
 RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J,

R_EXT-R}]
 EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, R+J,

J-R}]
 WIN[R], RAM{0, 1}[{R, J, R+J, J-R}]
 WIN[R], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]
 FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}], RAM{0, 1}[{R, J, R+J, J-R}]
 FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}], EXT[{R_EXT, R_EXT+R,

R_EXT+J, R_EXT-R}]

MOV

Description:
 The operation “MOV R1, R3” is to copy data from R1 to R3.
 The operation “MOV RAM0[10], R4” shows that data of RAM bank 0 with the

address 10 is copied to R4.
 The operation “MOV FIL[R_FIL], RAM0[R]” is to copy data from Filter ROM

with the address R_FIL to RAM0 with the address R.
 R, J, R_EXT, and R_FIL are all auxiliary registers. It is used as the address index.

The registers, R and J, is use for RAM bank 0及RAM bank 1. Their data width is

10bits. The registers, R_EXT and R_FIL, are use for EXT RAM and FIL ROM,
and their data width is 14bits。

 RAM{0, 1} indicates internal memory. The symbol EXT indicates external
random access memory. The symbol FIL indicates external read-only memory.

93

Operand
 R{0..7}, R{0..7}, R{0..7}
 R{0..7}, {RAM{0, 1}[{R, J, R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J,

R_FIL-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]}, R{0..7} ADD
Description:

 The operation “ADD R1, R2, R3” means R1+R2→R3.

 The operation “ADD R0, RAM0[R], R1” means R0+RAM0[R]→R1.
Operand：

 R{0..7}, R{0..7}, R{0..7}
 R{0..7}, {RAM{0, 1}[{R, J, R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J,

R_FIL-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]}, R{0..7}
SUB

Description:
 The operation “SUB R1, R2, R3” means R2-R1→R3.
 The operation “SUB R0, RAM0[R], R1” means RAM0[R]-R0→R1, where R is

the internal memory address register.

Operand：
 R6, R7, R7
 R7, #Value (immediate value)

ADDI
Description:

 The operation “ADDI R6, R7, R7” means R6+R7→R7 (integer addition).

 The operation “ADDI R7,+5” means R7+5→R7 (integer addition).
Operand：

 R{0..7}, R{0..7}, R{0..7}
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}
 RAM{0, 1}[#direct], R{0..7}
 {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J,

R_EXT-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], WIN[R], FIL[{R_FIL, R_FIL+R,
R_FIL+J, R_FIL-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT,
R_EXT+R, R_EXT+J, R_EXT-R}]

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J,
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7}

VMPY

Description:
 The operation “MPY R2, R3, R4” means R2×R3→R4.
 The operation “MPY R1, RAM0[20]” means R1×RAM[20]→R1.

 The operation “MPY RAM1[R], EXT[R_EXT+R], RAM0[J] means
RAM1[R]×EXT[R_EXT+R]→RAM0[J].

94

Operand：
 R{0..7}, R{0..7}, R3
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}
 {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}, R{0..7}
 {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J,

R_EXT-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], WIN[R], FIL[{R_FIL, R_FIL+R,
R_FIL+J, R_FIL-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT,
R_EXT+R, R_EXT+J, R_EXT-R}]

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J,
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7}

 WIN[R], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]

MAC

Example:
 The operation “MAC R2, R1, R3” means R2×R1+R3→R3.
 The operation “MAC R1,RAM0[20]” means R1×RAM[20]+R3→R1.

 The operation “MPY RAM1[R], EXT[R_EXT+R], RAM0[J]” means
RAM1[R]×EXT[R_EXT+R]→RAM0[J].

 The operation “MAC RAM0 [j], FIL [R_FIL+J], EXT[R_EXT+J]” means
(RAM0[J]×FIL[R_FIL+J]→EXT[R_EXT+J])+ACC→R3.

Operand：
 R{0..7}, #Value

SHF
Example:

 The operation “SHF R2, +5” means that R2 shifts right 5 bits.
 The operation “SHF R1, -3” means that R1shifts left 3 bits.

 Notice that the operation can shift right or left 24 bits at most.
Operand：

 R{0..7}, R{0..7}, R{0..7}
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}
 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J,

R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7}
AND

Example:
 The operation “AND R2, R3, R4” means R2 Bit-wise-AND R3→R4.
 The operation “AND R1, RAM0[20] means R1 Bit-wise-AND RAM[20]→R1.

 The operation “AND R0, EXT[R_EXT], R2” means R0 Bit-wise-AND
EXT[R_EXT]→R2.

95

Operand：
 R{0..7}, R{0..7}, R{0..7}
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J,
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7}

OR
Description:

 The operation “OR R2, R3, R4” means R2 Bit-wise-OR R3→R4
 The operation “OR R1, RAM0[20]” means R1 Bit-wise-OR RAM[20]→R1

 The operation “OR R0, EXT[R_EXT], R2” means R0 Bit-wise-OR
EXT[R_EXT]→R2

Operand：
 R{0..7}, R7

FIX
Description:

 The operation “FIX R1, R7” means that the value of the float-point register R1
transfer the value of signed integer to R3.

 The range of FIX is a 14-bit sign number (from -8192 to 8191).
Operand：

 R7, R{0..7}

Float Description:
 The operation “FLOAT R7, R1” means that the 14-bit sign value of the integer

register R7transfer the floating-point value to R1.

96

APPENDIX B

Addressing Modes

OPCODE RC000 RA RB I/R Unused (NU)
23 ~ 19 5 ~ 018~16 15~13 12~10 9 ~ 7 6

RC <= RA OP RB or RC <= RA

OPCODE RAM001 R/W R Address
23 ~ 19 18~16 15~14 13 12~10 9 ~ 0

RAM[Add] <= OP R or R <= RAM[Add] or R <= R OP RAM[Add]

OPCODE RAM111 R/W RA AR
23 ~ 19 18~16 15~14 13 12~10 9 ~ 7

RAM[Add] <= OP RA or RC <= RAM[Add] or RC <= RA OP RAM[Add]

RC
6 ~ 5 4 ~ 0

Unused

OPCODE NU011 FIL EXT RAM1
23 ~ 19 18~16 15~14 13~12 9 ~ 8

VC <= VA[AR_A] OP VB[AR_B]

RAM0
7 ~ 6 5 ~ 4

VC
11~10 3 ~ 2

VA VB
1 ~ 0

(d) Vector addressing mode

(c) Indirect addressing mode

(b) Direct addressing mode

(a) Register addressing mode

00
01
10
11

13~12 11~10
FIL

FIL+AR0
FIL+AR1
FIL-AR0

FIL

EXT
EXT+AR0
EXT+AR1
EXT-AR0

RAM1RAM0EXT VC VA VB
9 ~ 8 7 ~ 6 5 ~ 4 3 ~ 2 1 ~ 0
AR0
AR1

AR0+AR1
AR1-AR0

AR0
AR1

AR0+AR1
AR1-AR0

RAM0 RAM0RAM0
RAM1 RAM1 RAM1

EXT EXT WIN
FILR3 —

OPCODE Condition/ValueR/C Literal
23 ~ 19 18 17~15 14~12

R <= R OP Literal or PC <= (Condition) Literal

R
11 ~ 0

(e) Immediate addressing mode

97

VITA
博士候選人簡歷

姓名： 鍾仁峯

性別： 男

生日： 民國 60 年 1 月 2 日

籍貫： 台灣省苗栗縣

論文題目：

 中文：多媒體系統晶片平台設計與應用研究

 英文：Design and Application of Multimedia System-on-Chip Platform

學歷：

1. 民國 86 年 6 月私立中華工學院資訊工程系學士畢業

2. 民國 88 年 6 月私立中華大學電機工程系碩士畢業

3. 民國 88 年 9 月國立交通大學電機與控制工程學系博士肆業

榮譽：

1. 參加 88 年度教育部大專院校矽智產 (SIP) 設計競賽，榮獲 Hard IP 優

等獎、書面報告特色獎。

2. 參加 2004 年全國 SOC 設計消費性電子類競賽，榮獲特優獎。

經歷:

1. 民國 89 年間擔任電機與控制工程系 VLSI 課程助教。

2. 民國 90 年 9 月至 91 年 1 月擔任中華大學資訊工程系兼任講師。

3. 民國 92 年 10 月至 93 年 10 月參與經濟部科專計劃專案-模組化關鍵音訊

IP 技術開發。

98

PUBLICATION LISTS

博士候選人著作目錄

姓名： 鍾仁峯 (Jen-Feng Chung)

期刊部分：

[1] C. T. Lin and J. F. Chung, “Design of a Low-Cost and Application-Driven

Speech/Audio Embedded Digital Signal Processor,” WSEAS Transactions on Circuits

and Systems, vol. 3, pp. 1427-1435, Aug. 2004.

[2] C. T. Lin, C. L. Chang, and J. F. Chung, “New Horizon for CNN: with Fuzzy

Paradigms for Multimedia,” IEEE Circuits and Systems Magazine, vol. 5, Issue 2, pp.

20-35, 2005.

[3] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support-Vector-Based

Fuzzy Neural Network for Pattern Classification,” IEEE Transactions on Fuzzy

Systems, vol. 14, pp. 1-12, Feb. 2006.

[4] C. T. Lin, C. M. Yeh, J. F. Chung, S. F. Liang, H. C. Pu, “Support-Vector-Based Fuzzy

Neural Networks,” International Journal of Computational Intelligence Research

(IJCIR), vol. 1, pp. 138-150, Jan. 2006.

[5] C. T. Lin, J. F. Chung, D. J. Liu, H. W. Hein, “Incorporating Spectral Dynamics into

LSF Vector Quantization with Error Shaping,” accepted paper for publication,

International Mathematical Journal, Oct. 2005.

[6] C. T. Lin, J. F. Chung, H. C. Pu, “Pedestrian Detection System,” accepted paper for

publication, International of Journal Fuzzy Systems, 2005.

會議論文部分：

[1] C. C. Chen, J. F. Chung, and C. T. Lin, “A Speech Coding Processor Design for

MELP Algorithm,” The 11th VLSI Design/CAD Symposium, KengTing, Taiwan, pp.

323-326, Aug. 2000.

99

[2] C. T. Lin, Shi-An Chen, Chao-Hui Huang, and J. F. Chung, “Cellular Neural

Networks and PCA Neural Networks Based Rotation/Scale Invariant Texture

Classification,” 2004 IEEE International Joint Conference on Neural Networks, vol. 1,

pp. 153-158, 25-29 July 2004.

[3] S. A. Chen, J. F. Chung, S. F. Liang, and C. T. Lin, “Cellular Neural Network (CNN)

Circuit Design for Modelling of Early-Stage Human Visual System,” IEEE

International Workshop on BioMedical Circuits and Systems (BioCAS 2004),

Singapore, pp. 191-194, Dec. 1-3, 2004.

[4] C. T. Lin, J. F. Chung, and D. J. Liu, “A Programmable DSP Core Design for

Speech/Audio Codec SoC,” The 2nd International Conference on Circuits and Systems

for Communications (ICCSC 2004), Moscow, Russian, June 29-July 1, 2004.

[5] J. F. Chung and C. T. Lin, “A SoC Integration Platform for Digital Audio

Applications Using FPGA Verification Environment,” The 15th VLSI Design/CAD

Symposium, KengTing, Taiwan, Aug. 10-13, 2004.

[6] J. F. Chung and C. T. Lin, “A Low-Cost and Application-Driven Digital Signal

Processor for Speech/Audio Processing,” The 2004 IEEE Asia-Pacific Conference on

Circuits and Systems (APCCAS 2004), vol. 1, Tainan, Taiwan, Dec. 6-9, pp. 373-376,

2004.

[7] Y. C. Cheng, J. F. Chung, C. T. Lin, and S. C. Hsu, “Local Motion Estimation Based

on Cellular Neural Network Technique for Image Stabilization Processing,” The 9th

IEEE International Workshop on Cellular Neural Networks and Their Applications

(CNNA 2005), Hsinchu, Taiwan, May 28-30, 2005.

[8] J. F. Chung, C. T. Lin, and D. J. Liu, “Multiband Room Effect Simulator for

5.1-Channel Sound System,” The 2005 IEEE International Symposium on Circuits

and Systems (ISCAS 2005), Kobe, Japan, pp. 2859-2862, May 23-26, 2005.

[9] C. T. Lin, S. A. Chen, J. F. Chung, and Y. C. Cheng, “CNN-Based Local Motion

Estimation Chip for Image Stabilization Processing,” accepted paper for Lecture, The

2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006), Island of

Kos, Greece, May 21-24, 2006.

