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多媒體系統晶片平台設計與應用 
 

學生：鍾仁峯          指導教授：林進燈 博士 

國立交通大學電機與控制工程學系 

 

摘      要 

 

 多媒體訊號處理涵蓋兩大核心領域，一為影像及視訊處理，另一為語音及音效

處理。它的應用適合於家庭娛樂系統中及資訊科技產業，具體的產品包括寬頻網路

影音系統、數位廣播系統、多聲道視聽系統、及高音質隨身音樂媒體等。這些系統

為了滿足人類聽覺的需要，即時運算是必須的。然而，多媒體處理計算的需求是由

訊號處理的工作分配，若執行高的取樣頻率也就是處理較大的資料量，則需要複雜

運算。以多媒體的角度而言，它必須處理多不同類型的數據，但使得處理的工作變

得複雜化。本論文針對特別利用在語音與音訊處理上的計算特性，開發出一種新型

的多媒體處理的架構來解決快速驗證平台的問題。 

 多媒體系統晶片平台的開發以聲音為導向，針對消費性 3C 產品做整合性的開

發設計，它不僅適用多聲道音源輸入與不同喇叭或耳機輸出都可以增強音效的 SoC

雛型設計環境，以便對所需求的規格來確定主系統的架構。在這個規劃中我們提出

了三階段的週期:系統規劃週期、系統設計週期、及系統驗證週期。多媒體系統處理

核心為模組控制，模組控制就像是一個軟體的智財 (IP) 插座，可以透過相同的電

子設計自動化 (EDA) 平台環境進行整合，以微處理器來分配系統資源，提供數位

訊號處理器執行所需的功能。系統匯流排依循 AMBA 匯流排的時序設計，並提供

IP 標準的的介面，充分發揮系統執行的效能。用傳統微處理器和數位訊號處理器的
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相互搭配架構，是未來數位電子的趨勢，亦是降低硬體成本的考量。 

 本論文中的多媒體系統晶片平台提出了一個 FPGA 的設計與驗證方法，系統晶

片設計部分包含了系統匯流排、微處理控制器、周邊數位 I/O、16 位元空間迴響器、

及 24 位元適用於音訊系統之數位訊號處理器等。可程式化微處理控制器負責系統

晶片內部的流程處理和周邊 I/O 控制；24 位元數位訊號處理器因其架構與指令集是

特別針對音訊系統的主要演算法做考量；16 位元空間迴響器則是一個即時 3-D 音效

處理的智財 (IP)，這兩個處理器分別並連接於高速及周邊匯流排上。系統晶片驗證

部分包含語音線性估測編碼的參數求取、音高位置估測、和空間迴響器等演算法的

資料測試與訊號驗證。此平台搭配處理器指令與 gated-clock 的方法，可適應性的

調整算數邏輯單元的使用，具有省功率運作的特性，非常適合音訊多媒體系統中可

攜式與低功率要求的應用。使用 FPGA 經過驗證與測試整個系統的執行效能平均達

80MIPS，功率消耗在 90mW。此設計是跨平台的實現方法，未來可整合到任意單一

矽晶片之中。 
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Abstract 

Multimedia signal processing involves two important fields: one is image and video 

processing; the other is speech and audio processing. It is suitable to be applied into the 

system of home entertainment and the industry of information technology, for example, 

the concrete products such as a wide-band video-audio system of networks, a digital 

broadcast system, a multi-channel video-audio system, a high-quality walkman, etc. To 

satisfy the requirement of human hearing, it is necessary for real-time processing. 

However, the assignment of multimedia signals depends on the requirement of 

computational power. If a system has to process mass data, i.e., high operating frequency, 

it should perform complex operations. Because data is composed of different signals in 

the multimedia world, the work of signal processing becomes complication. In this thesis, 

we make use of computational characteristics of speech and audio processing and design 

a new architecture of multimedia processing in order to solve the problem of verification 

quickly. 

Based on the conception of sound processing, a multimedia System-on-Chip (SoC) 

platform, which can integrate 3C consumer products, is designed. It is not only suitable 

for multi-channel sound input or output such as speakers or headsets, but also achieves 
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the effect of virtual sound. We are in accordance with three phase cycles as specification, 

design, and verification for assisting the platform design. The kernel of the SoC platform 

is like a module control. The module control is just like as the software socket of 

intelligence property (IP). Thus, we can integrate with IPs via the environment of 

electronic design automation (EDA). In the platform, a microprocessor is as the master to 

assign system resources. The system bus meets the timing of AMBA and offers the 

standard AMBA interface to promote performance and to reduce hardware costs. The 

architecture of traditional microprocessor and digital signal processor (DSP) is the trend 

of digital circuit design in the future. 

In this thesis, we present design and verification of the multimedia SoC platform. 

The platform design integrates the system bus, microprocessor, memory controller, 

peripheral I/O, 16-bit reverberator, 24-bit DSP, etc. The programmable microprocessor 

manages internal data flow and digital I/Os. The 24-bit DSP is specified as its 

architecture and instruction set for sound algorithms. The 16-bit reverberator is 3-D 

virtual sound IP performed in real time. The two processors are connected to the 

high-performance bus (AHB) and the peripheral bus (APB), respectively. The platform 

verification includes the speech parameters of linear predictive coding, pitch estimation, 

and reverberation. These algorithms are used to test data flows and to verify functionality 

for the proposed SoC platform. By using the gated-clock scheme, the platform has 

reducing power characteristics so that it can adaptively adjust the usage of parallel ALUs. 

Finally, under FPGA verification and testing, on average the whole performance obtains 

80MIPS, and power consumption is about 90mW. Due to a cross-platform implemented 

scheme, it can be applies into an embedded and portable multimedia system and can also 

be integrated to a single silicon chip. 
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CHAPTER 1 

INTRODUCTION TO MULTIMEDIA PROCESSING 

 

1.1 Introduction 

Multimedia signal processing, which represents a major part of the latter category, 

involves the joint processing of digital information in various representations. It covers a 

very broad spectrum of applications: 

● Audio and speech processing: audio compression, Dolby surrounding; 

● Image and video processing: resolution conversion, image enhancement, image 

restoration, image and video compression; 

● Content-based indexing and retrieval: feature extraction, pattern recognition, face 

detection/recognition, fusion of multi-modality; 

● 2-D and 3-D graphics: volume rendering, modeling transformation, 

computer-assisted animation, virtual reality, etc. 

As speech, audio, image, and video are playing increasingly dominant roles in multimedia 

information processing, content-based retrieval has a broad spectrum of application. 

Processing the signal using a filter circuit can remove or at least reduce the unwanted part 

of the signal. Increasingly nowadays, the filtering of signals to improve signal quality or to 

extract important information is done by digital signal processing techniques rather than by 

analog electronics. 
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1.2 Motivation 

Multimedia systems [1] have attracted considerable media attention because of their 

promise to transform ordinary personal computers into entertainment centers that also 

function as powerful business tools. However, applications for these systems also present 

major design challenges to processor developers because multimedia applications such as 

video games, Dolby AC-3, and MPEG-2 video [2] have a mix of processing requirements 

that go beyond the capabilities of general-purpose processors. Multimedia applications [8] 

must not only meet stringent specifications including real-time processing, low-power 

dissipation, and small die size, but also be inexpensive for access to the consumer market.  

For the multimedia market, processor developers must have the utmost sensitivity 

toward the processors effect on the final product’s price. Because of this, the processor 

must reach a balance where hardware utilization is maximized while at the same time 

allowing for enough throughputs to be achievable for several applications. A number of 

standards have been proposed in the field of audio and video compression [3]. 

Communication applications, such as video telephony, are covered by the ITU-T standards 

H.261 and H.263 [61]-[62]. Playback of video stored on CD-ROM, TV broadcast, and 

video-on-demand are applications aimed by the ISO standards MPEG-1 and MPEG-2. 

Other important multimedia signal processing algorithms beside compression deal with 

content-based indexing and retrieval, speech analysis and synthesis, 2- and 3-D image 

animation, or scene modeling and understanding. The growing complexity of the 

algorithms, often associated with real-time constraints, leads to increasing computational 

demands. Having to deal with multiple streams of different data types further complicates 

the processing in a multimedia environment. 

Multimedia processing requests extreme demands on computing-, transmission-, and 
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storage-devices. Especially video consists of large data volumes, which makes it difficult 

to handle the data in their raw form. Therefore, compression is a key technology for 

multimedia applications. Thus, it is necessary for a powerful digital signal processor (DSP). 

Like a general-purpose microprocessor, DSP is a programmable device, with its own native 

instruction code. DSP is the capable of carrying out millions of floating point operations 

per second, and like their better-known general-purpose cousins, faster and more powerful 

versions are continually being introduced. It can also be embedded within complex 

“system-on-chip” devices, often containing both analog and digital circuitry. To perform 

multimedia tasks, many companies develop dedicated hardware such as hardwired 

solutions customized for a given application [2]-[8], or specialized processors that appear 

to be hardwired solutions [9]-[10]. These designs work well for their intended purposes but 

their inherent inflexibility forces developers to make modifications for each new 

application. Furthermore, dedicated hardware means that design engineers must 

refamiliarize themselves with a new architecture for each new system they develop.  

While complexity and sophistication of multimedia algorithms continue to grow, 

commercial success of multimedia applications essentially relies on efficient VLSI 

implementation [60]. Today’s standard processing devices are generally not able to fulfill 

the demands of multimedia processing without special adaptation. Programmable high-end 

general-purpose processors, as designed for the PC and workstation market, are typically 

weak at signal processing and moreover too expensive and power-consuming for 

standalone multimedia applications. Conventional digital signal processors, although 

optimized for processing of speech and audio signals, still lack the required high 

performance for video signal processing. In consequence, special architectural approaches 

are required to deliver sufficient multimedia processing performance at low cost. 

Currently available standard processing devices are not able to fulfill the requirements 
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of multimedia processing without special adaptation. Architectural enhancements have 

therefore been introduced aiming to exploit the special algorithm characteristics. Current 

processors, however, mainly rely on massively available data parallelism and highly 

predictable program flow to achieve performance gains. While this approach is feasible for 

algorithms dominated by block-based processing style, as encountered, e.g., in traditional 

video compression schemes, it will not be sufficient for emerging applications 

characterized by higher complexity and decreasing computational predictability. This 

thesis discusses innovative architectural approaches that promise a more exhaustive 

exploitation of parallelism and a more flexible utilization of processing resources. First, 

computational characteristics of current and future multimedia algorithms are analyzed. 

Then, architectural enhancements employed - by state-of-the-art multimedia processors 

with multi-core architecture [75], mainly targeting compression schemes, are shortly 

reviewed. The remaining part of the thesis presents reconfigurable computing, 

simultaneous multi-threading, and associative controlling as three promising architectural 

concepts able to deal with the future demands of emerging multimedia applications. 

 

1.3 Objectives  

Consider the components of a typical media processing system, shown in Fig. 1-1. 

Here, an input source presents a data stream to a processor’s input interface, where it is 

manipulated appropriately and sent to a memory subsystem. The processor core(s) then 

interact with the memory subsystem in order to process the data, generating intermediate 

data buffers in the process. Ultimately, the final data buffer is sent to its destination via an 

output subsystem. 
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Fig. 1-1. Components of a typical media processing system. 

 

Multimedia processing is that the actual work done by the media processor core. The input 

data varies widely in its bandwidth requirements. Raw audio might be measured in tens of 

kilobits/second (kb/s), and raw video could entail tens of megabytes per second (Mbytes/s). 

Then, it is clear that the media processor needs to handle different input formats in 

different ways 

The computational requirements of multimedia processing are dominated in the first 

place by the signal processing tasks, requiring complex operations to be performed on 

large data volumes at high sample rates. Typically, real-time constraints arise from the 

need to satisfy human sound perception demands. Having to deal with multiple streams of 

different data types further complicates the processing task. State-of-the-art multimedia 

architectures employ a number of architectural measures in order to exploit the 

computational characteristics of speech and audio processing algorithms in particular. So 

far, the design focus has been on efficient implementation of the computation-intensive 

low-level parts of the algorithms-as dominating in frame-based schemes. Depending on the 

targeted application field, dedicated and programmable approaches can be distinguished. 

The design of dedicated VLSI implementations for selected multimedia processing 

schemes is driven by the need for inexpensive, highly integrated systems targeting the 

consumer market. This goal is achieved by deep adaptation of modules to special 
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algorithms and algorithm classes. Programmable architectures, on the other hand, provide a 

more general platform, offering the flexibility to allow various algorithms being executed 

on the same hardware by only software modifications. 

To achieve computing performance, the application-driven necessity to provide 

processors with both microprocessor and DSP functionality enforces new architectures and 

approaches. Simply using two cores—a microprocessor and a DSP core—is 

multitasking-effective as resources are often doubled. The 24-bit architecture presented 

here provides general purpose micro-processing as well as DSP functionality through a 

single-core and a unified architecture, respectively. The optimal solution is an 

application-oriented processor core [69], [70], having a lower cost than a general-purpose 

DSP. The parallel architecture of DSP can efficiently execute vector and matrix operations 

without extra overhead. In order to implement an application-driven DSP, we use a 

methodology for hardware/software (HW/SW) co-verification [71] and optimize the 

processor architecture and instruction sets. High flexibility in use, small area on silicon, 

high data throughput, and fast portability to a wide range of technologies are our main 

targets in the core development. 

The modern embedded system has moved toward the target of system integration and 

implementation. Reuse [50] is done at the chip level called intellectual property (IP) core 

which represents the functions of specification domains like multimedia applications. 

These modules are integrated into System-on-Chip (SoC) [72] which is a typical 

architecture. We investigate architectural techniques to facilitate analysis and integration 

for heterogeneous and general/complex SoC applications in this thesis. We use a 

microcontroller and digital signal processor application to validate the embedded platform 

prototype. The concept of platform refers to a family of architectures satisfying ARM 

defined constraints [54], and allowing customizations and substantial re-use of hardware 
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and software modules. We developed a base architecture with customization or 

parameterization options to speed-up derivative implementations while reducing the 

HW/SW overhead. The definition of the SoC platform IP is the result of a trade-off process 

involving reusability, overall SoC integration effort [67], performance [68] and power 

optimizations [77]. Our focus is on efficiency of the hardware and software resources in 

the context of a self-adapting architecture with autonomic features. The motivation for 

developing such IP is to facilitate integration of SoCs. Because the platform is meant to be 

easily customized, it is essential to meet stated resource-efficiency goals. 

The SoC integrated platform provides multi-function system backbone for various 

multimedia applications. The new proposed SoC integrated platform which combines 

microprocessor, digital signal processor (DSP), memory, and other functional modules 

such as GPIO (General-Purpose Input/Output), I2S (Inter-IC Sound), and communication 

(UART) into a single IC is popular recently. To verify these functions of the proposed 

platform for audio and speech processing, the FPGA (Field Programmable Gate Array) 

rapid prototype approach will be used. FPGA were primarily used for prototyping and 

lower volume applications in years and custom ASICs were used for high volume, 

cost-sensitive designs. In the thesis, we will describe the proposed platform, IP reuse 

design experiment based on a methodology in [66]. 

The contribution of this thesis is to propose a multimedia SoC platform, which can 

integrate 3C consumer products, for sound processing. The platform can solve low-cost 

consideration and construct quickly the components of multimedia signal processing in the 

standard bus. The platform using two cores, a microprocessor and a DSP core, can promote 

computational performance. Especially DSP, it is designed as the sound signal processor 

for the consideration of architecture and instruction set, and has low-power characteristics 

with gated-clock technology [37]. Due to their high capacitive load which makes them a 
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major contributing factor to the overall power consumption of the SoC device, we take 

advantage of instruction or control types to decide which component needs to be disabled. 

In addition, bus encoding techniques [77] can reduce the power consumption on a bus by 

mapping the information conveyed on the bus to a form which has less transition activity 

than the original. This is to reduce the consumption of the electric current. Due to 

cross-platform design which is not limited by any synthesis tool or FPGA, this method can 

be easily verified and fabricated as ASIC.  

 

1.4 Organization of the Thesis 

In this thesis, the rest of the dissertation is organized as follows. Chapter 2 describes 

in multimedia the application of sound signal processing including artificial reverberation 

and speech compression. These three sound processing will be applied to the SoC platform. 

According to the reverberation principle, we design a real-time reverberator with the 

pseudo-random coefficient method. Afterward, Chapter 3 would implement an 

application-driven digital signal processor. We consider for special addressing modes, 

matrix and vector processing, power optimization, and the architecture of reverberator. 

Continuously, the experimental results and comparison would be illustrated in Chapter 4. 

In order to be able to apply into the SoC platform for sound signal processing, Chapter 5 

constructs a multimedia integrated platform. The platform is controlled by a built-in 

microprocessor, and it can capture and play sound through the standard inter-IC sound 

interface. Hence, the multimedia platform can call a programmable SoC platform. Finally, 

conclusions and future works are made the last chapter. 
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CHAPTER 2 

MULTIMEDIA IN SOUND PROCESSING 

 

2.1 Introduction 

Sound processing is one of the many applications of digital signal processing. 

Three-dimensional (3-D) sound is becoming increasingly important in scientific, 

commercial, and entertainment systems [8] for human life. It can greatly enhance auditory 

interfaces to computers, improve the sense of presence for virtual reality simulations, and 

add excitement to computer games. Recent extensions of physical and behavioral studies 

have revealed that the external ear plays an important role in spatial hearing. Due to the 

rapid growth in computational power, many new virtual auditory systems could be 

implemented in real time. In the Section, we introduce two techniques of 3-D sound 

processing as artificial reverberation and one basic speech processing as linear prediction 

coding (LPC) and pitch estimation (PE), respectively. 

 

2.2 Artificial Reverberation 

Today, a multichannel [9] playback system has been frequently used in cinema or 

home video. In this thesis, a stereo-channel multiband room effect simulator [81] with 

friendly control interface is presented. In order to obtain different music quality, we design 

a new room simulator to be suitable for the multichannel surround sound system [10].  

The impulse response for room simulation is the result of the many reflections of a 

sound that occur in a room. The response consists of direct sound, early reflection, and 

fused reflection. In 1961, the first room effect algorithm was proposed by Schroeder [11]. 
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Then Schroeder’s algorithm was extended by Moorer [12] in 1978. The room effect 

introduces a spatial dimension to a piece of recorded sound, which means that it can be 

used to model a specific acoustic environment in which to affect a dry unaltered signal. 

Long reverberation times provide the feeling of a large hall, and short reverberation times 

(RT) give the impression of smaller rooms. We refer to Moorer’s reverberator using FIR 

and IIR filters to design artificial reverberation called a reverberator. The impulse response 

for an acoustic room is depicted in Fig. 2-1. This response includes direct sound, early 

reflections, and late reverberation. The main contribution of this thesis should be a 

specification of the requirements made on the reverberation algorithm, which will be 

preparing for real-time processing and multichannel outputs. The reverberation algorithm 

is based on an exponentially-decaying pseudo-random FIR filter [13] to represent the early 

reflections segment, with a feedback delay path to create the dense reverberant field. In 

addition, an equalizer offers the capability of both compensating for defects and fine tuning 

the system. With an equalizer, certain frequency ranges can be either increased or cut. We 

also design a 10-band equalizer as like Winamp2 to control how finely the frequency 

pattern can be amplified or attenuated and setup several selective modes for selection. 

Finally, the output of the room simulator can be connected to modified 5.1-channel Dolby 

surround decoder with [14]. 

Early
Reflections Late Reflections

Early
Reflections Late Reflections

time  
Fig. 2-1. Ideal impulse response of an acoustic room. 
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Reverberation [15] is probably one of the most heavily used effects in music. 

Reverberation effects can be achieved by using any combination of filter techniques. The 

FIR filter, comb filter, and all-pass filter are the basic structures that have been combined 

in different ways in an attempt to imitate the effects of various rooms. 

 

2.2.1 Filters 

Filtering techniques are used to perform convolution with input sound sources. A FIR 

filter is used to model the segment of early reflection. This is because each reflected signal 

could be distinguished by human ears in this segment. The parallel comb filters and 

cascade all-pass filters are added to generate its late reverberation segment. In order to 

increase the echo density, the output of the parallel comb filters is fed into one or more 

all-pass filters (Fig. 2-2(a)) in series. Each all-pass filter has a multiplicative effect on the 

number of echoes, but prevents coloration due to the all-pass filter’s flat frequency 

response.  

In general, a high order FIR filter is considered to model the early reflection segment, 

but it would take too much execution time for computation. To improve this problem, a 

simple delayed feedback loop around the FIR early segment is used to reduce the FIR 

order. The order of the FIR filter is decided by the first comb filter delay and the 

reverberation length in our system. However, room impulse responses consist of very 

dense series of echoes that cannot be practically realized using this architecture. Since the 

eigenfrequencies of rooms have a rapid decay for high frequencies, and a 

frequency-dependent reverberation time can be implemented with a low-pass filter. Moorer 

suggested a modified comb filter with a low-pass filter (Fig. 2-2(b)) in feedback loop to 

take frequency-dependent decay into consideration to solve this problem. 
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Fig. 2-2. (a)All-pass filter and (b) modified comb filter, where M, g, a represent the delay 
length, the gain factor, and the coefficient, respectively. 

2.2.2 FIR Early Reflection 

The impulse response of sound consists of direct sound, early reflections shown as Fig. 

2 and exponentially decaying late reverberation (with an IIR filter to reduce computational 

complexity).  
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Fig. 2-3. Impulse response with early reflections. 
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The early reflections often derived from a room model, e.g., as reflections caused by 

an image source. Reflections during about 20~80ms after sound is triggered are heard 

together with the direct sound as one single auditory event. An FIR filter is used to 

generate these early reflections. Since the early reflections are relatively sparse and span a 

relatively short time, they can be implemented using tapped delay lines (Fig. 2-4). This 

idea was apparently first suggested by Schroeder in 1970 [11] and evidently first 

implemented by Moorer [12]. A key parameter in determining the quality of the 

reverberation is the echo density. In the case, to increase echo density, the FIR order will 

be large. Of cause, this causes long computing time. Hence, we can increase non-zero 

values with pseudo-random coefficients and select suitable for memory spaces to reduce 

the FIR order but not affect sound qualities.  

+ +
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Fig. 2-4. Impulse response with early reflections. 

 

2.2.3 Reverberator 

Different audio effects can be performed by designing and implementing suitable 

filters. The proposed reverberator shown in Fig. 2-5 is composed of a FIR filter with 

pseudo-random coefficients (Fig. 2-6(a)), 10 parallel comb filters, 4 cascade all-pass filters, 

and a pair of late low-pass filters. The FIR filter models the segment of early reflection. 

The parallel comb filters and cascaded all-pass filters model the segment of late 

reverberation, and late low-pass filters are to produce the feeling of the distance from 
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sound source. Note that the delay length of comb filters must be carefully chosen to avoid 

the coloring phenomenon shown as Fig. 2-6(b) and (c), respectively. 

The input of the room simulation is the mono signal xR(n) and xL(n) respectively. 

These two mono input signals are added to the left and the right room signals after going 

through a delay line Del2, and then go through another delay line (FIR filter). The total 

sum of the early reflections made by FIR filter then goes to parallel circuit of comb filters 

and cascade all-pass filters which implements subsequent reverberation. The generated 

reverberant signals eL(n) and eR(n) are added to the direct signals (xL(n) and xR(n)) and 

early reflections (ERL(n) and ERR(n)). 

Ref_Scale: Reverberation length
BW  : Bandwidth of low-pass filters
Del2 : First reflection arrive time 

All-pass
1

Comb1
filter

Ref_scale

BW

Del2

)(neL )(neL

)(neR )(neR

Input parameters

)(nERL

)(nERR

FIR 
filter
FIR 
filter

Comb2
filter

Comb3
filter

Comb4
filter

Comb10
filter

)(nyL

)(nyR

)(nxL

)(nxR

D
el2

All-pass
3

All-pass
2

All-pass
4

Low-pass
filter

Low-pass
filter

Low-pass
filter

Low-pass
filter

 

Fig. 2-5. The arcticture of reverberator [24]. 
 

In order to obtain a high quality spatial impression, it is not necessary to correlate the room 

signals eL(n)+ERL(n) and eR(n)+ERR(n). In Fig. 2-5, these input parameters are Ref_Scale, 

Del2, and BW. Ref_Scale denotes the reverberation length. It will effect the order of FIR 

filter and the delay lengths of comb filters and all-pass filters, Del2 denotes the first 

reflection arrival time, and BW denotes the bandwidth of the late low-pass filters.  
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(b)                                   (c) 

Fig. 2-6. (a) FIR modeling with exponentially-decaying pseudo-random coefficients; (b) 
Additional coloring phenomenon of a comb filter; and (c) Coloring reduction. 

 

The identification process is based on the knowledge of the input x(n) and the output 

y(n) of the 1024-tap FIR as  

     ∑
=

−⋅=
1023

0

)()()(
i

inxihny ,                         (2.1) 

where n is the number of infinite sequences, and h(i) represents pseudo-random 

coefficients. The FIR requires 1024 MAC operations. We use two circular buffers for input 

and output sequences to perform 1024-tap operations. According to the function of FIR 

early reflections, Eq. (2.1) can be changed as 
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where block represents the length of a spatial circular buffer, and j is equal to block. The 

spatial buffer is larger than the FIR order. Due to random coefficients, sound reflections 

can be represented by impulse responses from any direction in a room. The pseudo-random 

coefficient is generated by 

)2),1()1(()( -p/Lerandp=floorih ⋅+ ,                 (2.4) 

where the parameter p is equal to 2×(the density of non-zero filter taps)/(sampling rate 

(Hz)) and Le=ceil(sampling rate × reverb time). These two signals (p and Le) indicate the 

probability of non-zero filter taps and the length of FIR filter (in samples), respectively.  

We use two different densities per second of non-zero filter taps, 1.92s reverb time, and 

44,100Hz sampling rate to generate the FIR coefficients shown in Fig. 2-7. The generated 

sound quality and effect using coefficients in Fig. 2-7(right) are better than those of Fig. 

2-7(left). These coefficients are only 0, 1, and -1. For a multi-tap FIR implementation, it 

can reduce MAC operations and even not need multiplication. To avoid too large 

accumulated values, a shifting operation is added into Eq. (2.2) after multiplication as 

[ ] 32/)()2()1()( delayxihjyjy ⋅−−= ,  10240 ≤≤ i .          (2.5) 

In order to simply design complexity for implementing reverberation, hence, we reduce 

FIR orders and the numbers of comb filters. The FIR filter uses pseudo-random 

coefficients sequence of 1's, 0's, and -1's, and the tap is less than 1024 orders. We 

recommend that Schroeder proposed the architecture of four-parallel comb filters and 
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two-cascade all-pass filters as the implementing method on hardware. 

   

Fig. 2-7. The un-weighted pseudo-random FIR sequence of 1's, 0's, and -1's with 4,000 
(left) and 14,400 (right) densities per second of non-zero filter taps, respectively. 

 

2.3 Speech Processing 

One of the powerful speech analyses is Linear Prediction Coding, or LPC analysis as 

it is commonly referred. In the LPC analysis, the short-term correlation between speech 

samples (formants) is modeled and removed by a very efficient short-order filter. Another 

equally powerful and related method is pitch estimation (PE). The long-term correlation of 

speech samples are analyzed in PE. A vocal tract model, as described in [30] can be 

estimated using LPC analysis and approximated by an all-pole filter. We shall describe 

briefly the ways for finding LPC coefficients and pitch information as follows. 

 

2.3.1 Linear Predictive Coding 

In order to model the time-varying nature of the speech signal whilst staying within 

the constraint of our LPC analysis, i.e., stationary signal, it is necessary to limit our 

analysis to short-time blocks of speech. This is achieved by summations over finite limits, 
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i.e., 

),( jinφ  = E{s(n − i)s(n − j)} 

 =∑
m

nn (m - j)(m - i)SS ,                      (2.6) 

where E is the mean squared error, the waveform segment, Sn(m), is assumed to be zero 

outside the interval 0 ≤ m ≤ N −1, and N is the length of the sample sequence. We use the 

auto-correlation method to approach the interpretation of Eq. (2.6). Since, for N ≤ m ≤ N+p, 

we are trying to predict zero sample values (which are not actually zero), the prediction 

error for these samples will not be zero. Assuming that we are interested in the future 

prediction performance, the limits for Eq. (2.6) can then be expressed as 
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for 1 ≤ i ≤ p and 0 ≤ j ≤ p. Equation (2.8) can be reduced to the short-time auto-correlation 

function, as given by 
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or in normal matrix form given by 
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where αj represents the estimate parameters on aj , j = 1,...,p. The above matrix has the 

property that it is symmetrical and all elements along a given diagonal are equal, i.e., it is a 

Toeplitz matrix [18]. Equation (2.10) can be solved by the simple inversion of the p × p 

matrix; however this is not usually performed since computational errors such as finite 

precision tend to accumulate. By exploiting the Toeplitz characteristic, however, very 

efficient recursive procedures have been devised. The Levinson-Durbin’s algorithm [33] is 

used to compute the prediction coefficients for LPC analysis of the auto-correlation 

sequence of samples. It provides solutions to the linear equations through recursive 

procedure that exploits the symmetry property. 

 

2.3.2 Pitch Estimation 

Accurate estimation of the pitch period or the lag τ in the speech coding is very 

important. The direct distance measurement is the most popular criterion, examining the 

similarity between two waveforms which can be expressed as 
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where β is a scaling factor, or the pitch gain, controlling the changes in signal level. Under 

the assumption that the signal is stationary, the error criterion of Eq. (2.12) can be written 

as 
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Speech in the long term is a non-stationary signal, and the direct similarity criterion may 

exhibit large errors, implying fewer similarities in position where the shift is equal to the 

real pitch period. Equation (2.13) is the direct auto-correlation which indicates more 

similarities in triple pitch period as the amplitude is increasing. The normalized similarity 

criterion in Eq. (2.12) is derived under the consideration of such a non-stationary process. 

Setting ∂E(τ, β)/∂β = 0 of Eq. (2.12), the optimum normalization coefficient (pitch gain) 

can be calculated using 
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By substituting the optimum gain back into the error function of Eq. (2.12), the pitch can 

be estimated by minimizing 
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This is equivalent to maximizing the square of the normalized auto-correlation function 

given by 
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The pitch period can be determined from Eq. (2.16). The normalized auto-correlation 

method shows a much better performance than direct (un-normalized) auto-correlation 

method.
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CHAPTER 3 

DESIGN OF APPLICATION-DRIVEN DIGITAL 

SIGNAL PROCESSOR 

 

3.1 Introduction 

The proposed application-driven digital signal processor (DSP) [85]-[87], called 

LASP24 (Low-cost Application-driven Speech Processor, 24-bit data width), is constructed 

as a reduced instruction set computer (RISC) architecture with vector and matrix 

operations and power optimization. An effective verification is used to subserve the 

hardware design and to decrease debugging time during the development of hardware and 

software. High performance is achieved by vector and matrix operations that are not 

usually supported by general-purpose DSPs. The parallel architecture of LASP24 can 

quickly execute vector and matrix operations without extra overhead. High flexibility in 

use, small area on silicon, high data throughput, and fast portability to a wide range of 

technologies are our main targets in the core development. 

The development of the digital signal processor shown Fig. 3-1 is to meet the system 

demands that are based on sophisticated arithmetic algorithms and that emphasize on both 

hardware and software solutions. The verified tools offer the opportunity to trade off 

between software (for flexibility) and hardware (for performance and power optimization). 

The development flow consists of two parts: hardware implementation and software 

development. Software includes two development tools: the assembler and the emulator. 

The assembler can translate assembly language into binary codes (or called machine codes). 

Simultaneously, the initial ROM file is generated for the processor emulator and the HDL 
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simulator. The emulator can emulate the computations of the processor hardware and 

verify the precision of different floating-point formats such as 32- or 24-bit. In hardware 

design, using the hardware description language (HDL) implements the processor and 

improves performance and power dissipation for speech/audio algorithms. The processor 

can be regarded as an embedded DSP processor. 

 

 

Fig. 3-1. Hardware/Software development flow for LASP24. 

 

3.2 Micro-architecture 

The RISC-type [31] processor has traditionally enhanced performance by the reduced 

instruction set to maximize the throughput, and most of them access rather a large program 

memory at every clock cycle to fetch each instruction. Thus, application-driven design can 

reduce complexity and is greatly enhanced at performance. For an embedded DSP, it is 

necessary that the architecture should support effective data communication between 

memory system and execution units, low-overhead loop control, and accumulator-based 
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instruction set architecture. 

An efficient method of data representation and a hardware implementation is 

proposed to utilize a smaller program memory, while maintaining other merits of the RISC, 

such as simple decoding, fixed instruction size, and high performance. LASP24 is a 24-bit 

DSP processor with a floating-point unit and is ease of use. The DSP processor has the 

architecture of a 24-bit single-instruction/multiple-data (SIMD) instruction set with five 

addressing modes, and a five-level pipeline executing engine, which is Instruction Fetch 

(IF), Instruction Decode (ID), Execution (EX1, EX2), and Write Back (WB). It is 

important to perform parallel multiplication and arithmetic operations in a single cycle. 

This allows instruction execution to overlap. Thus, the effective execution time for most 

instructions is one cycle. Some key features of LASP24 are listed below: 

 24-bit fixed length instructions which support 2- and/or 3-operand. 

 Five pipeline stages to improve throughput. 

 Five addressing modes and one control mode. Up to the support of 32 

instructions. 

 Two bank internal memories for use of vector addressing. 

 24 address stacks and 70 data stacks. 

 Block repeat capability. 

 Zero-overhead loops with a single-cycle branch. 

 Branch conflict with hardware detection and solution. 

 Power saving consideration. 

Floating-point operations provide fast, accurate, and precise computations. The 24-bit 

floating-point format is compatible with IEEE-754 standard [32]. Specifically, LASP24 

facilitates floating-point operations at high speed for speech/audio signal processing, which 

offers addition, subtraction, multiplication, and simulated division. 
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The block diagram of proposed LASP24 is shown in Fig. 3-2. LASP24 is functionally 

partitioned into the following major blocks: a computation unit, which indicates ALU, 

multiplier, and accumulators, a program control unit, an external bus control dictating 

LASP24 external buses, a vector address generator computing the addresses which are 

used in vector operations. The program control unit performs instruction fetch, decoding, 

exception handling, and wait state supports. The PCU generators the next address to the 

program memory and controls hardware loops. 

 

Fig. 3-2. The block diagram of the proposed digital signal processor. 

LASP24 includes four register groups. The eight general-purpose registers (Register 

File) are capable of storing and supporting operations on 24-bit floating-point numbers. 

The two 8-bit auxiliary registers can be accessed by the processor and modified by the 

auxiliary register arithmetic unit. The primary function of the auxiliary registers is the 

generation of 8-bit addresses. They can also be used as loop counters or as matrix point 

register. The status registers contain information relating to the state of ALU and parallel 

multiplication. When the status registers is loaded, LASP24 sends out a busy signal, and 
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executes the selected function. The two 8-bit repeat counters which used to specify the 

number of times are to be repeated when performing a block repeat. 

LASP24 uses a five-stage pipelined structure, and the pipelined operation is shown in 

Fig. 3-3. The Instruction Fetch (I) stage fetches the instruction words from instruction 

ROM and updates the program counter (PC). The Read and Decode (R) stage decodes the 

instruction word and performs address generation. Also, it controls the modification of the 

AR0 and AR1 registers in the matrix and vector addressing modes, and if required, reads 

the operands from memory or general registers. The Execution (E) stage is divided into 

two stages and performs the necessary operation, such as floating-point addition, 

subtraction and multiplication. The Write Back (W) stage, if required, writes results to the 

register file and memory. 

 
Fig. 3-3. Pipelining operations. 

The pipelined control exists the problems of conflicts (or hazards). The conflicts can be 

grouped as branch, memory, and register conflicts. The branch and register conflicts are 

described in [58], and the concept of its solution to these conflicts is applied to our design. 

The register conflicts arise when an instruction depends on the results of a previous 

instruction in a way that is caused by the overlapping of instructions in the pipeline. Using 

the forwarding way can solve the problem of register conflicts. The branch conflicts arise 

from the pipelining of branches and other instructions that change the PC. The condition of 
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a branch conflict is shown in Fig. 3-4. The (i+2)th instruction will return to the jth 

instruction, but the pipeline register has fetched the (i+2)th instruction. For the branch 

taken, the (i+2)th instruction is not used and replaced by the “NOP” instruction. This 

 

Fig. 3-4. Branch operations. 

change solves the branch conflict, but the pipeline causes overhead. Hence, we modify the 

way of branch conflicts in Fig. 3-4 to avoid NOP operation and to reduce time overhead. 

The branch conflict in LASP24 does not exist because the PC is changed in the I stage and 

the R stage, not in the E stage. Before the next cycle, the indicated branch instruction will 

be ready in the I stage. That means the program control is free of branch conflicts, and 

there is zero overhead for a branch instruction. The memory conflicts arise from resource 

conflicts when the hardware cannot support all possible combinations of instructions in the 

simultaneous overlapping. As shown in Fig. 3-5, this type of conflicts may happen. The ith 

instruction does not yet write R1 to the location of RAM0[r], but the (i+1)th instruction 

reads data from the location of RAM0[r]. At this time, a memory hazard occurs in the 

pipeline. The (i+2)th instruction is reading data from the locations of RAM0[r] and 

RAM1[r], but the ith instruction is writing R1 to RAM0[r]. This is seriously conflicts for 

memory data buses. The solution is to assign the priority of writing memory higher than 
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that of reading. The above condition similarly occurs between two internal RAMs and one 

external bus. In the other way, the software codes can also avoid this type of conflicts. 

 

Fig. 3-5.  Memory accessing operations. 

 

3.3 Instruction Set 

The processor instruction sets have been designed with two goals in mind: 1) to make 

maximum use of the processor’s underlying hardware, thus increasing efficiency and 2) to 

minimize the amount of memory space required to store DSP programs, since DSP 

applications are often quite cost-sensitive and the cost of memory contributes substantially 

to overall chip and/or system cost. To accomplish these two goals, it is necessary to reduce 

the number of bits required to encode instructions and to offer fewer registers and 

addressing modes than other types of processors. Thus, the architecture of LASP24 is 

defined as a fixed instruction length at 24 bits. A 24-bit instruction uses five bits each for 

addressing 8 general-purpose registers. LASP24 instruction set includes five addressing 

modes and is classified into three groups as data transfer, arithmetic, and control 

instructions. The total of defined instructions is about twenty-five (see Appendix A in 

details). Some representative instructions are listed as follows. 
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Instruction Descriptions and Examples 
Load and Store Instructions 

MOV Load, store and move data 
1. General data moves 
EX: MOV RAM0[address], R0; R0=RAM0[address] 
2. Data moves for the matrix addressing mode 
EX: MOV RAM1[AR1L+1, AR0L], R3; R3=RAM1[AR1L+1, AR0L], 
where AR0L and AR1L are defined as AR0[3:0] and AR1[3:0]). 

LD Load fixed values as follows: 
0.0, 0.75, 1.0, and 
2.0 - A (the floating-point value from 2.0 leaves operand A) 

Arithmetic Instructions 
ADD Add floating-point values 

EX: ADD R0,R1,R2; R2=R1+R0 
SUB Subtract floating-point values 

EX: SUB R0,R1,R2; R2=R1-R0 
MPY 1. General multiplication 

EX: MPY R0,R1,R2; R2=R1×R0 
2. Matrix multiplication 
EX: MPY R3,RAM0[1110,AR0L-AR1L]; 
R3=RAM0[1110,AR0L-AR1L]×R3 

VMPY Vector multiplication 
EX: VMPY EXT[j],WIN[j],RAM0[j],RAM1[j]; 
{RAM0[j],RAM1[j]}=EXT[j]×WIN[j] 

MAC Multiplication-and-accumulation 
EX: MAC RAM0[j], RAM1[j], R3; R3=RAM0[j]×RAM1[j]+ACC, 
where ACC is an accumulator. 

DIVEXP Re-scale after division 
EX: DIVEXP R0,R3; R3=DIVEXP(R0) 

NORM Normalize floating-point value 
EX: NORM R0,R1; R1=Norm(R0) 

Program Control Instructions 
NOP No operation 
LDC Load AR0 and AR1 value 

EX: LDC AR0,#14; load 14 to AR0 
RPB Begin repeat block 

EX: RPB RC0, 255; for (r=0; r<=254; r++) 
RETB Return repeat block of instruction 

EX: RETB AR0, label; if AR0=RC0, goto label 
END End of programs (halt) 

 

3.3 Addressing Modes 

Most of speech and audio processing is related with auto-correlation, convolution, and 

FIR calculation. Hence, addressing modes are to enhance the hardware computing 
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capability for the algorithms. Five types of addressing modes allow access of data and 

instruction words from memory and registers: register, direct, indirect, immediate, and 

vector addressing modes. These detailed addressing formats are described in Appendix B.  

The register addressing mode offers internal accessing operations of general-purpose 

registers. In this addressing mode, an ALU register contains three operands, as shown in 

this general operation: “RA Operation RB ⇒ RC.” The destination operand is RC and the 

source operands are RA and RB. The direct addressing mode offers an immediate value as 

an index of memory address to access memory data. In this addressing mode, the data 

address is formed by 0-7 bits in the instruction. Because the length of instruction is short, 

the direct addressing mode only supports RAM block 0. The matrix addressing mode is 

designed for Durbin's algorithm [33] and used to compute matrix multiplication. For 

example, there is a 10×10 matrix multiplication. To access data in the matrix fast, the 

auxiliary registers (AR0 and AR1) are used to assist addressing the coordinate (X, Y) in 

the matrix. In matrix addressing, a three-operand instruction can be used in the indirect 

addressing mode. The vector addressing mode is used in data computation between 

memory and memory. This mode provides 512-data-length vector operations and can also 

execute parallel instructions that make auto-correlation function operate faster than the 

general-purpose DSPs. 

Additionally, a control mode is defined to control data paths in the processor design. 

Programmers can use this mode to control their program flow and/or to easily set of repeat 

counters. Through two auxiliary registers (AR0 and AR1), the processor can execute 

two-level nested program. The function-finishing instruction and holding status are also in 

the control mode. The loop control is very useful for auto-correlation function in Durbin's 

algorithm [33] because they are all two-level nested programs. The mode is very efficient 

to handle the program flow without any additional instructions, which might be necessary 
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to other general-purpose DSPs. 

 

3.4 Matrix Processing Technique 

Particularly, we design an auto-index method which uses auxiliary registers to address 

memory data as shown in Fig. 3-6. This method called matrix addressing can easily get 

memory data in a single multiplier instruction. When the instruction decoder gets the 

vector address, the address would represent the coordinate of the matrix. Matrix 

multiplication is based on the operation of RAM0 and R3 (the third general-purpose 

register). The results are stored to the R3 register. An example for the equation of matrix 

multiplication is as 

∑
−=

+−=
0

1
],1[],[

rj
rjhjrkxy .                     (4.1) 

We can replace the above with the following LASP24 micro codes: 

 RPB j, #r-1 // set repeat block counter 
L1: MOV WIN[j+1, r], R3; // move a coefficient to R3 

 MPY R3, RAM0[AR0, r-j], R3 // matrix multiplication 
 ADD R1, R3, R1 // R1=R1+R3 
 RETB j, L1 // if j≠0, return to L1 

The index of a matrix coordinate is defined by auxiliary registers (AR0 and AR1). The 

address index can automatically increase so that the pointer indicates the next matrix 

address. Hence, this addressing method enables a single-instruction matrix computation so 

that the size of program memory and the number of program memory access can be 

reduced. 
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Fig. 3-6. Illustration for computing a matrix address with the vector addressing mode. 

In Fig. 3-6, the instruction decoder gets the matrix position with four bits listed in 

Table 3-1 and then transfers them to the address processing unit. The processing unit can 

analyze and calculate the matrix address (X, Y) in RAM0. Table 3-1 shows the coordinate 

table of two matrix addressing modes. One is the indirect addressing mode as RAM0[AR0]; 

the other is the matrix addressing mode as RAM0[AR0L+1, AR0L+1]. The matrix 

coordinate is defined in AR0 and AR1. The index automatically adds one so that the 

pointer indicates the next matrix address. The vectors {0000, 0001} and {1110, 1111} are 

two special coordinates which can directly access the start and the end of row location in 

the matrix. Hence, the proposed matrix addressing method enables a single-instruction 

matrix computation so that the total number of program instructions can be reduced. 

Table 3-1. The matrix coordinate for the matrix addressing mode, where AR0L and 
AR1L represent the lower four bits of AR0 (AR0[3:0]) and ar1 (AR1[3:0]), 
respectively. 

CODE Addressing Mode CODE Addressing Mode 
0000 RAM0[AR0] 1000 RAM0[AR0L-AR1L, AR0L] 
0001 RAM0[AR1] 1001 RAM0[AR1L+1, AR0L+1] 
0010 RAM0[AR0+AR1] 1010 Reversed 
0011 RAM0[1111, AR0L] 1011 Reversed 
0100 RAM0[AR1L+1, AR0L] 1100 RAM0[0000, AR0L] 
0101 RAM0[1110, AR0L-AR1L] 1101 RAM0[1110, AR0L] 
0110 RAM0[1110, AR0L+1] 1110 Reversed 
0111 RAM0[AR0L+1, AR0L+1] 1111 RAM0[0001, AR0L] 
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3.5 Vector Processing Technique 

The SIMD-style vector processing scheme provides an approach to accelerating the 

processing of data streams. This technique can provide a significant speedup for 

communications, multimedia, and other performance-driven applications by using 

data-level parallelsim. In the vector processors [34], [35] the design can provide high-level 

operations that work on vectors － linear arrays of numbers. The vector processing unit 

supports both intra- and extra-memory operations. In the operation, elements work in 

parallel on the corresponding elements from multiple intra- or extra-memory sources and 

place the results in the corresponding fields in the destination operand memories. An 

operation example is the vector multiplication (VMPY) instruction shown in Fig. 3-7, and 

the instruction format and addressing representation are shown in Table 3-2. 

 

VA (Source Memory 1)

VB (Source Memory 2)

VC (Destination Memory)

OP OPOP OP

．．．．．．．．．．．

．．．．．．．．．

．．．．．．．．．

 

Fig. 3-7. An example of memory operations in LASP24, where OP indicates the vector 
multiplication. VA, VB, and VC represent different memory banks. They are 
defined in Table Table 3-2. 
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Table 3-2. The format of the vector addressing mode and the representation of vector 
addresses in LASP24, where OP indicates operation; VA, VB, and VC 
represent vector registers. The symbols, FIL, EXT, WIN, RAM0, and RAM1, 
are memory symbols. 

VC ⇐ VA[AR_A] OP VB[AR_B] 
23 ~ 19 18~16 15~14 13~12 11~10 9~8 7 ~6 5~4 3~2 1~0

OPCODE 011 NU FIL EXT RAM0 RAM1 VC VA VB 
 

FIL EXT RAM0 RAM1 VC VA VB  
VL 13~12 11~10 9 ~ 8 7 ~ 6 5 ~ 4 3 ~ 2 1 ~ 0 
00 FIL EXT AR0 AR0 RAM0 RAM0 RAM0
01 FIL+AR0 EXT+AR0 AR1 AR1 RAM1 RAM1 RAM1
10 FIL+AR1 EXT+AR1 AR0+AR1 AR0+AR1 EXT EXT WIN 
11 FIL-AR0 EXT-AR0 AR1-AR0 AR1-AR0 R3 - FIL 
 
 

The vector multiplier has several important properties that solve most of the above 

problems as explained below. 

1. The computation of each result is independent of the computation of previous 

results, allowing a pipelined operation without generating any data hazards. 

2. A single vector instruction specifies a great deal of computation work. It is 

equivalent to executing an entire loop. Thus, the number of instruction fetch is 

reduced, and the bottleneck is considerably mitigated. 

3. The vector instruction has a known memory access pattern. If the vector's elements 

are all adjacent, then fetching the vector from a set of heavily interleaved memory 

banks works very well. The high latency of initiating a main memory access versus 

accessing an instruction ROM is rather high, because a single access is initiated for 

the entire vector rather than for a single element. Thus, the cost of the latency to 

memory is seen only once for the entire vector, rather than once for each element of 

the vector. 



34 

4. Because an entire loop is replaced by a vector instruction whose behavior is 

predetermined, control hazards that would normally arise from the loop branch are 

nonexistent. 

To illustrate the above features, we compare performance with a general-purpose DSP 

in computing the vector multiplication of 100 points. A vector multiplication instruction 

fetches data from RAM0 and RAM1 and feeds into ALU. ALU executes the “MAC” 

operation and adds the result to the accumulating register. The final results are stored to the 

external memory. An example of vector processing (100 points) is shown as follows. 

L1: MPY RAM0(r), RAM1(r), EXT(r); // EXT(r)= RAM0(r)× RAM1(r) 
 RETB r, L1 // r=r+1. if r=100, then jump to L1

The total execution time is about 200 clock cycles. Hence, we use a single instruction 

within a repeat block to execute the parallel multiplication-and-accumulation in the 

auto-correlation operation. The above example demonstrates that LASP24 has higher 

performance in vector computation than the general-purpose DSPs such as the TI 

TMS320C3X series. 

 

 

3.6 DMA and Interrupt Interface 

LASP24 needs the interrupt and direct memory access (DMA) to process data 

transformation. The interrupt is to tell LASP24 that peripheral devices are to be active. 

DMA is to free the bus control and to deal with the operation of I/O-to-memory or 

memory-to-memory data moving. There is a control interface for interrupt and DMA. We 

take advantage of a simple finite state machine (FSM) to implement its circuit. Each state 
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is described as follows in detail. 

S0: monitor mode, the state is to initialize parameters and to detect interrupt and/or 

DMA in one instruction cycle. 

S1: DMA mode. 

S2: interrupt mode, in the state, the controller will save the program counter and all 

status into data memory. If data memory is not ready, stay in S2; otherwise go to 

S3. 

S3: accepted mode, the state sends interrupt acknowledge and goes to S4. 

S4: get vector mode, the state receives an interrupt from LASP24’s data bus and sends 

a read signal to main memory. If main memory is not ready, stay in S4; otherwise 

go to S5. 

S5: interrupt mode, after complete interrupt processing, the state switches the 

subroutine return address, and then goes to S6. 

S6: rally normal mode, the state performs nothing and then goes to S0. 

 
 

Polling of peripheral service requests monopolizes a significant amount of processing 

time. This service reduces system throughput, useful information processed or 

communicated during a specified time period. Therefore, it is advantageous, in terms of 

increasing throughput as well as reducing program complexity; if a peripheral device 

demands service directly from LASP24. Interrupts provide this capability. Essentially, 

LASP24’s interrupt is a subroutine function call initiated by external hardware. A simple 

structure that allows a single device to interrupt LASP24 is shown in Fig. 3-8. 

 



36 

LASP24
Processor

INTRINTR
INTAINTA

CLRCLR

Q

SETSET
D

CLK
Interrupt request from peripheral devices

VCC

 
Fig. 3-8. Generation of LASP24’s interrupt for a single peripheral device via interrupt 

request flag. 

 

 When a peripheral device requires service, the interrupt controller sets its 

corresponding register which is connected to an interrupt pin of LASP24. Thus, the register 

records the interrupt request until it is acknowledged by LASP24. Because the request is 

asynchronous, it may occur at any time when a program is executed. In order to resume 

program execution at the proper point, when the interrupt subroutine is finished, the return 

address is automatically restored to the program counter from data memory. Notice that 

when LASP24 handles an interrupt, it can not accept other interrupt requests at the time. A 

multiple loop interrupt mode is not supported at present. In response to an interrupt, the 

processing operations occur as follows. 

1. The processing of the current instruction is completed. 

2. An interrupt machine cycle is executed during which the program counter is 

saved and the flow control is transferred to an appropriate memory location. 

3. A subroutine is executed. 

4. When the subroutine is finished, the state of LASP24 is saved; otherwise goes to 

Step 3. 

5. The saved state of LASP24 is restored. 

6. The flow control is returned to the instruction which follows the interrupted 

instruction. 
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3.7 Power Optimization 

For many consumer electric applications, low average power dissipation is desirable 

and for certain special applications low power dissipation is of critical importance. Most of 

power reduction techniques emphasize on reducing the level of activity in some portion of 

the circuit. Since LASP24 has high activity, it must include a power management 

mechanism. The power management means to analyze and realize substantial power saving 

[36] by stopping the clock during proper time period. Clock power reduction is important 

in a synchronous design, since as was noted earlier, it can contribute to a large portion of 

the overall power budget. Minimization of clock power falls in to several categories 

including clock distribution optimizations, clock gating, and low-swing clocking 

techniques. An analysis methodology operating at register transfer level (RTL) is a key 

factor to obtain early estimation results, while maintaining an acceptable level of accuracy 

in the results. 

The control unit and the arithmetic unit dissipate most of the power since they are 

usually active. Hence, our power saving design focuses on these two units. In the control 

unit, a modified finite state machine (FSM) is designed for power saving. This design is to 

use the knowledge of the next state function to generate an activation signal only when the 

system control unit needs to perform a state transition. This scheme makes the modified 

system control unit functionally equivalent to the original system control unit, with a 

reduction in power dissipation and a small increase in area and critical path delay. 

The arithmetic unit is designed as a parallel architecture as shown in Fig. 3-9(a). In 

this architecture, the three arithmetic units (integer, floating-point, and vector) have the 

same inputs but operate independently. Hence, when the input signals (A and B) are 

changed, all of these units always re-compute their outputs, and a multiplexer is then used 

to select the final result. This architecture wastes most of dynamic power, since the parallel 
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architecture only processes one instruction during a cycle. Gated clocking [37] is a 

commonly applied technique used to reduce power by gating of clock signals to registers 

or latches. Gating may be done when there is no required activity to be performed by logic 

whose inputs are driven from a set of storage elements. Since new output values from the 

logic will be ignored, the storage elements feeding the logic can be blocked from updating 

to prevent irrelevant switching activity in the logic.  
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Fig. 3-9. The gated-clock scheme in (a) Parallel arithmetic unit, (b) Clock gating, and (c) 
Power saving parallel architecture. 
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To reduce dynamic power by the system clock, it is important to minimize the switching 

activity by powering down the arithmetic unit when they are not performing “useful” 

operations. Thus, we apply the gated-clock scheme to reduce the dynamic power. Fig. 

3-9(c) shows the parallel architecture controlled by the gated-clock scheme. 

 

3.8 Coprocessor: Reverberator 

Based on the description of the multi-tap FIR filter in Chapter 2.2, we propose the 

pseudo-random FIR architecture using two-stage pipeline to perform convolution 

computation. The two-stage FIR shown in Fig. 3-10 can independently perform different 

channels (left and right) at the same time. The resulting signals are summated together and 

stored into the circular buffer. 

In Fig. 3-10, real-time audio signals via the I2S (Inter-IC Sound) interface are stored 

into the FIR circular buffer (FCB) in order. After one cycle latency, the first signal is 

loaded and fed into the first stage (MAC1). In next cycle time, the second signal is loaded 

and fed into the second stage (MAC2), and the first stage has begun to perform 

convolution using the input signal from FCB and a random coefficient from the pipeline 

register. Each MAC block performs the total of 256 loops at most due to generating 

non-zero and zero coefficients. The FIR state machine can search a non-zero value 

beforehand and quickly load it to the MAC block during the same cycle. Although input 

and output signals are all 16 bits, to avoid the overflow condition in accumulation, the 

input signal is scaled. All adders are set to 20-bit complement operations. 
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Fig. 3-10. The proposed pseudo-random FIR architecture with two-stage pipeline. The 

adder is a 2’sc addition operation. The multiplier limited by the non-zero 
control is a unit multiplication operation. 

The delay effect of early reflections is based on Eq. (2.3) to generate the memory 

address. The address is used to access FIR and comb circular buffers. Each value in the 

comb circular buffer (CCB) will be accumulated with the previous computational result. 

Fig. 3-11 shows the operation diagram in the circular buffer when the block index is equal 

to 0, 510, and 2000, respectively. The convolution operation is based on Eq. (2.2). Each 

input signal x(n) has to perform 256-tap FIR (possible less than 256 times), then the result 

of adding to y(n-1) is stored to y(n). 

The two-stage architecture as Fig. 3-12 uses the finite state machine (FSM) to control 

active flows. There are five states shown in Fig. 3-12 and described as follows. First the 

sequence of 1’s, 0’s, and -1’s is generated by the random coefficient generator, and then 

they are loaded into 1024 by 1 registers. There is a parameter Finish which determines to 
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turn on or off the FSM operation. When Finish=1 (Step 5), FIR results are restored into 

CCB. Step 2 can set a loop counter and calculate the delay address for two circular buffers 

(FIR and comb). The calculation of CCB address is based on Eq. (2.3). At the same time, 

the state does not check coefficient registers unit finding a non-zero value. Note that the 

operation should be finished in one machine cycle. In Step 3, the state can get the input 

signal and previous MAC result from two circular buffers respectively. Finally, MAC and 

acclamation operations are performed by Eq. (2.2) in Step 4. The whole flow will 

repeatedly perform convolution operations of 512 times under the half of a sampling time 

(i.e., 44.1 kHz in one cycle per 22.68ms). 
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Fig. 3-11. The computational diagram of the circular buffer when the addressing index 
indicates (a) j=0, (b) j=510, and (c) j=2000. 

 
 
 
 

Definition

FIR coefficient
registers

coeff = 0

Finish=1

Get audio signal
from 

FIR circular buffer

Ready

Store results to 
Comb circular buffer 

Finish=0

Step 1

Step 1

Step 3

Step 4

Step 5

Random coefficient
generator{0,1,-1}

Step 2

Load previous
result from

Comb circular buffer

MAC operation
(ACC)

 

Fig. 3-12.  Fully FSM control flows for two-stage architecture. 
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3.9 Development Software 

In order to verify and debug the DSP programs, a tool called DEFY-I is developed for 

functional emulation. The DEFY-I is an instruction-set-level hardware emulator for the 

processor core. With the emulator, the instructions could be taken out from the program 

memory and put into the instruction register for instruction analysis and execution. Finally, 

the execution results are written back to the register file or data memories. The flowchart 

of DEFY-I is shown in Fig. 3-13. The whole emulator is constructed as the functional 

simulation kernel and could connect to other peripheral devices to perform the memory 

and display functions. 
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Fig. 3-13.  The structure of DEFY-I for LASP24. 



44 

The high-level algorithm model with the LASP24 assembly language is translated 

into the machine language by the developed translator, and then a conversion table of 

mnemonic and an operation code is generated. For the software development, the tool of an 

effective functional simulation supports software developers so that the software 

application can be embedded into the tool to verify its function. The tool, named hardware 

emulator, can help software developers to simulate and debug developing applications. The 

emulator is an instruction-set-level hardware emulator based on an application-specific 

speech processor. With the emulator, the basic operation of LASP24 is to take out the 

instruction from the program memory first, set it to the INST register, decode the 

instruction, execute the decoded instruction, and finally write back the operation results to 

the register file (RF) or data memories (RAM0, RAM1, EXT RAM). The operation flow of 

the hardware emulator is shown in Fig. 3-14 with C pseudo codes, and its structure is 

shown in Fig. 3-13. The whole emulator is constructed as the functional simulation kernel 

and connects to other peripheral devices as memories. 

Initial memory
data

RAM
ROM

Instruction decode & execute
switch (OPCODE)

case ADD:
switch (addressing mode)

case REG:
RF[d]=RF[s1]+RF[s2];

case INDIRECT:
...

default: undefined modes.
case SUB:

switch (addressing mode)
case REG:

RF[d]=RF[s1]+RF[s2];
case INDIRECT:

...  
default: undefined modes.

...
default: undefined OPCODE. 

IF (REG mode)
write to Register File (RF)   
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case REG:
RF[d]=RF[s1]+RF[s2];
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else
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write to RAM0.
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else
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case RAM0:
write to RAM0.
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Fig. 3-14. Operation ows of the emulator. 
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For the hardware emulator to be useful for effectively improving the flow of software 

development, we identify the following functions and requirements: 

● Step execution: The emulator can execute one-by-one instruction so that the 

programmer can trace the execution result in an instruction or clock cycle. 

● Free run: When a program prototype is finished, we can use the free-run way to 

simulate the program. Through this way, an expected result will be estimated. 

● Set breakpoint: Users can press the breakpoint value based on the program 

counter. Until the program count is equal to the breakpoint value, the program 

always runs. 

● Displays: The screen of the emulator is shown in Fig. 3-15. It can display 

information as the program counter (PC) in the region D, general-purpose 

registers (R0_R7) in the region A, a source program in the region C, auxiliary 

registers (R, J, M, N, R EXT, R FIL), status registers (TC, NTC, Z, NZ) in the 

region E, and the contents of memory banks (RAM0, RAM1, ROM, EXT RAM) 

in the region B, where RAM1 and RAM2 indicate the internal memory, ROM 

indicates filter and window ROMs, and EXT RAM indicates the external (or 

on-chip) memory. 

A

B

C

D

E

 
Fig. 3-15. The hardware emulator. 
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● Debug information: When the emulator loads the object codes, the related debug 

information is read as well. At the same time, the emulator can show the 

executing instruction located in the source code to suit debugging for 

programmers. 

● Emulator initialization: When the emulator is enabled, it can search related 

initial files in the current working directory. If these initial files including the 

filter parameters, window coefficients, and initial values of the external memory 

exist, the emulator can auto-load them and finish initialization. 

When design is completed, we check them against the specifications for completeness 

and correctness. The co-verification method is created, and a script file is described as 

follows: 

load (analyzed sources); 
load (target library); 
load (debugging information); 
while ( (read (instruction) != NULL) or (!finish) ) 

execute the instruction from HW simulator; 
check (debugging information); 
match the results; 
if ( mismatch ) 

printf (show messages and different values); 
errcount++; 

endif 
end 
if ( errcount != 0 )  

printf (“Here are %d errors between HW and SW”, errcount); 
else  

printf (“Maching is finished. No error found.”); 
endif 

 

The automatic verification can help us to check whether the specifications of the 
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hardware/software co-design are correct. If any violation, the output information show 

immediately the location which indicates the error. Thus the debugging time can be 

reduced, and the functional design can quickly meet our requirements. 
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CHAPTER 4 

SIMULATION RESULTS 

 

These two algorithms, speech coding and audio enhancement processing of 

reverberation, are performed on the proposed digital signal processor, LASP24. They are 

implemented with LASP24’s assembly language and can be performed in real time. Finally, 

the performance result is compared with TI TMS320C3X. 

 

4.1 Speech Processing 

4.1.1 LPC and pitch estimation 

Fig. 4-1 shows the microprogramming flow for performing three kernel functions 

(LPC, PE, and test mode) analyzed in Chapter 2. The C program was used to verify the 

speech processing algorithms and to test the floating-point precision. According to the 

experimental results, Table 4-1 shows the 10-order LPC coefficients in different bit 

numbers (24-bit and 32-bit) of floating-point precision. The maximal error occurred at the 

frequency 18.52 Hz, and the error of the two different bit numbers of floating-point 

precision in Table 4-1 is maximal when the LPC order is equal to 4. When precision or 

iterations of divider were not high enough, the reconstructed speech signals would be 

unnatural. After we listened to the synthesized speech, the 24-bit floating-point precision 

appeared to be good enough. 
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Fig. 4-1. The microprogramming flow in the program ROM of LASP24. 

 

Table 4-1. Simulation results of LPC calculations in different floating-point precision. 

LPC Order  32-bit Floating Point 24-bit Floating-Point 
1 -1.948923 -1.954345 
2 0.923492 0.913543 
3 -0.052776 0.017284 
4 0.841343 0.730545 
5 -1.204289 -1.122589 
6 -0.476735 -0.426231 
7 -0.280020 -0.223022 
8 -0.945771 -0.904251 
9 -0.968852 -0.966308 
10 0.296600 0.302504 

The RTL codes were written by Verilog language and simulated. Design Compiler 

was used to transfer the RTL codes to gate-level codes. In RTL simulation, we obtained 

the execution time of the realized speech processing algorithms in Table 4-2, where Pitch 1 
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(P1) performs τ=15 to 76 and Pitch 2 (P2) performs τ=77 to 152 in Eq. (2.13).  

 

Table 4-2. Timing simulation results. The time unit of execution is microsecond (ms), 
and the total time of execution is the sum of LPC and PE computation time. 

Algorithms Execution 
(cycles) 

Vector operation
Rate (%) 

Execution Time (ms) 
 25 MHz   33 MHz   40 MHz 

LPC 3,298 2,348 (71) 0.13 0.1 0.08 
P1 14,346 13,698 (95.5) 0.57 0.43 0.35 
P2 17.424 16,680 (95.7) 0.70 0.52 0.44 
Total 35,068 32,736 (93.3) 1.40 1.05 0.87 

 

These simulations were executed with the operating frequency of 25 MHz, 33 MHz, and 

40 MHz, respectively. The time for vector and matrix operations was about 93.3% of the 

whole algorithm; that is, the rate of chip running at optimal condition was 93.3%. The 

chip’s internal driving ability between cells to cells was simulated in gate level simulations, 

too. 

After the timing simulation, the post-layout simulation was performed. Final power 

dissipation and maximal operating frequency could be estimated at this stage. The 

LASP24’s performance in typical (33 MHz), best (40 MHz), and worst (25 MHz) cases 

had also been simulated. In the typical case, LASP24 can provide the computation 

capability of 66.6 MFLOPS (Million Floating-point Operations per Second) and 33.3 

MIPS (Million Instructions per Second). The best condition was achieved at 80 MFLOPS 

and 40 MIPS in a single cycle. In the worst case, the computation power is 50 MFLOPS 

and 25 MIPS. At the room temperature 23 (25◦C ∼ 27◦C) and 5 V, the current requirement 

was 4 mA, about 20 mW, and the maximal frequency is 28.5 MHz which was lower than 

the gate level simulation result. At the worst case, 85◦C and 4.5 V, the current requirement 

is 3.2 mA, about 14.4 mW, and the maximal frequency was 20 MHz. Even in the worst 
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case, LASP24 still could provide 50 MFLOPS and 25 MIPS computation power that was 

higher than that of TMS320C30. 

We compared the performance of the LASP24 processor to that of TMS320C3x series, 

which are floating-point general-purpose DSPs. Fig. 4-2 shows the floating-point operation 

ability of each processor and the comparisons of vector operation ability. At the best case, 

LASP24 at 40 MHz provided 80 MFLOPS that was much better than TMS320C31 at 50 

MHz did. In the vector operation mode, we set the vector processing ability of LASP24 at 

25 MHz as index 100 and compared it with other processors. In the figure, higher value 

indicates higher performance. At the best case, LASP24 at 40 MHz was about 4.75 times 

higher than TMS320C30 and about 3.2 times higher than TMS320C31. 
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LASP24 40MHz
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Fig. 4-2. Performance comparisons of LASP24 and TMS320C3x. 

 

4.1.2 MELP Coding 

The MELP coder is divided into an encoder and a decoder module. The frame size is 

22.5ms (180 samples) with a sampling frequency of 8000Hz. The MELP coder is based on 

the traditional Linear Prediction Coding (LPC) parametric model, but also includes five 
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additional features: mixed excitation, aperiodic pulses, adaptive spectral enhancement, 

pulse dispersion, and Fourier magnitude. The encoder uses 10th order LPC coefficients, 

which are transformed into line spectral frequencies or quantization and transmission. For 

each voiced and unvoiced frame, the parameters computed are listed in Table 4-3.  

Line spectral frequencies are computed from the prediction coefficients, which uses 

Chebyshev polynomials. A fast numerical method is used for implementation on the 

proposed processor. Final pitch is computed using an autocorrelation analysis on the low 

passed residual signal: 

),()0,0(
),0(

)(
ττ

τ
τ

ττ

τ

cc
c

r = ,                         (4.1) 

and 

⎣ ⎦

⎣ ⎦

∑
+−

−−
++=

792/

802/

),(
τ

τ
τ nkmk ssnmc ,                      (4.2) 

where τ is the lag. The computation of the autocorrelation sequence is centered on the last 

sample of the past frame. Band pass voicing strengths are computed using autocorrelation 

analysis about the pitch lag for each of the bands. Gain is computed twice per frame using 

an adaptive window size, which is a multiple of the pitch period. A residual signal is 

obtained by filtering the input speech using the set of de-quantized LPC coefficients. An 

FFT is performed on this residual signal and a search is performed selecting 10 Fourier 

magnitudes. 
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Table 4-3. Bit allocation for the MELP coder 

           
Parameters 

Per Frame Voiced Un-voiced 

LSFs 10 25 25 

Pitch 1 7 7 

Band pass voicings 5 4 - 

Aperiodic flag 1 1 - 
Fourier magnitudes 10 8 - 
Gain 2 8 8 
Error protection  - 13 
Sync bit  1 1 
Total  54 54 

 

We provide the instruction set for matrix operations which reduce the size of program 

memory to 12K Bytes. For example, the autocorrelation operation of (4.2) is optimized and 

implemented by LASP24’s instructions as follows: 

 

 
//input R1 = s[0] 
//input R2 = x 
//input R4 = n-m 

   FIX  R2, R7 
   SHF  R7, +1 
   FLOAT R7, R2 

   ADD  R2, ROM[&80.0] 

   SUB  R2, R1, R1 

   ADD  R3, R1, R1 

   FIX  R1, R7 

   LDE  R_EXT, R7 

   RPB  j, #160 

L1:   MOV  EXT[R_EXT+j], RAM0[j] 

   RETB j, L1 

    

 

 

Variable definition 

Set initial address 

For input signals 

Data moving from external 
RAM to RAM0(A) 
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CMPR R4, ROM[&0.0] 

   BCND NZ, P1 

   RPB  j, #160 

L2:   MOV  RAM0[j], RAM1[j] 

   RETB j, L2 

   BCND Z, P2 

P1:   ADD  R4, R1, R1 

   FIX  R1, R7 

   LDE  R_EXT, R7 

   RPB  j, #160 

L3:   MOV  EXT[R_EXT+j], RAM1[j] 

RPB  j, L3 

P2:   MOV  FIL[&0.0], R3 

   RPB  j, #160 

COR_MAC: MAC  RAM0[j], RAM1[j], R3 

   RETB j, COR_MAC 

 

 

4.1.3 Power Analysis 

To achieve power saving, LASP24 was also designed with a gated-clock architecture. 

The power dissipation of the LASP24 is summarized in Table 4-4, which includes average 

dynamic power dissipation and power reduction. Power reduction compared the average 

power dissipation of the gated-clock design and the original implementations. It was 

expressed as a percentage by the following equation: 

Power reduction = (1 − power ratio) × 100,             (4.3) 

where the power ratio is Pgatedclock/Poriginal, and the ratio is the average dynamic power 

dissipation. Table 4-4 lists the power dissipation of three parts including the ALU unit, the 

system control, and the whole design in different operation frequencies and processes. The 

results indicate that ALU unit wastes more power than the other units. The reason is 

possibly that the parallel processing components are all enabled in the ALU unit. After 

Calculate Cx(m,n) and 
store in R3 

Data moving from external 
RAM to RAM1 (B) 
If m≠n, the A≠B 

Data moving from external 
RAM to RAM1 (B) 
If m=n, the A=B 
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power optimization, average power reduction is about one-fourth at 33 MHz and 40 MHz, 

but can be reduced by 60% at 25 MHz. We find that the power dissipation rate is reduced 

to about 3/4 of the total power for the whole arithmetic unit shown in Table 4-4. 

 

 

Table 4-4. Power dissipation analysis of LASP24 between different processes. 

Before/After gated-clock design (0.6um) 
(5V supply voltage, unit mW) 

Frequency ALU  
unit 

Control  
unit 

Average  
power 

Power 
reduction 

25 MHz 61.39/30.14 2.63/1.52 46.72/16.22 66% 
33 MHz 97.55/72.33 5.51/3.50 68.16/51.32 25% 
40 MHz 117.02/80.17 4.22/3.83 84.95/63.51 24.7% 

 
Before/After gated-clock design (0.35um) 

(3.3V supply voltage, unit mW) 
Frequency ALU  

unit 
Control  

unit 
Average  
power 

Power 
reduction 

25 MHz 59.13/25.84 2.01/0.93 43.18/15.71 64% 
33 MHz 82.61/70.19 4.83/2.87 66.43/49.22 26% 
40 MHz 108.62/78.30 3.76/3.15 84.95/55.75 34% 
80 MHz 138.47/91.05 9.92/8.85 102.40/89.56 12.5% 

 
Before/After gated-clock design (0.18um) 

(1.8V supply voltage, unit mW) 
Frequency ALU  

unit 
Control  

Unit 
Average  
power 

Power 
reduction 

25 MHz 50.37/22.31 2.01/1.02 39.92/14.83 63% 
33 MHz 84.27/68.20 4.18/2.50 65.88/48.13 26.9% 
40 MHz 105.85/80.28 4.00/2.93 78.05/52.60 32.6% 
80 MHz 127.56/90.63 9.21/7.84 97.69/89.92 7.95% 
100 MHz 181.35/137.72 15.02/11.50 166.67/128.45 22.9% 
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Before/After gated-clock design (Cyclone FPGA) 
(3.3V supply voltage, unit mW) 

Frequency ALU  
unit 

Control  
unit 

Average  
power 

Power 
reduction 

25 MHz 58.67/26.11 2.24/1.07 40.92/17.04 58% 
33 MHz 81.43/69.33 4.77/2.61 67.13/45.28 32.5% 
40 MHz 100.72/75.20 3.15/2.53 83.72/56.06 33% 
80 MHz 140.13/89.27 10.13/7.39 109.86/90.32 17.8% 
100 MHz 172.16/112.94 13.76/11.53 138.34/98.74 28.6% 

 

 

4.2 Reverberation Algorithm 

4.2.1 DSP Programming 

Digital reverberation algorithms tried to mimic a room reverberation by using 

primarily two types of infinite impulse response (IIR) filters, so that the output would 

gradually decay. One such filter is the comb filter, which gets its name from the comb-like 

notches in the frequency response. The other primary filter is the allpass filter. The allpass 

filter has the nice property that all frequencies are passed equally, reducing a coloration of 

the sound. 

Much of the early work on digital reverberation was done by Schroeder, and one of 

his well-known reverberation designs uses four comb filters and two allpass filters. More 

advanced algorithms can be developed to model specific room sizes. With chosen room 

geometry, source, and listener location, ray tracing techniques can be used to come up with 

a reverb pattern. By modifying Schroeder’s algorithm, a finite impulse response (FIR) 

filter is used to create the early reflections, and then IIR filters are used to create the diffuse 

reverberation. Low pass filters may be used to model the air absorption. Reverberation 

designs can be obtained as shown in Fig. 3-12. 
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Performing designs and real-time prototyping of digital reverberation algorithms is 

based on random FIR filters, as presented in [13] to construct artificial early reflection. The 

four parallel comb filters and four cascade all-pass filters are to model the late 

reverberation and to increase echo density. Consider a modified comb filter in the 

frequency given by: 
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where M is the delay length, and (4.5) is a low pass filter. Combining (4.4) and (4.5), we 

can obtain (4.6): 
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Here four cascade all-pass filters are used to increase echo density and disperse the phase. 

Each all-pass filter has its own delay length Di and coefficient ai. Hence the total transfer 

function will be 

4
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The algorithm is run on a single 80MHz (about 80MIPS) where each instruction cycle 

is 12.5ns. The original and processed sound is stored in the external RAM. For each filter, 

2500 memory locations are used as a spatial buffer. The parameters of four comb filters 

and four all-pass filters are listed in Table 4-5 and Table 4-6, respectively. Simulated 

waveforms are shown in Fig. 4-3. 
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Table 4-5. Allpass filter coefficients. 

      Parameter
Filter 

Di ai 

Allpass-1 22 0.45 
Allpass-2 36 0.45 
Allpass-3 23 0.45 
Allpass-4 33 0.45 

 

 

Table 4-6. Comb filter coefficients. 

         Filter 
Parameter 

Comb-1 Comb-2 Comb-3 Comb-4 

a 0.25 0.27 0.28 0.29 
g 0.7 0.680 0.674 0.654 
m 37 40 41 43 

 

 

 

 

 
 (a) (b) 
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Fig. 4-3. The original and resulting waveforms after the reverberation algorithm: (a) is a 
simulated impulse response with early reflection in FIR; (b) is FIR coefficients 
using a pseudo random method; (c) and (e) are original audio music and female 
speech with 44.1 kHz sampling rate and 16-bit data format; (d) and (f) are the 
signals after processing (c) and (e). 

 

4.2.2 Implementation of Application-Specific Reverberator 

The multi-tap FIR filter constructed as two-stage pipeline architecture for audio 

reverberation applications is designed in HDL and C simulation. It consists of pipeline 

registers, two circular buffers, 16-bit carry look-ahead adders, shifters, and the fast state 

machine controller. Due to pseudo-random coefficients (existence of many zero values) 

based on (2.4), the executing time and computational consumption of FIR is reduced. Fig. 

4-4 shows the results of desire and HDL FIR over 1,000 FIR orders. These two results are 

quite similar, but exist on 2% inaccuracy at the location of the 800th samples. This is 

because of the effect truncation errors. 
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Fig. 4-4. Fully FSM control flows for two-stage architecture. 
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A given music as input sources via the I2S interface is fed into the spatial circular buffer. 

After the FIR processing, the results are shown in Fig. 4-5. The circular buffer is set to 

2,500 blocks. The test is to process single channel, 20,282 samples of input, which is about 

0.5 ms of samples with 44,100 Hz sampling rate and 16-bit data width. The desire result 

shown in Fig. 4-5(a) is similar to the result of HDL simulation shown in Fig. 4-5(b).  

Table 4-7 shows the comparison of different FIR schemes for implementation of early 

reflection. The number of adders, multipliers, and shifters and delay latency is estimated 

and compared. The different FIR style includes in terms of Direct Form (DF), Distributed 

Arithmetic (DA) [38], Canonic Sign Digit (CSD) [39], Digital Signal Processor (DSP) [40], 

and our proposed method. The delay latency is defined as the output of the first data. As 

can be seen in Fig. 4-5, the proposed method can greatly save multiplication power. Most 

of MAC instruction in DSP needs two or higher clock cycles to accomplish operations. 

Although DA and CSD do not need any multiplier, their delay latency is more than 1 stage 

due to bit and table operations. For the proposed two-stage FIR design, the number of 

adders and shifters is reduced to be 1/2 orders for each stage, and it is suitable for audio 

reverberation. 

 

Table 4-7. Comparison of different FIR schemes for early reflection implementation. 

Schemes 
Items 

DF   
(TDF) 

DA 
[38] 

CSD 
[39] 

DSP 
[40] 

Proposed

Adder Order Order/2 2*Order Order Order/2 
Multiplier Order None None Order None 
Shift None Order/2 Order/6 None Order/2 
Delay latency None 16 32 None 1 
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                (a)                                     (b)  

      

                (c)                                     (d)  

Fig. 4-5. Sound with 2,0282 digital samples after FIR processing: (a) Desire results and 
(b) design results. (c) and (d) are the results of frequency domain analysis with 
Hamming window for (a) and (b). 

For multi-tap filter implementation, parallel architecture and random coefficients are 

not only computation reduction, but also can save multiplication power. At the same time, 

the circular buffer can effectively be used as a spatial size. Thus, the proposed two-stage 

architecture can be effectively used in FIR filter hardware implementation for the audio 

reverberator system. In the future, the adaptive pseudo-random FIR coefficient generator 

can be implemented by hardware according to the feature parameters of non-zero filter taps, 

sampling rate, and time variance. 

4.3 Performance Analysis of LASP24 

Complexity is measured using million instructions per second (MIPS), random access 

memory (RAM) and read only memory (ROM) measurements. MIPS are measured using 

the execution time and instruction counts. Linker memory maps are obtained with required 
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sizes. As Table 4-8 shows MELP complexity exceeds LPC and CELP in both processor and 

memory requirements. Additionally, the total performing cycles is listed for MELP, CELP 

(TI DSP [84]), and reverberation algorithms. 

Now LASP24 can perform the two practice applications in real time. We analyze the 

performance between them. For the MELP coder, the program performs 1,338,280 cycles 

in 60 MHz. The frame size is 22.5ms (180 samples) with a sampling frequency of 8000 Hz. 

Hence, the latency is about 21 ms (1,338,280×16.67 ns) for the encoder. As the result for 

the decoder, the latency is about 9.1ms. Due to many filters used in the reverberation 

algorithm, the required execution time is larger. The program performs 1,574,430 cycles at 

80 MHz. The frame size is 22.7 us (stereo channels) with a sampling frequency of 44,100 

Hz. The latency is about 19.67 us. Anyway, LASP24 can operate max frequency at 100 

MHz. By the above analysis, it is able to satisfy all conditions with operating frequency 

80MHz. 

 

Table 4-8. Complexity comparison between LASP24 and memory with optimization 
codes. 

RAM ROM                Items 
DSP Algorithm 

MIPS 
Unit: byte 

Total 
Cycles 

MELP Decoder  40 96K 10K 546449 
MELP Encoder 60 96K 26K 1338280 
CELP Decoder  
(TI 320C3X) 

30 14.8K 128K 364299 

Reverberation 80 96K 30K 1574430 
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CHAPTER 5 

THE INTEGRATED PLATFORM FOR 

MULTIMEDIA PROCESSING 

 

5.1 Introduction 

Today, the VLSI growing gap between the silicon gate capacity and the engineering 

productivity has lead to the advance of System-on-Chip (SoC) designs and the need for 

new forms of design reuse and methodologies [50]. With the rapid progress of 

semiconductors, SoC is very popular recently. Reuse is done at the chip level called Virtual 

Component (VC) or intellectual property (IP), which represents functions of specification 

domains like DSP or multimedia modules. In order to connect each IP on SoC, the 

standardized bus is indispensable [55].  

Several bus protocols enjoying a certain degree of popularity are currently used in 

SoC design. IBM’s CoreConnect [51] is supported by a vast set of tools that allow the 

automatic generation of many parts of the system. The Wishbone specification [52] offers a 

set of guidelines for a basic, simple bus structure. This protocol has been selected by 

OpenCores organization [53] as the standard based on [52] to follow for the development 

of the free IP library. Advanced RISC Machines Inc. (ARM) developed the very popular 

AMBA AHB/APB protocol [54] and it has been used in many products. This protocol is 

also adopted in this thesis to develop the SoC platform and audio IPs. 

A single proposed SoC platform [80] which combines microprocessor, memory, and 

other functional modules such as GPIO (General-Purpose Input/Output), I2S (Inter-IC 
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Sound), and communication (UART) into a single IC is popular recently. To verify these 

functions [73] of the proposed platform for audio processing, the FPGA rapid prototype 

approach is used. FPGA were primarily used for prototyping and lower volume 

applications in years and custom ASICs were used for high volume, cost-sensitive designs. 

Today, state-of-the-art wafer fabrication finds that FPGAs are an excellent mechanism for 

testing new wafer technology because of their reprogrammable and high volume natures. 

Hence, more and more designers use platform FPGA technology [56] to develop and verify 

their SoC design quickly. In this thesis, we offer a way to develop low cost SoC products 

within the FPGA environment for fast design and verification, and the SoC integration 

platform for digital audio applications as reverberation and speech processing has also 

been presented in Chapter 2 for demonstration. 

 

5.2 SoC Platform 

The proposed SoC platform is shown in Fig. 5-1 for speech/audio processing. The 

primitive prototype is constructed in two platforms: FPGA Integration Platform (FIP) using 

Altera Cyclone Edition and DSP Verification Platform (DSPVP) using the Analog Devices 

DSP KIT [59] evaluation system for Blackfin embedded media processors [76]. 

FIP has a full implementation of AMBA AHB and APB on-chip buses. A flexible 

configuration scheme makes it simple to add new IP cores. Also, all provided peripheral 

units implement the AMBA AHB/APB interface making it easy to add more of them, or 

reuse them on other components using AMBA. In the SoC platform, the 8051 

microcontroller is used as a main resource dispenser. Due to timing request, the 8051 

microcontroller can not directly connect to AHB. It is necessary to be packed by a wrapper. 

Likewise, the wrapper is required if a DSP processor is added to AHB. In the case, the DSP 
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wrapper is not shown due to the use of the DSP evaluation system. An on-chip memory 

called dual-port synchronous static RAM (SSRAM) is embedded into the system. The 

SSRAM, which store multi-channel audio streaming, is defined as a share buffer between 

FPGA and DSP. Four peripheral devices as GPIO (General-Purpose I/O), I2S (Inter-IC 

Sound), Interrupt Controller, and UART (Universal Asynchronous Receiver Transmitter) 

are hanged on APB. These modules are listed in Table 5-1 and explained in detail in the 

next section. 

 

Table 5-1. Module design of the SoC platform. 

Module Design/BUS Technology Description 

Dual-port SSRAM 
Controller (AHB) 

Dual port synchronous static RAM: offer general-purpose 
memory accessing interface. 

8051 wrapper 
(AHB) 

Offer the conversion of 8051 signals into AHB. It is an 
interface and buffer devices. In the platform, it is a main 
control center, i.e., Master. 

UART 
(APB) 

A device, usually an integrated circuit chip, which performs 
the parallel-to-serial conversion of digital data to be 
transmitted and the serial-to-parallel conversion of digital data 
that has been transmitted.  

GPIO (APB) It can be individually configured through software as either an 
input or output, and provide additional control and monitoring 
when the microcontroller or chipset has insufficient I/O ports, 
or in systems where serial communication and control from a 
remote location is advantageous. In this platform, GPIO 
provides a little as 4 ports and up to 24 ports. 

I2S  
(APB) 

It provides digital sound processing interface, which is serial 
communication to connect digital sound devices. In the
peripheral bus, if processing multi-channel sound, we can put 
one or more I2S groups. 
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Module Design/BUS Technology Description 

Interrupt Controller 
(APB) 

The interrupt allows edge or level triggers to handle interrupt 
routines with the programmable method. It provides 8-bit or 
16-bit data width for fast and general interrupt as input.  

APB Bridge 
(between AHB and 
APB) 

Handle signal transformation between high-speed bus and 
low-speed bus. The bridge can maintain devices between two 
buses at the same time.  

AHB Decoder 
(AHB) 

Offer interconnection and mechanism that uses the bus 
between master and slave devices in AHB, i.e., bus arbiter. 

DSP (LASP24) 24-bit floating-point digital signal processor described in 
Chapter 3. 

 

DSPVP performs given 3-D audio algorithms such as reverberation in real-time, but 

these two audio algorithms are not shown in this thesis. Audio streaming via SSRAM is fed 

into DSP. Processed audio streaming is exported to stereo speakers via the audio codec. In 

the developing process, DSPVP is an auxiliary platform to cooperate with the verification 

of the designed SoC system. 
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Fig. 5-1. Multimedia SoC platform: (a) SoC architecture and (b) the proposed prototype 
system. 

 

 

5.3 Intellectual Property Design 

5.3.1 Microprocessor 

The microprocessor is compatible with the MCS-51 family, originally designed in the 

1980's by Intel. The processor has gained great popularity since its introduction and is 

estimated it is used in a large percentage of all embedded system products. It features are 

8-bit CPU, on-chip memory which has separated Data and Program (read-only) memory, 

two 16-bit timer/counters and four 8-bit I/O ports including two interrupts. There are 64K 

bytes of off-chip program memory and up to 4K bytes of on-chip program memory. 

Remaining part of the program memory is external and can be reached with a specific 

signal EA. The some features of the 8051 IP core referred to Opencores [53] are described 

as follows. 
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 8-bit CPU optimized for control applications 

 Extensive Boolean processing (single-bit logic) capabilities 

 64K program and data memory address space 

 32 bidirectional and individually addressable I/O lines 

 6-source/5-vector interrupt structure with two priority levels 

 Up to 4K bytes of on-chip program memory 

 Two 16-bit timer/counters 

 

The instruction set of the 8051 core is already said optimized for 8-bit control 

applications. This optimization shows in a variety of fast addressing modes for accessing 

the internal RAM to facilitate byte operations on small data structures. The instruction set 

is also good for systems that require a lot of Boolean processing because it has an 

extensive support for one-bit variables as a separate data type (that makes direct bit 

manipulation a lot easier). The total of addressing modes is five kinds, which include direct, 

indirect, register, register-specific, immediate, and index addressing. 

The 8051 core contains four I/O ports. All four ports in the 8051 core are bidirectional. 

Each port has SFR (Special Function Registers P0 through P3) which works like a latch, an 

output driver and an input buffer. Both the output driver and the input buffer of Port 0, and 

the output driver of Ports 2 are used for accessing the external memory. It works like this: 

Port 0 outputs the low byte of the external memory address (which is time-multiplexed 

with the byte being written or read) and Port 2 outputs the high-byte of the external 

memory address (this is only needed when the address is 16 bits wide). If the address in 

question is 8 bits wide the Port 2 pins are not needed in this application. The Port 3 pins are 

multifunctional. Their alternate functions are listed in Table 5-2. The alternate functions 

are activated with the 1 written in the corresponding bit latch in the port SFR. 
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Table 5-2. Microprocessor’s alternate functions. 

P3 Port Pin Alternate Function 
PIN 2 0INT (external interrupt) 
PIN 3 1INT (external interrupt) 
PIN 4 T0 (timer/counter 0 external input) 
PIN 5 T1 (timer/counter 1 external input) 
PIN 6 WR (external data memory write strobe) 
PIN 7 RD (external data memory read strobe) 

 

The new value arrives at the latch during the last phase (Phase 2), of the final cycle of the 

instruction that changes the value in a port latch. Because the port latches are sampled by 

their output buffers only during Phase 1 of any clock period (during Phase 2 the output 

buffer holds the value it saw during the previous Phase 1), the new value in the port latch 

won’t actually appear at the output pin until the next Phase 1, which will be at the 

beginning of the following machine cycle. 

 

5.3.2 Inter-IC Sound Interface 

The I2S is used only to handle audio serial data. To minimize the number of pins 

required and to keep wiring simple, a 3-line serial bus consisting of a line for two 

time-multiplexed data channels, a word select line (WS), and a clock line (SCK) is used. 

Serial data (SD) is transmitted in two’s complement with the MSB first. A simple 

configuration and the basic interface timing are illustrated as Fig. 5-2. The MSB is 

transmitted first because the transmitter and receiver may have different word lengths. The 

WS indicates the channel being transmitted: when WS=0, SD belongs to the left channel; 

conversely, SD belongs to the right channel. The WS line changes one clock period before 

the MSB is transmitted. This allows the slave transmitter to derive synchronous timing of 

the serial data that will be set up for transmission. Serial data sent by the transmitter may 
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be synchronized with either the trailing (high-to-low) or the leading (low-to-high) edge of 

the clock signal. However, the serial data must be latched into the receiver on the leading 

edge of the serial clock signal, and so there are some restrictions when transmitting data 

that is synchronized with the leading edge. 

Invalid Valid Invalid InvalidValid

Cycle time
Setup time

Hold time

SCLK

SD/WCLK

44.1kHz

3.072MHz

Invalid Valid Invalid InvalidValid

Cycle time
Setup time

Hold time

SCLK

SD/WCLK

44.1kHz

3.072MHz

 
Fig. 5-2. The basic interface timing of I2S. 

The hardware configuration of I2S transmitter and receiver are shown in Fig. 5-3. At 

each WS-level change, a pulse WSP is derived for synchronously parallel-loading the shift 

register. For the transmitter, the output of one of the data latches is then enabled depending 

on the WS signal. Since the serial data input is zero, all the bits after the LSB will also be 

zero. For the receiver, following the first WS-level change, WSP will reset the counter on 

the falling edge of SCK. As the counter increases by one every clock pulse, subsequent 

data bits are latched into the 16-bit shift register. 
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(a) Transmitter 

 
(b) Receiver 

Fig. 5-3. The block of audio I2S configuration (SCK=64×fs and WS=fs=48kHz). 

In the I2S format, any device can act as the system master by providing the necessary 

clock signals. A slave will usually derive its internal clock signal from an external clock 

input. This means, taking into account the propagation delays between master clocks and 

the data and/or word-select signals, that the total delay is simply the sum of the delay 

between the external (master) clock and the slave’s internal clock; and the delay between 

the internal clock and the data and/or word-select signals. For data and word-select inputs, 

the external to internal clock delay is of no consequence because it only lengthens the 
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effective set-up time (see Fig. 5-2). The major part of the time margin is to accommodate 

the difference between the propagation delay of the transmitter, and the time required to set 

up the receiver. All timing requirements are specified relative to the clock period or to the 

minimum allowed clock period of a device. This means that higher data rates can be used 

in the future. Fig. 5-4 shows the operation of audio data transmission from the I2S interface 

to the internal system high-speed bus (indicated by arrowheads). Then audio data is stored 

into the share memory. 

 

 

Fig. 5-4. FPGA simulation of I2S transmission. 

 

5.3.3 Serial Communication Design 

UART (Universal Asynchronous Receiver/Transmitter) is designed to make an 

interface between a RS-232 line and an AMBA bus. It works fine connected to the standard 

serial port of any device for data exchange with custom electronic. It was built in the 

perspective to be very small, but efficient. It has to fit in a small FPGA. It is not suited to 
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interface a modem since there is no control handshaking (CTS/RTS). It integrates two 

separate clocks, one for AMBA bus and the other for bitstream generation. This has the 

advantage to let the user bring own desired frequency for the baud rate. The baud rate, 

however, is defined as 9,600 bps in the case. 

The core implements the AMBA SoC bus interface for communication with the 

platform. It has an 8-bit data bus, even parity, and 1 stop bit for compatibility reason. The 

core requires one interrupt. It requires 2 pins in the chip (serial in RX and serial out TX). 

The block diagram of the core is shown in Fig. 5-5. The line control register assigns one of 

operations between the transmitter and receiver. If the received operation is active, serial 

data (RX) is fed into the receiver shift register. When the action is finished, the receiver 

logic will send an interrupt signal to the microprocessor. Conversely, if the transmitted 

operation is active, 8-bit data is fed into TX from the transmitter shift register. 

 

Fig. 5-5. The block diagram of UART (Baud rate at 9,600 b/s). 

The UART simulation is shown in Fig. 5-6. For the receiver (Fig. 5-6(a)), after SRX 

has received 8-bit data, data is then stored into the data_out_reg register. This monmentm, 
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an interrupt is triggered by INTn in order to info the master device. Hence, the master 

device can obtain data from the peripherial bus. Note that when the bus is selected 

(apb_sel=1), the interrupt signal INTn has to be disabled. The received data is stored into 

apb_rdata. For the transmittor (Fig. 5-6(b)), it is very easy. STX first sends a start bit (=0), 

then sends 8-bit data from LSB to MSB in order. Follow the parity and stop bits. 

 

 
(a) 

 

(b) 

Fig. 5-6. FPGA simulation of UART (a) receiver and (b) transmitter. 

5.3.4 Wrapper and Interrupt Design 

Since 8051 I/O signals can not directly meet AHB timing constraints, it is necessary 

for the 8051 wrapper design. The interface is prepared for 8-bit accesses. In each read or 

Start bit 
8-bit data 
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write access to the AMBA AHB will not require wait state cycles. Thus, all AMBA AHB 

single transfer modes are supported in the 8051 wrapper design. The simulation of single 

transfer mode is shown in Fig. 5-7. 

Fig. 5-8 shows the complete state machine for the 8051 wrapper design. The structure 

of the state machine is divided into three main parts: I2S data processing, 

user-programmable inputs via GPIO registers, and UART communication. When an 

interrupt occurs, 8051 can handle corresponding procedures via the wrapper. Note that the 

wrapper spends most of the term in I2S data communication. In other words, each time the 

wrapper must access three-channel data when the sampling rate starts. 

 

Fig. 5-7. FPGA simulation of data transfer for 8051 wrapper. 
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Fig. 5-8. Complete stat machine for 8051 wrapper. 

Due to 8051 accepted only two interrupts, in order to handle more interrupts for the 

system, the interrupt controller can decide the priority of all interrupts. Of course, GPIO 

has the highest priority. The following is UART and I2S, respectively. The interrupt 

controller supports up to 16 interrupts: 3 interrupts from the internal APB devices and other 

reserves. 

 

5.3.5 Specialized Hardware for System Verification 

To realize the benefits of emulation, virtually all of the circuit and testbench for the 

design must run on the emulator. This means that the testbench should be synthesizable. 

One approach would be to make the testbench synthesizable from the beginning, and to use 

the same testbench for both RTL verification and emulation. The bus functional models 

(BFM) used in the SoC platform are common method of creating testbenches. Typically 

they are written in the register-transistor level (RTL), a testbench automation tool, or in 

C/C++, and use some form of command language to create sequences of transactions on 

the system bus. The intent of the methods is to model only the bus transactions of an agent 
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on the bus. They do not model any of the functionality of an agent on the bus; each read 

and write transaction is specified by the test developer explicitly. Because of their 

simplicity, these bus models place little demand on simulator performance; simulation 

speeds are mostly determined by the macro itself. 

Many testbemchs require multiple BFMs, as in the SoC platform above. In this case, 

it is best to use a single command file to coordinate the actions of the various models as 

AHB and APB. The models must be written so that they can share a common command 

file. Many commercial BFMs offer this capability. If we take our canonical design, the 

following approach seems reasonable. In Fig. 5-9, the software for the processor is 

compiled and loaded into memory in the emulator. This allows the processor and 

peripherals to perform at full emulation speed. The stimulus for the data transformation 

block is also loaded into memory on the emulator. We can store a bit stream that represents 

audio data through the I2S interface. A simple state machine transfers data from the 

stimulus memory to the I/O interface. Similarly, the serial data from the output of the SoC 

platform is sent to a response capture memory in the emulator. Another simple state 

machine handles the handshake for the data transfer. 
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Fig. 5-9. Emulation testbench. 
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5.4 System Prototype 

The proposed SoC platform design for audio applications has been synthesized on the 

Altera FPGA. In particular, the EP1C20F400 Cyclone FPGA has been employed to carry 

out all the synthesis and place-and-route processes. The synthesis results are shown in 

Table 5-3. By using Altera QuartusII, it is mapped, placed, and routed in less than a minute. 

The basic system occupies 1 block RAM about 65536 bits, 837 logic cells, 470 registers, 

452 LUTs (look-up table), and 100 available pins. The SoC platform consumes just 5% of 

the logic resources, one of the smallest devices in that product family. LASP24 and 

reverberator consume 618 registers and 3,796 LEs. These two IPs can be performed on 

100MHz frequency.  

Table 5-3. The FPGA synthesis results of audio SoC design. 

             Results 
Components 

FSM 
(states)

Registers Sizes 
(LEs) 

Operating frequency 
 

8051 wrapper (AHB) 40 125 322 40 MHz above 
I2S (APB) ×3 - 231 264 3.072 MHz 
GPIO (APB) 3 29 97 20 MHz 
UART (APB) 10 53 92 Fixed baud rate: 9.6k bps 
SSRAM controller 
(AHB) 

4 15 29 40MHz for read and write 
operations 

Interrupt controller 
(APB) 

- 8 17 20MHz 

Clock generator for I2S 
design  
(Independent module) 

- 9 16 Input clock: 18.432 MHz 
Bit clock: 3.072 MHz 
Sampling rate: 48 KHz 

LASP24 17 1,835 22,747 Up to 100MHz 
Reverberator (APB) 25 287 7,049 Up to 100MHz 

 

The operating frequency of the AMBA system and 8051 is at 40 MHz and 12 MHz, 

respectively. The 8051 transducer (1251 cycles) allows fetching the wrapper data and 

providing these data to each component in AMBA. In other words, it executes the 8051 
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simple handshake enable. The dual-port memory contains 4096 with 16-bit width 

6-channel audio streaming data, and the data format is shown in Fig. 5-10(a). The sync 

signal is used as an interrupt to trigger DSP. It is important for the synchronous problem of 

audio data. When the microprocessor receives audio data via an interrupt, data is then 

written into the dual-port SRAM shown in Fig. 5-10(b) by using Fig. 5-10(a) format.  

 
(a) 

 
(b) 

Fig. 5-10. Share memory: (a) The data format and control of audio streaming and (b) 
simulation results of processing three-channel data in the dual-port SRAM. 
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As a result, we can be able to test quickly the prototyping system (Fig. 5-1) in the 

development kit environment. The SoC system can perform with accuracy and control 

DSP operations of optimized audio algorithms as well as high-quality sound in real-time. 

The development environment and the final demo board for audio processing are shown in 

Fig. 5-11. 
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Fig. 5-11. (a) The final Demo board and (b) the initial development environment. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 
 

This thesis has proposed a new low-cost application-specific processor (LASP24) for 

sound processing in multimedia. High performance is achieved by vector and matrix 

operations that are not usually supported by general-purpose DSPs. The LASP24 has 

precise 24-bit floating-point arithmetic units. This processor makes the speech coding 

algorithms ready to run in real-time operations. In addition to the LPC calculation and 

pitch estimation built-in to the LASP24 core, the other algorithms such as a codebook 

search can also be implemented in the designed processor. Furthermore, a technique of 

gated clocks on power optimization of sequential circuits was involved in this design to 

reduce power dissipation. Based on these features, LASP24 can share huge calculations in 

real-time speech coding. It can also reduce power consumption: 25.75% at 100MHz, 12.75 

at 80MHz, 31.1% at 40 MHz, 27.6% at 33 MHz, and 62.75% at 25 MHz. The performance 

of LASP24 was about 4.75 times higher than TMS320C30 and about 3.2 times higher than 

TMS320C31. Several experimental tests have been done, and the performance 

comparisons to a series of TMS320C3x processors are also presented in the thesis. As 

these testing results, we can find that LASP24 for sound processing has a very satisfactory 

performance, and it has also verified all the designed functions. 

Finally, a SoC platform design for digital sound processing by using FPGA 

development environment is presented. Through the 8051 embedded microcontroller, we 

can easily program two audio processing and completely control all actions of the audio 

system. The platform has been verified and performed in the Altera Cyclone FPGA, and it 

can control the DSP processor to execute speech coding such as MELP and audio 
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enhancement such as Reverberation as well. The proposed SoC integration platform offers 

outstanding performance and flexibility at very low cost for a wide range of multi-channel 

audio applications. In the future, the DSP processor for audio processing will be developed 

such that it can be integrated into the proposed SoC platform design to perform a complete 

audio SoC system. Under FPGA verification and testing, on average the whole 

performance obtains 80MIPS and 90mW power consumption. Due to a cross-platform 

implemented method, it can be applies into an embedded and portable multimedia system 

and can also be integrated to a single silicon chip. 

 The modern day computing technology ought to be one supporting interactive and 

intelligent processing [74] that transforms and transfers information ubiquitously and in 

real-time speed. The future computing must provide both economic bandwidth utilization 

and efficient information extraction. More importantly, the industry must be prepared for 

the inevitable trend that (1) computing (2) control and (3) users will be separated by long 

distances. As a result, the users can anticipate the near-future convergence of computing 

and communication. A truly integrated media system must connect with individual users 

and content addressable multimedia databases. This new trend bring about a great 

technological challenge as 

● Future multimedia technologies will need to handle information with an 

increasing level of intelligence, i.e., automatic extraction, recognition, 

interpretation, and interactions of multimodal signals, and the ability to seamlessly 

handle different representations. This will lead to what can be called intelligence 

multimedia processing technology, and integrated into the SoC platform. 

● We envision a major impact by integrating adaptive neural processing into the 

state-of-the-arts multimedia technologies. The main power of neural networks 

hinges upon their adaptive learning capability [57], which enables machines to be 
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taught to interpret possible variations of the same object or pattern, e.g., scale, 

orientation, and perspective. 

● The system integration will also be a challenging task as it involves complex 

tradeoff in integrating subsystems into a functional SoC system. For example, we 

need to estimate the necessary storage space for application codes (such as 

adaptive on-the-fly incremental training). The objective is to have the total system 

implemented under the specified power, size, weight, and cost constraints. 

In the future, General-purpose workstations and PCs are already equipped with 

powerful programmable microprocessors; these processors, however, have not been able to 

perform image and video processing tasks efficiently as the special algorithm 

characteristics are not exploited. Therefore, a special class of programmable multimedia 

processors [64] has evolved that incorporate architectural enhancements to increase their 

multimedia processing capabilities. These enhancements include as follows. 

● Subword parallelism: A number of lower-precision data items are processed in 

parallel on the same ALU (split-ALU). This enables to exploit data parallelism in 

highly regular low-level algorithms involving identical operations executed on 

large data volumes.  

● Very long instruction word (VLIW) [82]: Several operations are specified within a 

single instruction word for concurrent execution on multiple function units. 

Instruction level parallelism available in image and video algorithms can thus be 

exploited. Code scheduling has to be performed statically by the compiler. 

● Coprocessor architecture: By incorporating one or more separate modules adapted 

to specific tasks, highly regular program parts with high processing requirements 

can be executed on dedicated hardware, while more irregular but less 
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computationally intensive control tasks can be performed on a programmable 

processor core.  

● Memory system design: Due to the high data volumes encountered particularly in 

video processing, the memory system has a significant impact on overall 

performance. Stream caches have been proposed that employ prefetching 

techniques to access shortly needed data in advance. Data structures of static nature, 

such as filter coefficients or look-up tables, can be placed into on-chip SRAMs 

where they are always accessible within shortest times. For instruction memory 

design, conventional cache strategies may prove useful for speeding up instruction 

access, provided the cache is large enough and mutual code replacement can 

effectively be prevented. 

The architectural enhancements of current multimedia processors alone, targeting almost 

exclusively audio enhanced algorithms, will not be sufficient for the emerging multimedia 

applications. With increasing sophistication of multimedia algorithms and less predictable 

program flow, new concepts are required. 
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APPENDIX A 

LASP24 Instruction Set and Examples 

Notice that the symbol { } represents an optional set. In the set, only choose a term as 
operand.  

Operand： 
 R{0..7}, R{0..7} 
 R{0..7}, RAM{0, 1}[#direct] 
 RAM{0, 1}[#direct], R{0..7} 
 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, 

R+J, J-R}]} 
 {FIL[{R_FIL，R_FIL+R, R_FIL+J, R_FIL-R}], EXT[{R_EXT, R_EXT+R, 

R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, R+J, J-R}]}, R{0..7} 
 RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, 

R_EXT-R}] 
 EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, R+J, 

J-R}] 
 WIN[R], RAM{0, 1}[{R, J, R+J, J-R}] 
 WIN[R], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}] 
 FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}], RAM{0, 1}[{R, J, R+J, J-R}] 
 FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}], EXT[{R_EXT, R_EXT+R, 

R_EXT+J, R_EXT-R}] 

MOV 

Description: 
 The operation “MOV R1, R3” is to copy data from R1 to R3. 
 The operation “MOV RAM0[10], R4” shows that data of RAM bank 0 with the 

address 10 is copied to R4. 
 The operation “MOV FIL[R_FIL], RAM0[R]” is to copy data from Filter ROM 

with the address R_FIL to RAM0 with the address R. 
 R, J, R_EXT, and R_FIL are all auxiliary registers. It is used as the address index.

The registers, R and J, is use for RAM bank 0及RAM bank 1. Their data width is

10bits. The registers, R_EXT and R_FIL, are use for EXT RAM and FIL ROM, 
and their data width is 14bits。 

 RAM{0, 1} indicates internal memory. The symbol EXT indicates external 
random access memory. The symbol FIL indicates external read-only memory. 
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Operand 
 R{0..7}, R{0..7}, R{0..7} 
 R{0..7}, {RAM{0, 1}[{R, J, R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, 

R_FIL-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]}, R{0..7} ADD 
Description: 

 The operation “ADD R1, R2, R3” means R1+R2→R3. 

 The operation “ADD R0, RAM0[R], R1” means R0+RAM0[R]→R1. 
Operand： 

 R{0..7}, R{0..7}, R{0..7} 
 R{0..7}, {RAM{0, 1}[{R, J, R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, 

R_FIL-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}]}, R{0..7} 
SUB 

Description: 
 The operation “SUB R1, R2, R3” means R2-R1→R3. 
 The operation “SUB R0, RAM0[R], R1” means RAM0[R]-R0→R1, where R is 

the internal memory address register. 

Operand： 
 R6, R7, R7 
 R7, #Value (immediate value) 

ADDI 
Description: 

 The operation “ADDI  R6, R7, R7” means R6+R7→R7 (integer addition). 

 The operation “ADDI  R7,+5” means R7+5→R7 (integer addition). 
Operand： 

 R{0..7}, R{0..7}, R{0..7} 
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]} 
 RAM{0, 1}[#direct], R{0..7} 
 {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, 

R_EXT-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], WIN[R], FIL[{R_FIL, R_FIL+R, 
R_FIL+J, R_FIL-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, 
R_EXT+R, R_EXT+J, R_EXT-R}] 

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, 
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7} 

VMPY 

Description: 
 The operation “MPY  R2, R3, R4” means R2×R3→R4. 
 The operation “MPY  R1, RAM0[20]” means R1×RAM[20]→R1. 

 The operation “MPY  RAM1[R], EXT[R_EXT+R], RAM0[J] means 
RAM1[R]×EXT[R_EXT+R]→RAM0[J]. 
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Operand： 
 R{0..7}, R{0..7}, R3 
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]} 
 {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]}, R{0..7} 
 {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, R_EXT+R, R_EXT+J, 

R_EXT-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], WIN[R], FIL[{R_FIL, R_FIL+R, 
R_FIL+J, R_FIL-R}]}, {RAM{0, 1}[{R, J, R+J, J-R}], EXT[{R_EXT, 
R_EXT+R, R_EXT+J, R_EXT-R}] 

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, 
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7} 

 WIN[R], EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}] 

MAC 

Example: 
 The operation “MAC  R2, R1, R3” means R2×R1+R3→R3. 
 The operation “MAC  R1,RAM0[20]” means R1×RAM[20]+R3→R1. 

 The operation “MPY  RAM1[R], EXT[R_EXT+R], RAM0[J]” means 
RAM1[R]×EXT[R_EXT+R]→RAM0[J]. 

 The operation “MAC RAM0 [j], FIL [R_FIL+J], EXT[R_EXT+J]” means 
(RAM0[J]×FIL[R_FIL+J]→EXT[R_EXT+J])+ACC→R3. 

Operand： 
 R{0..7}, #Value 

SHF 
Example: 

 The operation “SHF  R2, +5” means that R2 shifts right 5 bits. 
 The operation “SHF  R1, -3” means that R1shifts left 3 bits. 

 Notice that the operation can shift right or left 24 bits at most. 
Operand： 

 R{0..7}, R{0..7}, R{0..7} 
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]} 
 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, 

R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7} 
AND 

Example: 
 The operation “AND  R2, R3, R4” means R2 Bit-wise-AND R3→R4. 
 The operation “AND  R1, RAM0[20] means R1 Bit-wise-AND RAM[20]→R1.

 The operation “AND  R0, EXT[R_EXT], R2” means R0 Bit-wise-AND 
EXT[R_EXT]→R2. 
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Operand： 
 R{0..7}, R{0..7}, R{0..7} 
 R{0..7}, {RAM{0, 1}[#direct], EXT[#direct], FIL[#direct]} 

 R{0..7}, {EXT[{R_EXT, R_EXT+R, R_EXT+J, R_EXT-R}], RAM{0, 1}[{R, J, 
R+J, J-R}], FIL[{R_FIL, R_FIL+R, R_FIL+J, R_FIL-R}]}, R{0..7} 

OR 
Description: 

 The operation “OR  R2, R3, R4” means R2 Bit-wise-OR R3→R4 
 The operation “OR  R1, RAM0[20]” means R1 Bit-wise-OR RAM[20]→R1 

 The operation “OR  R0, EXT[R_EXT], R2” means R0 Bit-wise-OR 
EXT[R_EXT]→R2 

Operand： 
 R{0..7}, R7 

FIX 
Description: 

 The operation “FIX  R1, R7” means that the value of the float-point register R1 
transfer the value of signed integer to R3. 

 The range of FIX is a 14-bit sign number (from -8192 to 8191). 
Operand： 

 R7,  R{0..7} 

Float Description: 
 The operation “FLOAT  R7, R1” means that the 14-bit sign value of the integer 

register R7transfer the floating-point value to R1. 
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APPENDIX B 

Addressing Modes 

OPCODE RC000 RA RB I/R Unused (NU)
23 ~ 19 5 ~ 018~16 15~13 12~10 9 ~ 7 6

RC <= RA OP RB or RC <= RA

OPCODE RAM001 R/W R Address
23 ~ 19 18~16 15~14 13 12~10 9 ~ 0

RAM[Add] <= OP R or R <= RAM[Add] or R <= R OP RAM[Add]

OPCODE RAM111 R/W RA AR
23 ~ 19 18~16 15~14 13 12~10 9 ~ 7

RAM[Add] <= OP RA or RC <= RAM[Add] or RC <= RA OP RAM[Add]

RC
6 ~ 5 4 ~ 0

Unused

OPCODE NU011 FIL EXT RAM1
23 ~ 19 18~16 15~14 13~12 9 ~ 8

VC <= VA[AR_A] OP VB[AR_B]

RAM0
7 ~ 6 5 ~ 4

VC
11~10 3 ~ 2

VA VB
1 ~ 0

(d) Vector addressing mode

(c) Indirect addressing mode

(b) Direct addressing mode

(a) Register addressing mode

 

 

00
01
10
11

13~12 11~10
FIL

FIL+AR0
FIL+AR1
FIL-AR0

FIL

EXT
EXT+AR0
EXT+AR1
EXT-AR0

RAM1RAM0EXT VC VA VB
9 ~ 8 7 ~ 6 5 ~ 4 3 ~ 2 1 ~ 0
AR0
AR1

AR0+AR1
AR1-AR0

AR0
AR1

AR0+AR1
AR1-AR0

RAM0 RAM0RAM0
RAM1 RAM1 RAM1

EXT EXT WIN
FILR3 —

 

OPCODE Condition/ValueR/C Literal
23 ~ 19 18 17~15 14~12

R <= R OP Literal or PC <= (Condition) Literal

R
11 ~ 0

(e) Immediate addressing mode
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